1
|
Guo Q, Gobbo D, Zhao N, Zhang H, Awuku NO, Liu Q, Fang LP, Gampfer TM, Meyer MR, Zhao R, Bai X, Bian S, Scheller A, Kirchhoff F, Huang W. Adenosine triggers early astrocyte reactivity that provokes microglial responses and drives the pathogenesis of sepsis-associated encephalopathy in mice. Nat Commun 2024; 15:6340. [PMID: 39068155 PMCID: PMC11283516 DOI: 10.1038/s41467-024-50466-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 07/11/2024] [Indexed: 07/30/2024] Open
Abstract
Molecular pathways mediating systemic inflammation entering the brain parenchyma to induce sepsis-associated encephalopathy (SAE) remain elusive. Here, we report that in mice during the first 6 hours of peripheral lipopolysaccharide (LPS)-evoked systemic inflammation (6 hpi), the plasma level of adenosine quickly increased and enhanced the tone of central extracellular adenosine which then provoked neuroinflammation by triggering early astrocyte reactivity. Specific ablation of astrocytic Gi protein-coupled A1 adenosine receptors (A1ARs) prevented this early reactivity and reduced the levels of inflammatory factors (e.g., CCL2, CCL5, and CXCL1) in astrocytes, thereby alleviating microglial reaction, ameliorating blood-brain barrier disruption, peripheral immune cell infiltration, neuronal dysfunction, and depression-like behaviour in the mice. Chemogenetic stimulation of Gi signaling in A1AR-deficent astrocytes at 2 and 4 hpi of LPS injection could restore neuroinflammation and depression-like behaviour, highlighting astrocytes rather than microglia as early drivers of neuroinflammation. Our results identify early astrocyte reactivity towards peripheral and central levels of adenosine as an important pathway driving SAE and highlight the potential of targeting A1ARs for therapeutic intervention.
Collapse
Affiliation(s)
- Qilin Guo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Davide Gobbo
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Na Zhao
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Institute of Anatomy and Cell Biology, University of Saarland, 66421, Homburg, Germany
| | - Hong Zhang
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Nana-Oye Awuku
- Molecular Neurophysiology, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Qing Liu
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
| | - Li-Pao Fang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Tanja M Gampfer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Markus R Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), University of Saarland, 66421, Homburg, Germany
| | - Renping Zhao
- Biophysics, CIPMM, University of Saarland, 66421, Homburg, Germany
| | - Xianshu Bai
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| | - Wenhui Huang
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, 66421, Homburg, Germany.
- Center for Gender-specific Biology and Medicine (CGBM), University of Saarland, 66421, Homburg, Germany.
| |
Collapse
|
2
|
Boncler M, Bartczak K, Rozalski M. Potential for modulation of platelet function via adenosine receptors during inflammation. Br J Pharmacol 2024; 181:547-563. [PMID: 37218380 DOI: 10.1111/bph.16146] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/15/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
Traditionally, platelets are known to play an important role in haemostasis and thrombosis; however, they serve also as important modulators of inflammation and immunity. Platelets secrete adhesion molecules and cytokines, interact with leukocytes and endothelium, and express toll-like receptors involved in a direct interaction with pathogens. Platelets express A2A and A2B subtypes of receptors for adenosine. The activation of these receptors leads to an increase in cAMP concentration in the cytoplasm, thereby resulting in inhibited secretion of pro-inflammatory mediators and reduced cell activation. Therefore, platelet adenosine receptors could be a potential target for inhibiting platelet activation and thus down-regulating inflammation or immunity. The biological effects of adenosine are short-lasting, because the compound is rapidly metabolized; hence, its lability has triggered efforts to synthesize new, longer-lasting adenosine analogues. In this article, we have reviewed the literature regarding the pharmacological potential of adenosine and other agonists of A2A and A2B receptors to affect platelet function during inflammation. LINKED ARTICLES: This article is part of a themed issue on Platelet purinergic receptor and non-thrombotic disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.4/issuetoc.
Collapse
Affiliation(s)
- Magdalena Boncler
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Lodz, Poland
| | - Kinga Bartczak
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Lodz, Poland
| | - Marcin Rozalski
- Department of Haemostasis and Haemostatic Disorders, Chair of Biomedical Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
3
|
Ma DW, Ha J, Yoon KS, Kang I, Choi TG, Kim SS. Innate Immune System in the Pathogenesis of Non-Alcoholic Fatty Liver Disease. Nutrients 2023; 15:2068. [PMID: 37432213 DOI: 10.3390/nu15092068] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a prevalent condition characterized by lipid accumulation in hepatocytes with low alcohol consumption. The development of sterile inflammation, which occurs in response to a range of cellular stressors or injuries, has been identified as a major contributor to the pathogenesis of NAFLD. Recent studies of the pathogenesis of NAFLD reported the newly developed roles of damage-associated molecular patterns (DAMPs). These molecules activate pattern recognition receptors (PRRs), which are placed in the infiltrated neutrophils, dendritic cells, monocytes, or Kupffer cells. DAMPs cause the activation of PRRs, which triggers a number of immunological responses, including the generation of cytokines that promote inflammation and the localization of immune cells to the site of the damage. This review provides a comprehensive overview of the impact of DAMPs and PRRs on the development of NAFLD.
Collapse
Affiliation(s)
- Dae Won Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung Sik Yoon
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Hallaj S, Mirza-Aghazadeh-Attari M, Arasteh A, Ghorbani A, Lee D, Jadidi-Niaragh F. Adenosine: The common target between cancer immunotherapy and glaucoma in the eye. Life Sci 2021; 282:119796. [PMID: 34245774 DOI: 10.1016/j.lfs.2021.119796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Adenosine, an endogenous purine nucleoside, is a well-known actor of the immune system and the inflammatory response both in physiologic and pathologic conditions. By acting upon particular, G-protein coupled adenosine receptors, i.e., A1, A2- a & b, and A3 receptors mediate a variety of intracellular and immunomodulatory actions. Several studies have elucidated Adenosine's effect and its up-and downstream molecules and enzymes on the anti-tumor response against several types of cancers. We have also targeted a couple of molecules to manipulate this pathway and get the immune system's desired response in our previous experiences. Besides, the outgrowth of the studies on ocular Adenosine in recent years has significantly enhanced the knowledge about Adenosine and its role in ocular immunology and the inflammatory response of the eye. Glaucoma is the second leading cause of blindness globally, and the recent application of Adenosine and its derivatives has shown the critical role of the adenosine pathway in its pathophysiology. However, despite a very promising background, the phase III clinical trial of Trabodenoson failed to achieve the non-inferiority goals of the study. In this review, we discuss different aspects of the abovementioned pathway in ophthalmology and ocular immunology; following a brief evaluation of the current immunotherapeutic strategies, we try to elucidate the links between cancer immunotherapy and glaucoma in order to introduce novel therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Shahin Hallaj
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA
| | | | - Amin Arasteh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Ghorbani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel Lee
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
5
|
A 2B Adenosine Receptor and Cancer. Int J Mol Sci 2019; 20:ijms20205139. [PMID: 31627281 PMCID: PMC6829478 DOI: 10.3390/ijms20205139] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/11/2019] [Accepted: 10/12/2019] [Indexed: 12/28/2022] Open
Abstract
There are four subtypes of adenosine receptors (ARs), named A1, A2A, A2B and A3, all of which are G protein-coupled receptors (GPCRs). Locally produced adenosine is a suppressant in anti-tumor immune surveillance. The A2BAR, coupled to both Gαs and Gαi G proteins, is one of the several GPCRs that are expressed in a significantly higher level in certain cancer tissues, in comparison to adjacent normal tissues. There is growing evidence that the A2BAR plays an important role in tumor cell proliferation, angiogenesis, metastasis, and immune suppression. Thus, A2BAR antagonists are novel, potentially attractive anticancer agents. Several antagonists targeting A2BAR are currently in clinical trials for various types of cancers. In this review, we first describe the signaling, agonists, and antagonists of the A2BAR. We further discuss the role of the A2BAR in the progression of various cancers, and the rationale of using A2BAR antagonists in cancer therapy.
Collapse
|
6
|
Hümmeke-Oppers F, Hemelaar P, Pickkers P. Innovative Drugs to Target Renal Inflammation in Sepsis: Alkaline Phosphatase. Front Pharmacol 2019; 10:919. [PMID: 31507417 PMCID: PMC6716471 DOI: 10.3389/fphar.2019.00919] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/22/2019] [Indexed: 12/20/2022] Open
Abstract
Sepsis-related mortality roughly doubles when acute kidney injury (AKI) occurs and end-stage renal disease is more common in sepsis-associated AKI survivors. So far, no licensed treatment for the prevention of AKI is available, however the data on alkaline phosphatase (AP) is promising and might change this. Sepsis-associated AKI is believed to be the result of inflammation and hypoxia combined. Systemic inflammation started by recognition of ‘pathogen-associated molecular patterns’ (PAMPs) such as lipopolysaccharide (LPS) which binds to Toll-like receptor 4 and leads to the production of inflammatory mediators. Due to this inflammatory process renal microcirculation gets impaired leading to hypoxia resulting in cell damage or cell death. In the process of cell damage so called ‘danger-associated molecular patterns’ (DAMPs) are released resulting in a sustained inflammatory effect. Apart from the systemic inflammation DAMPs and PAMPs also interact with receptors in the proximal tubule of the kidney causing a local inflammatory response leading to leukocyte infiltration and tubular lesions, combined with renal cell apoptosis and ultimately to AKI. In the longer-term, inflammation-mediated inadequate repair mechanism may lead to fibrosis and development of chronic kidney disease. AP is an endogenous enzyme that dephosphorylates and thereby detoxifies several compounds, including LPS. A small phase 2 clinical trial in sepsis patients showed that urinary excretion of tubular injury markers was attenuated and creatinine clearance improved in sepsis patients treated with AP. This renal protective effect was confirmed in a second small clinical phase 2 trial in sepsis patients with AKI. Subsequently, a large trial in sepsis patients with AKI was conducted using a human recombinant AP. In 301 patients no improvement of kidney function within 7 days after enrolment was observed, but kidney function was significantly better on day 21 and day 28 and all-cause 28-day mortality was significantly lower (14.4% in AP group versus 26.7% in the placebo group). Possible explanations of this lack of short-term kidney function improvement are discussed and potential effects of AP on renal repair mechanisms, including inflammation-mediated induction of fibrosis, that may explain the beneficial longer-term effects of AP are proposed.
Collapse
Affiliation(s)
- Femke Hümmeke-Oppers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Pleun Hemelaar
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Zhou S, Liu G, Guo J, Kong F, Chen S, Wang Z. Pro-inflammatory Effect of Downregulated CD73 Expression in EAE Astrocytes. Front Cell Neurosci 2019; 13:233. [PMID: 31191254 PMCID: PMC6549520 DOI: 10.3389/fncel.2019.00233] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 05/09/2019] [Indexed: 01/31/2023] Open
Abstract
CD73, an ectonucleotidase, participates in the regulation of immune responses by controlling the conversion of extracellular AMP to adenosine. In this study, we investigated whether any type of brain cells, especially neuroglia cells, exhibit altered CD73 expression, localization or activity upon experimental autoimmune uveitis (EAU) induction and whether altered CD73 manipulates the activation of effector T cells that interact with such cell types. First, the amount of cell membrane-exposed CD73 was detected by flow cytometry in various types of brain cells collected from either naïve or EAE mice. Compared to that in astrocytes from naïve control mice, the amount of membrane-bound CD73 was significantly decreased in astrocytes from EAE mice, while no significant differences were detected in other cell types. Thereafter, wild-type and CD73-/- astrocytes were used to study whether CD73 influences the function of inflammatory astrocytes, such as the production of cytokines/chemokines and the activation of effector T cells that interact with astrocytes. The results indicated that the addition of exogenous AMP significantly inhibited cytokine/chemokine production by wild type astrocytes but had no effect on CD73-/- astrocytes and that the effect of AMP was almost completely blocked by the addition of either a CD73 inhibitor (APCP) or an adenosine receptor A1 subtype (ARA1) antagonist (DPCPX). Although the addition of AMP did not affect CD73-/- astrocytes, the addition of adenosine successfully inhibited their cytokine/chemokine production. The antigen-specific interaction of astrocytes with invading CD4 cells caused CD73 downregulation in astrocytes from mice that underwent EAE induction. Collectively, our findings support the conclusion that, upon EAE induction, likely due to an interaction with invading CD4+ cells, astrocytes lose most of their membrane-localized CD73; this inhibits the generation of adenosine in the local microenvironment. As adenosine has anti-inflammatory effects on astrocytes and CNS-infiltrating effector T cells in EAE, the downregulation of CD73 in astrocytes may be considered a pro-inflammatory process for facilitating the pathogenesis of EAE.
Collapse
Affiliation(s)
- Shumin Zhou
- Clinical Laboratory, The 2nd Hospital of Tianjin Medical University, Tianjin, China
| | - Guoping Liu
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Jie Guo
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| | - Fanqiang Kong
- Clinical Laboratory, General Hospital of Tianjin Medical University, Tianjin, China
| | - Song Chen
- Department of Ophthalmology, General Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiyun Wang
- Department of Neurology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
8
|
Osborne DM, Sandau US, Jones AT, Vander Velden JW, Weingarten AM, Etesami N, Huo Y, Shen HY, Boison D. Developmental role of adenosine kinase for the expression of sex-dependent neuropsychiatric behavior. Neuropharmacology 2018; 141:89-97. [PMID: 30145320 DOI: 10.1016/j.neuropharm.2018.08.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 08/20/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
Deficits in social memory, cognition, and aberrant responses to stimulants are common among persons affected by schizophrenia and other conditions with a presumed developmental etiology. We previously found that expression changes in the adenosine metabolizing enzyme adenosine kinase (ADK) in the adult brain are associated with deficits in various cognitive domains. To distinguish between developmental and adult functions of ADK, we used two transgenic mouse lines with widespread disruption of ADK expression in the adult brain, but differences in the onset of ADK deletion. Specifically, we compared Nestin-Cre+/-:ADK-floxfl/fl (ADKΔBrain) mice with global loss of ADK in the whole brain, beginning in mid-gestation and persisting for life, with Gfa2-Cre+/-:ADK-floxfl/fl (ADKΔAstro) mice that have normal ADK expression throughout development, but lose astrocyte-specific ADK-expression in young adulthood. Because ADK-expression in adulthood is generally confined to astrocytes, adult ADKΔAstro mice show a similar expression profile of ADK in key areas of the brain related to neuropsychiatric behavior, compared to adult ADKΔBrain mice. We sought to determine a neurodevelopmental role of ADK on the expression of psychiatric behaviors in adult male and female mice. Adult ADKΔBrain mice showed significant deficits in social memory in males, significant contextual learning impairments in both sexes, and a hyper-responsiveness to amphetamine in males. In contrast, ADKΔAstro mice showed normal social memory and contextual learning but hypo-responsiveness to amphetamine in males. Our results demonstrate a key developmental role of ADK in mediating behaviors in adulthood related to neuropsychiatric disease and support the greater prevalence of these disorders among males.
Collapse
Affiliation(s)
- D M Osborne
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA.
| | - U S Sandau
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - A T Jones
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - J W Vander Velden
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - A M Weingarten
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - N Etesami
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - Y Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - H Y Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| | - D Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, OR, USA
| |
Collapse
|
9
|
Street JM, Koritzinsky EH, Bellomo TR, Hu X, Yuen PST, Star RA. The role of adenosine 1a receptor signaling on GFR early after the induction of sepsis. Am J Physiol Renal Physiol 2018; 314:F788-F797. [PMID: 29117994 PMCID: PMC6031909 DOI: 10.1152/ajprenal.00051.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 10/23/2017] [Accepted: 11/06/2017] [Indexed: 01/12/2023] Open
Abstract
Sepsis and acute kidney injury (AKI) synergistically increase morbidity and mortality in the ICU. How sepsis reduces glomerular filtration rate (GFR) and causes AKI is poorly understood; one proposed mechanism includes tubuloglomerular feedback (TGF). When sodium reabsorption by the proximal tubules is reduced in normal animals, the macula densa senses increased luminal sodium chloride, and then adenosine-1a receptor (A1aR) signaling triggers tubuloglomerular feedback, reducing GFR through afferent arteriole vasoconstriction. We measured GFR and systemic hemodynamics early during cecal ligation and puncture-induced sepsis in wild-type and A1aR-knockout mice. A miniaturized fluorometer was attached to the back of each mouse and recorded the clearance of FITC-sinistrin via transcutaneous fluorescence to monitor GFR. Clinical organ injury markers and cytokines were measured and hemodynamics monitored using implantable transducer telemetry devices. In wild-type mice, GFR was stable within 1 h after surgery, declined by 43% in the next hour, and then fell to less than 10% of baseline after 2 h and 45 min. In contrast, in A1aR-knockout mice GFR was 37% below baseline immediately after surgery and then gradually declined over 4 h. A1aR-knockout mice had similar organ injury and inflammatory responses, albeit with lower heart rate. We conclude that transcutaneous fluorescence can accurately monitor GFR and detect changes rapidly during sepsis. Tubuloglomerular feedback plays a complex role in sepsis; initially, TGF helps maintain GFR in the 1st hour, and over the subsequent 3 h, TGF causes GFR to plummet. By 18 h, TGF has no cumulative effect on renal or extrarenal organ damage.
Collapse
Affiliation(s)
- Jonathan M Street
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Erik H Koritzinsky
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Tiffany R Bellomo
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Xuzhen Hu
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Peter S T Yuen
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| | - Robert A Star
- Renal Diagnostics and Therapeutics Unit, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
10
|
Abstract
Adenosine is an ancient extracellular signaling molecule that regulates various biological functions via activating four G-protein-coupled receptors, A1, A2A, A2B, and A3 adenosine receptors. As such, several studies have highlighted a role for adenosine signaling in affecting the T cell development in the thymus. Recent studies indicate that adenosine is produced in the context of apoptotic thymocyte clearance. This review critically discusses the involvement of adenosine and its receptors in the complex interplay that exists between the developing thymocytes and the thymic macrophages which engulf the apoptotic cells. This crosstalk contributes to the effective and immunologically silent removal of apoptotic thymocytes, as well as affects the TCR-driven T-cell selection processes.
Collapse
Affiliation(s)
- Krisztina Köröskényi
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Basic Medical Sciences of Dental Faculty, University of Debrecen, Debrecen, Hungary
| | - Gergely Joós
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Basic Medical Sciences of Dental Faculty, University of Debrecen, Debrecen, Hungary
| | - Zsuzsa Szondy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Department of Basic Medical Sciences of Dental Faculty, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
11
|
Guerci P, Ergin B, Ince C. The macro- and microcirculation of the kidney. Best Pract Res Clin Anaesthesiol 2017; 31:315-329. [PMID: 29248139 DOI: 10.1016/j.bpa.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
Acute kidney injury (AKI) remains one of the main causes of morbidity and mortality in the intensive care medicine today. Its pathophysiology and progress to chronic kidney disease is still under investigation. In addition, the lack of techniques to adequately monitor renal function and microcirculation at the bedside makes its therapeutic resolution challenging. In this article, we review current concepts related to renal hemodynamics compromise as being the event underlying AKI. In doing so, we discuss the physiology of the renal circulation and the effects of alterations in systemic hemodynamics that lead to renal injury specifically in the context of reperfusion injury and sepsis. The ultimate key culprit of AKI leading to failure is the dysfunction of the renal microcirculation. The cellular and subcellular components of the renal microcirculation are discussed and how their injury contributes to AKI is described.
Collapse
Affiliation(s)
- Philippe Guerci
- Department of Anesthesiology and Critical Care Medicine, University Hospital of Nancy, France; INSERM U1116, University of Lorraine, Vandoeuvre-Les-Nancy, France; Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands
| | - Bulent Ergin
- Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands; Department of Intensive Care Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Can Ince
- Department of Translational Physiology, Academic Medical Centre, Amsterdam, The Netherlands; Department of Intensive Care Medicine, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands.
| |
Collapse
|
12
|
Cruz FF, Leite CE, Kist LW, de Oliveira GM, Bogo MR, Bonan CD, Campos MM, Morrone FB. Effects of caffeine on behavioral and inflammatory changes elicited by copper in zebrafish larvae: Role of adenosine receptors. Comp Biochem Physiol C Toxicol Pharmacol 2017; 194:28-36. [PMID: 28163255 DOI: 10.1016/j.cbpc.2017.01.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/25/2017] [Accepted: 01/27/2017] [Indexed: 12/13/2022]
Abstract
This study investigated the effects of caffeine in the behavioral and inflammatory alterations caused by copper in zebrafish larvae, attempting to correlate these changes with the modulation of adenosine receptors. To perform a survival curve, 7dpf larvae were exposed to 10μM CuSO4, combined to different concentrations of caffeine (100μM, 500μM and 1mM) for up to 24h. The treatment with copper showed lower survival rates only when combined with 500μM and 1mM of caffeine. We selected 4 and 24h as treatment time-points. The behavior evaluation was done by analyzing the traveled distance, the number of entries in the center, and the length of permanence in the center and the periphery of the well. The exposure to 10μM CuSO4 plus 500μM caffeine at 4 and 24h changed the behavioral parameters. To study the inflammatory effects of caffeine, we assessed the PGE2 levels by using UHPLC-MS/MS, and TNF, COX-2, IL-6 and IL-10 gene expression by RT-qPCR. The expression of adenosine receptors was also evaluated with RT-qPCR. When combined to copper, caffeine altered inflammatory markers depending on the time of exposure. Adenosine receptors expression was significantly increased, especially after 4h exposure to copper and caffeine together or separately. Our results demonstrated that caffeine enhances the inflammation induced by copper by decreasing animal survival, altering inflammatory markers and promoting behavioral changes in zebrafish larvae. We also conclude that alterations in adenosine receptors are related to those effects.
Collapse
Affiliation(s)
- Fernanda Fernandes Cruz
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690, 90619-900 Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900 Porto Alegre, RS, Brazil
| | - Carlos Eduardo Leite
- Instituto de Toxicologia e Farmacologia, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Luiza Wilges Kist
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690, 90619-900 Porto Alegre, RS, Brazil; Laboratório de Genômica e Biologia Molecular, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Giovanna Medeiros de Oliveira
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690, 90619-900 Porto Alegre, RS, Brazil; Laboratório de Genômica e Biologia Molecular, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Maurício Reis Bogo
- Faculdade de Biociências, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Laboratório de Genômica e Biologia Molecular, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Faculdade de Biociências, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Maria Martha Campos
- Instituto de Toxicologia e Farmacologia, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil; Faculdade de Odontologia, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil
| | - Fernanda Bueno Morrone
- Programa de Pós-Graduação em Medicina e Ciências da Saúde, PUCRS, Avenida Ipiranga, 6690, 90619-900 Porto Alegre, RS, Brazil; Laboratório de Farmacologia Aplicada, PUCRS, Avenida Ipiranga, 6681, Partenon, 90619-900 Porto Alegre, RS, Brazil; Faculdade de Farmácia, PUCRS, Avenida Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
High expression levels of macrophage migration inhibitory factor sustain the innate immune responses of neonates. Proc Natl Acad Sci U S A 2016; 113:E997-1005. [PMID: 26858459 DOI: 10.1073/pnas.1514018113] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The vulnerability to infection of newborns is associated with a limited ability to mount efficient immune responses. High concentrations of adenosine and prostaglandins in the fetal and neonatal circulation hamper the antimicrobial responses of newborn immune cells. However, the existence of mechanisms counterbalancing neonatal immunosuppression has not been investigated. Remarkably, circulating levels of macrophage migration inhibitory factor (MIF), a proinflammatory immunoregulatory cytokine expressed constitutively, were 10-fold higher in newborns than in children and adults. Newborn monocytes expressed high levels of MIF and released MIF upon stimulation with Escherichia coli and group B Streptococcus, the leading pathogens of early-onset neonatal sepsis. Inhibition of MIF activity or MIF expression reduced microbial product-induced phosphorylation of p38 and ERK1/2 mitogen-activated protein kinases and secretion of cytokines. Recombinant MIF used at newborn, but not adult, concentrations counterregulated adenosine and prostaglandin E2-mediated inhibition of ERK1/2 activation and TNF production in newborn monocytes exposed to E. coli. In agreement with the concept that once infection is established high levels of MIF are detrimental to the host, treatment with a small molecule inhibitor of MIF reduced systemic inflammatory response, bacterial proliferation, and mortality of septic newborn mice. Altogether, these data provide a mechanistic explanation for how newborns may cope with an immunosuppressive environment to maintain a certain threshold of innate defenses. However, the same defense mechanisms may be at the expense of the host in conditions of severe infection, suggesting that MIF could represent a potential attractive target for immune-modulating adjunctive therapies for neonatal sepsis.
Collapse
|
14
|
Bao L, Zhang H, Mohan GC, Shen K, Chan LS. Differential expression of inflammation-related genes in IL-4 transgenic mice before and after the onset of atopic dermatitis skin lesions. Mol Cell Probes 2015; 30:30-8. [PMID: 26585782 DOI: 10.1016/j.mcp.2015.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/13/2023]
Abstract
IL-4 plays an important role in the pathogenesis of atopic dermatitis (AD), a common chronic inflammatory skin disease. We have generated IL-4 transgenic (Tg) mice by over-expressing IL-4 in the epidermis. These mice spontaneously develop chronic pruritic inflammatory skin lesions, which meet the clinical and histological diagnostic criteria for human AD. Systemic survey of immune-related genes in this mouse model, however, has not been performed. In this study, we utilize PCR array technique to examine hundreds of inflammation-related genes in the IL-4 Tg mice before and after the onset of skin lesions as well as in their wild type (WT) littermates. Only those genes with at least 2-fold up-regulation or down-regulation and with a P-value of less than 0.05 in comparison to WT controls were identified and analyzed. In the skin lesions, many chemokines, pro-inflammatory cytokines, and other AD-related factors are dysregulated compared to the wild type mice. Particularly, CXCL5, IL-1β, IL-24, IL-6, oncostatin M, PTGS2, FPR1 and REG3γ are up-regulated several hundred-fold. In the pre-lesional group that shows no obvious skin abnormality on clinical observation, 30 dysregulated genes are nevertheless identified though the fold changes are much less than that of the lesional group, including CCL6, CCL8, CCL11, CCL17, CXCL13, CXCL14, CXCR3 and IL-12Rβ2. Finally using ELISA, we demonstrate that 4 most dramatically up-regulated factors in the skin are also elevated in the peripheral blood of the IL-4 Tg mice. Taken together, our data have identified hundreds of dysregulated factors in the IL-4 Tg mice before and after the onset of skin lesions. Future detailed examination of these factors will shed light on our understanding of the development and progression of AD and help to discover important biomarkers for clinical AD diagnosis and treatment.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL, USA.
| | - Huayi Zhang
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Girish C Mohan
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Kui Shen
- Department of Dermatology, University of Illinois, Chicago, IL, USA
| | - Lawrence S Chan
- Department of Dermatology, University of Illinois, Chicago, IL, USA; Department of Microbiology/Immunology, University of Illinois, Chicago, IL, USA; Medical Service, Jesse Brown VA Med Center, Chicago, IL, USA.
| |
Collapse
|
15
|
van den Berg TNA, El Messaoudi S, Rongen GA, van den Broek PHH, Bilos A, Donders ART, Gomes ME, Riksen NP. Ticagrelor Does Not Inhibit Adenosine Transport at Relevant Concentrations: A Randomized Cross-Over Study in Healthy Subjects In Vivo. PLoS One 2015; 10:e0137560. [PMID: 26509673 PMCID: PMC4624811 DOI: 10.1371/journal.pone.0137560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/17/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE In patients with myocardial infarction, ticagrelor reduces cardiovascular and sepsis-related mortality, and can cause dyspnea. It is suggested that this is caused by adenosine receptor stimulation, because in preclinical studies, ticagrelor blocks the nucleoside transporter and increases cellular ATP release. We now investigated the effects of ticagrelor on the adenosine system in humans in vivo. EXPERIMENTAL APPROACH In a double-blinded, placebo-controlled cross-over trial in 14 healthy subjects, we have tested whether ticagrelor (180 mg) affects adenosine- and dipyridamole-induced forearm vasodilation, as surrogates of nucleoside uptake inhibition and adenosine formation, respectively. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was measured. Primary endpoint was adenosine-induced vasodilation. KEY RESULTS Ticagrelor did not affect adenosine- or dipyridamole-induced forearm vasodilation. Also, ex vivo uptake of adenosine and uridine in isolated red blood cells was not affected by ticagrelor. In vitro, ticagrelor dose-dependently inhibited nucleoside uptake, but only at supra-physiological concentrations. CONCLUSION AND IMPLICATIONS In conclusion, at relevant plasma concentration, ticagrelor does not affect adenosine transport, nor adenosine formation in healthy subjects. Therefore, it is unlikely that this mechanism is a relevant pleiotropic effect of ticagrelor. TRIAL REGISTRATION ClinicalTrials.gov NCT01996735.
Collapse
Affiliation(s)
- T. N. A. van den Berg
- Department of Pharmacology-Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - S. El Messaoudi
- Department of Pharmacology-Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - G. A. Rongen
- Department of Pharmacology-Toxicology, Radboud university medical center, Nijmegen, The Netherlands
- Department of Internal Medicine (division of vascular medicine), Radboud university medical center, Nijmegen, The Netherlands
| | - P. H. H. van den Broek
- Department of Pharmacology-Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - A. Bilos
- Department of Pharmacology-Toxicology, Radboud university medical center, Nijmegen, The Netherlands
| | - A. R. T. Donders
- Department for Health Evidence, Radboud university medical center, Nijmegen, The Netherlands
| | - M. E. Gomes
- Department of Cardiology, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - N. P. Riksen
- Department of Pharmacology-Toxicology, Radboud university medical center, Nijmegen, The Netherlands
- Department of Internal Medicine (division of vascular medicine), Radboud university medical center, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
16
|
Burnstock G, Boeynaems JM. Purinergic signalling and immune cells. Purinergic Signal 2014; 10:529-64. [PMID: 25352330 PMCID: PMC4272370 DOI: 10.1007/s11302-014-9427-2] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 09/12/2013] [Indexed: 11/28/2022] Open
Abstract
This review article provides a historical perspective on the role of purinergic signalling in the regulation of various subsets of immune cells from early discoveries to current understanding. It is now recognised that adenosine 5'-triphosphate (ATP) and other nucleotides are released from cells following stress or injury. They can act on virtually all subsets of immune cells through a spectrum of P2X ligand-gated ion channels and G protein-coupled P2Y receptors. Furthermore, ATP is rapidly degraded into adenosine by ectonucleotidases such as CD39 and CD73, and adenosine exerts additional regulatory effects through its own receptors. The resulting effect ranges from stimulation to tolerance depending on the amount and time courses of nucleotides released, and the balance between ATP and adenosine. This review identifies the various receptors involved in the different subsets of immune cells and their effects on the function of these cells.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| | | |
Collapse
|
17
|
Dios S, Balseiro P, Costa MM, Romero A, Boltaña S, Roher N, Mackenzie S, Figueras A, Novoa B. The involvement of cholesterol in sepsis and tolerance to lipopolysaccharide highlighted by the transcriptome analysis of zebrafish (Danio rerio). Zebrafish 2014; 11:421-33. [PMID: 25181277 DOI: 10.1089/zeb.2014.0995] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Septic shock is the most common cause of death in intensive care units due to an aggressive inflammatory response that leads to multiple organ failure. However, a lipopolysaccharide (LPS) tolerance phenomenon (a nonreaction to LPS), is also often described. Neither the inflammatory response nor the tolerance is completely understood. In this work, both of these responses were analyzed using microarrays in zebrafish. Fish that were 4 or 6 days postfertilization (dpf) and received a lethal dose (LD) of LPS exhibited 100% mortality in a few days. Their transcriptome profile, even at 4 dpf, resembled the profile in humans with severe sepsis. Moreover, we selected 4-dpf fish to set up a tolerance protocol: fish treated with a nonlethal concentration of Escherichia coli LPS exhibited complete protection against the LD of LPS. Most of the main inflammatory molecules described in mammals were represented in the zebrafish microarray experiments. Additionally and focusing on this tolerance response, the use of cyclodextrins may mobilize cholesterol reservoirs to decrease mortality after a LD dose of LPS. Therefore, it is possible that the use of the whole animal could provide some clues to enhance the understanding of the inflammatory/tolerance response and to guide drug discovery.
Collapse
Affiliation(s)
- Sonia Dios
- 1 Instituto de Investigaciones Marinas (IIM)-Consejo Superior de Investigaciones Científicas (CSIC) , Vigo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Kim MY, Lee HE, Im M, Lee Y, Kim CD, Lee JH, Seo YJ. Effect of adenosine on melanogenesis in b16 cells and zebrafish. Ann Dermatol 2014; 26:209-13. [PMID: 24882976 PMCID: PMC4037674 DOI: 10.5021/ad.2014.26.2.209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/29/2013] [Accepted: 04/26/2013] [Indexed: 01/04/2023] Open
Abstract
Background Adenosine is a nucleoside, in which an adenine molecule is attached to a ribofuranose sugar moiety. It can be released into the microenvironment by metabolically active cells, and then fulfills a multitude of functions in regulation of cell proliferation, by activating four subtypes of G protein-coupled adenosine receptors. Objective In this study, we investigated the effect of adenosine on melanogenesis, using B16 melanoma cells. Methods The toxic effects of adenosine on B16 melanoma cells were assessed. To understand the mechanism of the effect of adenosine on melanogenesis in B16 cells, melanin content and tyrosinase activity were measured. Tyrosinase, tyrosinase-related protein-1, and dopachrome tautomerase were monitored by Western blotting. Finally, adenosine was applied to zebrafish embryos, and its in vivo effect on pigmentation investigated. Results At a low concentration, adenosine increased melanin content and tyrosinase activity, while a high dose of adenosine resulted in inhibition of tyrosinase activity. Western blotting showed that adenosine increased tyrosinase protein levels slightly, while high-dose adenosine decreased the expression of tyrosinase. In zebrafish tests, adenosine slightly inhibited body pigmentation. Conclusion In this study, we investigated the effect of adenosine on melanogenesis, using the well-established B16 melanoma cell and zebrafish models. The results suggest that adenosine may inhibit pigmentation, through negative regulation of tyrosinase.
Collapse
Affiliation(s)
- Mi Yoon Kim
- Department of Dermatology, Research Institute of Medical Sciences, Chungnam National University School of Medicine, Daejeon, Korea
| | - Hae-Eul Lee
- Department of Dermatology, Research Institute of Medical Sciences, Chungnam National University School of Medicine, Daejeon, Korea
| | - Myung Im
- Department of Dermatology, Research Institute of Medical Sciences, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young Lee
- Department of Dermatology, Research Institute of Medical Sciences, Chungnam National University School of Medicine, Daejeon, Korea
| | - Chang-Deok Kim
- Department of Dermatology, Research Institute of Medical Sciences, Chungnam National University School of Medicine, Daejeon, Korea
| | - Jeung-Hoon Lee
- Department of Dermatology, Research Institute of Medical Sciences, Chungnam National University School of Medicine, Daejeon, Korea
| | - Young-Joon Seo
- Department of Dermatology, Research Institute of Medical Sciences, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
19
|
Peters E, Heemskerk S, Masereeuw R, Pickkers P. Alkaline phosphatase: a possible treatment for sepsis-associated acute kidney injury in critically ill patients. Am J Kidney Dis 2014; 63:1038-48. [PMID: 24462020 DOI: 10.1053/j.ajkd.2013.11.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023]
Abstract
Acute kidney injury (AKI) is a common disease in the intensive care unit and accounts for high morbidity and mortality. Sepsis, the predominant cause of AKI in this setting, involves a complex pathogenesis in which renal inflammation and hypoxia are believed to play an important role. A new therapy should be aimed at targeting both these processes, and the enzyme alkaline phosphatase, with its dual mode of action, might be a promising candidate. First, alkaline phosphatase is able to reduce inflammation through dephosphorylation and thereby detoxification of endotoxin (lipopolysaccharide), which is an important mediator of sepsis. Second, adenosine triphosphate, released during cellular stress caused by inflammation and hypoxia, has detrimental effects but can be converted by alkaline phosphatase into adenosine with anti-inflammatory and tissue-protective effects. These postulated beneficial effects of alkaline phosphatase have been confirmed in animal experiments and two phase 2a clinical trials showing that kidney function improved in critically ill patients with sepsis-associated AKI. Because renal inflammation and hypoxia also are observed commonly in AKI induced by other causes, it would be of interest to investigate the therapeutic effect of alkaline phosphatase in these nephropathies as well.
Collapse
Affiliation(s)
- Esther Peters
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Suzanne Heemskerk
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter Pickkers
- Department of Intensive Care Medicine, Nijmegen Institute for Infection, Inflammation and Immunity, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
20
|
Riksen NP, Rongen GA, Pickkers P. Metformin improves survival in intensive care unit patients, but why? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:471. [PMID: 24330731 PMCID: PMC4057238 DOI: 10.1186/cc13156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
21
|
Orth K, Knoefel WT, van Griensven M, Matuschek C, Peiper M, Schrumpf H, Gerber PA, Budach W, Bölke E, Buhren BA, Schauer M. Preventively enteral application of immunoglobulin enriched colostrums milk can modulate postoperative inflammatory response. Eur J Med Res 2013; 18:50. [PMID: 24266958 PMCID: PMC3879091 DOI: 10.1186/2047-783x-18-50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 11/11/2013] [Indexed: 12/12/2022] Open
Abstract
Several studies demonstrated acute inflammatory response following traumatic injury. Inflammatory response during surgical interventions was verified by a significant increase of endotoxin plasma levels and a decrease of the endotoxin neutralizing capacity (ENC). However, the incidence of elevated endotoxin levels was significantly higher (89%) than detected bacterial translocation (35%). Thus parts or products of Gram-negative bacteria seem to translocate more easily into the blood circulation than whole bacteria. Along with the bacterial translocation, the inflammatory response correlated directly with the severity of the surgical intervention. In comparison after major and minor surgery Interleukin-6 (IL-6) and C-reactive protein (CRP) was also significantly different. Similar effects in mediator release were shown during endovascular stent graft placement and open surgery in infrarenal aortic aneurysm. Open surgery demonstrated a significant stronger endotoxin translocation and a decrease of ENC. Strategies to prevent translocation seem to be sensible. Colostrum is the first milk produced by the mammary glands within the first days after birth. It contains a complex system of immune factors and has a long history of use in traditional medicine. Placebo-controlled studies verified that prophylactic oral application of immunoglobulin-enriched colostrum milk preparation diminishes perioperative endotoxemia, prevents reduction of ENC and reduces postoperative CRP-levels, suggesting a stabilization of the gut barrier. This effect may be caused by immunoglobulin transportation by the neonatal receptor FcRn of the mucosal epithelium.In conclusion, there is an association of perioperative endotoxemia and the subsequent increase in mediators of the acute phase reaction in surgical patients. A prophylactic oral application of colostrum milk is likely to stabilize the gut barrier i.e. reduces the influx of lipopolysaccharides arising from Gram-negative bacterial pathogens and inhibits enterogenic endotoxemia. This appears to be a major mechanism underlying the therapeutic effect in patients at risk for Gram-negative septic shock.
Collapse
Affiliation(s)
- Klaus Orth
- Medical Faculty, Department of General, Visceral, and Thoracal Surgery, Asclepios Harz Hospitals, Goslar, Germany
| | - Wolfram Trudo Knoefel
- Medical Faculty, Department of General, Visceral-, and Pediatric Surgery, Heinrich Heine Universität Düsseldorf, Germany University of Düsseldorf, Dusseldorf, Germany
| | - Martijn van Griensven
- Department of Trauma Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christiane Matuschek
- Medical Faculty Department of Radiation Oncology, Heinrich Heine Universität Düsseldorf, Germany University of Düsseldorf, Moorenstrasse 5, Duesseldorf D-40225, Germany
| | - Matthias Peiper
- Medical Faculty, Department of General, Visceral, and Thoracal Surgery, Asclepios Harz Hospitals, Goslar, Germany
- Klinik für Allgemein-, Viszeral-, Gefäß- und Unfallchirurgie, Krankenhaus St. Joseph. Propsteistr. 2, Essen-Werden 45239, Germany
| | - Holger Schrumpf
- Medical Faculty Department of Dermatology, Heinrich Heine Universität Düsseldorf, Germany University of Düsseldorf, Dusseldorf, Germany
| | - Peter Arne Gerber
- Medical Faculty Department of Dermatology, Heinrich Heine Universität Düsseldorf, Germany University of Düsseldorf, Dusseldorf, Germany
| | - Wilfried Budach
- Medical Faculty Department of Radiation Oncology, Heinrich Heine Universität Düsseldorf, Germany University of Düsseldorf, Moorenstrasse 5, Duesseldorf D-40225, Germany
| | - Edwin Bölke
- Medical Faculty Department of Radiation Oncology, Heinrich Heine Universität Düsseldorf, Germany University of Düsseldorf, Moorenstrasse 5, Duesseldorf D-40225, Germany
| | - Bettina Alexandra Buhren
- Medical Faculty Department of Dermatology, Heinrich Heine Universität Düsseldorf, Germany University of Düsseldorf, Dusseldorf, Germany
| | - Matthias Schauer
- Medical Faculty, Department of General, Visceral-, and Pediatric Surgery, Heinrich Heine Universität Düsseldorf, Germany University of Düsseldorf, Dusseldorf, Germany
| |
Collapse
|
22
|
Vincenzi F, Corciulo C, Targa M, Merighi S, Gessi S, Casetta I, Gentile M, Granieri E, Borea PA, Varani K. Multiple sclerosis lymphocytes upregulate A2A adenosine receptors that are antiinflammatory when stimulated. Eur J Immunol 2013; 43:2206-16. [PMID: 23661562 DOI: 10.1002/eji.201343314] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/25/2013] [Accepted: 05/02/2013] [Indexed: 11/10/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune-mediated inflammatory disease characterized by multifocal areas of demyelination. Experimental evidence indicates that A2A adenosine receptors (ARs) play a pivotal role in the inhibition of inflammatory processes. The aim of this study was to investigate the contribution of A2A ARs in the inhibition of key pro-inflammatory mediators for the pathogenesis of MS. In lymphocytes from MS patients, A1, A2A, A2B, and A3 ARs were analyzed by using RT-PCR, Western blotting, immunofluorescence, and binding assays. Moreover the effect of A2A AR stimulation on proinflammatory cytokine release such as TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and on lymphocyte proliferation was evaluated. The capability of an A2A AR agonist on the modulation of very late antigen (VLA)-4 expression and NF-κB was also explored. A2A AR upregulation was observed in lymphocytes from MS patients in comparison with healthy subjects. The stimulation of these receptors mediated a significant inhibition of TNF-α, IFN-γ, IL-6, IL-1β, IL-17, and cell proliferation as well as VLA-4 expression and NF-κB activation. This new evidence highlights that A2A AR agonists could represent a novel therapeutic tool for MS treatment as suggested by the antiinflammatory role of A2A ARs in lymphocytes from MS patients.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Adenosine-5'-triphosphate (ATP) protects mice against bacterial infection by activation of the NLRP3 inflammasome. PLoS One 2013; 8:e63759. [PMID: 23717478 PMCID: PMC3661663 DOI: 10.1371/journal.pone.0063759] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/04/2013] [Indexed: 02/02/2023] Open
Abstract
It has been established that Adenosine-5'-triphosphate (ATP) can activate the NLRP3 inflammasome. However, the physiological effect of extracellular ATP on NLRP3 inflammasome activation has not yet been investigated. In the present study, we found that ATP was indeed released during bacterial infection. By using a murine peritonitis model, we also found that ATP promotes the fight against bacterial infection in mice. ATP induced the secretion of IL-1β and chemokines by murine bone marrow-derived macrophages in vitro. Furthermore, the intraperitoneal injection of ATP elevated the levels of IL-1β and chemokines in the mouse peritoneal lavage. Neutrophils were rapidly recruited to the peritoneum after ATP injection. In addition, the effects on cytokine and chemokine secretion and neutrophil recruitment were markedly attenuated by the pre-administration of the caspase-1 inhibitor Ac-YVAD-cho. Ac-YVAD-cho also significantly attenuated the protective effect of ATP against bacterial infection. In the present study, we demonstrated a protective role for ATP during bacterial infection and this effect was related to NLRP3 inflammasome activation. Together, these results suggest a role for ATP in initiating the immune response in hosts suffering from infections.
Collapse
|
24
|
Vincenzi F, Corciulo C, Targa M, Casetta I, Gentile M, Granieri E, Borea PA, Popoli P, Varani K. A2A adenosine receptors are up-regulated in lymphocytes from amyotrophic lateral sclerosis patients. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:406-13. [PMID: 23679925 DOI: 10.3109/21678421.2013.793358] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adenosine, a purine nucleoside interacting with A1, A2A, A2B and A3 adenosine receptors (ARs), is a potent endogenous modulator of inflammatory and neuronal processes involved in the pathophysiology of several neurodegenerative diseases. In the present study, ARs were investigated in lymphocytes from patients with amyotrophic lateral sclerosis (ALS) and compared with age-matched healthy subjects. In ALS patients A2AARs were analysed by using RT-PCR, Western blotting and saturation binding experiments. The effect of A2AAR stimulation on cyclic AMP levels was evaluated in lymphocytes from ALS patients and healthy subjects. An up-regulation of A2AARs was observed in ALS patients with respect to healthy subjects while A1, A2B and A3AR affinity and density did not change. In ALS patients, the A2AAR density values correlated with the Amyotrophic Lateral Sclerosis Functional Rating Scale-Revised (ALSFRS-R) scores. Furthermore, the stimulation of A2AARs mediated a significant increase in cyclic AMP levels in lymphocytes from ALS patients, with a higher potency than in lymphocytes from healthy subjects. In conclusion, the positive correlation between A2AAR density and ALSFRS-R scores could indicate a possible protective effect of this receptor subtype, representing an interesting starting point for the study of alternative therapeutic approaches for ALS based on A2AAR modulation.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Medical Sciences, Pharmacology Section, University of Ferrara, via Fossato di Mortara 17-19, Ferrara, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bao L, Shi VY, Chan LS. IL-4 up-regulates epidermal chemotactic, angiogenic, and pro-inflammatory genes and down-regulates antimicrobial genes in vivo and in vitro: relevant in the pathogenesis of atopic dermatitis. Cytokine 2012. [PMID: 23207180 DOI: 10.1016/j.cyto.2012.10.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Atopic dermatitis (AD) is a common chronic inflammatory skin disease. Although the pathogenesis of AD is not fully understood, we and others have shown that IL-4 plays a key role. In this study we aimed to identify keratinocyte genes regulated by IL-4 that may play important roles in the pathophysiology of AD. HaCat cells were treated with IL-4 at various concentrations for 24h, and PCR gene array on inflammation/autoimmunity was performed three times for analysis of differential gene expression. Of all the 370 genes examined, 32 and 53 genes are up- and down-regulated, respectively. Specifically related to AD, chemokines CCL3L1, CCL8, CCL24, CCL25, CCL26, CXCL6 and CXCL16 are up-regulated by IL-4. Pro-inflammatory factors, such as IL-19, IL-20, IL-1α, IL-12Rβ2, IL-25, IL-31RA, OSMR and nitric oxide synthase 2, are also up-regulated. In addition, IL-4 up-regulates VEGFA, a pro-angiogenic factor. In contrast, antimicrobial peptides (AMPs) or factors involved in APM production, such as IFN-κ, S100s, Toll-like receptors, and several chemokines are down-regulated. Similarly IL-4 also down-regulates TNF-α, lymphotoxin-β, an IgE suppressor, TNFSF18, a T-cells function regulator, and the glucocorticoid receptor. On the in vivo level, real-time RT-PCR on the selected genes confirmed that IL-4 up-regulates chemokines, proinflammatory cytokines while it suppresses AMP production related genes in the skin obtained from IL-4 Tg mice. Detailed examination of these genes will delineate their specific roles in chemotaxis, inflammation, angiogenesis and AMP production, all of which may contribute to the development and progression of AD.
Collapse
Affiliation(s)
- Lei Bao
- Department of Dermatology, University of Illinois, Chicago, IL 60612, USA
| | | | | |
Collapse
|
26
|
The role of complement system in septic shock. Clin Dev Immunol 2012; 2012:407324. [PMID: 23049598 PMCID: PMC3459296 DOI: 10.1155/2012/407324] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/01/2012] [Accepted: 08/17/2012] [Indexed: 11/17/2022]
Abstract
Septic shock is a critical clinical condition with a high mortality rate. A better understanding of the underlying mechanisms is important to develop effective therapies. Basic and clinical studies suggest that activation of complements in the common cascade, for example, complement component 3 (C3) and C5, is involved in the development of septic shock. The involvement of three upstream complement pathways in septic shock is more complicated. Both the classical and alternative pathways appear to be activated in septic shock, but the alternative pathway may be activated earlier than the classical pathway. Activation of these two pathways is essential to clear endotoxin. Recent investigations have shed light on the role of lectin complement pathway in septic shock. Published reports suggest a protective role of mannose-binding lectin (MBL) against sepsis. Our preliminary study of MBL-associated serine protease-2 (MASP-2) in septic shock patients indicated that acute decrease of MASP-2 in the early phase of septic shock might correlate with in-hospital mortality. It is unknown whether excessive activation of these three upstream complement pathways may contribute to the detrimental effects in septic shock. This paper also discusses additional complement-related pathogenic mechanisms and intervention strategies for septic shock.
Collapse
|
27
|
Zamora R, Azhar N, Namas R, Metukuri MR, Clermont T, Gladstone C, Namas RA, Hermus L, Megas C, Constantine G, Billiar TR, Fink MP, Vodovotz Y. Identification of a novel pathway of transforming growth factor-β1 regulation by extracellular NAD+ in mouse macrophages: in vitro and in silico studies. J Biol Chem 2012; 287:31003-14. [PMID: 22829588 DOI: 10.1074/jbc.m112.344309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Extracellular β-nicotinamide adenine dinucleotide (NAD(+)) is anti-inflammatory. We hypothesized that NAD(+) would modulate the anti-inflammatory cytokine Transforming Growth Factor (TGF)-β1. Indeed, NAD(+) led to increases in both active and latent cell-associated TGF-β1 in RAW 264.7 mouse macrophages as well as in primary peritoneal macrophages isolated from both C3H/HeJ (TLR4-mutant) and C3H/HeOuJ (wild-type controls for C3H/HeJ) mice. NAD(+) acts partially via cyclic ADP-ribose (cADPR) and subsequent release of Ca(2+). Treatment of macrophages with the cADPR analog 3-deaza-cADPR or Ca(2+) ionophores recapitulated the effects of NAD(+) on TGF-β1, whereas the cADPR antagonist 8-Br-cADPR, Ca(2+) chelation, and antagonism of L-type Ca(2+) channels suppressed these effects. The time and dose effects of NAD(+) on TGF-β1 were complex and could be modeled both statistically and mathematically. Model-predicted levels of TGF-β1 protein and mRNA were largely confirmed experimentally but also suggested the presence of other mechanisms of regulation of TGF-β1 by NAD(+). Thus, in vitro and in silico evidence points to NAD(+) as a novel modulator of TGF-β1.
Collapse
Affiliation(s)
- Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Imiquimod suppresses propagation of herpes simplex virus 1 by upregulation of cystatin A via the adenosine receptor A1 pathway. J Virol 2012; 86:10338-46. [PMID: 22787201 DOI: 10.1128/jvi.01196-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Imiquimod is recognized as an agonist for Toll-like receptor 7 (TLR7) in immunocompetent cells. TLR7, as well as TLR3 and TLR8, triggers the immune responses, such as the production of type I interferons (IFNs) and proinflammatory cytokines via recognition of viral nucleic acids in the infected cells. In this study, we proposed that imiquimod has an IFN-independent antiviral effect in nonimmune cells. Imiquimod, but not resiquimod, suppressed replication of human herpes simplex virus 1 (HSV-1) in FL cells. We analyzed alternation of gene expression by treatment with imiquimod using microarray analysis. Neither type I IFNs, nor TLRs, nor IFN-inducible antiviral genes were induced in imiquimod-treated FL cells. Cystatin A, a host cysteine protease inhibitor, was strongly upregulated by imiquimod and took a major part in the anti-HSV-1 activity deduced by the suppression experiment using its small interfering RNA. Upregulation of cystatin A was suggested to be mediated by antagonizing adenosine receptor A(1) and activating the protein kinase A pathway. Imiquimod, but not resiquimod, was shown to interact with adenosine receptor A(1). Imiquimod-induced anti-HSV-1 activity was observed in other cells, such as HeLa, SiHa, and CaSki cells, in a manner consistent with the cystatin A induction by imiquimod. These results indicated that imiquimod acted as an antagonist for adenosine receptor A(1) and induced a host antiviral protein, cystatin A. The process occurred independently of TLR7 and type I IFNs.
Collapse
|
29
|
Rudich N, Ravid K, Sagi-Eisenberg R. Mast cell adenosine receptors function: a focus on the a3 adenosine receptor and inflammation. Front Immunol 2012; 3:134. [PMID: 22675325 PMCID: PMC3366457 DOI: 10.3389/fimmu.2012.00134] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Accepted: 05/09/2012] [Indexed: 12/13/2022] Open
Abstract
Adenosine is a metabolite, which has long been implicated in a variety of inflammatory processes. Inhaled adenosine provokes bronchoconstriction in asthmatics or chronic obstructive pulmonary disease patients, but not in non-asthmatics. This hyper responsiveness to adenosine appears to be mediated by mast cell activation. These observations have marked the receptor that mediates the bronchoconstrictor effect of adenosine on mast cells (MCs), as an attractive drug candidate. Four subtypes (A1, A2a, A2b, and A3) of adenosine receptors have been cloned and shown to display distinct tissue distributions and functions. Animal models have firmly established the ultimate role of the A3 adenosine receptor (A3R) in mediating hyper responsiveness to adenosine in MCs, although the influence of the A2b adenosine receptor was confirmed as well. In contrast, studies of the A3R in humans have been controversial. In this review, we summarize data on the role of different adenosine receptors in mast cell regulation of inflammation and pathology, with a focus on the common and distinct functions of the A3R in rodent and human MCs. The relevance of mouse studies to the human is discussed.
Collapse
Affiliation(s)
- Noam Rudich
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University Tel Aviv, Israel
| | | | | |
Collapse
|
30
|
Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol Ther 2012; 134:139-55. [PMID: 22274552 DOI: 10.1016/j.pharmthera.2012.01.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
Abstract
One of the most frequent and serious complications to develop in septic patients is acute kidney injury (AKI), a disorder characterized by a rapid failure of the kidneys to adequately filter the blood, regulate ion and water balance, and generate urine. AKI greatly worsens the already poor prognosis of sepsis and increases cost of care. To date, therapies have been mostly supportive; consequently there has been little change in the mortality rates over the last decade. This is due, at least in part, to the delay in establishing clinical evidence of an infection and the associated presence of the systemic inflammatory response syndrome and thus, a delay in initiating therapy. A second reason is a lack of understanding regarding the mechanisms leading to renal injury, which has hindered the development of more targeted therapies. In this review, we summarize recent studies, which have examined the development of renal injury during sepsis and propose how changes in the peritubular capillary microenvironment lead to and then perpetuate microcirculatory failure and tubular epithelial cell injury. We also discuss a number of potential therapeutic targets in the renal peritubular microenvironment, which may prevent or lessen injury and/or promote recovery.
Collapse
Affiliation(s)
- Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
31
|
Ramakers BP, Riksen NP, Stal TH, Heemskerk S, van den Broek P, Peters WHM, van der Hoeven JG, Smits P, Pickkers P. Dipyridamole augments the antiinflammatory response during human endotoxemia. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2011; 15:R289. [PMID: 22129171 PMCID: PMC3388652 DOI: 10.1186/cc10576] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 09/19/2011] [Accepted: 11/30/2011] [Indexed: 12/15/2022]
Abstract
Introduction In animal models of systemic inflammation, the endogenous nucleoside adenosine controls inflammation and prevents organ injury. Dipyridamole blocks the cellular uptake of endogenous adenosine and increases the extracellular adenosine concentration. We studied the effects of oral dipyridamole treatment on innate immunity and organ injury during human experimental endotoxemia. Methods In a randomized double-blind placebo-controlled study, 20 healthy male subjects received 2 ng/kg Escherichia coli endotoxin (lipopolysaccharide; LPS) intravenously after 7-day pretreatment with dipyridamole, 200 mg slow release twice daily, or placebo. Results Nucleoside transporter activity on circulating erythrocytes was reduced by dipyridamole with 89% ± 2% (P < 0.0001), and the circulating endogenous adenosine concentration was increased. Treatment with dipyridamole augmented the LPS-induced increase in the antiinflammatory cytokine interleukin (IL)-10 with 274%, and resulted in a more rapid decrease in proinflammatory cytokines tumor necrosis factor-α (TNF-α) and IL-6 levels directly after their peak level (P < 0.05 and < 0.01, respectively). A strong correlation was found between the plasma dipyridamole concentration and the adenosine concentration (r = 0.82; P < 0.01), and between the adenosine concentration and the IL-10 concentration (r = 0.88; P < 0.0001), and the subsequent decrease in TNF-α (r = -0.54; P = 0.02). Dipyridamole treatment did not affect the LPS-induced endothelial dysfunction or renal injury during experimental endotoxemia. Conclusions Seven-day oral treatment with dipyridamole increases the circulating adenosine concentration and augments the antiinflammatory response during experimental human endotoxemia, which is associated with a faster decline in proinflammatory cytokines. Trial registration ClinicalTrials (NCT): NCT01091571.
Collapse
Affiliation(s)
- Bart P Ramakers
- Department of Pharmacology-Toxicology, Radboud University Nijmegen Medical Center, Geert Grooteplein 10, 6500 HB, Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
What's new in Shock, September 2011? Shock 2011; 36:205-7. [PMID: 21844786 DOI: 10.1097/shk.0b013e318228ec3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|