1
|
Huang L, Chen Y, Fan X, Zhang X, Wang X, Liu L, Liu T, Wang P, Xu A, Zhao X, Cong M. Fluorofenidone mitigates liver fibrosis through GSK-3β modulation and hepatocyte protection in a 3D tissue-engineered model. Int Immunopharmacol 2025; 149:114209. [PMID: 39919455 DOI: 10.1016/j.intimp.2025.114209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Liver fibrosis, a critical stage in chronic liver disease progression, presents a significant global health challenge. This study investigates the antifibrotic and hepatoprotective properties of fluorofenidone (AKF-PD) using a 3D tissue-engineered model. A 3D in vitro liver fibrosis model was developed using decellularized rat liver scaffolds seeded with hepatocytes, hepatic stellate cells (HSCs), and sinusoidal endothelial cells to replicate the multicellular liver microenvironment. The model was stimulated with carbon tetrachloride (CCl4) to induce fibrotic conditions, resulting in collagen deposition, HSC activation, and elevated fibrosis markers. Parallel in vivo studies employed C57BL/6J mice with CCl4-induced liver fibrosis. The antifibrotic and hepatoprotective effects of AKF-PD were evaluated by assessing collagen deposition, fibrosis markers, and hepatocyte apoptosis. Oxidative stress markers and inflammation-related proteins were also measured. Molecular docking identified GSK-3β as a target protein of AKF-PD, and subsequent analyses explored the GSK-3β/β-catenin and Nrf2/HO-1 signaling pathways. AKF-PD demonstrated significant efficacy in reducing fibrosis markers and protecting hepatocytes by inhibiting apoptosis and oxidative stress. Mechanistically, AKF-PD targets the GSK-3β/β-catenin pathway, suppressing β-catenin-mediated pro-fibrotic gene expression, while activating the Nrf2/HO-1 pathway to mitigate oxidative stress, thereby reducing hepatocyte apoptosis. These findings are consistent with results from CCl4-induced mouse fibrosis models, validating the 3D model's applicability for preclinical drug evaluation. This 3D liver fibrosis model provides a physiologically relevant platform for studying fibrosis and anti-fibrotic mechanisms, highlighting AKF-PD's promise as a therapeutic agent and advancing liver fibrosis research.
Collapse
Affiliation(s)
- Long Huang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Yu Chen
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Xu Fan
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Xiaohui Zhang
- Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University; Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Beijing, China
| | - Xue Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Lin Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Tianhui Liu
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Ping Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Anjian Xu
- Experimental and Translational Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China
| | - Min Cong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University,Beijing, China; State Key Laboratory of Digestive Health and National Clinical Research Center of Digestive Disease, Beijing, China.
| |
Collapse
|
2
|
Wu Y, Li B, Xuan Y, Jiang Y, Chen J, Liao H, Feng J, Zhang J. Fluorofenidone alleviates cigarette smoke exposure-induced chronic lung injury by targeting ferroptosis. Sci Rep 2024; 14:32149. [PMID: 39738585 DOI: 10.1038/s41598-024-83998-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a common condition that poses significant health risks to humans. Pulmonary interstitial fibrosis (PIF) often manifests in advanced stages of COPD. Fluorofenidone (AKF) has a wide range of pharmacological effects, including anti-fibrotic, antioxidant, and anti-inflammatory effects. Therefore, this study aimed to assess the role of AKF in lung injury and its underlying mechanisms. The COPD mice model was constructed by cigarette smoke (CS) combined with lipopolysaccharide (LPS) treatment. The effect of AKF on COPD mice was evaluated by lung injury, lipid peroxidation, inflammatory factors, and the expression of ferroptosis markers. Furthermore, the normal human bronchial epithelial cell line, Beas-2B, was used to verify the mechanism underlying the association between ferroptosis and inflammation. AKF attenuated the cigarette smoke (CS)/LPS-induced inflammatory response in the mouse lungs. Additionally, AKF attenuated the CS/LPS-induced fibrosis response in the mouse lungs. AKF inhibits ferroptosis in lung tissues of CS/LPS-exposed mice. Furthermore, AKF suppressed the inflammatory response and ferroptosis in CSE-treated BEAS-2B cells via NF-κB signaling pathway. AKF can function as a novel ferroptosis inhibitor by inhibiting NF-κB to inhibit airway inflammation and fibrosis, providing a scientific basis for the use of AKF to prevent the progression of COPD and pulmonary fibrosis.
Collapse
Affiliation(s)
- Yuan Wu
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Binbin Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yixuan Xuan
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China
| | - Yu Jiang
- Institute of Emergency Medicine, Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jinping Chen
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Hong Liao
- Department of General Medicine, Hunan Provincial People's Hospital, Changsha, 410005, China
| | - Jihua Feng
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| | - Jianfeng Zhang
- Department of General Practice, The Second Affiliated Hospital of Guangxi Medical University, No 166 Daxuedong Road, Nanning, Guangxi, 530007, China.
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Department of Emergency Medicine, The Second Affiliated Hospital of Guangxi Medical University, Nanning, 530007, China.
- Guangxi Health Commission key Laboratory of Emergency and Critical Medicine, Nanning, 530007, China.
| |
Collapse
|
3
|
Zheng L, Mei W, Zhou J, Wei X, Huang Z, Lin X, Zhang L, Liu W, Wu Q, Li J, Yan Y. Fluorofenidone attenuates renal fibrosis by inhibiting lysosomal cathepsin‑mediated NLRP3 inflammasome activation. Exp Ther Med 2024; 27:142. [PMID: 38476910 PMCID: PMC10928820 DOI: 10.3892/etm.2024.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, no antifibrotic drug in clinical use can effectively treat renal fibrosis. Fluorofenidone (AKFPD), a novel pyridone agent, significantly reduces renal fibrosis by inhibiting the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome; however, the underlying mechanism of this inhibition is not fully understood. The present study aimed to reveal the molecular mechanism underlying the suppression of NLRP3 inflammasome activation by AKFPD. It investigated the effect of AKFPD on NLRP3 activation and lysosomal cathepsins in a unilateral ureteral obstruction (UUO) rat model, and hypoxia/reoxygenation (H/R)-treated HK-2 cells and murine peritoneal-derived macrophages (PDMs) stimulated with lipopolysaccharide (LPS) and ATP. The results confirmed that AKFPD suppressed renal interstitial fibrosis and inflammation by inhibiting NLRP3 inflammasome activation in UUO rat kidney tissues. In addition, AKFPD reduced the production of activated caspase-1 and maturation of IL-1β by suppressing NLRP3 inflammasome activation in H/R-treated HK-2 cells and murine PDMs stimulated with LPS and ATP. AKFPD also decreased the activities of cathepsins B, L and S both in vivo and in vitro. Notably, AKFPD downregulated cathepsin B expression and NLRP3 colocalization in the cytoplasm after lysosomal disruptions. Overall, the results suggested that AKFPD attenuates renal fibrosis by inhibiting lysosomal cathepsin-mediated activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Linfeng Zheng
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Mei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Wei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhijuan Huang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaozhen Lin
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Zhang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Liu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Wu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinhong Li
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
4
|
Ishida Y, Kuninaka Y, Mukaida N, Kondo T. Immune Mechanisms of Pulmonary Fibrosis with Bleomycin. Int J Mol Sci 2023; 24:ijms24043149. [PMID: 36834561 PMCID: PMC9958859 DOI: 10.3390/ijms24043149] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Fibrosis and structural remodeling of the lung tissue can significantly impair lung function, often with fatal consequences. The etiology of pulmonary fibrosis (PF) is diverse and includes different triggers such as allergens, chemicals, radiation, and environmental particles. However, the cause of idiopathic PF (IPF), one of the most common forms of PF, remains unknown. Experimental models have been developed to study the mechanisms of PF, and the murine bleomycin (BLM) model has received the most attention. Epithelial injury, inflammation, epithelial-mesenchymal transition (EMT), myofibroblast activation, and repeated tissue injury are important initiators of fibrosis. In this review, we examined the common mechanisms of lung wound-healing responses after BLM-induced lung injury as well as the pathogenesis of the most common PF. A three-stage model of wound repair involving injury, inflammation, and repair is outlined. Dysregulation of one or more of these three phases has been reported in many cases of PF. We reviewed the literature investigating PF pathogenesis, and the role of cytokines, chemokines, growth factors, and matrix feeding in an animal model of BLM-induced PF.
Collapse
|
5
|
FLUOROFENIDONE ATTENUATES PULMONARY INFLAMMATION AND FIBROSIS BY INHIBITING THE IL-11/MEK/ERK SIGNALING PATHWAY. Shock 2022; 58:137-146. [PMID: 36166195 DOI: 10.1097/shk.0000000000001960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Idiopathic pulmonary fibrosis is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause. Interleukin (IL)-11 plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. In this study, we explore whether a potential antifibrotic agent fluorofenidone (FD) exerts its anti-inflammatory and antifibrotic effects through suppressing activation of the IL-11/MEK/ERK signaling pathway in vivo and in vitro. Male C57BL/6 J mice were intratracheally injected with bleomycin or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with hemotoxylin and eosin, and Masson trichrome. Cytokines were measured using the enzyme-linked immunosorbent assay. The α-smooth muscle actin (α-SMA), fibronectin, and collagen I were measured using immunohistochemistry, and the phosphorylated extracellular signal-regulated kinase, phosphorylated mitogen-activated protein kinase, IL-11RA, and gp130 were measured using Western blot. The RAW264.7 cells and the normal human lung fibroblasts were treated with IL-11 and/or FD, IL-11RA-siRNA, or MEK inhibitor. The expressions of phosphorylated extracellular signal-regulated kinase, phosphorylated mitogen-activated protein kinase, IL-11RA, gp130, α-SMA, fibronectin, and collagen I were measured using Western blot and/or real-time polymerase chain reaction, and the cytokines were measured using enzyme-linked immunosorbent assay. Results showed that FD markedly reduced the expressions of IL-8, IL-18, IL-11, monocyte chemotactic protein-1, α-SMA, fibronectin, and collagen I in mice lung tissues. In addition, FD attenuated IL-11-induced expressions of α-SMA, fibronectin, and collagen I and inhibited IL-11RA, gp130, and phosphorylation of the ERK and MEK protein expression, as well as reduced the expressions of IL-8, IL-18, and monocyte chemotactic protein-1 in vitro. This study demonstrated that FD attenuated bleomycin-induced pulmonary inflammation and fibrosis in mice by inhibiting the IL-11/MEK/ERK signaling pathway.
Collapse
|
6
|
Bi F, Zhang J, Wei Z, Yu D, Zheng S, Wang J, Li H, Hua Z, Zhang H, Yang G. Dynamic Glycopeptide Dendrimers: Synthesis and Their Controllable Self-Assembly into Varied Glyco-Nanostructures for the Biomimicry of Glycans. Biomacromolecules 2021; 23:128-139. [PMID: 34881566 DOI: 10.1021/acs.biomac.1c01137] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A library of 14 dynamic glycopeptide amphiphilic dendrimers composed of 14 hydrophilic and bioactive saccharides (seven kinds) as dendrons and 7 hydrophobic peptides (di- and tetrapeptides) as arms with β-cyclodextrin (CD) as a core were facially designed and synthesized in several steps. Fourteen saccharides were first conjugated to the C-2 and C-3 positions of CD, forming glycodendrons. Subsequently, seven oligopeptide arms were introduced at the C-6 positions of a CD moiety by an acylhydrazone dynamic covalent bond, resulting in unique Janus amphiphilic glycopeptide dendrimers with precise and varied molecular structures. The kinds of hydrophilic parts of saccharides and hydrophobic parts of peptides were easily varied to prepare a series of amphiphilic Janus glycopeptide dendrimers. Intriguingly, these obtained amphiphilic glycopeptide dendrimers showcased very different self-assembly behaviors from the traditional amphiphilic linear block-copolymers and self-assembled into different glyco-nanostructures with controllable morphologies including glycospheres, worm-like micelles, and fibers depending upon the repeat unit ratio of saccharides and phenylalanine. Both glycodendrons and glycopeptide assemblies displayed strong and specific recognitions with C-type mannose-specific lectin. Moreover, these glycopeptide nanomaterials can encapsulate exemplary hydrophobic molecules such as Nile red (NR). The dye-loaded glycopeptide nanostructures showed a pH-controllable release behavior around the physiological and acidic tumor environment. Furthermore, cell experiments demonstrated that such glyco-nanostructures can further facilitate the functions of a model drug of the pyridone agent to reduce the expression of monocyte chemotactic protein-1 (MCP-1) and interleukin -1beta (IL-1β) in the primary peritoneal macrophages via encapsulating drugs. Considering all the abovementioned advantages including unique and precise structures, bioactivity, targeting, and controllable cargo release, we believe that these findings can not only enrich the library of glycopeptides but also provide a new avenue to the fabrication of smart and structure-controllable glyco-nanomaterials which hold great potential biological applications such as targeted delivery and release of therapeutic and bioactive molecules.
Collapse
Affiliation(s)
- Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jin Zhang
- Department of Nephropathy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230036, China
| | - Zengming Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuai Zheng
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Jie Wang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hongyu Li
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Hui Zhang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
7
|
He R, Yuan X, Lv X, Liu Q, Tao L, Meng J. Caveolin-1 negatively regulates inflammation and fibrosis in silicosis. J Cell Mol Med 2021; 26:99-107. [PMID: 34889029 PMCID: PMC8742238 DOI: 10.1111/jcmm.17045] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/30/2021] [Accepted: 10/24/2021] [Indexed: 11/28/2022] Open
Abstract
Inhalation of crystalline silica causes silicosis, the most common and serious occupational disease, which is characterized by progressive lung inflammation and fibrosis. Recent studies revealed the anti-inflammatory and anti-fibrosis role of Caveolin-1 (Cav-1) in lung, but this role in silicosis has not been investigated. Thus, this study evaluated Cav-1 regulatory effects in silicosis. It was found that Cav-1 levels were significantly reduced in the lung from silicosis patients and silicotic mice. The silicosis models were established in C57BL/6 (wild-type) and Cav-1 deficiency (Cav-1-/- ) mice, and Cav-1-/- mice displayed wider alveolar septa, increased collagen deposition and more silicotic nodules. The mice peritoneal-derived macrophages were used to explore the role of Cav-1 in silica-induced inflammation, which plays a central role in mechanism of silicosis. Cav-1 inhibited silica-induced infiltration of inflammatory cells and secretion of inflammatory factors in vitro and in vivo, partly by downregulating NF-κB pathway. Additionally, silica uptake and expression of 4-hydroxynonenal in silicotic mice were observed, and it was found that Cav-1 absence triggered excessive silica deposition, causing a stronger oxidative stress response. These findings demonstrate the protective effects of Cav-1 in silica-induced lung injury, suggesting its potential therapeutic value in silicosis.
Collapse
Affiliation(s)
- RongLing He
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - XiangNing Yuan
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Lv
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - QingXiang Liu
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| | - LiJian Tao
- Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China.,Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Central South University, Changsha, China
| |
Collapse
|
8
|
Han Y, Jiang M, He R, Lv X, Liao X, He Y, Zhang F, Long L, Jiang G, Peng Z, Tao L, Hu G, Meng J. Mefunidone Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice. Front Pharmacol 2021; 12:713572. [PMID: 34630088 PMCID: PMC8499630 DOI: 10.3389/fphar.2021.713572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/23/2021] [Indexed: 12/12/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is one of the most common and devastating interstitial lung diseases with poor prognosis. Currently, few effective drugs are available for IPF. Hence, we sought to explore the role of mefunidone (MFD), a newly synthesized drug developed by our team, in lung fibrosis. In this study, MFD was found to attenuate bleomycin (BLM) -induced lung fibrosis and inflammation in mice according to Ashcroft and alveolitis scoring. The protein contents and total cell counts in bronchoalveolar lavage fluids of BLM-treated mice were also lowered by MFD. Moreover, the elevation of TGF-β/Smad2 and phosphorylation of MAPK pathways was repressed by MFD. Additionally, MFD attenuated the swelling and vacuolization of mitochondria, lowered the ratio of apoptotic cells, restored the mitochondrial membrane potential, and reversed the expression of cleaved-caspase 3, Bcl-2 and Bax. Meanwhile, the level of epithelial marker, E-cadherin, was restored by MFD, while the levels of mesenchymal markers such as Snail and vimentin were down-regulated by MFD. Besides, MFD inhibited the expression of fibronectin and α-smooth muscle actin in TGF-β treated normal human lung fibroblasts. Thus, our findings suggested that MFD could ameliorate lung fibrosis, cell apoptosis and EMT potentially via suppression of TGF-β/Smad2 and MAPK pathways.
Collapse
Affiliation(s)
- Yuanyuan Han
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, China.,Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Mao Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Rongling He
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Xin Lv
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China.,Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiaohua Liao
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China.,Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Yijun He
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Fan Zhang
- Department of Anesthesiology, Xiangya Hospital of Central South University, Changsha, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Guoliang Jiang
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| | - Zhangzhe Peng
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China.,Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Lijian Tao
- Hunan Key Laboratory of Organ Fibrosis, Changsha, China.,Department of Nephrology, Xiangya Hospital of Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, China.,Hunan Key Laboratory of Organ Fibrosis, Changsha, China
| |
Collapse
|
9
|
Jiang F, Li S, Jiang Y, Chen Z, Wang T, Liu W. Fluorofenidone attenuates paraquat‑induced pulmonary fibrosis by regulating the PI3K/Akt/mTOR signaling pathway and autophagy. Mol Med Rep 2021; 23:405. [PMID: 33786626 PMCID: PMC8025463 DOI: 10.3892/mmr.2021.12044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Paraquat (PQ) is a widely used herbicide that is severely toxic to humans and animals. Pulmonary fibrosis is a disorder that can result from PQ poisoning. Fluorofenidone (AKF‑PD) is a novel small molecule pyridone drug with a widespread and clear anti‑organ fibrosis effect; however, its mechanism of action on PQ poisoning‑induced pulmonary fibrosis is not clear. The purpose of the present study was to investigate the protective effect and underlying mechanism of AKF‑PD on PQ poisoning‑induced pulmonary fibrosis. Human alveolar epithelial cells (HPAEpiC) and Sprague‑Dawley rats were treated with AKF‑PD in the presence or absence of PQ. Hematoxylin‑eosin and Masson staining were used to observe the morphological changes in lung tissue. Cell Counting Kit‑8 and lactate dehydrogenase assays were used to evaluate the viability of HPAEpiC cells. ELISA was used to detect inflammatory factors and the collagen content. Finally, the effects of AKF‑PD on pulmonary fibrosis, as well as the underlying mechanisms, were evaluated via western blotting, reverse transcription‑quantitative PCR and immunofluorescence analysis. AKF‑PD effectively alleviated PQ‑induced pulmonary fibrosis and reduced the expression of oxidative stress and inflammatory factors. Moreover, AKF‑PD treatment effectively inhibited the PI3K/Akt/mTOR signaling pathway and upregulated autophagy. Overall, these findings suggested that AKF‑PD can alleviate PQ‑induced inflammation and pulmonary fibrosis by inhibiting the PI3K/Akt/mTOR signaling pathway and by upregulating autophagy.
Collapse
Affiliation(s)
- Feiya Jiang
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Sha Li
- Department of Pharmacy, Changsha Stomatological Hospital, Changsha, Hunan 410004, P.R. China
| | - Yu Jiang
- Department of Emergency, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Zhuo Chen
- Department of Pharmacy, Central South University, Changsha, Hunan 410013, P.R. China
| | - Tongtong Wang
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan 410005, P.R. China
| | - Wen Liu
- Department of Pharmacy, The First Hospital Affiliated with Hunan Normal University, Changsha, Hunan 410005, P.R. China
| |
Collapse
|
10
|
Fan Y, He R, Zou L, Meng J. [Clinical value of biomarkers in diagnosis and treatment of idiopathic pulmonary fibrosis]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1062-1065. [PMID: 32895164 DOI: 10.12122/j.issn.1673-4254.2020.07.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia characterized by progressive accumulation of fibroblastic foci and destruction of the alveolar structure. Due to an incomplete understanding of the mechanism of the occurrence and progression of IPF, currently no effective means have been available for its early screening or treatment. With a poor overall prognosis, the patients with IPF have a median survival of only 2-4 years. In recent years, several studies have confirmed that dozens of molecules are involved in the development of IPF and can be used as potential biomarkers. These biomarkers play important roles in early diagnosis (such as SP-D, MMP-7, and osteopontin), prognostic evaluation (such as telomerase length, KL-6, mtDNA, HSP-70, LOXL2, CXCL13, miRNA, ICAM-1, and CCL18), and guiding treatment of IPF (such as TOLLIP rs3750920 genotype, SAMS score, and SP-D), and also provide potential therapeutic targets (such as TERT, TERR, RTEC, and PARN).
Collapse
Affiliation(s)
- Yubin Fan
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital; Organ Fibrosis Research Center, Central South University, Changsha 410008, China
| | - Rongling He
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital; Organ Fibrosis Research Center, Central South University, Changsha 410008, China
| | - Lijun Zou
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital; Organ Fibrosis Research Center, Central South University, Changsha 410008, China
| | - Jie Meng
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital; Organ Fibrosis Research Center, Central South University, Changsha 410008, China
| |
Collapse
|
11
|
Wang H, Chen M, Sang X, You X, Wang Y, Paterson IC, Hong W, Yang X. Development of small molecule inhibitors targeting TGF-β ligand and receptor: Structures, mechanism, preclinical studies and clinical usage. Eur J Med Chem 2020; 191:112154. [PMID: 32092587 DOI: 10.1016/j.ejmech.2020.112154] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/06/2020] [Accepted: 02/16/2020] [Indexed: 12/14/2022]
Abstract
Transforming growth factor-β (TGF-β) is a member of a superfamily of pleiotropic proteins that regulate multiple cellular processes such as growth, development and differentiation. Following binding to type I and II TGF-β serine/threonine kinase receptors, TGF-β activates downstream signaling cascades involving both SMAD-dependent and -independent pathways. Aberrant TGF-β signaling is associated with a variety of diseases, such as fibrosis, cardiovascular disease and cancer. Hence, the TGF-β signaling pathway is recognized as a potential drug target. Various organic molecules have been designed and developed as TGF-β signaling pathway inhibitors and they function by either down-regulating the expression of TGF-β or by inhibiting the kinase activities of the TGF-β receptors. In this review, we discuss the current status of research regarding organic molecules as TGF-β inhibitors, focusing on the biological functions and the binding poses of compounds that are in the market or in the clinical or pre-clinical phases of development.
Collapse
Affiliation(s)
- Hao Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China; Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China
| | - Meiling Chen
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China
| | - Xiaohong Sang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xuefu You
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yucheng Wang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ian C Paterson
- Department of Oral and Craniofacial Sciences and Oral Cancer Research and Coordinating Centre, Faculty of Dentistry, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wei Hong
- School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan, 750021, China; Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Xinyi Yang
- Laboratory of Pharmacology/Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
12
|
Jiang Y, Quan J, Chen Y, Liao X, Dai Q, Lu R, Yu Y, Hu G, Li Q, Meng J, Xie Y, Peng Z, Tao L. Fluorofenidone protects against acute kidney injury. FASEB J 2019; 33:14325-14336. [DOI: 10.1096/fj.201901468rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- YuPeng Jiang
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jiao Quan
- Department of Nutriology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yang Chen
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiaohua Liao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qin Dai
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Rong Lu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yue Yu
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Gaoyun Hu
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Qianbin Li
- Department of Pharmaceutical Chemistry, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jie Meng
- Department of Respirology, Xiangya Hospital, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| |
Collapse
|
13
|
Caveolin-1 as a critical component in the pathogenesis of lung fibrosis of different etiology: Evidences and mechanisms. Exp Mol Pathol 2019; 111:104315. [PMID: 31629729 DOI: 10.1016/j.yexmp.2019.104315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/08/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022]
Abstract
Caveolin is a structural protein of flask-shaped invaginations of the plasma membrane termed as caveolae and is widely expressed on the endothelial cells, smooth muscle cells and fibroblasts in the different parts of the body including the lung tissues. The expression of caveolin-1 in the lung tissues is important to prevent the fibrogenic actions of TGF-β1 in lung fibrosis of different etiology including idiopathic pulmonary fibrosis, systemic sclerosis-associated interstitial lung disease and allergen-induced airway remodeling. Caveolin-1-mediated internalization and degradation of TGF-β1 receptors may possibly account for the decreased actions of TGF-β1. Studies have shown that the deficiency of caveolin-1 is very important in inducing lung fibrosis and its upregulation is reported to prevent lung fibrosis. The biological actions of caveolin-1 involve signaling pathways including JNK signaling, IL-4, STAT-3, miR199a-5p, CXCR4+ and CXCL12. The present review discusses the key role of caveolin and associated signaling pathways in the pathogenesis of lung fibrosis of different etiology.
Collapse
|
14
|
Current advances in idiopathic pulmonary fibrosis: the pathogenesis, therapeutic strategies and candidate molecules. Future Med Chem 2019; 11:2595-2620. [PMID: 31633402 DOI: 10.4155/fmc-2019-0111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of chronic, progressive lung disease with unknown cause, which is characterized by increasing dyspnea and destruction of lung function with a high mortality rate. Evolving evidence demonstrated that the pathogenesis of IPF involved multiple signaling pathways such as inflammation, oxidative stress and fibrosis. However, drug discovery to prevent or revert IPF has been insufficient to cope with the development. Drug discovery targeting multiple links should be considered. In this review, we will brief the pathogenesis of IPF and discuss several small chemical entities toward the pathogenesis for IPF studied in animal models and clinical trials. The field of novel anti-IPF agents and the future directions for the prevention and treatment of IPF are detailed thoroughly discussed.
Collapse
|
15
|
Chen Y, Wang N, Yuan Q, Qin J, Hu G, Li Q, Tao L, Xie Y, Peng Z. The Protective Effect of Fluorofenidone against Cyclosporine A-Induced Nephrotoxicity. Kidney Blood Press Res 2019; 44:656-668. [PMID: 31387101 DOI: 10.1159/000500924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/10/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND/AIMS Cyclosporine A (CsA) is an immunosuppressant drug that is used during organ transplants. However, its utility is limited by its nephrotoxic potential. This study aimed to investigate whether fluorofenidone (AKF-PD) could provide protection against CsA-induced nephrotoxicity. METHODS Eighty-five male Sprague-Dawley rats were divided into 5 groups: drug solvent, CsA, CsA with AKF-PD (250, 500 mg/kg/day), and CsA with pirfenidone (PFD, 250 mg/kg/day). Tubulointerstitial injury index, extracellular matrix (ECM) deposition, expression of type I and IV collagen, transforming growth factor (TGF)-β1, platelet-derived growth factor (PDGF), Fas ligand (FASL), cleaved-caspase-3, cleaved-poly(ADP-ribose) polymerase (PARP)-1, and the number of transferase-mediated nick end-labeling (TUNEL)-positive renal tubule cells were determined. In addition, levels of TGF-β1, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of annexin V-positive cells were determined in rat proximal tubular epithelial cells (NRK-52E) treated with CsA (20 μmol/L), AKF-PD (400 μg/mL), PFD (400 μg/mL), and GW788388 (5 μmol/L). RESULTS AKF-PD (250, 500 mg/kg/day) significantly reduced tubulointerstitial injury, ECM deposition, expression of type I and IV collagen, TGF-β1, PDGF, FASL, cleaved-caspase-3, cleaved-PARP-1, and number of TUNEL-positive renal tubule cells in the CsA-treated kidneys. In addition, AKF-PD (400 μg/mL) significantly decreased TGF-β1, FASL, cleaved-caspase-3, and PARP-1 expression in NRK-52E cells and further reduced the number of annexin V-positive cells. CONCLUSION AKF-PD protect kidney from fibrosis and apoptosis in CsA-induced kidney injury.
Collapse
Affiliation(s)
- Yang Chen
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Nasui Wang
- Division of Endocrinology and Metabolism, Department of Medicine, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qiongjing Yuan
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiao Qin
- Department of Nephrology, Changsha Central Hospital, Changsha, China
| | - Gaoyun Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmacy, Central South University, Changsha, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmacy, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanyun Xie
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhangzhe Peng
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, China,
| |
Collapse
|
16
|
Zheng L, Zhang J, Yuan X, Tang J, Qiu S, Peng Z, Yuan Q, Xie Y, Mei W, Tang Y, Meng J, Hu G, Tao L. Fluorofenidone attenuates interleukin-1β production by interacting with NLRP3 inflammasome in unilateral ureteral obstruction. Nephrology (Carlton) 2018; 23:573-584. [PMID: 28437591 DOI: 10.1111/nep.13062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/03/2017] [Accepted: 04/20/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Linfeng Zheng
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Jin Zhang
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Xiangning Yuan
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Juan Tang
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Sisi Qiu
- Department of Gastroenterology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Zhangzhe Peng
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Qiongjing Yuan
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Yanyun Xie
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Wenjuan Mei
- Department of Nephrology Medicine; First Affiliated Hospital of Nanchang University; Nanchang Jiangxi China
| | - Yiting Tang
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Jie Meng
- Department of Respiratory Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| | - Gaoyun Hu
- Department of Medical Chemistry, School of Pharmaceutical Sciences; Central South University; Changsha Hunan China
| | - Lijian Tao
- Department of Nephrology Medicine, Xiangya Hospital; Central South University; Changsha Hunan China
| |
Collapse
|
17
|
Lei D, Huang Y, Xie H, Yi Y, Long J, Lin S, Huang C, Jian D, Li J. Fluorofenidone inhibits UV-A induced senescence in human dermal fibroblasts via the mammalian target of rapamycin-dependent SIRT1 pathway. J Dermatol 2018; 45:791-798. [PMID: 29726032 PMCID: PMC6055727 DOI: 10.1111/1346-8138.14304] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 02/20/2018] [Indexed: 12/30/2022]
Abstract
The aim of this study was to investigate the protective effect of fluorofenidone (5‐methyl‐1‐[3‐fluorophenyl]‐2‐[1H]‐pyridone, AKF‐PD) on ultraviolet (UV)‐A‐induced senescence in human dermal fibroblasts (HDF) and examine the mechanisms involved. HDF were treated with AKF‐PD. Senescence‐associated (SA)‐β‐galactosidase level, cell viability and expression of p16 were evaluated. In addition, UV‐A‐irradiated HDF were treated with AKF‐PD, rapamycin and MHY1485; SA‐β‐galactosidase staining, 3‐(4 5‐dimethylthiazol‐2‐yl)‐2 5‐diphenyltetrazolium bromide assay and western blot for SIRT1 were performed; and phosphorylated mammalian target of rapamycin (p‐mTOR) expression and reactive oxygen species (ROS) levels were measured. Intracellular ROS was detected by the 2′,7′‐dichlorofluroescein diacetate probe. Our results showed that AKF‐PD substantially attenuated the changes of p16 expression, SA‐β‐galactosidase staining and cellular proliferation induced by UV‐A irradiation in HDF. AKF‐PD rescued the increased mTOR phosphorylation and reduced SIRT1 expression induced by UV‐A irradiation in HDF. AKF‐PD and rapamycin together had a synergistic effect on p‐mTOR reduction and SIRT1 increase. mTOR activator MHY1485 partly blocked the above effects. Moreover, intracellular ROS level induced by UV‐A irradiation could partly decrease by AKF‐PD, and MHY1485 could reduce this effect. Our results indicated that AKF‐PD could alleviate HDF senescence induced by UV‐A‐irradiation by inhibiting the p‐mTOR and increasing SIRT1. Moreover, AKF‐PD may be a potential treatment material for skin.
Collapse
Affiliation(s)
- Dan Lei
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxin Yi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Long
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shangqing Lin
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Chuchu Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Tang J, Li J, Li G, Zhang H, Wang L, Li D, Ding J. Spermidine-mediated poly(lactic- co-glycolic acid) nanoparticles containing fluorofenidone for the treatment of idiopathic pulmonary fibrosis. Int J Nanomedicine 2017; 12:6687-6704. [PMID: 28932114 PMCID: PMC5598552 DOI: 10.2147/ijn.s140569] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a progressive, fatal lung disease with poor survival. The advances made in deciphering this disease have led to the approval of different antifibrotic molecules, such as pirfenidone and nintedanib. An increasing number of studies with particles (liposomes, nanoparticles [NPs], microspheres, nanopolymersomes, and nanoliposomes) modified with different functional groups have demonstrated improvement in lung-targeted drug delivery. In the present study, we prepared, characterized, and evaluated spermidine (Spd)-modified poly(lactic-co-glycolic acid) (PLGA) NPs as carriers for fluorofenidone (AKF) to improve the antifibrotic efficacy of this drug in the lung. Spd-AKF-PLGA NPs were prepared and functionalized by modified solvent evaporation with Spd and polyethylene glycol (PEG)-PLGA groups. The size of Spd-AKF-PLGA NPs was 172.5±4.3 nm. AKF release from NPs was shown to fit the Higuchi model. A549 cellular uptake of an Spd-coumarin (Cou)-6-PLGA NP group was found to be almost twice as high as that of the Cou-6-PLGA NP group. Free Spd and difluoromethylornithine (DFMO) were preincubated in A549 cells to prove uptake of Spd-Cou-6-PLGA NPs via a polyamine-transport system. As a result, the uptake of Spd-Cou-6-PLGA NPs significantly decreased with increased Spd concentrations in incubation. At higher Spd concentrations of 50 and 500 µM, uptake of Spd-Cou-6-PLGA NPs reduced 0.34- and 0.49-fold from that without Spd pretreatment. After pretreatment with DFMO for 36 hours, cellular uptake of Spd-Cou-6-PLGA NPs reached 1.26-fold compared to the untreated DFMO group. In a biodistribution study, the drug-targeting index of Spd-AKF-PLGA NPs in the lung was 3.62- and 4.66-fold that of AKF-PLGA NPs and AKF solution, respectively. This suggested that Spd-AKF-PLGA NPs accumulated effectively in the lung. Lung-histopathology changes and collagen deposition were observed by H&E staining and Masson staining in an efficacy study. In the Spd-AKF-PLGA NP group, damage was further improved compared to the AKF-PLGA NP group and AKF-solution group. The results indicated that Spd-AKF-PLGA NPs are able to be effective nanocarriers for anti-pulmonary fibrosis therapy.
Collapse
Affiliation(s)
- Jing Tang
- School of Pharmaceutical Sciences, Changsha Medical University
| | - Jianming Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Guo Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Haitao Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| | - Ling Wang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu
| | - Dai Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha
| |
Collapse
|
19
|
Jenkins RG, Moore BB, Chambers RC, Eickelberg O, Königshoff M, Kolb M, Laurent GJ, Nanthakumar CB, Olman MA, Pardo A, Selman M, Sheppard D, Sime PJ, Tager AM, Tatler AL, Thannickal VJ, White ES. An Official American Thoracic Society Workshop Report: Use of Animal Models for the Preclinical Assessment of Potential Therapies for Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2017; 56:667-679. [PMID: 28459387 DOI: 10.1165/rcmb.2017-0096st] [Citation(s) in RCA: 260] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Numerous compounds have shown efficacy in limiting development of pulmonary fibrosis using animal models, yet few of these compounds have replicated these beneficial effects in clinical trials. Given the challenges associated with performing clinical trials in patients with idiopathic pulmonary fibrosis (IPF), it is imperative that preclinical data packages be robust in their analyses and interpretations to have the best chance of selecting promising drug candidates to advance to clinical trials. The American Thoracic Society has convened a group of experts in lung fibrosis to discuss and formalize recommendations for preclinical assessment of antifibrotic compounds. The panel considered three major themes (choice of animal, practical considerations of fibrosis modeling, and fibrotic endpoints for evaluation). Recognizing the need for practical considerations, we have taken a pragmatic approach. The consensus view is that use of the murine intratracheal bleomycin model in animals of both genders, using hydroxyproline measurements for collagen accumulation along with histologic assessments, is the best-characterized animal model available for preclinical testing. Testing of antifibrotic compounds in this model is recommended to occur after the acute inflammatory phase has subsided (generally after Day 7). Robust analyses may also include confirmatory studies in human IPF specimens and validation of results in a second system using in vivo or in vitro approaches. The panel also strongly encourages the publication of negative results to inform the lung fibrosis community. These recommendations are for preclinical therapeutic evaluation only and are not intended to dissuade development of emerging technologies to better understand IPF pathogenesis.
Collapse
|
20
|
Deng ZH, Meng J, Tang J, Hu GY, Tao LJ. Fluorofenidone Inhibits the Proliferation of Lung Adenocarcinoma Cells. J Cancer 2017; 8:1917-1926. [PMID: 28819390 PMCID: PMC5556656 DOI: 10.7150/jca.18040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 04/08/2017] [Indexed: 12/11/2022] Open
Abstract
Background: Lung carcinoma is the leading cause of malignant tumor related mortality in China in recent decades, and the development of new and effective therapies for patients with advanced lung carcinoma is needed. We recently found that fluorofenidone (FD), a newly developed pyridine compound, reduced the activation of Stat3 (Signal transducer and activator of transcription 3) in fibroblasts. Stat3 plays a crucial role in the development of lung cancer and may represent a new therapeutic target. In this study, we examined the effect of FD on human lung adenocarcinoma cells in vivo and in vitro. Methods: The effect of FD on the growth of lung cancer cells was measured with a CCK-8 assay, colony formation assay and xenograft tumor model. A flow cytometry analysis was performed to study cell cycle arrest and apoptosis. Western blotting and immunohistochemistry were used to observe the expression of Stat3. Changes in the expression of RNA induced by FD were assessed using gene chip and real-time RT-PCR assays. Results: In vitro, FD inhibited the growth of lung adenocarcinoma A549 and SPC-A1 cells in a dose-dependent manner. After treatment with FD, the A549 and SPC-A1 cells were arrested in the G1 phase, and apoptosis was induced. In vivo, this compound significantly inhibited the growth of tumors that were subcutaneously implanted in mice. Moreover, FD decreased Stat3 activity in lung cancer cells and xenograft tumor tissue, and microarray chip results showed that FD altered the gene expression profile of lung cancer cells. Specifically, NUPR1, which plays a significant role in cancer development, was down-regulated by FD in lung cancer cells. Conclusion: Our study supports the clinical evaluation of FD as a potential lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Zheng-Hao Deng
- Department of pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Department of pathology, School of basic medicine, Central South University, Changsha, Hunan, 410078, China
| | - Jie Meng
- Department of pulmonary Medicine, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Juan Tang
- Department of Nephropathy, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Gao-Yun Hu
- Faculty of Pharmaceutical Sciences, Central South University, Changsha Hunan 410013, China
| | - Li-Jian Tao
- Department of Nephropathy, XiangYa Hospital, Central South University, Changsha, Hunan, 410008, China.,State Key Laboratory of Medical Genetics of China, Changsha, Hunan 410078, China
| |
Collapse
|
21
|
Li G, Ren J, Hu Q, Deng Y, Chen G, Guo K, Li R, Li Y, Wu L, Wang G, Gu G, Li J. Oral pirfenidone protects against fibrosis by inhibiting fibroblast proliferation and TGF-β signaling in a murine colitis model. Biochem Pharmacol 2016; 117:57-67. [DOI: 10.1016/j.bcp.2016.08.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 12/16/2022]
|
22
|
Song C, He L, Zhang J, Ma H, Yuan X, Hu G, Tao L, Zhang J, Meng J. Fluorofenidone attenuates pulmonary inflammation and fibrosis via inhibiting the activation of NALP3 inflammasome and IL-1β/IL-1R1/MyD88/NF-κB pathway. J Cell Mol Med 2016; 20:2064-2077. [PMID: 27306439 PMCID: PMC5082399 DOI: 10.1111/jcmm.12898] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 05/09/2016] [Indexed: 12/12/2022] Open
Abstract
Interleukin (IL)‐1β plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. The production of IL‐1β is dependent upon caspase‐1‐containing multiprotein complexes called inflammasomes and IL‐1R1/MyD88/NF‐κB pathway. In this study, we explored whether a potential anti‐fibrotic agent fluorofenidone (FD) exerts its anti‐inflammatory and anti‐fibrotic effects through suppressing activation of NACHT, LRR and PYD domains‐containing protein 3 (NALP3) inflammasome and the IL‐1β/IL‐1R1/MyD88/NF‐κB pathway in vivo and in vitro. Male C57BL/6J mice were intratracheally injected with Bleomycin (BLM) or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with haemotoxylin and eosin and Masson's trichrome. Cytokines were measured by ELISA, and α‐smooth muscle actin (α‐SMA), fibronectin, collagen I, caspase‐1, IL‐1R1, MyD88 were measured by Western blot and/or RT‐PCR. The human actue monocytic leukaemia cell line (THP‐1) were incubated with monosodium urate (MSU), with or without FD pre‐treatment. The expression of caspase‐1, IL‐1β, NALP3, apoptosis‐associated speck‐like protein containing (ASC) and pro‐caspase‐1 were measured by Western blot, the reactive oxygen species (ROS) generation was detected using the Flow Cytometry, and the interaction of NALP3 inflammasome‐associated molecules were measured by Co‐immunoprecipitation. RLE‐6TN (rat lung epithelial‐T‐antigen negative) cells were incubated with IL‐1β, with or without FD pre‐treatment. The expression of nuclear protein p65 was measured by Western blot. Results showed that FD markedly reduced the expressions of IL‐1β, IL‐6, monocyte chemotactic protein‐1 (MCP‐1), myeloperoxidase (MPO), α‐SMA, fibronectin, collagen I, caspase‐1, IL‐1R1 and MyD88 in mice lung tissues. And FD inhibited MSU‐induced the accumulation of ROS, blocked the interaction of NALP3 inflammasome‐associated molecules, decreased the level of caspase‐1 and IL‐1β in THP‐1 cells. Besides, FD inhibited IL‐1β‐induced the expression of nuclear protein p65. This study demonstrated that FD, attenuates BLM‐induced pulmonary inflammation and fibrosis in mice via inhibiting the activation of NALP3 inflammasome and the IL‐1β/IL‐1R1/MyD88/ NF‐κB pathway.
Collapse
Affiliation(s)
- Cheng Song
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.,Department of Respiratory Medicine, Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science & Technology, Wuhan, China
| | - Lujuan He
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jin Zhang
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Ma
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Xiangning Yuan
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Gaoyun Hu
- Pharmaceutical School, Central South University, Changsha, China
| | - Lijian Tao
- Department of Nephrology Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Zhang
- Department of Microbial Infection & Immunity, The Ohio State University, Columbus, OH, USA
| | - Jie Meng
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
23
|
Wu YH, Li XW, Li WQ, Li XH, Li YJ, Hu GY, Liu ZQ, Li D. Fluorofenidone attenuates bleomycin-induced pulmonary fibrosis by inhibiting eukaryotic translation initiation factor 3a (eIF3a) in rats. Eur J Pharmacol 2016; 773:42-50. [PMID: 26821114 DOI: 10.1016/j.ejphar.2016.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/14/2016] [Accepted: 01/24/2016] [Indexed: 12/15/2022]
Abstract
Fluorofenidone is a novel derivative of l-mimosine. It has remarkable anti-fibrotic properties. In this study, we established that fluorofenidone ameliorates pulmonary fibrosis (PF) both in vivo and in vitro by specifically inhibiting the expression of eukaryotic translation initiation factor 3a (eIF3a). eIF3a plays an important role in the development and progression of PF. An animal model of PF was induced by intratracheal instillation of bleomycin (5mg/kg) in rats. Rats were orally administered with fluorofenidone (250, 500 mg/kg/d·[i.g.]) and pirfenidone (500 mg/kg/d·[i.g.]) for 28 days. Primary pulmonary fibroblasts were cultured to determine the effect of fluorofenidone on TGF-β1-induced (5 ng/ml) proliferation and differentiation of fibroblasts. The expression/level of eIF3a, TGF-β1, α-SMA, collagen I, and collagen III were analyzed by ELISA, real-time PCR, and western blot. The cell proliferation rate was determined by MTS assay. The results indicate that fluorofenidone significantly improves the pathological changes in lung tissues and reduces the deposition of collagen by inhibiting eIF3a in rats with bleomycin-induced PF. Moreover, in a culture of pulmonary fibroblasts, fluorofenidone decreased the up-regulation of TGF-β1-induced eIF3a by inhibiting the proliferation of cells and reducing the expression of α-SMA, collagen I, and collagen III. These findings suggest that eIF3a is a new and special target of fluorofenidone, which could be potentially used in the development of a drug that treats PF.
Collapse
Affiliation(s)
- Yue-Han Wu
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xian-Wei Li
- Department of Pharmacology, Wannan Medical College, Wuhu, Anhui Province, China
| | - Wen-Qun Li
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Xiao-Hui Li
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Yuan-Jian Li
- Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Gao-Yun Hu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Dai Li
- National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
24
|
Qin J, Mei WJ, Xie YY, Huang L, Yuan QJ, Hu GY, Tao LJ, Peng ZZ. Fluorofenidone attenuates oxidative stress and renal fibrosis in obstructive nephropathy via blocking NOX2 (gp91phox) expression and inhibiting ERK/MAPK signaling pathway. Kidney Blood Press Res 2016; 40:89-99. [PMID: 26029782 DOI: 10.1159/000368485] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND/AIMS We evaluated the therapeutic effects of fluorofenidone (AKF-PD), a novel pyridone agent, targeting oxidative stress and fibrosis in obstructive nephropathy. METHODS AKF-PD was used to treat renal interstitial fibrosis in unilateral ureteral obstruction (UUO) obstructive nephropathy in rats. The expression of NOX2 (gp91phox), fibronectin and extracellular signal regulated kinase (ERK) were detected by western blot. A level of Malondialdehyde (MDA), an oxidative stress marker, was measured by ELISA. In addition, ROS and the expressions of NOX2, collagen I (a1), fibronectin and p-ERK were measured in angiotensin (Ang) II-stimulated rat proximal tubular epithelial cells (NRK-52E) in culture. RESULTS In NRK-52E cells, AKF-PD reduced AngII induced expressions of ROS, NOX2, fibronectin, collagen I (a1) and p-ERK. In UUO kidney cortex, AKF-PD attenuated the degree of renal interstitial fibrosis, which was associated with reduced the expressions of collagen I (a1) and fibronectin. Furthermore, AKF-PD downregulated the expressions of NOX2, MDA and p-ERK. CONCLUSION AKF-PD treatment inhibits the progression of renal interstitial fibrosis by suppressing oxidative stress and ERK/MAPK signaling pathway.
Collapse
|
25
|
Mei W, Peng Z, Lu M, Liu C, Deng Z, Xiao Y, Liu J, He Y, Yuan Q, Yuan X, Tang D, Yang H, Tao L. Peroxiredoxin 1 inhibits the oxidative stress induced apoptosis in renal tubulointerstitial fibrosis. Nephrology (Carlton) 2015; 20:832-42. [PMID: 25989822 DOI: 10.1111/nep.12515] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Wenjuan Mei
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Zhangzhe Peng
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Miaomiao Lu
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Chunyan Liu
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Zhenghao Deng
- Division of Pathology; Xiangya Hospital; Central South University; Changsha China
| | - Yun Xiao
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Jishi Liu
- Division of Nephrology; The Third Xiangya Hospital; Central South University; Changsha China
| | - Ying He
- Division of Gastroenterology; Xiangya Hospital; Central South University; Changsha China
| | - Qiongjing Yuan
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Xiangning Yuan
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
| | - Damu Tang
- Division of Nephrology; Department of Medicine; McMaster University; Hamilton Ontario Canada
| | - Huixiang Yang
- Division of Gastroenterology; Xiangya Hospital; Central South University; Changsha China
| | - Lijian Tao
- Division of Nephrology; Xiangya Hospital; Central South University; Changsha China
- State Key Laboratory of Medical Genetics of China; Central South University; Changsha China
| |
Collapse
|
26
|
Fluorofenidone attenuates TGF-β1-induced lung fibroblast activation via restoring the expression of caveolin-1. Shock 2015; 43:201-7. [PMID: 25394239 DOI: 10.1097/shk.0000000000000273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Caveolin-1 plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. We previously showed that fluorofenidone (FD), a novel pyridine agent, can attenuate bleomycin-induced experimental pulmonary fibrosis and restore the production of caveolin-1. In this study, we explore mainly whether caveolin-1 plays a critical role in the anti-pulmonary fibrosis effects of FD in vitro. The normal human lung fibroblasts (NHLFs) were cultured with transforming growth factor-β1 (TGF-β1) and then were treated with FD. Subsequently, NHLFs transfected with cav-1-siRNA were treated with TGF-β1 and/or FD. The expressions of α-smooth muscle actin (α-SMA), fibronectin, collagen I, caveolin-1, phosphorylated extracellular signal-regulated kinase (p-ERK), phosphorylated c-Jun N-terminal kinase (p-JNK), and phosphorylated P38 were measured by Western blot and/or real-time polymerase chain reaction. Fluorofenidone attenuated TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I; inhibited phosphorylation of ERK, JNK, and P38; and restored caveolin-1 protein expression but cannot increase caveolin-1 mRNA level in vitro. After caveolin-1 was silenced, FD could not downregulate TGF-β1-induced expressions of α-SMA, fibronectin, and collagen I or phosphorylation of ERK, JNK, and P38. These studies demonstrate that FD, a potential antifibrotic agent, may attenuate TGF-β1-induced activation of NHLFs by restoring the expression of caveolin-1.
Collapse
|
27
|
Tang J, Liu CY, Lu MM, Zhang J, Mei WJ, Yang WJ, Xie YY, Huang L, Peng ZZ, Yuan QJ, Liu JS, Hu GY, Tao LJ. Fluorofenidone protects against renal fibrosis by inhibiting STAT3 tyrosine phosphorylation. Mol Cell Biochem 2015; 407:77-87. [PMID: 26033204 DOI: 10.1007/s11010-015-2456-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 05/16/2015] [Indexed: 12/17/2022]
Abstract
Signaling through the Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway, especially JAK2/STAT3, is involved in renal fibrosis. Fluorofenidone (FD), a novel pyridone agent, exerts anti-fibrotic effects in vitro and in vivo. Herein, we sought to investigate whether FD demonstrates its inhibitory function through preventing JAK2/STAT3 pathway. In this study, we examined the effect of FD on activation of rat renal interstitial fibroblasts, glomerular mesangial cells (GMC), and expression of JAK2/STAT3. Moreover, we explored the histological protection effects of FD in UUO rats, db/db mice, and phosphorylation of JAK2/STAT3 cascade. Our studies found that pretreatment with FD resulted in blockade of activation of fibroblast and GMC manifested by fibronectin (FN) and α-smooth muscle actin (α-SMA) protein expression and decline of STAT3 tyrosine phosphorylation induced by IL-6 or high glucose. In unilateral ureteral obstruction rats and a murine model of spontaneous type 2 diabetes (db/db mice), treatment with FD blocked the expression of FN and α-SMA, prevented renal fibrosis progression, and attenuated STAT3 activation. However, FD administration did not interfere with JAK2 activation both in vivo and in vitro. In summary, the molecular mechanism by which FD exhibits renoprotective effects appears to involve the inhibition of STAT3 phosphorylation.
Collapse
Affiliation(s)
- Juan Tang
- Division of Nephrology, Department of Internal Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fluorofenidone inhibits macrophage IL-1β production by suppressing inflammasome activity. Int Immunopharmacol 2015; 27:148-53. [PMID: 25983199 DOI: 10.1016/j.intimp.2015.05.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 03/22/2015] [Accepted: 05/04/2015] [Indexed: 11/23/2022]
Abstract
Interleukin-1 beta (IL-1β) is a potent pro-inflammatory and pro-fibrotic cytokine that plays an important role in renal fibrosis. Fluorofenidone (AKF-PD) is a novel pyridone agent that exerts a strong renal anti-fibrotic effect. We previously found that administration of AKF-PD could significantly attenuate IL-1β production in vitro and in vivo. However, the underlying mechanism is not fully understood. Here we show that AKF-PD has no effect on the expression of pro-IL-1β in activated mouse macrophages in vitro. Instead, AKF-PD inhibits the inflammasome, lowering caspase-1 levels and thereby decreasing cleavage of pro-IL-1β into IL-1β. AKF-PD was found to block inflammasome activity induced by various signals, including ATP, alum crystals, and Salmonella typhimurium. These results provide a novel mechanistic insight into how AKF-PD exerts its anti-inflammatory and anti-fibrotic activities, and suggest that AKF-PD might block IL-1β production via suppression of inflammasomes in renal fibrosis. In addition, the results suggest that AKF-PD may be of therapeutic potential in other inflammasome-related diseases.
Collapse
|
29
|
Tang J, Liu Z, Zhang Y, Wang L, Li D, Ding J, Jiang X. Fluorofenidone-loaded PLGA microspheres for targeted treatment of paraquat-induced acute lung injury in rats. RSC Adv 2015. [DOI: 10.1039/c5ra00656b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lung-targeting fluorofenidone (AKF) loaded PLGA microspheres (AKF-MS) for the treatment of paraquat (PQ)-induced acute lung injury in rats, were constructed by a solvent evaporation method.
Collapse
Affiliation(s)
- Jing Tang
- Key Laboratory of Drug Targeting and Drug Delivery System
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- PR China
| | - Zhenbao Liu
- School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- PR China
| | - Yue Zhang
- School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- PR China
| | - Ling Wang
- Key Laboratory of Drug Targeting and Drug Delivery System
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- PR China
| | - Dai Li
- Xiangya Hospital
- Central South University
- Changsha 410008
- PR China
| | - Jinsong Ding
- School of Pharmaceutical Sciences
- Central South University
- Changsha 410013
- PR China
| | - Xuehua Jiang
- Key Laboratory of Drug Targeting and Drug Delivery System
- West China School of Pharmacy
- Sichuan University
- Chengdu 610041
- PR China
| |
Collapse
|
30
|
Peng Y, Yang H, Wang N, Ouyang Y, Yi Y, Liao L, Shen H, Hu G, Wang Z, Tao L. Fluorofenidone attenuates hepatic fibrosis by suppressing the proliferation and activation of hepatic stellate cells. Am J Physiol Gastrointest Liver Physiol 2014; 306:G253-63. [PMID: 24337009 DOI: 10.1152/ajpgi.00471.2012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fluorofenidone (AKF-PD) is a novel pyridone agent. The purpose of this study is to investigate the inhibitory effects of AKF-PD on liver fibrosis in rats and the involved molecular mechanism related to hepatic stellate cells (HSCs). Rats treated with dimethylnitrosamine or CCl4 were randomly divided into normal, model, AKF-PD treatment, and pirfenidone (PFD) treatment groups. The isolated primary rat HSCs were treated with AKF-PD and PFD respectively. Cell proliferation and cell cycle distribution were analyzed by bromodeoxyuridine and flow cytometry, respectively. The expression of collagen I and α-smooth muscle actin (α-SMA) were determined by Western blot, immunohistochemical staining, and real-time RT-PCR. The expression of cyclin D1, cyclin E, and p27(kip1) and phosphorylation of MEK, ERK, Akt, and 70-kDa ribosomal S6 kinase (p70S6K) were detected by Western blot. AKF-PD significantly inhibited PDGF-BB-induced HSC proliferation and activation by attenuating the expression of collagen I and α-SMA, causing G0/G1 phase cell cycle arrest, reducing expression of cyclin D1 and cyclin E, and promoting expression of p27(kip1). AKF-PD also downregulated PDGF-BB-induced MEK, ERK, Akt, and p70S6K phosphorylation in HSCs. In rat liver fibrosis, AKF-PD alleviated hepatic fibrosis by decreasing necroinflammatory score and semiquantitative score, and reducing expression of collagen I and α-SMA. AKF-PD attenuated the progression of hepatic fibrosis by suppressing HSCs proliferation and activation via the ERK/MAPK and PI3K/Akt signaling pathways. AKF-PD may be used as a potential novel therapeutic agent against liver fibrosis.
Collapse
Affiliation(s)
- Yu Peng
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Song X, Liu W, Xie S, Wang M, Cao G, Mao C, Lv C. All-transretinoic acid ameliorates bleomycin-induced lung fibrosis by downregulating the TGF-β1/Smad3 signaling pathway in rats. J Transl Med 2013; 93:1219-31. [PMID: 24042439 DOI: 10.1038/labinvest.2013.108] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 08/11/2013] [Accepted: 08/14/2013] [Indexed: 11/09/2022] Open
Abstract
The transforming growth factor-β1 (TGF-β1)/Smad3 signaling pathway has a central role in pathogenesis of lung fibrosis. In the present study, we investigated if all-trans retinoic acid (ATRA) could attenuate fibrosis in bleomycin (BLM)-induced lung fibrosis in rats through regulating TGF-β1/Smad3 signaling. Beginning on day 14 after BLM administration, the ATRA I and II groups of rats received daily oral administration of ATRA for 14 days. All rats were killed on day 28. Lung tissue sections were prepared and subject to histological assessment, and expression levels of proteins involved in the TGF-β1 signaling cascade and epithelial-mesenchymal transition (EMT) were evaluated by transmission electron microscopy (TEM), quantitative real-time polymerase chain reaction (qRT-PCR), western blot procedure, and immunohistochemical or immunofluorescence staining. BLM significantly increased the alveolar septum infiltrates, inflammatory cell infiltrates, and collagen fibers. These BLM-induced changes were significantly ameliorated by ATRA treatment. In addition, BLM significantly increased levels of lung fibrosis markers α-SMA, hydroxyproline (Hyp), collagen I, Snail, and Twist, whereas significantly decreased E-cadherin expression. ATRA treatment largely reversed BLM-induced changes in these lung fibrosis markers. ATRA also blocked BLM-induced activation of the TGF-β1/Smad3 signaling pathway in lung tissues, including expression of TGF-β1, Smad3, p-Smad3, zinc-finger E-box-binding homeobox 1 and 2 (ZEB1 and ZEB2), and the high-mobility group AT-hook 2 (HMGA2). Our results suggest that ATRA may have potential therapeutic value for lung fibrosis treatment.
Collapse
Affiliation(s)
- Xiaodong Song
- Medicine Research Center, Binzhou Medical University, Yantai, China
| | | | | | | | | | | | | |
Collapse
|
32
|
What's new in shock, November 2012? Shock 2012; 38:447-9. [PMID: 23076440 DOI: 10.1097/shk.0b013e31827486cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|