1
|
Ye H, Zou X, Fang X. Advancing cell-based therapy in sepsis: An anesthesia outlook. Chin Med J (Engl) 2024; 137:1522-1534. [PMID: 38708689 PMCID: PMC11230747 DOI: 10.1097/cm9.0000000000003097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 05/07/2024] Open
Abstract
ABSTRACT Sepsis poses a health challenge globally owing to markedly high rates of morbidity and mortality. Despite employing bundle therapy over two decades, approaches including transient organ supportive therapy and clinical trials focusing on signaling pathways have failed in effectively reversing multiple organ failure in patients with sepsis. Prompt and appropriate perioperative management for surgical patients with concurrent sepsis is urgent. Consequently, innovative therapies focusing on remedying organ injuries are necessitated. Cell therapy has emerged as a promising therapeutic avenue for repairing local damage to vital organs and restoring homeostasis during perioperative treatment for sepsis. Given the pivotal role of immune cell responses in the pathogenesis of sepsis, stem cell-based interventions that primarily modulate immune responses by interacting with multiple immune cells have progressed into clinical trials. The strides made in single-cell sequencing and gene-editing technologies have advanced the understanding of disease-specific immune responses in sepsis. Chimeric antigen receptor (CAR)-immune cell therapy offers an intriguing option for the treatment of sepsis. This review provides a concise overview of immune cell therapy, its current status, and the strides made in the context of sepsis research, discussing potential strategies for the management of patients with sepsis during perioperative stages.
Collapse
Affiliation(s)
- Hui Ye
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Xiaoyu Zou
- The Children's Hospital, National Clinical Research Center for Child Health, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 312000, China
| | - Xiangming Fang
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
2
|
Laura Francés J, Pagiatakis C, Di Mauro V, Climent M. Therapeutic Potential of EVs: Targeting Cardiovascular Diseases. Biomedicines 2023; 11:1907. [PMID: 37509546 PMCID: PMC10377624 DOI: 10.3390/biomedicines11071907] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/25/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Due to their different biological functions, extracellular vesicles (EVs) have great potential from a therapeutic point of view. They are released by all cell types, carrying and delivering different kinds of biologically functional cargo. Under pathological events, cells can increase their secretion of EVs and can release different amounts of cargo, thus making EVs great biomarkers as indicators of pathological progression. Moreover, EVs are also known to be able to transport and deliver cargo to different recipient cells, having an important role in cellular communication. Interestingly, EVs have recently been explored as biological alternatives for the delivery of therapeutics, being considered natural drug delivery carriers. Because cardiovascular disorders (CVDs) are the leading cause of death worldwide, in this review, we will discuss the up-to-date knowledge regarding the biophysical properties and biological components of EVs, focusing on myocardial infarction, diabetic cardiomyopathy, and sepsis-induced cardiomyopathy, three very different types of CVDs.
Collapse
Affiliation(s)
| | - Christina Pagiatakis
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Vittoria Di Mauro
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy
- Department of Pathology and Laboratory Medicine, Cardiovascular Research Institute, Brain and Mind Research Institute, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
3
|
Jing W, Wang H, Zhan L, Yan W. Extracellular Vesicles, New Players in Sepsis and Acute Respiratory Distress Syndrome. Front Cell Infect Microbiol 2022; 12:853840. [PMID: 35463634 PMCID: PMC9021632 DOI: 10.3389/fcimb.2022.853840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Sepsis refers to a complex syndrome associated with physiological, pathological, and biochemical abnormalities resulted from infection. Sepsis is the major cause of acute respiratory distress syndrome (ARDS). Extracellular vesicles (EVs) are serving as new messengers to mediate cell-cell communication in vivo. Non-coding RNAs, proteins and metabolites encapsulated by EVs could result in either pro-inflammatory or anti-inflammatory effects in the recipient cells. Pathogens or host cells derived EVs play an important role in pathogens infection during the occurrence and development of sepsis and ARDS. Additionally, we summarize the potential application for EVs in diagnosis, prevention and treatment for sepsis and ARDS.
Collapse
Affiliation(s)
- Wenqiang Jing
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huijuan Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liying Zhan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Liying Zhan, ; Wei Yan,
| | - Wei Yan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Liying Zhan, ; Wei Yan,
| |
Collapse
|
4
|
Silva-Carvalho AÉ, Cardoso MH, Alencar-Silva T, Bogéa GMR, Carvalho JL, Franco OL, Saldanha-Araujo F. Dissecting the relationship between antimicrobial peptides and mesenchymal stem cells. Pharmacol Ther 2021; 233:108021. [PMID: 34637839 DOI: 10.1016/j.pharmthera.2021.108021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023]
Abstract
Among the various biological properties presented by Mesenchymal Stem Cells (MSCs), their ability to control the immune response and fight pathogen infection through the production of antimicrobial peptides (AMPs) have been the subject of intense research in recent years. AMPs secreted by MSCs exhibit activity against a wide range of microorganisms, including bacteria, fungi, yeasts, and viruses. The main AMPs produced by these cells are hepcidin, cathelicidin LL-37, and β-defensin-2. In addition to acting against pathogens, those AMPs have also been shown to interact with MSCs to modulate MSC proliferation, migration, and regeneration, indicating that such peptides exert a more diverse biological effect than initially thought. In the present review, we discuss the production of AMPs by MSCs, revise the multiple functions of these peptides, including their influence over MSCs, and present an overview of clinical situations in which the antimicrobial properties of MSCs may be explored for therapy. Finally, we discuss possibilities of combining MSCs and AMPs to generate improved therapeutic strategies.
Collapse
Affiliation(s)
- Amandda Évelin Silva-Carvalho
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Marlon Henrique Cardoso
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil
| | - Thuany Alencar-Silva
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Gabriela Muller Reche Bogéa
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil
| | - Juliana Lott Carvalho
- Programa de Pós-graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Faculty of Medicine, University of Brasilia, Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Católica Dom Bosco, Programa de Pós-Graduação em Biotecnologia, Campo Grande, MS, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Felipe Saldanha-Araujo
- Laboratório de Hematologia e Células-Tronco, Departamento de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
5
|
Wang X, Song H, Zhao S, Guan W, Gao Y. Gingival-Derived Mesenchymal Stem Cells Protect Against Sepsis and Its Complications. Infect Drug Resist 2021; 14:3341-3355. [PMID: 34456576 PMCID: PMC8390887 DOI: 10.2147/idr.s318304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Objective In the present study, we separated and characterized mouse gingival-derived mesenchymal stem cells (GMSCs) and investigated whether GMSCs can improve lipopolysaccharide (LPS)-induced sepsis and its complications. Methods Ninety-six ICR mice were randomly divided into the following groups: the control (Sham), LPS, and LPS + MSC groups. Mice received 5 mg/kg LPS intraperitoneally to induce sepsis. Histopathological micrographs illustrated organ injury. We detected systemic inflammation, blood glucose levels, and serum levels of high-mobility group box 1 (HMGB1) and lactate. In addition, pulmonary inflammation, lung permeability, and oxidative stress-related indicators in lung tissue were measured. Results We successfully separated a novel population of MSCs from mouse gingiva. These cells had MSC-associated properties, such as a typical fibroblast-like morphology, multiple differentiation potential, and certain phenotypes. Cell-based therapy using GMSCs significantly improved the survival rate, systemic inflammation, hypoglycemia, multiple organ dysfunction syndrome (MODS), and aortic injury during sepsis. GMSCs administration reduced pulmonary inflammation, lung permeability, and oxidative stress injury. GMSCs administration reduced neutrophil infiltration partly because GMSCs inhibited neutrophil chemoattractants tumor necrosis factor (TNF-α), C-X-C motif chemokine ligand (CXCL-1), and Interleukin (IL-8). GMSCs impaired LPS-induced HMGB1 and lactate release during sepsis. Conclusion GMSCs administration is a novel therapeutic strategy targeting aerobic glycolysis for the treatment of sepsis because GMSCs impair LPS-induced HMGB1 and lactate release. GMSCs alleviate lung injury partly because GMSCs exert immune effects, inhibit neutrophilic inflammation, and reduce oxidative stress injury.
Collapse
Affiliation(s)
- Xishuai Wang
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,College of P.E and Sport, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Hanan Song
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Shiyu Zhao
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Weijun Guan
- Department of Animal Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Yang Gao
- Institute of Physical Educational and Training, Capital University of Physical Education and Sport, Beijing, 100191, People's Republic of China
| |
Collapse
|
6
|
Pei Y, Xie S, Li J, Jia B. Bone marrow-mesenchymal stem cell-derived exosomal microRNA-141 targets PTEN and activates β-catenin to alleviate myocardial injury in septic mice. Immunopharmacol Immunotoxicol 2021; 43:584-593. [PMID: 34308733 DOI: 10.1080/08923973.2021.1955920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and their derived exosomes have shown potentials in the control of myocardial dysfunction. This study aimed to reveal the function of bone marrow (BM)-MSC-derived exosomes in sepsis-induced myocardial injury and the molecular mechanism. METHODS BM-MSC-derived exosomes were obtained and identified. A mouse model with sepsis was induced by cecalligation puncture (CLP) and treated with exosomes. The myocardial function of mice, the production of creatine kinase MB (CK-MB) and lactate dehydrogenase (LDH) in serum, the phosphorylation of a key myocardial contractility-related protein phospholamban (PLB), and the pathological changes in the myocardial tissues were examined. A microRNA (miRNA) microarray analysis was performed to examine the candidate miRNAs carried by the exosomes. Rescue experiments were conducted to validate the involvement of miR-141. RESULTS CLP treatment led to sepsis and notably reduced the myocardial function in mice. Further treatment of BM-MSC-derived exosomes alleviated the CLP-induced myocardial impairment, production of CK-MB and LDH, and inflammatory infiltration and cell apoptosis in mouse myocardial tissues, and restored the PLB phosphorylation. miR-141 was the most upregulated miRNA in the myocardial tissues after exosome treatment. Downregulation of miR-141 blocked the myocardium-protective functions of the exosomes. miR-141 was found to bind to and suppress PTEN expression, which further enhanced the activity of β-catenin. CONCLUSION This study suggested that BM-MSC derived exosomes ameliorates myocardial injury in septic mice through conveying miRNA-141 and regulating the PTEN/β-catenin axis, and exosomes may serve as promising tools for the management of myocardial injury induced by sepsis or other factors.
Collapse
Affiliation(s)
- Yongju Pei
- Department of Respiratory Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou, P.R. China.,Department of Respiratory Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Shutang Xie
- Department of Respiratory Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou, P.R. China.,Department of Respiratory Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jiang Li
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, P.R. China.,Henan Provincial Engineering Research Center of Natural Drug Extraction and Medical Technology Application, Zhengzhou, P.R. China
| | - Baohui Jia
- Department of Central ICU, ZhengZhou Central Hospital, Zhengzhou, P.R. China
| |
Collapse
|
7
|
Ektesabi AM, Mori K, Tsoporis JN, Vaswani CM, Gupta S, Walsh C, Varkouhi AK, Mei SH, Stewart DJ, Liles WC, Marshall JC, Hu P, Parker TG, dos Santos CC. Mesenchymal Stem/Stromal Cells Increase Cardiac miR-187-3p Expression in a Polymicrobial Animal Model of Sepsis. Shock 2021; 56:133-141. [PMID: 33378320 PMCID: PMC8240645 DOI: 10.1097/shk.0000000000001701] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 12/27/2022]
Abstract
ABSTRACT Sepsis-induced myocardial dysfunction (MD) is an important pathophysiological feature of multiorgan failure caused by a dysregulated host response to infection. Patients with MD continue to be managed in intensive care units with limited understanding of the molecular mechanisms controlling disease pathogenesis. Emerging evidences support the use of mesenchymal stem/stromal cell (MSC) therapy for treating critically ill septic patients. Combining this with the known role that microRNAs (miRNAs) play in reversing sepsis-induced myocardial-dysfunction, this study sought to investigate how MSC administration alters miRNA expression in the heart. Mice were randomized to experimental polymicrobial sepsis induced by cecal ligation and puncture (CLP) or sham surgery, treated with either MSCs (2.5 × 105) or placebo (saline). Twenty-eight hours post-intervention, RNA was collected from whole hearts for transcriptomic and microRNA profiling. The top microRNAs differentially regulated in hearts by CLP and MSC administration were used to generate a putative mRNA-miRNA interaction network. Key genes, termed hub genes, within the network were then identified and further validated in vivo. Network analysis and RT-qPCR revealed that septic hearts treated with MSCs resulted in upregulation of five miRNAs, including miR-187, and decrease in three top hit putative hub genes (Itpkc, Lrrc59, and Tbl1xr1). Functionally, MSC administration decreased inflammatory and apoptotic pathways, while increasing cardiac-specific structural and functional, gene expression. Taken together, our data suggest that MSC administration regulates host-derived miRNAs production to protect cardiomyocytes from sepsis-induced MD.
Collapse
Affiliation(s)
- Amin M. Ektesabi
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Keisuke Mori
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - James N. Tsoporis
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Chirag M. Vaswani
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Sahil Gupta
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Chris Walsh
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Amir K. Varkouhi
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Shirley H.J. Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J. Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - W. Conrad Liles
- Department of Medicine and Sepsis Center of Research Excellence-UW (SCORE-UW), University of Washington, Seattle, Washington
| | - John C. Marshall
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas G. Parker
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Claudia C. dos Santos
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
8
|
Zhou Q, Xie M, Zhu J, Yi Q, Tan B, Li Y, Ye L, Zhang X, Zhang Y, Tian J, Xu H. PINK1 contained in huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium overload in sepsis via recovery of mitochondrial Ca 2+ efflux. Stem Cell Res Ther 2021; 12:269. [PMID: 33957982 PMCID: PMC8101124 DOI: 10.1186/s13287-021-02325-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/03/2021] [Indexed: 01/13/2023] Open
Abstract
Background Sepsis is a systemic inflammatory response to a local severe infection that may lead to multiple organ failure and death. Previous studies have shown that 40–50% of patients with sepsis have diverse myocardial injuries and 70 to 90% mortality rates compared to 20% mortality in patients with sepsis without myocardial injury. Therefore, uncovering the mechanism of sepsis-induced myocardial injury and finding a target-based treatment are immensely important. Objective The present study elucidated the mechanism of sepsis-induced myocardial injury and examined the value of human umbilical cord mesenchymal stem cells (huMSCs) for protecting cardiac function in sepsis. Methods We used cecal ligation and puncture (CLP) to induce sepsis in mice and detect myocardial injury and cardiac function using serological markers and echocardiography. Cardiomyocyte apoptosis and heart tissue ultrastructure were detected using TdT-mediated dUTP Nick-End Labeling (TUNEL) and transmission electron microscopy (TEM), respectively. Fura-2 AM was used to monitor Ca2+ uptake and efflux in mitochondria. FQ-PCR and Western blotting detected expression of mitochondrial Ca2+ distribution regulators and PTEN-induced putative kinase 1 (PINK1). JC-1 was used to detect the mitochondrial membrane potential (Δψm) of cardiomyocytes. Results We found that expression of PINK1 decreased in mouse hearts during sepsis, which caused cardiomyocyte mitochondrial Ca2+ efflux disorder, mitochondrial calcium overload, and cardiomyocyte injury. In contrast, we found that exosomes isolated from huMSCs (huMSC-exo) carried Pink1 mRNA, which could be transferred to recipient cardiomyocytes to increase PINK1 expression. The reduction in cardiomyocyte mitochondrial calcium efflux was reversed, and cardiomyocytes recovered from injury. We confirmed the effect of the PINK1-PKA-NCLX axis on mitochondrial calcium homeostasis in cardiomyocytes during sepsis. Conclusion The PINK1-PKA-NCLX axis plays an important role in mitochondrial calcium efflux in cardiomyocytes. Therefore, PINK1 may be a therapeutic target to protect cardiomyocyte mitochondria, and the application of huMSC-exo is a promising strategy against sepsis-induced heart dysfunction. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02325-6.
Collapse
Affiliation(s)
- Qin Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Xie
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jing Zhu
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Qin Yi
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Bin Tan
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Yasha Li
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Liang Ye
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Xinyuan Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Ying Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China
| | - Jie Tian
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Department of Cardiovascular (Internal Medicine), Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hao Xu
- Chongqing Key Laboratory of Pediatrics, Chongqing, People's Republic of China. .,Department of Clinical Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation base of Child development and Critical Disorders, Children's Hospital of Chongqing Medical University, Box 136, No. 3 Zhongshan RD, Yuzhong district, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
9
|
Kilcoyne I, Nieto JE, Watson JL, Galuppo LD, Borjesson DL. Do allogeneic bone marrow derived mesenchymal stem cells diminish the inflammatory response to lipopolysaccharide infusion in horses? A pilot study. Vet Immunol Immunopathol 2020; 231:110146. [PMID: 33221572 DOI: 10.1016/j.vetimm.2020.110146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022]
Abstract
Endotoxemia is a leading cause of morbidity and mortality in the equine industry, with colic being the most common cause of endotoxemia in horses. The objective of this study was to evaluate the safety and potential efficacy of a single dose of allogeneic equine bone marrow derived mesenchymal stem cells (BM-MSCs) in horses after the IV administration of lipopolysaccharide (LPS). Six horses were administered an IV infusion of 30 ng/kg LPS (O55:B5 Escherichia coli) in 500 ml saline over 30 min. Immediately after infusion test horses (n = 3) were administered 100 × 106 allogeneic BM-MSCs diluted in saline IV and control horses (n = 3) were administered saline. Clinicopathological data, pro-inflammatory cytokine measurements and sCD14 concentrations were compared between groups. No adverse reactions were observed in horses administered BM-MSCs intravenously. There were no significant differences between test and control horses with regard to clinicopathological values or pro-inflammatory cytokine production. At no time point did concentrations of sCD14 exceed the reference range in any horse. Results suggest that administration of a single IV dose of freshly cultured MSCs is safe and well-tolerated in horses with induced endotoxemia. Further study to evaluate their efficacy as a potential therapeutic in a larger number of horses with clinical disease is required.
Collapse
Affiliation(s)
- Isabelle Kilcoyne
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, CA, United States.
| | - Jorge E Nieto
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, CA, United States
| | - Johanna L Watson
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California at Davis, CA, United States
| | - Larry D Galuppo
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California at Davis, CA, United States
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California at Davis, CA, United States
| |
Collapse
|
10
|
Immunomodulatory and Therapeutic Effects of Mesenchymal Stem Cells on Organ Dysfunction in Sepsis. Shock 2020; 55:423-440. [PMID: 32826813 DOI: 10.1097/shk.0000000000001644] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
ABSTRACT Sepsis is a life-threatening disorder that is caused by a dysregulated inflammatory response during an infection. The disease mostly affects pregnant women, newborns, and patients in intensive care units. Sepsis treatment is a significant part of a country's health budgets. Delay in the therapy causes irreversible failure of various organs due to the lack of blood supply and reduction of oxygen in the tissues and eventually increased mortality. The involvement of four or five organs by sepsis has been attributed to an increased risk of death to over 90%. Although antibiotics are at the first line of sepsis treatment, they do not possess enough potency to control the disease and prevent subsequent organ failure. The immunomodulatory, anti-inflammatory, anti-apoptotic, and anti-microbial properties of mesenchymal stem cells (MSCs) have been reported in various studies. Therefore, the application of MSCs has been considered a potentially promising therapeutic strategy. In preclinical studies, the administration of MSCs has been associated with reduced bacterial load and decreased levels of pro-inflammatory factors as well as the improved function of the different vital organs, including heart, kidney, liver, and lungs. The current study provides a brief review of sepsis and its pathophysiology, and then highlights recent findings in the therapeutic effects of MSCs and MSC-derived secretome in improving sepsis-induced organ dysfunction. Besides, eligible sepsis candidates for MSC-therapy and the latest clinical findings in these areas have been reviewed.
Collapse
|
11
|
Topcu Sarica L, Zibandeh N, Genç D, Gül F, Akkoç T, Kombak EF, Cinel L, Akkoç T, Cinel I. Immunomodulatory and Tissue-preserving Effects of Human Dental Follicle Stem Cells in a Rat Cecal Ligation and Perforation Sepsis Model. Arch Med Res 2020; 51:397-405. [PMID: 32334851 DOI: 10.1016/j.arcmed.2020.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 03/19/2020] [Accepted: 04/10/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mesenchymal stem cells may be used for the treatment of sepsis. Dental follicle stem cells (DFSCs) are easily accessible but have not been studied in vivo or in clinical trials in sepsis models. AIM OF THE STUDY We aim to elucidate DFSC effects on host immunological functions in a rat cecal ligation and perforation (CLP) sepsis model. METHODS Adult male rats were categorized into group 1 (sham procedure SP), group 2 (SP + 1 × 106 DFSCs administered 0 h after SP), group 3 (CLP + saline), group 4 (CLP + 1 × 106 DFSCs administered 0 h after CLP), and group 5 (CLP + 1 × 106 DFSCs administered 4 h after CLP). Green fluorescent protein-labeled cells were used for imaging. Histopathological examination of ileal tissues was performed. RESULTS A significant increase in the percentage of CD4+/CD25+/Foxp3+ Treg cells in groups 4 and 5 occurred compared with that in group 3. No significant changes in CD3+/CD4+ helper T-cells and CD3+/CD8+ cytotoxic T-cells were observed. Treatment with DFSCs at 4 h significantly decreased the level of TNF-α compared with that in group 3. No significant changes in IL-10 levels and lymphocyte proliferation suppression were observed. During histopathological examination, no high scoring (Chiu scores: 3 or 4) rats were observed in the curative treatment group (group 5). CONCLUSIONS Treatment with DFSC after 4 h of sepsis induction downregulates tissue inflammatory responses by decreasing TNF-α levels and increasing Treg cell ratio. This also has a protective effect on intestinal tissues during sepsis.
Collapse
Affiliation(s)
- Leyla Topcu Sarica
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey
| | - Noushin Zibandeh
- Department of Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Deniz Genç
- Department of Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Fethi Gül
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tolga Akkoç
- TUBITAK MRC Genetic Engineering and Biotechnology Institute, Gebze, Turkey
| | - Erdem Faruk Kombak
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Leyla Cinel
- Department of Pathology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tunç Akkoç
- Department of Allergy and Immunology, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ismail Cinel
- Department of Anesthesiology and Reanimation, School of Medicine, Marmara University, Istanbul, Turkey.
| |
Collapse
|
12
|
Baudry N, Starck J, Aussel C, Lund K, Aletti M, Duranteau J, Banzet S, Lataillade JJ, Vicaut E, Peltzer J. Effect of Preconditioned Mesenchymal Stromal Cells on Early Microvascular Disturbance in a Mouse Sepsis Model. Stem Cells Dev 2019; 28:1595-1606. [DOI: 10.1089/scd.2019.0134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Nathalie Baudry
- Laboratoire d'Etude de la Microcirculation, Université Paris VII Lariboisière St-Louis, UMR 942, Paris, France
| | - Julie Starck
- Laboratoire d'Etude de la Microcirculation, Université Paris VII Lariboisière St-Louis, UMR 942, Paris, France
- Service de Réanimation Pédiatrique, Hôpital Necker Enfants-Malades, Assistance Publique, Hôpitaux de Paris, Faculté de Médecine, Université Paris–Descartes, Paris, France
| | - Clotilde Aussel
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Kyle Lund
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Marc Aletti
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Jacques Duranteau
- Service d'Anesthésie-Réanimation Chirurgicale, Hôpital de Bicêtre, Université Paris-Sud, Hôpitaux Universitaires Paris-Sud, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | - Sébastien Banzet
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| | - Eric Vicaut
- Laboratoire d'Etude de la Microcirculation, Université Paris VII Lariboisière St-Louis, UMR 942, Paris, France
| | - Juliette Peltzer
- Institut de Recherche Biomédicale des Armées (IRBA), Unité Mixte INSERM U1197/Ministère des Armées, Clamart, France
| |
Collapse
|
13
|
Adipose-derived mesenchymal stem cells ameliorate acute liver injury in rat model of CLP induced-sepsis via sTNFR1. Exp Cell Res 2019; 383:111465. [DOI: 10.1016/j.yexcr.2019.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
|
14
|
Lopes-Pacheco M, Robba C, Rocco PRM, Pelosi P. Current understanding of the therapeutic benefits of mesenchymal stem cells in acute respiratory distress syndrome. Cell Biol Toxicol 2019; 36:83-102. [PMID: 31485828 PMCID: PMC7222160 DOI: 10.1007/s10565-019-09493-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
The acute respiratory distress syndrome (ARDS) is a multifaceted lung disorder in which no specific therapeutic intervention is able to effectively improve clinical outcomes. Despite an improved understanding of molecular mechanisms and advances in supportive care strategies, ARDS remains associated with high mortality, and survivors usually face long-term morbidity. In recent years, preclinical studies have provided mounting evidence of the potential of mesenchymal stem cell (MSC)-based therapies in lung diseases and critical illnesses. In several models of ARDS, MSCs have been demonstrated to induce anti-inflammatory and anti-apoptotic effects, improve epithelial and endothelial cell recovery, and enhance microbial and alveolar fluid clearance, thus resulting in improved lung and distal organ function and survival. Early-stage clinical trials have also demonstrated the safety of MSC administration in patients with ARDS, but further, large-scale investigations are required to assess the safety and efficacy profile of these therapies. In this review, we summarize the main mechanisms whereby MSCs have been shown to exert therapeutic effects in experimental ARDS. We also highlight questions that need to be further elucidated and barriers that must be overcome in order to efficiently translate MSC research into clinical practice.
Collapse
Affiliation(s)
- Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy. .,Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy.
| |
Collapse
|
15
|
Park KS, Svennerholm K, Shelke GV, Bandeira E, Lässer C, Jang SC, Chandode R, Gribonika I, Lötvall J. Mesenchymal stromal cell-derived nanovesicles ameliorate bacterial outer membrane vesicle-induced sepsis via IL-10. Stem Cell Res Ther 2019; 10:231. [PMID: 31370884 PMCID: PMC6676541 DOI: 10.1186/s13287-019-1352-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background Sepsis remains a source of high mortality in hospitalized patients despite proper antibiotic approaches. Encouragingly, mesenchymal stromal cells (MSCs) and their produced extracellular vesicles (EVs) have been shown to elicit anti-inflammatory effects in multiple inflammatory conditions including sepsis. However, EVs are generally released from mammalian cells in relatively low amounts, and high-yield isolation of EVs is still challenging due to a complicated procedure. To get over these limitations, vesicles very similar to EVs can be produced by serial extrusions of cells, after which they are called nanovesicles (NVs). We hypothesized that MSC-derived NVs can attenuate the cytokine storm induced by bacterial outer membrane vesicles (OMVs) in mice, and we aimed to elucidate the mechanism involved. Methods NVs were produced from MSCs by the breakdown of cells through serial extrusions and were subsequently floated in a density gradient. Morphology and the number of NVs were analyzed by transmission electron microscopy and nanoparticle tracking analysis. Mice were intraperitoneally injected with Escherichia coli-derived OMVs to establish sepsis, and then injected with 2 × 109 NVs. Innate inflammation was assessed in peritoneal fluid and blood through investigation of infiltration of cells and cytokine production. The biodistribution of NVs labeled with Cy7 dye was analyzed using near-infrared imaging. Results Electron microscopy showed that NVs have a nanometer-size spherical shape and harbor classical EV marker proteins. In mice, NVs inhibited eye exudates and hypothermia, signs of a systemic cytokine storm, induced by intraperitoneal injection of OMVs. Moreover, NVs significantly suppressed cytokine release into the systemic circulation, as well as neutrophil and monocyte infiltration in the peritoneum. The protective effect of NVs was significantly reduced by prior treatment with anti-interleukin (IL)-10 monoclonal antibody. In biodistribution study, NVs spread to the whole mouse body and localized in the lung, liver, and kidney at 6 h. Conclusions Taken together, these data indicate that MSC-derived NVs have beneficial effects in a mouse model of sepsis by upregulating the IL-10 production, suggesting that artificial NVs may be novel EV-mimetics clinically applicable to septic patients. Electronic supplementary material The online version of this article (10.1186/s13287-019-1352-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden.
| | - Kristina Svennerholm
- Department of Anesthesiology and Intensive Care Medicine, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Ganesh V Shelke
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Elga Bandeira
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Su Chul Jang
- Codiak BioSciences Inc, 500 Technology Square, 9th floor, Cambridge, MA, 02139, USA
| | - Rakesh Chandode
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, University of Gothenburg, 40530, Gothenburg, Sweden
| |
Collapse
|
16
|
Hoogduijn MJ, Lombardo E. Mesenchymal Stromal Cells Anno 2019: Dawn of the Therapeutic Era? Concise Review. Stem Cells Transl Med 2019; 8:1126-1134. [PMID: 31282113 PMCID: PMC6811696 DOI: 10.1002/sctm.19-0073] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 12/11/2022] Open
Abstract
2018 was the year of the first marketing authorization of an allogeneic stem cell therapy by the European Medicines Agency. The authorization concerns the use of allogeneic adipose tissue-derived mesenchymal stromal cells (MSCs) for treatment of complex perianal fistulas in Crohn's disease. This is a breakthrough in the field of MSC therapy. The last few years have, furthermore, seen some breakthroughs in the investigations into the mechanisms of action of MSC therapy. Although the therapeutic effects of MSCs have largely been attributed to their secretion of immunomodulatory and regenerative factors, it has now become clear that some of the effects are mediated through host phagocytic cells that clear administered MSCs and in the process adapt an immunoregulatory and regeneration supporting function. The increased interest in therapeutic use of MSCs and the ongoing elucidation of the mechanisms of action of MSCs are promising indicators that 2019 may be the dawn of the therapeutic era of MSCs and that there will be revived interest in research to more efficient, practical, and sustainable MSC-based therapies. Stem Cells Translational Medicine 2019;8:1126-1134.
Collapse
Affiliation(s)
- Martin J Hoogduijn
- Nephrology and Transplantation, Department of Internal Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
17
|
Marrazzo P, Crupi AN, Alviano F, Teodori L, Bonsi L. Exploring the roles of MSCs in infections: focus on bacterial diseases. J Mol Med (Berl) 2019; 97:437-450. [PMID: 30729280 DOI: 10.1007/s00109-019-01752-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Despite human healthcare advances, some microorganisms continuously react evolving new survival strategies, choosing between a commensal fitness and a pathogenic attitude. Many opportunistic microbes are becoming an increasing cause of clinically evident infections while several renowned infectious diseases sustain a considerable number of deaths. Besides the primary and extensively investigated role of immune cells, other cell types are involved in the microbe-host interaction during infection. Interestingly, mesenchymal stem cells (MSCs), the current leading players in cell therapy approaches, have been suggested to contribute to tackling pathogens and modulating the host immune response. In this context, this review critically explores MSCs' role in E. coli, S. aureus, and polymicrobial infections. Summarizing from various studies, in vitro and in vivo results support the mechanistic involvement of MSCs and their derivatives in fighting infection and in contributing to microbial spreading. Our work outlines the double face of MSCs during infection, disease, and sepsis, highlighting potential pitfalls in MSC-based therapy due to the MSCs' susceptibility to pathogens' weapons. We also identify potential targets to improve infection treatments, and propose the potential applications of MSCs for vaccine research.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| | | | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy.
| | - Laura Teodori
- Diagnostics and Metrology, FSN-TECFIS-DIM, Enea Frascati, Rome, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| |
Collapse
|
18
|
Mesenchymal stromal cell-derived extracellular vesicles: regenerative and immunomodulatory effects and potential applications in sepsis. Cell Tissue Res 2018; 374:1-15. [PMID: 29955951 DOI: 10.1007/s00441-018-2871-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 05/20/2018] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal (stem) cells (MSCs) have multipotent differentiation capacity and exist in nearly all forms of post-natal organs and tissues. The immunosuppressive and anti-inflammatory properties of MSCs have made them an ideal candidate in the treatment of diseases, such as sepsis, in which inflammation plays a critical role. One of the key mechanisms of MSCs appears to derive from their paracrine activity. Recent studies have demonstrated that MSC-derived extracellular vesicles (MSC-EVs) are at least partially responsible for the paracrine effect. MSC-EVs transfer molecules (such as proteins/peptides, mRNA, microRNA and lipids) with immunoregulatory properties to recipient cells. MSC-EVs have been shown to mimic MSCs in alleviating sepsis and may serve as an alternative to whole cell therapy. Compared with MSCs, MSC-EVs may offer specific advantages due to lower immunogenicity and higher safety profile. The first two sections of the review discuss the preclinical and clinical findings of MSCs in sepsis. Next, we review the characteristics of EVs and MSC-EVs. Then, we summarize the mechanisms of MSC-EVs, including tissue regeneration and immunomodulation. Finally, our review presents the evidences that MSC-EVs are effective in treating models of sepsis. In conclusion, MSC-EVs may have the potential to become a novel therapeutic strategy for sepsis.
Collapse
|
19
|
Chen T, Battsengel S, Kuo C, Pan L, Lin Y, Yao C, Chen Y, Lin F, Kuo W, Huang C. Stem cells rescue cardiomyopathy induced by
P. gingivalis
‐LPS via miR‐181b. J Cell Physiol 2018; 233:5869-5876. [DOI: 10.1002/jcp.26386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Tung‐Sheng Chen
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
| | - Sarnai Battsengel
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
- Intermed Hospital, Chinggis Avenue 41, Khan‐Uul district15th KhorooUildverUlaanbaatarMongolia
| | - Chia‐Hua Kuo
- Department of Sports SciencesUniversity of TaipeiTaipeiTaiwan
| | - Lung‐Fa Pan
- Division of CardiologyArmed Force Taichung General HospitalTaichungTaiwan
- Department of Medical Imaging and Radiological SciencesCentral Taiwan University of Science and TechnologyTaichungTaiwan
| | - Yueh‐Min Lin
- Department of PathologyChanghua Christian HospitalChanghuaTaiwan
- Jen‐Teh Junior College of MedicineNursing and ManagementMiaoliTaiwan
| | - Chun‐Hsu Yao
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Department of Biomedical Imaging and Radiological ScienceChina Medical UniversityTaichungTaiwan
- Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of Biomedical InformaticsAsia UniversityTaichungTaiwan
| | - Yueh‐Sheng Chen
- School of Life ScienceNational Taiwan Normal UniversityTaipeiTaiwan
- Department of Biomedical Imaging and Radiological ScienceChina Medical UniversityTaichungTaiwan
- Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of Cosmeceutics and Graduate Institute of CosmeceuticsChina Medical UniversityTaichungTaiwan
| | - Feng‐Huei Lin
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesMiaoli CountyTaiwan
- Institute of Biomedical EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Wen Kuo
- Department of Biological Science and TechnologyChina Medical UniversityTaichungTaiwan
| | - Chih‐Yang Huang
- Graduate Institute of Basic Medical ScienceChina Medical UniversityTaichungTaiwan
- Graduate Institute of Chinese Medical ScienceChina Medical UniversityTaichungTaiwan
- Department of Health and Nutrition BiotechnologyAsia UniversityTaichungTaiwan
| |
Collapse
|
20
|
A Novel Mechanism of Mesenchymal Stromal Cell-Mediated Protection against Sepsis: Restricting Inflammasome Activation in Macrophages by Increasing Mitophagy and Decreasing Mitochondrial ROS. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3537609. [PMID: 29636842 PMCID: PMC5831900 DOI: 10.1155/2018/3537609] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 11/02/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
Sepsis, a systemic inflammatory response to infection, is the leading cause of death in the intensive care unit (ICU). Previous studies indicated that mesenchymal stromal cells (MSCs) might have therapeutic potential against sepsis. The current study was designed to investigate the effects of MSCs on sepsis and the underlying mechanisms focusing on inflammasome activation in macrophages. The results demonstrated that the bone marrow-derived mesenchymal stem cells (BMSCs) significantly increased the survival rate and organ function in cecal ligation and puncture (CLP) mice compared with the control-grouped mice. BMSCs significantly restricted NLRP3 inflammasome activation, suppressed the generation of mitochondrial ROS, and decreased caspase-1 and IL-1β activation when cocultured with bone marrow-derived macrophages (BMDMs), the effects of which could be abolished by Mito-TEMPO. Furthermore, the expression levels of caspase-1, IL-1β, and IL-18 in BMDMs were elevated after treatment with mitophagy inhibitor 3-MA. Thus, BMSCs exert beneficial effects on inhibiting NLRP3 inflammasome activation in macrophages primarily via both enhancing mitophagy and decreasing mitochondrial ROS. These findings suggest that restricting inflammasome activation in macrophages by increasing mitophagy and decreasing mitochondrial ROS might be a crucial mechanism for MSCs to combat sepsis.
Collapse
|
21
|
Zheng YH, Deng YY, Lai W, Zheng SY, Bian HN, Liu ZA, Huang ZF, Sun CW, Li HH, Luo HM, Ma LH, Chen HX, Xiong B. Effect of bone marrow mesenchymal stem cells on the polarization of macrophages. Mol Med Rep 2018; 17:4449-4459. [PMID: 29363724 PMCID: PMC5802220 DOI: 10.3892/mmr.2018.8457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
Inflammation is a defensive response in the living tissue of the vascular system that acts against damage factors and involves various types of immune cells, including macrophages, neutrophils, endothelial cells and other associated immune molecules. If the release of inflammatory mediators is excessive, systemic inflammatory response syndrome may develop. Sepsis is the most common complication of severe burns and is a systemic inflammatory response syndrome that is caused by infectious factors and is capable of leading to multiple organ dysfunction and potentially death. Research concerning the mechanism and treatment of sepsis is crucial. Macrophages are an important type of immune cell that remove invasive pathogens and are involved in innate and adaptive immune responses. It has been previously reported that bone marrow mesenchymal stem cells (BMSCs) affect macrophages by regulating immunity. The present study aimed to investigate the effect of BMSCs on macrophage polarization in vivo and in vitro, in addition to the potential therapeutic effect of these cells on experimental sepsis. BMSCs and peritoneal macrophages were isolated from Sprague‑Dawley rats and co‑cultured overnight as a mixed culture or Transwell system, and subsequently stimulated with 100 ng/ml lipopolysaccharide (LPS). After 12 h, the medium was replaced with normal complete medium for various durations and supernatants were collected to extract proteins and cells for ELISA, western blot and flow cytometry analysis to investigate different aspects of macrophages. Sepsis was induced in Sprague‑Dawley rats by injection of LPS (5 mg/kg), followed by tail vein injection of BMSCs or PBS 1 h later. After 6, 12, 24 and 48 h, lung tissues were harvested for pathological observation and peritoneal macrophages were collected for flow cytometry analysis to assess the expression of markers, including cluster of differentiation (CD)68 (used for gating), CD11c and CD206. The results demonstrated that, in the culture medium, LPS stimulation increased the expression of CD11c in macrophages, and the levels of tumor necrosis factor‑α and inducible nitric oxide synthase were also increased. By contrast, in macrophages treated with BMSCs directly, the expression of CD11c was reduced compared with the LPS‑stimulated macrophage alone group. However, the secretion of interleukin‑10, transforming growth factor‑β and arginase‑1 was increased in the direct co‑culture group, compared with the LPS‑stimulated macrophage alone group. BMSCs reduced the inflammation in lung tissues and inhibited macrophage expression of CD11c in the rat model of sepsis. The results of the present study demonstrated that BMSCs co‑cultured with macrophages directly inhibited macrophage differentiation into the M1 phenotype and reduced inflammation in macrophages stimulated by LPS. In vivo, BMSCs decreased the expression of CD11c in peritoneal macrophages and reduced the pathological inflammatory response in the lungs. The findings of the present study demonstrated that BMSCs may reduce the extent of the systemic inflammatory response, which may contribute to the development for a novel type of treatment for sepsis in the future.
Collapse
Affiliation(s)
- Yuan Hua Zheng
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yi Yu Deng
- Department of Critical Care and Emergency, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wen Lai
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Shao Yi Zheng
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hui Ning Bian
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Zu An Liu
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Zhi Feng Huang
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Chuan Wei Sun
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Han Hua Li
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hong Min Luo
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Liang Hua Ma
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Han Xi Chen
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Bing Xiong
- Department of Burns and Wound Repair Surgery, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| |
Collapse
|
22
|
Pedrazza L, Cubillos-Rojas M, de Mesquita FC, Luft C, Cunha AA, Rosa JL, de Oliveira JR. Mesenchymal stem cells decrease lung inflammation during sepsis, acting through inhibition of the MAPK pathway. Stem Cell Res Ther 2017; 8:289. [PMID: 29273091 PMCID: PMC5741936 DOI: 10.1186/s13287-017-0734-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/12/2017] [Accepted: 11/28/2017] [Indexed: 01/04/2023] Open
Abstract
Background Sepsis is a severe medical condition that ranks among the top 10 causes of death worldwide and which has permanently high incidence rates. Mesenchymal stem cells (MSCs) have been found to be potent modulators of immune responses. More importantly, there is evidence that MSCs have a beneficial effect on preclinical models of polymicrobial sepsis. However, the changes caused by the MSCs in the effector cells of the host immune system remain unclear. Methods A mouse model of sepsis (male C57BL/6 mice) with three experimental groups was used for experiments in vivo: a control group, an untreated septic group, and a septic group treated with MSCs. In vitro experiments were performed using a cell line of pulmonary macrophages (RAW 264.7) co-cultured with MSCs and stimulated with lipopolysaccharide (LPS). Results In vivo we demonstrated that treatment with MSCs was able to reduce the expression of cyclooxygenase-2 (COX-2) and nuclear factor kappa B (NF-κB), and thereby decrease the production of inflammatory cytokines. In vitro experiments using a co-culture of macrophages with MSCs showed a decrease in COX-2 and NF-κB, and showed that this reduction was directly related to the ability of MSCs to inhibit phosphorylation of ERK, RSK, and p38, enzymes that belong to the family of mitogen-activated protein kinases (MAPKs). Conclusions This study demonstrated that MSCs are able to inhibit the MAPK pathway activation, modulating the inflammatory response during sepsis. This understanding that MSCs can remodel the response of host cells and improve the course of sepsis is essential for developing new treatments for this pathology.
Collapse
Affiliation(s)
- Leonardo Pedrazza
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil.
| | - Monica Cubillos-Rojas
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, E-08907, Barcelona, Spain
| | - Fernanda Cristina de Mesquita
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Carolina Luft
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Aline Andrea Cunha
- Laboratory of Pediatric Respirology, Infant Center, Institute of Biomedical Research (IPB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IDIBELL, Campus de Bellvitge, Universitat de Barcelona, L'Hospitalet de Llobregat, E-08907, Barcelona, Spain
| | - Jarbas Rodrigues de Oliveira
- Laboratório de Pesquisa em Biofísica Celular e Inflamação, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, CEP 90619-900, Brazil
| |
Collapse
|
23
|
Abstract
Abstract
Sepsis is a life-threatening syndrome resulting in shock and organ dysfunction stemming from a microbial infection. Sepsis has a mortality of 40% and is implicated in half of all in-hospital deaths. The host immune response to microbial infection is critical, with early-phase sepsis characterized by a hyperinflammatory immune response, whereas the later phase of sepsis is often complicated by suppression. Sepsis has no treatment, and management remains supportive.
Stem cells constitute exciting potential therapeutic agents for sepsis. In this review, we examine the rationale for stem cells in sepsis, focusing on mesenchymal stem/stromal cells, which currently demonstrate the greatest therapeutic promise. We examine the preclinical evidence base and evaluate potential mechanisms of action of these cells that are important in the setting of sepsis. We discuss early-phase clinical trials and critically appraise translational barriers to the use of mesenchymal stem/stromal cells in patients with sepsis.
Collapse
|
24
|
Laroye C, Gibot S, Reppel L, Bensoussan D. Concise Review: Mesenchymal Stromal/Stem Cells: A New Treatment for Sepsis and Septic Shock? Stem Cells 2017; 35:2331-2339. [PMID: 28856759 DOI: 10.1002/stem.2695] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 12/17/2022]
Abstract
Sepsis and septic shock are the leading cause of admission and mortality in non-coronary intensive care units. Currently, however, no specific treatments are available for this syndrome. Due to the failure of conventional treatments in recent years, research is focusing on innovative therapeutic agents, including cell therapy. One particular type of cell, mesenchymal stromal/stem cells (MSCs), has raised hopes for the treatment of sepsis. Indeed, their immunomodulatory properties, antimicrobial activity and capacity of protection against organ failure confer MSCs with a major advantage to treat the immune and inflammatory dysfunctions associated with sepsis and septic shock. After a brief description of the pathophysiology of sepsis and septic shock, the latest advances in the use of MSCs to treat sepsis will be presented. Stem Cells 2017;35:2331-2339.
Collapse
Affiliation(s)
- Caroline Laroye
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,INSERM, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Sébastien Gibot
- INSERM, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France.,CHRU Nancy, Service de Réanimation Médicale, Hôpital Central, Nancy, France
| | - Loïc Reppel
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| | - Danièle Bensoussan
- Unité de Thérapie Cellulaire et banque de Tissus, CHRU de Nancy, Vandœuvre-lès-Nancy, France.,UMR 7365 CNRS, Vandœuvre-lès-Nancy, France.,Université de Lorraine, Nancy, France
| |
Collapse
|
25
|
Mesenchymal Stem Cells in Sepsis and Associated Organ Dysfunction: A Promising Future or Blind Alley? Stem Cells Int 2017; 2017:7304121. [PMID: 29098010 PMCID: PMC5618761 DOI: 10.1155/2017/7304121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022] Open
Abstract
Sepsis, newly defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, is the most common cause of death in ICUs and one of the principal causes of death worldwide. Although substantial progress has been made in the understanding of fundamental mechanisms of sepsis, translation of these advances into clinically effective therapies has been disappointing. Given the extreme complexity of sepsis pathogenesis, the paradigm “one disease, one drug” is obviously flawed and combinations of multiple targets that involve early immunomodulation and cellular protection are needed. In this context, the immune-reprogramming properties of cell-based therapy using mesenchymal stem cells (MSC) represent an emerging therapeutic strategy in sepsis and associated organ dysfunction. This article provides an update of the current knowledge regarding MSC in preclinical models of sepsis and sepsis-induced acute kidney injury. Recommendations for further translational research in this field are discussed.
Collapse
|
26
|
Zorzopulos J, Opal SM, Hernando-Insúa A, Rodriguez JM, Elías F, Fló J, López RA, Chasseing NA, Lux-Lantos VA, Coronel MF, Franco R, Montaner AD, Horn DL. Immunomodulatory oligonucleotide IMT504: Effects on mesenchymal stem cells as a first-in-class immunoprotective/immunoregenerative therapy. World J Stem Cells 2017; 9:45-67. [PMID: 28396715 PMCID: PMC5368622 DOI: 10.4252/wjsc.v9.i3.45] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/12/2016] [Accepted: 12/19/2016] [Indexed: 02/06/2023] Open
Abstract
The immune responses of humans and animals to insults (i.e., infections, traumas, tumoral transformation and radiation) are based on an intricate network of cells and chemical messengers. Abnormally high inflammation immediately after insult or abnormally prolonged pro-inflammatory stimuli bringing about chronic inflammation can lead to life-threatening or severely debilitating diseases. Mesenchymal stem cell (MSC) transplant has proved to be an effective therapy in preclinical studies which evaluated a vast diversity of inflammatory conditions. MSCs lead to resolution of inflammation, preparation for regeneration and actual regeneration, and then ultimate return to normal baseline or homeostasis. However, in clinical trials of transplanted MSCs, the expectations of great medical benefit have not yet been fulfilled. As a practical alternative to MSC transplant, a synthetic drug with the capacity to boost endogenous MSC expansion and/or activation may also be effective. Regarding this, IMT504, the prototype of a major class of immunomodulatory oligonucleotides, induces in vivo expansion of MSCs, resulting in a marked improvement in preclinical models of neuropathic pain, osteoporosis, diabetes and sepsis. IMT504 is easily manufactured and has an excellent preclinical safety record. In the small number of patients studied thus far, IMT504 has been well-tolerated, even at very high dosage. Further clinical investigation is necessary to demonstrate the utility of IMT504 for resolution of inflammation and regeneration in a broad array of human diseases that would likely benefit from an immunoprotective/immunoregenerative therapy.
Collapse
|
27
|
Zhang Y, Hu YW, Zheng L, Wang Q. Characteristics and Roles of Exosomes in Cardiovascular Disease. DNA Cell Biol 2017; 36:202-211. [PMID: 28112546 DOI: 10.1089/dna.2016.3496] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yuan Zhang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Laboratory, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Yan-Wei Hu
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Öner T, Özdemir R, Güven B, Yılmazer MM, Doksöz Ö, Meşe T, Tavlı V. Evaluation of myocardial function in pediatric patients with transposition of great arteries after arterial switch operation. Anatol J Cardiol 2016; 16:55-61. [PMID: 26467364 PMCID: PMC5336706 DOI: 10.5152/akd.2015.5692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE An arterial switch operation converts the left ventricle (LV) into the systemic ventricle, replacing the right ventricle (RV), which is the systemic ventricle during the prenatal period. The procedure is performed in patients with arterial transposition and those in whom a coronary reimplantation procedure is performed. Therefore, the adaptation of LV and RV to the arterial switch operations is an interesting issue. This study aimed to evaluate systolic and diastolic functions in the LV and RV myocardium using echocardiography in pediatric patients with transposed great arteries after an arterial switch operation. METHODS This observational case control study included 28 patients and 20 gender-and age-matched healthy controls. A group study was performed using patients who were followed for at least 6 months after the operation and who visited the pediatric cardiology outpatient between October 2009 and May 2011. Systolic and diastolic parameters, LV and RV myocardial performance index (MPI) values, and left atrium (LA) volume index were assessed in both groups. RESULTS The LV MPI and tricuspid valve (TV) E/Ea ratio measured using pulsed-wave Doppler were higher in the patient group than in the control group. The TV E/A ratio and late velocity of lateral mitral annulus (Aa) and systolic velocity (Sa)-early diastolic velocity (Ea)-late velocity (Aa) of the septal mitral annulus and systolic velocity (Sa)-early diastolic velocity (Ea)-late velocity (Aa) of the lateral tricuspid annulus were lower in the patient group than in the control group. CONCLUSION Considering the present study's findings obtained during short-to mid-term follow-up, the RV tissue Doppler flows and the LV MPI were found impaired.
Collapse
Affiliation(s)
- Taliha Öner
- Department of Pediatric Cardiology, İzmir Dr. Behçet Uz Children Hospital; İzmir-Turkey.
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Trauma is a leading cause of death in both military and civilian populations worldwide. Although medical advances have improved the overall morbidity and mortality often associated with trauma, additional research and innovative advancements in therapeutic interventions are needed to optimize patient outcomes. Cell-based therapies present a novel opportunity to improve trauma and critical care at both the acute and chronic phases that often follow injury. Although this field is still in its infancy, animal and human studies suggest that stem cells may hold great promise for the treatment of brain and spinal cord injuries, organ injuries, and extremity injuries such as those caused by orthopedic trauma, burns, and critical limb ischemia. However, barriers in the translation of cell therapies that include regulatory obstacles, challenges in manufacturing and clinical trial design, and a lack of funding are critical areas in need of development. In 2015, the Department of Defense Combat Casualty Care Research Program held a joint military–civilian meeting as part of its effort to inform the research community about this field and allow for effective planning and programmatic decisions regarding research and development. The objective of this article is to provide a “state of the science” review regarding cellular therapies in trauma and critical care, and to provide a foundation from which the potential of this emerging field can be harnessed to mitigate outcomes in critically ill trauma patients.
Collapse
|
30
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
31
|
Wu Y, Zhou J, Bi L, Huang M, Han Y, Zhang Q, Zhu D, Zhou S. Effects of bone marrow mesenchymal stem cells on the cardiac function and immune system of mice with endotoxemia. Mol Med Rep 2016; 13:5317-25. [PMID: 27109149 DOI: 10.3892/mmr.2016.5151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of bone marrow mesenchymal stem cells (MSCs) on the cardiac function and immune system of mice with endotoxemia. The mice were divided into the following groups: Control group, endotoxemia group, lipopolysaccharide (LPS) treatment group, LPS and MSC treatment group (LPS + MSC group) and MSC group. Following treatment with LPS, the cardiac function of the mice was examined at after 2, 6 and 24 h, and on day 7. An enzyme‑linked immunofluorescent assay was used to analyze the serum and the levels of cytokines in the myocardium, and western blotting was used to investigate any changes in the levels of signaling proteins associated with the myocardium. A 3‑(4,5‑dimethyl‑2‑thiazolyl)‑2,5‑diphenyl‑2H‑tetrazolium bromide assay was used to investigate the growth rate of the splenic cells at after 24 h and on day 7, and the humoral immune function and phagocytosis of the macrophages in the mice were also examined. The cardiac function of the mice with endotoxemia declined, although this impairment was circumvented following treatment with MSCs. The levels of interleukin (IL)‑1β, IL‑6, tumor necrosis factor‑α and IL‑10 in the serum and the myocardium increased following stimulation by LPS, although these declined as a result of MSC treatment. The expression levels of Toll‑like receptor 4, p65‑nuclear factor‑κB and phosphorylated p38 in the mouse myocardium were enhanced following stimulation by LPS, which subsequently decreased as a result of MSC treatment. Compared with the control group, the growth rate of the splenic cells, humoral immune function and the level of phagocytosis of macrophages were all increased, although these parameters declined following treatment with MSCs. Taken together, the present study revealed that the MSCs inhibited the inflammatory reaction in the mice with endotoxemia, and improved cardiac function. By contrast, the cellular and humoral immunity were depressed, and phagocytosis of the macrophages, which were enhanced following simulation with LPS, were decreased following treatment with MSCs. However, no overexpression of the anti‑inflammatory factor, IL‑10, was observed. The present study hypothesized that MSCs exert a bifunctional role in endotoxemia, by inhibiting inflammatory factors, including IL‑1 and IL‑6, and inhibiting the compensatory expression of IL‑10 following LPS stimulation. This avoids the possibility of excessive inhibition of immunological function, as this results in immunosuppression, and a higher ratio of IL‑10 to TNF‑α is indicative of a poor prognosis in patients with sepsis.
Collapse
Affiliation(s)
- Yuanfan Wu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jing Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Liqing Bi
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Min Huang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi Han
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Qian Zhang
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dongmei Zhu
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Suming Zhou
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
32
|
Sung PH, Chiang HJ, Chen CH, Chen YL, Huang TH, Zhen YY, Chang MW, Liu CF, Chung SY, Chen YL, Chai HT, Sun CK, Yip HK. Combined Therapy With Adipose-Derived Mesenchymal Stem Cells and Ciprofloxacin Against Acute Urogenital Organ Damage in Rat Sepsis Syndrome Induced by Intrapelvic Injection of Cecal Bacteria. Stem Cells Transl Med 2016; 5:782-92. [PMID: 27075767 DOI: 10.5966/sctm.2015-0116] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED We hypothesized that combined treatment with autologous adipose-derived mesenchymal stem cell (ADMSC) and ciprofloxacin is superior to ciprofloxacin only in reducing sepsis-induced urogenital organ damage and mortality in rat sepsis syndrome (SS) caused by intrapelvic injection of cecal bacteria (1.0 × 10(4) cells per milliliter; total, 5.0 ml). Male Sprague-Dawley rats (n = 60) equally divided into group 1 (sham-control), group 2 (SS), group 3 (SS-ADMSC [5.0 × 10(5) intravenously at 0.5, 6, and 18 hours after sepsis induction]), group 4 (SS-ciprofloxacin [3.0 mg/kg, b.i.d.] for 5 days), and group 5 (SS-ADMSC-ciprofloxacin) were sacrificed by day 5. Mortality rate and creatinine level were highest in group 2 and lowest in group 1 and significantly higher in groups 3 and 4 than those in group 5, but there was no difference between groups 3 and 4 (all p < .005). The kidney injury score, inflammatory biomarker expressions at protein (tumor necrosis factor-1α, nuclear factor-κB, matrix metallopeptidase-9, regulated on activation, normal T-cell expressed and secreted, interleukin-1β) and cellular (CD14+, migratory inhibitor factor positive, CD68+) levels in kidneys and urinary bladder were lowest in group 1 and highest in group 2, higher in group 4 than in groups 3 and 5, and higher in group 3 than in group 5 (all p < .001). Protein expressions of apoptosis (Bax, cleaved caspase 3 and poly[ADP-ribose] polymerase 1, p21 protein [Cdc42/Rac]-activated kinase 2) and oxidative stress (oxidized protein, NADPH oxidase (NOX)-1, NOX-2) in these organs showed an identical pattern compared with that of inflammation in all groups (all p < .001). In conclusion, ADMSC-assisted ciprofloxacin therapy offered an additional benefit by reducing acute urogenital organ damage in rat. SIGNIFICANCE Autologous adipose-derived mesenchymal stem cell-assisted ciprofloxacin therapy offered an additional benefit by reducing acute urogenital organ damage in rats.
Collapse
Affiliation(s)
- Pei-Hsun Sung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Hsin-Ju Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Chih-Hung Chen
- Division of General Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Yi-Ling Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Tien-Hung Huang
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Yen-Yi Zhen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Meng-Wei Chang
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Chu-Feng Liu
- Department of Emergency Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Sheng-Ying Chung
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Yung-Lung Chen
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Han-Tan Chai
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | - Cheuk-Kwan Sun
- Department of Emergency Medicine, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan, Republic of China
| | - Hon-Kan Yip
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China Institute of Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan, Republic of China Department of Nursing, Asia University, Taichung, Taiwan, Republic of China
| |
Collapse
|
33
|
Lakshmikanth CL, Jacob SP, Chaithra VH, de Castro-Faria-Neto HC, Marathe GK. Sepsis: in search of cure. Inflamm Res 2016; 65:587-602. [PMID: 26995266 DOI: 10.1007/s00011-016-0937-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/23/2016] [Accepted: 02/29/2016] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Sepsis is a complex inflammatory disorder believed to originate from an infection by any types of microbes and/or their products. It is the leading cause of death in intensive care units (ICUs) throughout the globe. The mortality rates depend both on the severity of infection and the host's response to infection. METHODS Literature survey on pathobiology of sepsis in general and failure of more than hundred clinical trials conducted so far in search of a possible cure for sepsis resulted in the preparation of this manuscript. FINDINGS Sepsis lacks a suitable animal model that mimics human sepsis. However, based on the results obtained in animal models of sepsis, clinical trials conducted so far have been disappointing. Although involvement of multiple mediators and pathways in sepsis has been recognized, only few components are being targeted and this could be the major reason behind the failure of clinical trials. CONCLUSION Inability to recognize a single critical mediator of sepsis may be the underlying cause for the poor therapeutic intervention of sepsis. Therefore, sepsis is still considered as a disease-in search of cure.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore, 570 006, India
| | | | | | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore, 570 006, India.
| |
Collapse
|
34
|
Exosomal miR-223 Contributes to Mesenchymal Stem Cell-Elicited Cardioprotection in Polymicrobial Sepsis. Sci Rep 2015; 5:13721. [PMID: 26348153 PMCID: PMC4562230 DOI: 10.1038/srep13721] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to elicit cardio-protective effects in sepsis. However, the underlying mechanism remains obscure. While recent studies have indicated that miR-223 is highly enriched in MSC-derived exosomes, whether exosomal miR-223 contributes to MSC-mediated cardio-protection in sepsis is unknown. In this study, loss-of-function approach was utilized, and sepsis was induced by cecal ligation and puncture (CLP). We observed that injection of miR-223-KO MSCs at 1 h post-CLP did not confer protection against CLP-triggered cardiac dysfunction, apoptosis and inflammatory response. However, WT-MSCs were able to provide protection which was associated with exosome release. Next, treatment of CLP mice with exosomes released from miR-223-KO MSCs significantly exaggerated sepsis-induced injury. Conversely, WT-MSC-derived-exosomes displayed protective effects. Mechanistically, we identified that miR-223-KO exosomes contained higher levels of Sema3A and Stat3, two known targets of miR-223 (5p &3p), than WT-exosomes. Accordingly, these exosomal proteins were transferred to cardiomyocytes, leading to increased inflammation and cell death. By contrast, WT-exosomes encased higher levels of miR-223, which could be delivered to cardiomyocytes, resulting in down-regulation of Sema3A and Stat3. These data for the first time indicate that exosomal miR-223 plays an essential role for MSC-induced cardio-protection in sepsis.
Collapse
|
35
|
Fletcher AL, Elman JS, Astarita J, Murray R, Saeidi N, D'Rozario J, Knoblich K, Brown FD, Schildberg FA, Nieves JM, Heng TSP, Boyd RL, Turley SJ, Parekkadan B. Lymph node fibroblastic reticular cell transplants show robust therapeutic efficacy in high-mortality murine sepsis. Sci Transl Med 2015; 6:249ra109. [PMID: 25122637 DOI: 10.1126/scitranslmed.3009377] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Sepsis is an aggressive inflammatory syndrome and a global health burden estimated to kill 7.3 million people annually. Single-target molecular therapies have not addressed the multiple disease pathways triggered by septic injury. Cell therapies might offer a broader set of mechanisms of action that benefit complex, multifocal disease processes. We describe a population of immune-specialized myofibroblasts derived from lymph node tissue, termed fibroblastic reticular cells (FRCs). Because FRCs have an immunoregulatory function in lymph nodes, we hypothesized that ex vivo-expanded FRCs would control inflammation when administered therapeutically. Indeed, a single injection of ex vivo-expanded allogeneic FRCs reduced mortality in mouse models of sepsis when administered at early or late time points after septic onset. Mice treated with FRCs exhibited lower local and systemic concentrations of proinflammatory cytokines and reduced bacteremia. When administered 4 hours after induction of lipopolysaccharide endotoxemia, or cecal ligation and puncture (CLP) sepsis in mice, FRCs reduced deaths by at least 70%. When administered late in disease (16 hours after CLP), FRCs still conveyed a robust survival advantage (44% survival compared to 0% for controls). FRC therapy was dependent on the metabolic activity of nitric oxide synthase 2 (NOS2) as the primary molecular mechanism of drug action in the mice. Together, these data describe a new anti-inflammatory cell type and provide preclinical evidence for therapeutic efficacy in severe sepsis that warrants further translational study.
Collapse
Affiliation(s)
- Anne L Fletcher
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA. Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia. School of Immunity and Infection, University of Birmingham, Birmingham B15 2TT, UK.
| | - Jessica S Elman
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Jillian Astarita
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Murray
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Nima Saeidi
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA 02114, USA
| | - Joshua D'Rozario
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Konstantin Knoblich
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Flavian D Brown
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Frank A Schildberg
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Janice M Nieves
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Richard L Boyd
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Shannon J Turley
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA 02115, USA. Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA 02114, USA. Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| |
Collapse
|
36
|
Walter J, Ware LB, Matthay MA. Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. THE LANCET RESPIRATORY MEDICINE 2014; 2:1016-26. [PMID: 25465643 DOI: 10.1016/s2213-2600(14)70217-6] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multipotent mesenchymal stem (stromal) cells (MSCs) have shown promising therapeutic effects in preclinical models of both acute respiratory distress syndrome (ARDS) and sepsis. Although initial research focused on the ability of MSCs to engraft at sites of tissue injury, increasing evidence suggests that MSCs have their therapeutic effects through mechanisms unrelated to long-term incorporation into host tissue. One of the most compelling of these pathways is the ability of MSCs to interact with injured tissue through the release of soluble bioactive factors. This Review provides an overview of the general properties of MSCs, and then outlines ways in which the paracrine effects of MSCs might reduce lung injury and enhance lung repair in ARDS and sepsis. Finally, we summarise ongoing challenges in MSC research and identify areas in which the discipline might progress in the coming years.
Collapse
Affiliation(s)
- James Walter
- Departments of Medicine and Anaesthesia, Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael A Matthay
- Departments of Medicine and Anaesthesia, Cardiovascular Research Institute, University of California, San Francisco, CA, USA.
| |
Collapse
|
37
|
Apoptotic adipose-derived mesenchymal stem cell therapy protects against lung and kidney injury in sepsis syndrome caused by cecal ligation puncture in rats. Stem Cell Res Ther 2014; 4:155. [PMID: 24451364 PMCID: PMC4054966 DOI: 10.1186/scrt385] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/20/2013] [Accepted: 12/03/2013] [Indexed: 02/06/2023] Open
Abstract
Introduction We tested the hypothesis that apoptotic adipose-derived mesenchymal stem cells (A-ADMSC) are superior to healthy (H)-ADMSC in attenuating cecal ligation puncture (CLP)-induced sepsis-mediated lung and kidney injuries. Methods Adult male rats divided into group 1 (sham controls), group 2 (CLP), group 3 [CLP + H-ADMSC administered at 0.5, 6, and 18 hours after CLP], and group 4 [CLP + A-ADMSC administered as in group 3] were sacrificed 72 hours after CLP with blood, lung, and kidney collected for studies. Results White blood cell (WBC) count, circulating TNF-α and creatinine levels were higher in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Kidney and lung damage scores were highest in group 2, lowest in group 1, significantly higher in group 3 than in group 4 (all P < 0.0001). Protein expressions of inflammatory (ICAM-1, MMP-9, TNF-α, NF-κB), oxidative, and apoptotic (Bax, caspase-3, PARP) biomarkers were higher in groups 2 and 3 than groups 1 and 4, whereas anti-apoptotic (Bcl-2) and mitochondrial integrity (cytochrome-C) biomarkers were lower in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Expressions of anti-oxidant biomarkers at protein (GR, GPx, NQO-1, HO-1) and cellular (GR, GPx) levels were highest in group 4 (all P < 0.001). The number of inflammatory cells (CD3+) in lungs and levels of DNA damage marker (γ-H2AX) in kidneys were higher in groups 2 and 3 than in groups 1 and 4 (all P < 0.001). Conclusions A-ADMSC therapy was superior to H-ADMSC therapy in protecting major organs from damage in rats with CLP-induced sepsis syndrome.
Collapse
|
38
|
Lin CW, Lo S, Hsu C, Hsieh CH, Chang YF, Hou BS, Kao YH, Lin CC, Yu ML, Yuan SS, Hsieh YC. T-cell autophagy deficiency increases mortality and suppresses immune responses after sepsis. PLoS One 2014; 9:e102066. [PMID: 25029098 PMCID: PMC4100769 DOI: 10.1371/journal.pone.0102066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/13/2014] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Although the role of autophagy in sepsis has been characterized in several organs, its role in the adaptive immune system remains to be ascertained. This study aimed to investigate the role of autophagy in sepsis-induced T cell apoptosis and immunosuppression, using knockout mice with T cell specific deletion of autophagy essential gene Atg7. METHODS AND RESULTS Sepsis was induced in a cecal ligation and puncture (CLP) model, with T-cell-specific Atg7-knockout mice compared to control mice. Autophagic vacuoles examined by electron microscopy were decreased in the spleen after CLP. Autophagy proteins LC3-II and ATG7, and autophagosomes and autolysosomes stained by Cyto-ID Green and acridine orange were decreased in CD4+ and CD8+ splenocytes at 18 h and 24 h after CLP. This decrease in autophagy was associated with increased apoptosis of CD4+ and CD8+ after CLP. Moreover, mice lacking Atg7 in T lymphocytes showed an increase in sepsis-induced mortality, T cell apoptosis and loss of CD4+ and CD8+ T cells, in comparison to control mice. This was accompanied by suppressed cytokine production of Th1/Th2/Th17 by CD4+ T cells, reduced phagocytosis in macrophages and decreased bacterial clearance in the spleen after sepsis. CONCLUSION These results indicated that sepsis led to down-regulation of autophagy in T lymphocytes, which may result in enhanced apoptosis induction and decreased survival in sepsis. Autophagy may therefore play a protective role against sepsis-induced T lymphocyte apoptosis and immunosuppression.
Collapse
Affiliation(s)
- Chih-Wen Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Health Examination Center, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Steven Lo
- Department of Plastic and Reconstructive Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Canniesburn Plastic Surgery Unit, Royal Infirmary, Glasgow, United Kingdom
| | - Chin Hsu
- Department of Physiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Hsun Hsieh
- Department of Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Surgery, Benq Medical Center at Suzhou, Suzhou, China
| | - Ya-Fang Chang
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Bao-Sheng Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chih-Che Lin
- Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- College of Medicine, Chang Gung University, Gueishan, Taiwan
| | - Ming-Lung Yu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyng-Shiou Yuan
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
- Translational Research Center and Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Department of Obstetrics & Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Ching Hsieh
- Department of Medical Research, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
39
|
Abstract
Although a variety of disease-modifying agents have been studied as potential sepsis treatments, no beneficial effects on the course of sepsis, in terms of survival, have been observed until now. Because of their plasticity, mesenchymal stromal cells (MSCs) have been implicated as an effective novel therapy modality for various diseases and are widely used for cellular therapies and tissue engineering. The existing knowledge supports the idea that MSCs might be beneficial in sepsis treatment. Our objective was to selectively address the evidence, based on multistep processes, supporting the potential of MSC-based therapies in clinical sepsis trials. In this study, we performed a stepwise approach to defend the evaluation of MSC treatments for sepsis from the bench to the bedside. Altogether, the reviewed data postulate that the signals produced by inflamed tissues might determine the functional effects of MSCs. These effects include bacterial clearance, suppression of inflammation, antiapoptosis, or stimulation of regenerative responses. We conclude that the clinical application of MSCs is a feasible and well-tolerated approach and therefore may have benefits for patients with sepsis.
Collapse
|
40
|
Xu F, Hu Y, Zhou J, Wang X. Mesenchymal stem cells in acute lung injury: are they ready for translational medicine? J Cell Mol Med 2013; 17:927-35. [PMID: 23834470 PMCID: PMC3780529 DOI: 10.1111/jcmm.12063] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/11/2013] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is a severe clinical condition responsible for high mortality and the development of multiple organ dysfunctions, because of the lack of specific and effective therapies for ALI. Increasing evidence from pre-clinical studies supports preventive and therapeutic effects of mesenchymal stem cells (MSCs, also called mesenchymal stromal cells) in ALI/ARDS (acute respiratory distress syndrome). Therapeutic effects of MSCs were noticed in various delivery approaches (systemic, local, or other locations), multiple origins (bone marrow or other tissues), or different schedules of administrations (before or after the challenges). MSCs could reduce the over-production of inflammatory mediators, leucocyte infiltration, tissue injury and pulmonary failure, and produce a number of benefit factors through interaction with other cells in the process of lung tissue repair. Thus, it is necessary to establish guidelines, standard operating procedures and evaluation criteria for translating MSC-based therapies into clinical application for patients with ALI.
Collapse
Affiliation(s)
- Feng Xu
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | | | | | | |
Collapse
|
41
|
Hu J, Yu X, Wang Z, Wang F, Wang L, Gao H, Chen Y, Zhao W, Jia Z, Yan S, Wang Y. Long term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocr J 2013; 60:347-57. [PMID: 23154532 DOI: 10.1507/endocrj.ej12-0343] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is an autoimmune disorder resulted from T cell-mediated destruction of pancreatic β-cells, how to regenerate β-cells and prevent the autoimmune destruction of remnant and neogenetic β-cells is a tough problem. Immunomodulatory propertity of mesenchymal stem cell make it illuminated to overcome it. We assessed the long-term effects of the implantation of Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) from the umbilical cord for Newly-onset T1DM. Twenty-nine patients with newly onset T1DM were randomly divided into two groups, patients in group I were treated with WJ-MSCs and patients in group II were treated with normal saline based on insulin intensive therapy. Patients were followed-up after the operation at monthly intervals for the first 3 months and thereafter every 3 months for the next 21 months, the occurrence of any side effects and results of laboratory examinations were evaluated. There were no reported acute or chronic side effects in group I compared with group II, both the HbA1c and C peptide in group I patients were significantly better than either pretherapy values or group II patients during the follow-up period. These data suggested that the implantation of WJ-MSCs for the treatment of newly-onset T1DM is safe and effective. This therapy can restore the function of islet β cells in a longer time, although precise mechanisms are unknown, the implantation of WJ-MSCs is expected to be an effective strategy for treatment of type1 diabetes.
Collapse
Affiliation(s)
- Jianxia Hu
- Stem Cell Research Center, the Affiliated Hospital of Medical College, Qingdao University, Qingdao 266003, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Chang CL, Leu S, Sung HC, Zhen YY, Cho CL, Chen A, Tsai TH, Chung SY, Chai HT, Sun CK, Yen CH, Yip HK. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in rat sepsis syndrome induced by cecal puncture and ligation. J Transl Med 2012; 10:244. [PMID: 23217183 PMCID: PMC3543276 DOI: 10.1186/1479-5876-10-244] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 11/28/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND We tested whether apoptotic adipose-derived mesenchymal stem cells (A-ADMSCs) were superior to healthy (H)-ADMSCs at attenuating organ damage and mortality in sepsis syndrome following cecal ligation and puncture (CLP). METHODS Adult male rats were categorized into group 1 (sham control), group 2 (CLP), group 3 [CLP + H-ADMSC administered 0.5, 6, and 18 h after CLP], group 4 [CLP + A-ADMSC administered as per group 3]. RESULTS Circulating peak TNF-α level, at 6 h, was highest in groups 2 and 3, and higher in group 4 than group 1 (p < 0.0001). Immune reactivity (indicated by circulating and splenic helper-, cytoxic-, and regulatory-T cells) at 24 and 72 h exhibited the same pattern as TNF-α amongst the groups (all p < 0.0001). The mononuclear-cell early and late apoptosis level and organ damage parameters of liver (AST, ALT), kidney (creatinine) and lung (arterial oxygen saturation) also displayed a similar pattern to TNF-α levels (all p < 0.001). Protein levels of inflammatory (TNF-α, MMP-9, NF-κB, ICAM-1), oxidative (oxidized protein) and apoptotic (Bax, caspase-3, PARP) biomarkers were higher in groups 2 and 3 than group 1, whereas anti-apoptotic (Bcl-2) biomarker was lower in groups 2 and 3 than in group 1 but anti-oxidant (GR, GPx, HO-1, NQO-1) showed an opposite way of Bcl-2; these patterns were reversed for group 4 (all p < 0.001). Mortality was highest in group 3 and higher in group 2 than group 4 than group 1 (all p < 0.001). CONCLUSIONS A-ADMSC therapy protected major organs from damage and improved prognosis in rats with sepsis syndrome.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Rodriguez JP, Murphy MP, Hong S, Madrigal M, March KL, Minev B, Harman RJ, Chen CS, Timmons RB, Marleau AM, Riordan NH. Autologous stromal vascular fraction therapy for rheumatoid arthritis: rationale and clinical safety. Int Arch Med 2012; 5:5. [PMID: 22313603 PMCID: PMC3296619 DOI: 10.1186/1755-7682-5-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/08/2012] [Indexed: 02/08/2023] Open
Abstract
Advancements in rheumatoid arthritis (RA) treatment protocols and introduction of targeted biological therapies have markedly improved patient outcomes, despite this, up to 50% of patients still fail to achieve a significant clinical response. In veterinary medicine, stem cell therapy in the form of autologous stromal vascular fraction (SVF) is an accepted therapeutic modality for degenerative conditions with 80% improvement and no serious treatment associated adverse events reported. Clinical translation of SVF therapy relies on confirmation of veterinary findings in targeted patient populations. Here we describe the rationale and preclinical data supporting the use of autologous SVF in treatment of RA, as well as provide 1, 3, 6, and 13 month safety outcomes in 13 RA patients treated with this approach.
Collapse
|
44
|
Wannemuehler TJ, Manukyan MC, Brewster BD, Rouch J, Poynter JA, Wang Y, Meldrum DR. Advances in mesenchymal stem cell research in sepsis. J Surg Res 2011; 173:113-26. [PMID: 22225756 DOI: 10.1016/j.jss.2011.09.053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/22/2011] [Accepted: 09/27/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Sepsis remains a source of morbidity and mortality in the postoperative patient despite appropriate resuscitative and antimicrobial approaches. Recent research has focused upon additional interventions such as exogenous cell-based therapy. Mesenchymal stem cells (MSCs) exhibit multiple beneficial properties through their capacity for homing, attenuating the inflammatory response, modulating immune cells, and promoting tissue healing. Recent animal trials have provided evidence that MSCs may be useful therapeutic adjuncts. MATERIALS AND METHODS A directed search of recent medical literature was performed utilizing PubMed to examine the pathophysiology of sepsis, mechanisms of mesenchymal stem cell interaction with host cells, sepsis animal models, and recent trials utilizing stem cells in sepsis. RESULTS MSCs continue to show promise in the treatment of sepsis by their intrinsic ability to home to injured tissue, secrete paracrine signals to limit systemic and local inflammation, decrease apoptosis in threatened tissues, stimulate neoangiogenesis, activate resident stem cells, beneficially modulate immune cells, and exhibit direct antimicrobial activity. These effects are associated with reduced organ dysfunction and improved survival in animal models. CONCLUSION Research utilizing animal models of sepsis has provided a greater understanding of the beneficial properties of MSCs. Their capacity to home to sites of injury and use paracrine mechanisms to change the local environment to ultimately improve organ function and survival make MSCs attractive in the treatment of sepsis. Future studies are needed to further evaluate the complex interactions between MSCs and host tissues.
Collapse
Affiliation(s)
- Todd J Wannemuehler
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
What's new in Shock, September 2011? Shock 2011; 36:205-7. [PMID: 21844786 DOI: 10.1097/shk.0b013e318228ec3b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|