1
|
Li Z, Pfister M, Huwyler F, Hoffmann W, Tibbitt MW, Dutkowski P, Clavien PA. Revolutionizing Liver Transplantation: Transitioning to an Elective Procedure Through Ex Situ Normothermic Machine Perfusion - A Benefit Analysis. Ann Surg 2024; 280:887-895. [PMID: 39077782 DOI: 10.1097/sla.0000000000006462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
OBJECTIVE To assess the impact of normothermic machine perfusion (NMP) on patients, medical teams, and costs by gathering global insights and exploring current limitations. BACKGROUND NMP for ex situ liver graft perfusion is gaining increasing attention for its capability to extend graft preservation. It has the potential to transform liver transplantation (LT) from an urgent to a purely elective procedure, which could revolutionize LT logistics, reduce burden on patients and health care providers, and decrease costs. METHODS A 31-item survey was sent to international transplant directors to gather their NMP experiences and vision. In addition, we performed a systematic review on cost-analysis in LT and assessed studies on cost-benefit in converting urgent-to-elective procedures. We compared the costs of available NMPs and conducted a sensitivity analysis of NMP's cost benefits. RESULTS Of 120 transplant programs contacted, 64 (53%) responded, spanning North America (31%), Europe (42%), Asia (22%), and South America (5%). Of the total, 60% had adopted NMP, with larger centers (>100 transplants/year) in North America and Europe more likely to use it. The main NMP systems were OrganOx-metra (39%), XVIVO (36%), and TransMedics-OCS (15%). Despite NMP adoption, 41% of centers still perform >50% of LTs at nights/weekends. Centers recognized NMP's benefits, including improved work satisfaction and patient outcomes, but faced challenges like high costs and machine complexity. 16% would invest $100,000 to 500'000, 33% would invest $50,000 to 100'000, 38% would invest $10,000 to 50'000, and 14% would invest <$10,000 in NMP. These results were strengthened by a cost analysis for NMP in emergency-to-elective LT transition. Accordingly, while liver perfusions with disposables up to $10,000 resulted in overall positive net balances, this effect was lost when disposables' cost amounted to >$40,000/organ. CONCLUSIONS The adoption of NMP is hindered by high costs and operational complexity. Making LT elective through NMP could reduce costs and improve outcomes, but overcoming barriers requires national reimbursements and simplified, automated NMP systems for multiday preservation.
Collapse
Affiliation(s)
- Zhihao Li
- Department of Surgery and Transplantation, University of Zurich, Zurich, Switzerland
| | - Matthias Pfister
- Department of Surgery and Transplantation, University of Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Florian Huwyler
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Waldemar Hoffmann
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Mark W Tibbitt
- Department of Surgery and Transplantation, University of Zurich, Zurich, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Philipp Dutkowski
- Department of Visceral Surgery, University Hospital Basel, Switzerland
| | - Pierre-Alain Clavien
- Department of Surgery and Transplantation, University of Zurich, Zurich, Switzerland
- Wyss Zurich Translational Center, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Samuel D. EASL Clinical Practice Guidelines on liver transplantation. J Hepatol 2024:S0168-8278(24)02440-1. [PMID: 39487043 DOI: 10.1016/j.jhep.2024.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 11/04/2024]
Abstract
Liver transplantation (LT) is an established life-saving procedure. The field of LT has changed in the past 10 years from several perspectives, with the expansion of indications, transplantation of patients with acute-on-chronic liver failure, evolution of transplant oncology, the use of donations after cardiac death, new surgical techniques, and prioritisation of recipients on the waiting list. In addition, the advent of organ perfusion machines, the recognition of new forms of rejection, and the attention paid to the transition from paediatric to adult patients, have all improved the management of LT recipients. The purpose of the EASL guidelines presented here is not to cover all aspects of LT but to focus on developments since the previous EASL guidelines published in 2016.
Collapse
|
3
|
Carton I, Le Pabic E, Thobie A, Jeddou H, Robin F, Sulpice L, Boudjema K. Impact of late-night liver transplantation on recipient outcome. Updates Surg 2024:10.1007/s13304-024-01991-4. [PMID: 39382812 DOI: 10.1007/s13304-024-01991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 09/05/2024] [Indexed: 10/10/2024]
Abstract
When liver graft procurements take place in the late afternoon or in the evening, transplantation is often performed at night when alertness and psychomotor abilities may be altered. Our objective was to determine whether liver transplantation performed at night increases severe 90-day postoperative complication rates. In this observational study, we analyzed all consecutive patients who were transplanted between January 1, 2012 and December 31, 2018. Outcomes were compared according to whether all or part of the liver transplantation was performed or not (control group) at late night, i.e., between midnight and 5 a.m. The main outcome was rate of Clavien-Dindo ≥ IIIb complications within 90 days post-transplantation. 790 liver transplantations were analyzed. In a multivariable analysis adjusted for cold ischemic time, late-night procedures required more blood transfusions (P = 0.010) and had higher odds of severe complication occurrence than controls (odds ratio 1.67; 95% CI, [1.10-2.54]). One-year graft and patient survival was similar. We conclude that the organization of liver transplant surgery should be reconsidered to avoid LN surgery as much as can be done. Except to create teams dedicated to night work (which represents a considerable cost), such organization may require safe extension of liver graft preservation times. The alternative could be to extend the use of oxygenated machine perfusion preservation with the unique purpose of safely extending the graft preservation time.
Collapse
Affiliation(s)
- Isis Carton
- Department of Hepatobiliary and Digestive Surgery, Rennes University Hospital, University of Rennes 1, Rennes, France.
- Department of Gynecology, Obstetrics and Human Reproduction of the University Hospital of Rennes, Rennes, France.
| | - Estelle Le Pabic
- Rennes University Hospital, Inserm CIC 1414, 35000, Rennes, France
| | - Alexandre Thobie
- Department of Hepatobiliary and Digestive Surgery, Rennes University Hospital, University of Rennes 1, Rennes, France
- Department of Digestive Surgery, Polyclinique of Deauville, Deauville, France
| | - Heithem Jeddou
- Department of Hepatobiliary and Digestive Surgery, Rennes University Hospital, University of Rennes 1, Rennes, France
- Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes 1 University, Rennes, France
| | - Fabien Robin
- Department of Hepatobiliary and Digestive Surgery, Rennes University Hospital, University of Rennes 1, Rennes, France
- Inserm CIC 1414, 35000, Rennes, France
| | - Laurent Sulpice
- Department of Hepatobiliary and Digestive Surgery, Rennes University Hospital, University of Rennes 1, Rennes, France
- Inserm CIC 1414, 35000, Rennes, France
- Rennes University Hospital, INSERM 1242, Oncogenesis Stress Signaling, Rennes, France
| | - Karim Boudjema
- Department of Hepatobiliary and Digestive Surgery, Rennes University Hospital, University of Rennes 1, Rennes, France
- Inserm CIC 1414, 35000, Rennes, France
| |
Collapse
|
4
|
Endo C, van Rijn R, Huurman V, Schurink I, van den Berg A, Murad SD, van Hoek B, de Meijer VE, de Jonge J, van der Hilst CS, Porte RJ. Cost-effectiveness of Dual Hypothermic Oxygenated Machine Perfusion Versus Static Cold Storage in DCD Liver Transplantation. Transplantation 2024:00007890-990000000-00894. [PMID: 39378124 DOI: 10.1097/tp.0000000000005232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Ex situ machine perfusion of the donor liver, such as dual hypothermic oxygenated machine perfusion (DHOPE), is increasingly used in liver transplantation. Although DHOPE reduces ischemia/reperfusion-related complications after liver transplantation, data on cost-effectiveness are lacking. Our objective was to evaluate the cost-effectiveness of DHOPE in donation after circulatory death (DCD) liver transplantation. METHODS We performed an economic evaluation of DHOPE versus static cold storage (SCS) based on a multicenter randomized controlled trial in DCD liver transplantation (DHOPE-DCD trial; ClinicalTrials.gov number, NCT02584283). All patients enrolled in the 3 participating centers in the Netherlands were included. Costs related to the transplant procedure, hospital stay, readmissions, and outpatients treatments up to 1 y posttransplant were calculated. The cost for machine perfusion was calculated using 3 scenarios: (1) costs for machine perfusion, (2) machine perfusion costs plus costs for personnel, and (3) scenario 2 plus depreciation expenses for a dedicated organ perfusion room. RESULTS Of 119 patients, 60 received a liver after DHOPE and 59 received a liver after SCS alone. The mean total cost per patient up to 1 y posttransplant was €126 221 for the SCS group and €110 794 for the DHOPE group. The most significant reduction occurred in intensive care costs (28.4%), followed by nonsurgical interventions (24.3%). In cost scenario 1, DHOPE was cost-effective after 1 procedure. In scenarios 2 and 3, cost-effectiveness was achieved after 25 and 30 procedures per year, respectively. CONCLUSIONS Compared with conventional SCS, machine perfusion using DHOPE is cost-effective in DCD liver transplantation, reducing the total medical costs up to 1 y posttransplant.
Collapse
Affiliation(s)
- Chikako Endo
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Rianne van Rijn
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Volkert Huurman
- Department of Surgery, Section of Transplant Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Ivo Schurink
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Aad van den Berg
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sarwa Darwish Murad
- Department of Gastroenterology and Hepatology, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Bart van Hoek
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jeroen de Jonge
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Christian S van der Hilst
- Department of Strategic Analytics, Finance and Control, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
5
|
Finotti M, Romano M, Grossi U, Dalla Bona E, Pelizzo P, Piccino M, Scopelliti M, Zanatta P, Zanus G. Innovations in Liver Preservation Techniques for Transplants from Donors after Circulatory Death: A Special Focus on Transplant Oncology. J Clin Med 2024; 13:5371. [PMID: 39336858 PMCID: PMC11432009 DOI: 10.3390/jcm13185371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Liver transplantation is the preferred treatment for end-stage liver disease. Emerging evidence suggests a potential role for liver transplantation in treating liver tumors such as colorectal liver metastases and cholangiocarcinoma. However, due to a limited donor pool, the use of marginal grafts from donation after circulatory death (DCD) donors is increasing to meet demand. Machine perfusion is crucial in this context for improving graft acceptance rates and reducing ischemia-reperfusion injury. Few studies have evaluated the role of machine perfusion in the context of transplant oncology. Perfusion machines can be utilized in situ (normothermic regional perfusion-NRP) or ex situ (hypothermic and normothermic machine perfusion), either in combination or as a complement to conventional in situ cold flush and static cold storage. The objective of this analysis is to provide an up-to-date overview of perfusion machines and their function in donation after circulatory death with particular attention to their current and likely potential effects on transplant oncology. A literature review comparing standard cold storage to machine perfusion methods showed that, so far, there is no evidence that these devices can reduce the tumor recurrence rate. However, some evidence suggests that these innovative perfusion techniques can improve graft function, reduce ischemia-reperfusion injury, and, based on this mechanism, may lead to future improvements in cancer recurrence.
Collapse
Affiliation(s)
- Michele Finotti
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
- Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX 75246, USA
| | - Maurizio Romano
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Ugo Grossi
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Enrico Dalla Bona
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Patrizia Pelizzo
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Marco Piccino
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Michele Scopelliti
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| | - Paolo Zanatta
- Department of Anesthesiology and Critical Care, Treviso Regional Hospital AULSS 2 Marca Trevigiana, 31100 Treviso, Italy
| | - Giacomo Zanus
- Hepatobiliary and General Surgery Unit, Regional Hospital Treviso, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroenterologiche (DISCOG), University of Padua, 35128 Padua, Italy
| |
Collapse
|
6
|
Eden J, Thorne AM, Bodewes SB, Patrono D, Roggio D, Breuer E, Lonati C, Dondossola D, Panayotova G, Boteon APCS, Walsh D, Carvalho MF, Schurink IJ, Ansari F, Kollmann D, Germinario G, Rivas Garrido EA, Benitez J, Rebolledo R, Cescon M, Ravaioli M, Berlakovich GA, De Jonge J, Uluk D, Lurje I, Lurje G, Boteon YL, Guarrera JV, Romagnoli R, Galkin A, Meierhofer D, Porte RJ, Clavien PA, Schlegel A, de Meijer VE, Dutkowski P. Assessment of liver graft quality during hypothermic oxygenated perfusion: the first international validation study. J Hepatol 2024:S0168-8278(24)02543-1. [PMID: 39251091 DOI: 10.1016/j.jhep.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND AND AIM While it is currently assumed that liver assessment is only possible during normothermic machine perfusion (NMP), there is uncertainty regarding a reliable and quick prediction of graft injury during ex situ hypothermic oxygenated perfusion (HOPE). We therefore intended to test, in an international liver transplant cohort, recently described mitochondrial injury biomarkers measured during HOPE before liver transplantation. STUDY DESIGN Perfusate samples of human livers from 10 centers in 7 countries with HOPE-experience were analyzed for released mitochondrial compounds, i.e. flavin mononucleotide (FMN), NADH, purine derivates and inflammatory markers. Perfusate FMN was correlated with graft loss due to primary non-function or symptomatic non-anastomotic biliary strictures (NAS), and kidney failure, as well as liver injury after transplantation. Livers deemed unsuitable for transplantation served as negative control. RESULTS We collected 473 perfusate samples of human DCD (n=315) and DBD livers (n=158). Fluorometric assessment of FMN in perfusate was validated by mass spectrometry (R=0.7011,p<0.0001). Graft loss due to primary non-function or cholangiopathy was predicted by perfusate FMN values (c-statistic mass spectrometry 0.8418 (95%CI 0.7466-0.9370,p<0.0001), c-statistic fluorometry 0.7733 (95%CI 0.7006-0.8461,p<0.0001). Perfusate FMN values were also significantly correlated with symptomatic NAS and kidney failure, and superior in prediction of graft loss when compared to conventional scores derived from donor and recipient parameters, such as the donor risk index and the balance of risk score. Mitochondrial FMN values in liver tissues of non-utilized livers were low, and inversely correlated to high perfusate FMN values and purine metabolite release. CONCLUSIONS This first international study validates the predictive value of the mitochondrial co-factor FMN, released from complex I during HOPE, and may therefore contribute to a better risk stratification of injured livers before implantation. IMPACT AND IMPLICATIONS Analysis of 473 perfusates, collected from 10 international centers during hypothermic oxygenated perfusion (HOPE), revealed that mitochondria derived flavin mononucleotide (FMN) values in perfusate is predictive for graft loss, cholangiopathy, and kidney failure after liver transplantation. This result is of high clinical relevance, as recognition of graft quality is urgently needed to improve the safe utilization of marginal livers. Ex-situ machine perfusion approaches, such as HOPE, are therefore likely to increase the number of useable liver grafts.
Collapse
Affiliation(s)
- Janina Eden
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland; Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Adam M Thorne
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Silke B Bodewes
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Dorotea Roggio
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Eva Breuer
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Caterina Lonati
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
| | - Daniele Dondossola
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20100, Milan, Italy
| | - Guergana Panayotova
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers NJMS/ University Hospital, Newark, NJ, USA
| | | | | | | | - Ivo J Schurink
- Department of Surgery, Division of HPB and Transplant Surgery, Erasmus MC Transplant Insititute, University Medical Center, Rotterdam, the Netherlands
| | - Fariha Ansari
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Dagmar Kollmann
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Wien, Austria
| | - Giuliana Germinario
- Hepatobiliary and Transplant Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy
| | - Elisabeth Alexis Rivas Garrido
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Julio Benitez
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rolando Rebolledo
- Hepato-Pancreato-Biliary Surgery Unit, Surgery Service, Complejo Asistencial Dr. Sótero Del Río and Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Matteo Cescon
- Hepatobiliary and Transplant Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Matteo Ravaioli
- Hepatobiliary and Transplant Surgery Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Sant'Orsola-Malpighi Hospital, Bologna, Italy; Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Gabriela A Berlakovich
- Division of Transplantation, Department of Surgery, Medical University of Vienna, Wien, Austria
| | - Jeroen De Jonge
- Department of Surgery, Division of HPB and Transplant Surgery, Erasmus MC Transplant Insititute, University Medical Center, Rotterdam, the Netherlands
| | - Deniz Uluk
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum-Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Isabella Lurje
- Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum-Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg Lurje
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany; Department of Surgery, Campus Charité Mitte, Campus Virchow-Klinikum-Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of General, Visceral and Transplantation Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Yuri L Boteon
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - James V Guarrera
- Department of Surgery, Division of Transplant and HPB Surgery, Rutgers NJMS/ University Hospital, Newark, NJ, USA
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgery, A.O.U. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Alexander Galkin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Mass Spectrometry Facility, Berlin, Germany
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Pierre Alain Clavien
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland
| | - Andrea Schlegel
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland; General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy; Transplantation Center, Digestive Disease and Surgery Institute and Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen and University Medical Center Groningen, Groningen, Netherlands
| | - Philipp Dutkowski
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Switzerland; Division of Visceral Surgery, University Digestive Health Care Centre Clarunis, University Hospital Basel, Switzerland.
| |
Collapse
|
7
|
Goto T, Noguchi Y, Linares I, Mazilescu L, Nogueira E, Hobeika C, Ray S, Parmentier C, Ganesh S, Peranantharuban J, Chan HH, Reichman T, Selzner N, Selzner M. Indocyanine green fluorescence quantification during normothermic ex situ perfusion for the assessment of porcine liver grafts after circulatory death. Liver Transpl 2024; 30:907-917. [PMID: 38869990 PMCID: PMC11332378 DOI: 10.1097/lvt.0000000000000416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/25/2024] [Indexed: 06/15/2024]
Abstract
Current graft evaluation during normothermic ex situ liver perfusion lacks real-time parameters for predicting posttransplant hepatocyte and biliary function. Indocyanine green (ICG) imaging has been widely used in liver surgery, enabling the visualization of hepatic uptake and excretion through bile using near-infrared light. In this research, porcine livers under various ischemic conditions were examined during a 5-hour normothermic ex situ liver perfusion procedure, introducing ICG at 1 hour through the hepatic artery. These conditions included livers from heart-beating donors, donation after circulatory death (DCD) with warm ischemic durations of 60 minutes (DCD60) and 120 minutes (DCD120), as well as interventions utilizing tissue plasminogen activator in DCD120 cases (each n = 5). Distinct hepatic fluorescence patterns correlated with different degrees of ischemic injury ( p = 0.01). Low ICG uptake in the parenchyma (less than 40% of maximum intensity) was more prevalent in DCD120 (21.4%) compared to heart-beating donors (6.2%, p = 0.06) and DCD60 (3.0%, p = 0.02). Moreover, ICG clearance from 60 minutes to 240 minutes was significantly higher in heart-beating donors (69.3%) than in DCD60 (17.5%, p < 0.001) and DCD120 (32.1%, p = 0.01). Furthermore, thrombolytic intervention using tissue plasminogen activator in DCD120 resulted in noteworthy outcomes, including significantly reduced ALP levels ( p = 0.04) and improved ICG clearance ( p = 0.02) with a trend toward mitigating fibrin deposition similar to DCD60, as well as enhancements in bile production ( p = 0.09). In conclusion, ICG fluorescence imaging during normothermic ex situ liver perfusion provides real-time classification of hepatic vascular and biliary injuries, offering valuable insights for the more accurate selection and postintervention evaluation of marginal livers in transplantation.
Collapse
Affiliation(s)
- Toru Goto
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, Divisions of Hepato-biliary-Pancreatic Surgery and Transplantation, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Noguchi
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Ivan Linares
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Laura Mazilescu
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Emmanuel Nogueira
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Christian Hobeika
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Samrat Ray
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Catherine Parmentier
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Sujani Ganesh
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jathuya Peranantharuban
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Harley H.L. Chan
- TECHNA Institute, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Trevor Reichman
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Nazia Selzner
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| | - Markus Selzner
- Department of Surgery, Ajmera Transplant Centre, Toronto General Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Lantinga VA, Arykbaeva AS, Spraakman NA, Blom EWP, Huijink TM, de Vries DK, Ploeg RJ, Alwayn IPJ, Leuvenink HGD, Moers C, van Leeuwen LL. Impact of device variability and protocol differences on kidney function during normothermic machine perfusion: A comparative study using porcine and human kidneys. Artif Organs 2024. [PMID: 39193869 DOI: 10.1111/aor.14851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION A growing interest in renal normothermic machine perfusion (NMP) has resulted in more clinically available perfusion devices. While all perfusion systems have the same aim, there are significant differences in their circuits, pumps, sensors, and software. Therefore, our objective was to assess the impact of different perfusion protocols and devices on kidney function and perfusion parameters during NMP. METHODS Porcine kidneys were subjected to 30 min of warm ischemia, 24 h of static cold storage, and subsequently perfused for 6 h using (1) the Kidney Assist (KA) machine with a pressure of 75 mm Hg, (2) the KA device incorporating several adjustments and a pressure of 85 mm Hg (modified KA), or (3) the Perlife (PL) perfusion device (n = 4). Consecutively, discarded human kidneys were perfused using the KA or modified KA (n = 3) protocol. RESULTS The PL group quickly reached the device's upper flow limit and consequently received a significantly lower pressure compared to the KA groups. The arterial pO2 was significantly lower in the PL group. Yet, hemoglobin concentration increased over time, and oxygen consumption was significantly higher compared to the KA groups. Fractional sodium excretion was significantly lower in the PL group. Tissue ATP levels, urine production, and creatinine clearance rates did not differ between groups. In human kidneys, the modified KA group showed significantly lower vascular resistance, higher oxygen delivery, and lower levels of lactate in the perfusate compared to the KA group. CONCLUSIONS This study shows that perfusion characteristics and kidney function are significantly influenced by the perfusion protocol and the device and its settings during normothermic machine perfusion and therefore should be interpreted with caution.
Collapse
Affiliation(s)
- Veerle A Lantinga
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Asel S Arykbaeva
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Nora A Spraakman
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Elwin W P Blom
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Tobias M Huijink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Dorottya K de Vries
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Rutger J Ploeg
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Ian P J Alwayn
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Cyril Moers
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - L Leonie van Leeuwen
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
9
|
Geng C, Chen F, Sun H, Lin H, Qian Y, Zhang J, Xia Q. Serum Arginine Level for Predicting Early Allograft Dysfunction in Liver Transplantation Recipients by Targeted Metabolomics Analysis: A Prospective, Single-Center Cohort Study. Adv Biol (Weinh) 2024:e2400128. [PMID: 39164220 DOI: 10.1002/adbi.202400128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/09/2024] [Indexed: 08/22/2024]
Abstract
Early allograft dysfunction (EAD) is a frequent phenomenon, leading to increased graft loss and higher mortality after liver transplantation (LT). Despite significant efforts for early diagnosis of EAD, there is no existing approach that can predict EAD on the first post-operative day. The aim is to define a metabolite-based biomarker on the first day after LT complicated with EAD. Ten patients diagnosed with EAD and 26 non-EAD are recruited for the study. A HPLC-MS/MS is used to determine 14 amino acids and 15 bile acids serum concentration. Comparative analyses are conducted between EAD and non-EAD groups. Arginine is identified as the most significant metabolite distinguishing the EAD and non-EAD groups, and therefore, is identified as a potential biomarker of EAD. The optimal cut-off value for arginine is 52.09 µmol L-1, with an AUROC of 0.804 (95% confidence interval: 0.638-0.917, p < 0.001), yielding a sensitivity of 100%, specificity of 53.8%, and Youden index of 0.54, NPVof 100%, and PPV of 45.45%. In summary, the study indicated that targeted metabolomics analysis would be a promising strategy for discovering novel biomarkers to predict EAD. The identified arginine may be helpful in developing an objective diagnostic method for EAD.
Collapse
Affiliation(s)
- Chunmei Geng
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
- Department of Pharmacy, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin, 300192, P. R. China
| | - Fang Chen
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Hanyong Sun
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Houwen Lin
- Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Yongbing Qian
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Jianjun Zhang
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, P. R. China
| |
Collapse
|
10
|
Groen PC, van Leeuwen OB, de Jonge J, Porte RJ. Viability assessment of the liver during ex-situ machine perfusion prior to transplantation. Curr Opin Organ Transplant 2024; 29:239-247. [PMID: 38764406 PMCID: PMC11224566 DOI: 10.1097/mot.0000000000001152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
PURPOSE OF REVIEW In an attempt to reduce waiting list mortality in liver transplantation, less-than-ideal quality donor livers from extended criteria donors are increasingly accepted. Predicting the outcome of these organs remains a challenge. Machine perfusion provides the unique possibility to assess donor liver viability pretransplantation and predict postreperfusion organ function. RECENT FINDINGS Assessing liver viability during hypothermic machine perfusion remains challenging, as the liver is not metabolically active. Nevertheless, the levels of flavin mononucleotide, transaminases, lactate dehydrogenase, glucose and pH in the perfusate have proven to be predictors of liver viability. During normothermic machine perfusion, the liver is metabolically active and in addition to the perfusate levels of pH, transaminases, glucose and lactate, the production of bile is a crucial criterion for hepatocyte viability. Cholangiocyte viability can be determined by analyzing bile composition. The differences between perfusate and bile levels of pH, bicarbonate and glucose are good predictors of freedom from ischemic cholangiopathy. SUMMARY Although consensus is lacking regarding precise cut-off values during machine perfusion, there is general consensus on the importance of evaluating both hepatocyte and cholangiocyte compartments. The challenge is to reach consensus for increased organ utilization, while at the same time pushing the boundaries by expanding the possibilities for viability testing.
Collapse
Affiliation(s)
- Puck C Groen
- Department of Surgery, Division of Hepato-Pancreato- Biliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | | | | | | |
Collapse
|
11
|
Scatton O, Turco C, Savier E, Pelissié J, Legallais C, Sakka M, Aoudjehane L, Wendum D, Migliazza J, Spiritelli S, Conti F, Goumard C. Preclinical validation of a customized circuit for ex situ uninterrupted cold-to-warm prolonged perfusion of the liver. Artif Organs 2024; 48:876-890. [PMID: 38553992 DOI: 10.1111/aor.14743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/15/2024] [Accepted: 02/26/2024] [Indexed: 07/23/2024]
Abstract
CONTEXT Clinical adoption of ex situ liver perfusion is growing. While hypothermic perfusion protects against ischemia-reperfusion injury in marginal grafts, normothermic perfusion enables organ viability assessment and therefore selection of borderline grafts. The combination of hypothermic and normothermic perfusion, known as "cold-to-warm," may be the optimal sequence for organ preservation, but is difficult to achieve with most commercial perfusion systems. We developed an adaptable customized circuit allowing uninterrupted "cold-to-warm" perfusion and conducted preclinical studies on healthy porcine livers and discarded human livers to demonstrate the circuit's efficacy. METHODS In collaboration with bioengineers, we developed a customized circuit that adapts to extracorporeal circulation consoles used in cardiovascular surgery and includes a proprietary reservoir enabling easy perfusate change without interrupting perfusion. This preclinical study was conducted on porcine and human livers. Perfusion parameters (pressures, flows, oxygenation) and organ viability were monitored. RESULTS The customized circuit was adapted to a LivaNova S5® console, and the perfusions were flow-driven with real-time pressure monitoring. Ten porcine liver and 12 discarded human liver perfusions were performed during 14 to 18 h and 7 to 25 h, respectively. No hyperpressure was observed (porcine and human portal pressure 2-6 and 2-8 mm Hg; arterial pressure 10-65 and 20-65 mm Hg, respectively). No severe histological tissue injury was observed (Suzuki score ≤ 3 at the end of perfusion). Seven (70%) porcine livers and five (42%) human livers met the UK viability criteria. CONCLUSION The customized circuit and system design enables smooth uninterrupted "cold-to-warm" perfusion not present in current commercial perfusion systems.
Collapse
Affiliation(s)
- Olivier Scatton
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Célia Turco
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- Liver Transplantation Unit, Department of Digestive and Oncologic Surgery, University Hospital of Besançon, Besançon, France
| | - Eric Savier
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Jérôme Pelissié
- Department of Extracorporeal Perfusion and Vascular Surgery, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cécile Legallais
- Department of Metabolic Biochemistry, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Medhi Sakka
- Department of Metabolic Biochemistry, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lynda Aoudjehane
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- INSERM, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, Paris, France
| | - Dominique Wendum
- Department of Pathology, Saint-Antoine Hospital (AP-HP), Paris, France
| | - John Migliazza
- Department of Discovery, Research and Development, LivaNova PLC, London, UK
| | - Sandra Spiritelli
- Department of Discovery, Research and Development, LivaNova PLC, London, UK
| | - Filomena Conti
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
- Department of Medical Liver Transplantation, Assistance Publique-Hôpitaux de Paris (AP-HP), Pitié-Salpêtrière Hospital, Paris, France
| | - Claire Goumard
- Department of Hepatobiliary Surgery and Liver Transplantation, Sorbonne Université, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- INSERM UMRS-938, Centre de Recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| |
Collapse
|
12
|
Wehrle CJ, Jiao C, Sun K, Zhang M, Fairchild RL, Miller C, Hashimoto K, Schlegel A. Machine perfusion in liver transplantation: recent advances and coming challenges. Curr Opin Organ Transplant 2024; 29:228-238. [PMID: 38726745 DOI: 10.1097/mot.0000000000001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
PURPOSE OF REVIEW Machine perfusion has been adopted into clinical practice in Europe since the mid-2010s and, more recently, in the United States (US) following approval of normothermic machine perfusion (NMP). We aim to review recent advances, provide discussion of potential future directions, and summarize challenges currently facing the field. RECENT FINDINGS Both NMP and hypothermic-oxygenated perfusion (HOPE) improve overall outcomes after liver transplantation versus traditional static cold storage (SCS) and offer improved logistical flexibility. HOPE offers additional protection to the biliary system stemming from its' protection of mitochondria and lessening of ischemia-reperfusion injury. Normothermic regional perfusion (NRP) is touted to offer similar protective effects on the biliary system, though this has not been studied prospectively.The most critical question remaining is the optimal use cases for each of the three techniques (NMP, HOPE, and NRP), particularly as HOPE and NRP become more available in the US. There are additional questions regarding the most effective criteria for viability assessment and the true economic impact of these techniques. Finally, with each technique purported to allow well tolerated use of riskier grafts, there is an urgent need to define terminology for graft risk, as baseline population differences make comparison of current data challenging. SUMMARY Machine perfusion is now widely available in all western countries and has become an essential tool in liver transplantation. Identification of the ideal technique for each graft, optimization of viability assessment, cost-effectiveness analyses, and proper definition of graft risk are the next steps to maximizing the utility of these powerful tools.
Collapse
Affiliation(s)
| | - Chunbao Jiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Keyue Sun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Mingyi Zhang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Robert L Fairchild
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | | | - Koji Hashimoto
- Transplantation Center, Cleveland Clinic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
13
|
van Leeuwen LL, Irizar H, Kim-Schluger L, Florman S, Akhtar MZ. The potential of machine learning to predict early allograft dysfunction after normothermic machine perfusion in liver transplantation. J Hepatol 2024:S0168-8278(24)02438-3. [PMID: 39094744 DOI: 10.1016/j.jhep.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024]
Affiliation(s)
- L Leonie van Leeuwen
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.
| | - Haritz Irizar
- Center for Biostatistics, Department of Population Health Science & Policy, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Leona Kim-Schluger
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Sander Florman
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - M Zeeshan Akhtar
- Recanati/Miller Transplantation Institute, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
14
|
Ly M, Lau NS, Dennis C, Chen J, Risbey C, Tan S, Chen R, Wang C, Gorrell MD, McKenzie C, Kench JG, Liu K, McCaughan GW, Crawford M, Pulitano C. Long-term ex situ normothermic machine perfusion allows regeneration of human livers with severe bile duct injury. Am J Transplant 2024:S1600-6135(24)00442-8. [PMID: 39059585 DOI: 10.1016/j.ajt.2024.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Bile duct regeneration is hypothesized to prevent biliary strictures, a leading cause of morbidity after liver transplantation. Assessing the capacity for biliary regeneration may identify grafts as suitable for transplantation that are currently declined, but this has been unfeasible until now. This study used long-term ex situ normothermic machine perfusion (LT-NMP) to assess biliary regeneration. Human livers that were declined for transplantation were perfused at 36 °C for up to 13.5 days. Bile duct biopsies, bile, and perfusate were collected throughout perfusion, which were examined for features of injury and regeneration. Biliary regeneration was defined as new Ki-67-positive biliary epithelium following severe injury. Ten livers were perfused for a median duration of 7.5 days. Severe bile duct injury occurred in all grafts, and biliary regeneration occurred in 70% of grafts. Traditional biomarkers of biliary viability such as bile glucose improved during perfusion but this was not associated with biliary regeneration (P > .05). In contrast, the maintenance of interleukin-6 and vascular endothelial growth factor-A levels in bile was associated with biliary regeneration (P = .017 for both cytokines). This is the first study to demonstrate biliary regeneration during LT-NMP and identify a cytokine signature in bile as a novel biomarker for biliary regeneration during LT-NMP.
Collapse
Affiliation(s)
- Mark Ly
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Ngee-Soon Lau
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Claude Dennis
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Jinbiao Chen
- Centenary Institute, The University of Sydney, Sydney, Australia
| | - Charles Risbey
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Sarah Tan
- Central Sydney Immunology Laboratory, Royal Prince Alfred Hospital, NSW, Australia
| | - Renfen Chen
- Central Sydney Immunology Laboratory, Royal Prince Alfred Hospital, NSW, Australia
| | - Chuanmin Wang
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Mark D Gorrell
- Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Catriona McKenzie
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - James G Kench
- Faculty of Medicine and Health, The University of Sydney, Sydney, Australia; Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, Australia
| | - Ken Liu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Geoffrey W McCaughan
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Centenary Institute, The University of Sydney, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Michael Crawford
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, Australia; Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
15
|
Muth V, Stobl F, Michelotto J, Gilles L, Kirwan JA, Eisenberger A, Marchand J, Roschke NN, Moosburner S, Pratschke J, Sauer IM, Raschzok N, Gassner JM. Quality Assessment by Bile Composition in Normothermic Machine Perfusion of Rat Livers. Tissue Eng Part A 2024. [PMID: 38832856 DOI: 10.1089/ten.tea.2024.0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024] Open
Abstract
Background: The persistent challenge of organ scarcity in liver transplantation leads to an escalating dependence on organs obtained from extended criteria donors (ECD). Normothermic machine perfusion (NMP) is used for improved preservation. Due to the mimicked in vivo conditions during normothermic machine perfusion, the liver is metabolically active, which allows quality assessment during perfusion. Bile seems to be of rising interest in clinical studies, as it is easily collectible for analysis. As there are currently no data on biliary bile acids during NMP, the primary objective of this study was to use our experimental rodent NMP model to assess changes in bile composition through organ damage during perfusion to inform clinical evaluation of donor organs during NMP. Methods: Thirty livers from male Sprague-Dawley rats in five groups underwent 6 h of NMP using either erythrocyte-supplemented DMEM or Steen solution, with or without 30 min of warm ischemia time (WIT). We conducted regular measurements of AST, ALT, LDH, and urea levels in the perfusate at 3-hour intervals. Bile samples were analyzed for biliary pH, LDH, and gamma glutamyltransferase, as well as biliary bile acids via mass spectrometry and UHPLC. Results: Compared with regular livers, liver injury parameters were significantly higher in our donation after circulatory death (DCD) model. Bile production was significantly reduced in livers exposed to WIT, and the bile showed a significantly more alkaline pH. This correlated with the concentration of total bile acids, which was significantly higher in livers experiencing WIT. However, regular livers produced a higher total amount of biliary bile acids during perfusion. Taurocholic acid and its metabolites were most prominent. Secondary bile acids were significantly reduced during perfusion due to the missing enterohepatic circulation. Conclusions: WIT-induced liver injury affects bile composition within our small-animal NMP model. We hypothesize this phenomenon to be attributed to the energy-driven nature of bile secretion, potentially explaining why DCD livers produce less, yet more concentrated, bile. Our results may inform clinical studies, in which biliary bile acids might have a potential as a quantifiable viability marker in human NMP liver transplantation studies.
Collapse
Affiliation(s)
- Vanessa Muth
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Felix Stobl
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Julian Michelotto
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Linda Gilles
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Jennifer A Kirwan
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center, Berlin, Germany
| | - Alina Eisenberger
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center, Berlin, Germany
| | - Jeremy Marchand
- Metabolomics Platform, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
- Max Delbrück Center, Berlin, Germany
| | - Nathalie N Roschke
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Simon Moosburner
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité -;Universitätsmedizin;Berlin, BIH Academy, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Igor M Sauer
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité -;Universitätsmedizin;Berlin, BIH Academy, Berlin, Germany
| | - Joseph Mgv Gassner
- Department of Surgery CCM|CVK, Experimental Surgery, Charité -;Universitätsmedizin;Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität;zu;Berlin, Berlin, Germany
- Clinician Scientist Program, Berlin Institute of Health at Charité -;Universitätsmedizin;Berlin, BIH Academy, Berlin, Germany
| |
Collapse
|
16
|
Semash K, Salimov U, Dzhanbekov T, Sabirov D. Liver Graft Machine Perfusion: From History Perspective to Modern Approaches in Transplant Surgery. EXP CLIN TRANSPLANT 2024; 22:497-508. [PMID: 39223808 DOI: 10.6002/ect.2024.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The shortage of donor organs remains an unresolved issue in livertransplantation worldwide. Consequently, strategies for expanding the donor pool are currently being developed. Donors meeting extended criteria undergo thorough evaluation, as livers obtained from marginal donors yield poorer outcomes in recipients, including exacerbated reperfusion injury, acute kidney injury, early graft dysfunction, and primary nonfunctioning graft. However, the implementation of machine perfusion has shown excellent potential in preserving donor livers and improving their characteristics to achieve better outcomes for recipients. In this review, we analyzed the global experience of using machine perfusion in livertransplantation through the history ofthe development ofthis method to the latest trends and possibilities for increasing the number of liver transplants.
Collapse
|
17
|
Martin JL, Rhodes F, Upponi S, Udeaja Y, Swift L, Fear C, Webster R, Webb GJ, Allison M, Paterson A, Gaurav R, Butler AJ, Watson CJE. Localized Liver Injury During Normothermic Ex Situ Liver Perfusion Has No Impact on Short-term Liver Transplant Outcomes. Transplantation 2024; 108:1403-1409. [PMID: 38419153 PMCID: PMC11115454 DOI: 10.1097/tp.0000000000004970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/17/2023] [Accepted: 12/31/2023] [Indexed: 03/02/2024]
Abstract
BACKGROUND Normothermic ex situ liver perfusion (NESLiP) has the potential to increase organ utilization. Radiological evidence of localized liver injury due to compression at the time of NESLiP, termed cradle compression, is a recognized phenomenon but is poorly characterized. METHODS A retrospective analysis of a prospectively collected database was performed of transplanted livers that underwent NESLiP and subsequently had a computed tomography performed within the first 14 d posttransplant. The primary study outcome was 1-y graft survival. RESULTS Seventy livers (63%) were included in the analysis. Radiological evidence of cradle compression was observed in 21 of 70 (30%). There was no difference in rate of cradle compression between donor after circulatory death and donated after brain death donors ( P = 0.37) or with duration of NESLiP. Univariate analysis demonstrated younger (area under the receiver operating characteristic, 0.68; P = 0.008; 95% confidence interval [CI], 0.55-0.82) and heavier (area under the receiver operating characteristic, 0.80; P < 0.001; 95% CI, 0.69-0.91) livers to be at risk of cradle compression. Only liver weight was associated with cradle compression on multivariate analysis (odds ratio, 1.003; P = 0.005; 95% CI, 1.001-1.005). There was no difference in 1-y graft survival (16/17 [94.1%] versus 44/48 [91.6%]; odds ratio, 0.69; P = 0.75; 95% CI, 0.07-6.62). CONCLUSIONS This is the first study assessing the impact of cradle compression on outcome. We have identified increased donor liver weight and younger age as risk factors for the development of this phenomenon. Increasing utilization of NESLiP will result in the increased incidence of cradle compression but the apparent absence of long-term sequelae is reassuring. Routine postoperative axial imaging may be warranted.
Collapse
Affiliation(s)
- Jack L. Martin
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| | | | - Sara Upponi
- Department of Radiology, Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Yagazie Udeaja
- Department of Radiology, Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Lisa Swift
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| | - Corina Fear
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| | - Rachel Webster
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| | - Gwilym James Webb
- Department of Hepatology, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Michael Allison
- Department of Hepatology, Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| | - Anna Paterson
- Histopathology Department, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rohit Gaurav
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| | - Andrew J. Butler
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| | - Christopher J. E. Watson
- Roy Calne Transplant Unit, Cambridge University Hospitals NHS Foundation Trust, and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
18
|
De Goeij FHC, De Meijer V, Mergental H, Guarrera JV, Asthana S, Ghinolfi D, Boteon YL, Selzner N, Kalisvaart M, Pulitano C, Sonnenday C, Martins PN, Berlakovich G, Schlegel A. Challenges With the Implementation of Machine Perfusion in Clinical Liver Transplantation. Transplantation 2024; 108:1296-1307. [PMID: 38057969 DOI: 10.1097/tp.0000000000004872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Dynamic organ preservation is a relatively old technique which has regained significant interest in the last decade. Machine perfusion (MP) techniques are applied in various fields of solid organ transplantation today. The first clinical series of ex situ MP in liver transplantation was presented in 2010. Since then, the number of research and clinical applications has substantially increased. Despite the notable beneficial effect on organ quality and recipient outcome, MP is still not routinely used in liver transplantation. Based on the enormous need to better preserve organs and the subsequent demand to continuously innovate and develop perfusion equipment further, this technology is also beneficial to test and deliver future therapeutic strategies to livers before implantation. This article summarizes the various challenges observed during the current shift from static to dynamic liver preservation in the clinical setting. The different organ perfusion strategies are discussed first, together with ongoing clinical trials and future study design. The current status of research and the impact of costs and regulations is highlighted next. Factors contributing to costs and other required resources for a worldwide successful implementation and reimbursement are presented third. The impact of research on cost-utility and effectivity to guide the tailored decision-making regarding the optimal perfusion strategy is discussed next. Finally, this article provides potential solutions to the challenging field of innovation in healthcare considering the various social and economic factors and the role of clinical, regulatory, and financial stakeholders worldwide.
Collapse
Affiliation(s)
- Femke H C De Goeij
- Department of Surgery, Division of Hepatopancreatobiliary and Transplant Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent De Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Surgery, Surgical Research Laboratory, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hynek Mergental
- The Liver Unit, Queen Elizabeth University Hospital, Birmingham, United Kingdom
- The Liver Unit, Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - James V Guarrera
- Division of Abdominal Transplant Surgery, Department of Surgery, Rutgers New Jersey Medical School, Newark, NJ
| | | | - Davide Ghinolfi
- Hepatobiliary Surgery and Liver Transplantation, University of Pisa Medical School Hospital, Pisa, Italy
| | - Yuri L Boteon
- Instituto Israelita de Ensino e Pesquisa Albert Einstein, Faculdade Israelita de Ciências da Saúde Albert Einstein, São Paulo, Brazil
| | - Nazia Selzner
- Ajmera Transplant Center, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Marit Kalisvaart
- Department of Surgery and Transplantation, Swiss HPB Centre, University Hospital Zurich, Zurich, Switzerland
| | - Carlo Pulitano
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital and Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | | | - Paulo N Martins
- Division of Organ Transplantation, Department of Surgery, University of Massachusetts Memorial Hospital, University of Massachusetts, Worcester, MA
| | - Gabriela Berlakovich
- Division of Transplantation, Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
19
|
Hofmann J, Kofler A, Schartner M, Buch ML, Hermann M, Zelger B, Öfner D, Oberhuber R, Hautz T, Schneeberger S, Meszaros AT. Assessment of Mitochondrial Respiration During Hypothermic Storage of Liver Biopsies Following Normothermic Machine Perfusion. Transpl Int 2024; 37:12787. [PMID: 38845758 PMCID: PMC11153658 DOI: 10.3389/ti.2024.12787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/07/2024] [Indexed: 06/09/2024]
Abstract
Organ quality can be assessed prior to transplantation, during normothermic machine perfusion (NMP) of the liver. Evaluation of mitochondrial function by high-resolution respirometry (HRR) may serve as a viability assessment concept in this setting. Freshly collected tissue is considered as optimal sample for HRR, but due to technical and personnel requirements, more flexible and schedulable measurements are needed. However, the impact of cold storage following NMP before processing biopsy samples for mitochondrial analysis remains unknown. We aimed at establishing an appropriate storage protocol of liver biopsies for HRR. Wedge biopsies of 5 human livers during NMP were obtained and assessed by HRR. Analysis was performed after 0, 4, 8, and 12 h of hypothermic storage (HTS) in HTK organ preservation solution at 4°C. With HTS up to 4 h, mitochondrial performance did not decrease in HTS samples compared with 0 h (OXPHOS, 44.62 [34.75-60.15] pmol·s-1·mg wet mass-1 vs. 43.73 [40.69-57.71], median [IQR], p > 0.999). However, at HTS beyond 4 h, mitochondrial respiration decreased. We conclude that HTS can be safely applied for extending the biopsy measurement window for up to 4 h to determine organ quality, but also that human liver respiration degrades beyond 4 h HTS following NMP.
Collapse
Affiliation(s)
- Julia Hofmann
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kofler
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Melanie Schartner
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Madita L. Buch
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Hermann
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Bettina Zelger
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Öfner
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Rupert Oberhuber
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Theresa Hautz
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Schneeberger
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Andras T. Meszaros
- OrganLife Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
20
|
Wang BK, Shubin AD, Harvey JA, MacConmara MM, Hwang CS, Patel MS, Vagefi PA. From Patients to Providers: Assessing Impact of Normothermic Machine Perfusion on Liver Transplant Practices in the US. J Am Coll Surg 2024; 238:844-852. [PMID: 38078619 DOI: 10.1097/xcs.0000000000000924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) of livers allows for the expansion of the donor pool and minimization of posttransplant complications. Results to date have focused on both donor and recipient outcomes, but there remains potential for NMP to also impact transplant providers. STUDY DESIGN Using United Network for Organ Sharing Standard Transplant Analysis file data, adult deceased donors who underwent transplantation between January 1, 2016, and December 31, 2022, were identified. Transplanted livers were divided by preservation methods (static cold storage [SCS] and NMP) and case time (day-reperfusion 8 am to 6 pm ). Patient factors, transplant characteristics, and short-term outcomes were analyzed between Mahalanobis-metric-matched groups. RESULTS NMP livers represented 742 (1.4%) of 52,132 transplants. NMP donors were more marginal with higher Donor Risk Index scores (1.78 ± 0.50 NMP vs 1.49 ± 0.38 SCS, p < 0.001) and donation after cardiac death frequency (36.9% vs 8.4%, p < 0.001). NMP recipients more often had model for end-stage liver disease (MELD) exception status (29.9% vs 23.4%, p < 0.001), lower laboratory MELD scores (20.7 ± 9.7 vs 24.3 ± 10.9, p < 0.001), and had been waitlisted longer (111.5 [21.0 to 307.0] vs 60.0 [9.0 to 245.0] days, p < 0.001). One-year graft survival (90.2% vs 91.6%, p = 0.505) was similar between groups, whereas length of stay was lower for NMP recipients (8.0 [6.0 to 14.0] vs 10.0 [6.0 to 16.0], p = 0.017) after adjusting for confounders. Notably, peak case volume occurred at 11 am with NMP livers (vs 9 pm with SCS). Overall, a higher proportion of transplants was performed during daytime hours with NMP (51.5% vs 43.0%, p < 0.001). CONCLUSIONS NMP results in increased use of marginal allografts, which facilitated transplantation in lower laboratory MELD recipients who have been waitlisted longer and often have exception points. Importantly, NMP also appeared to shift peak caseloads from nighttime to daytime, which may have significant effects on the quality of life for the entire liver transplant team.
Collapse
Affiliation(s)
- Benjamin K Wang
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | - Andrew D Shubin
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | - Jalen A Harvey
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | | | - Christine S Hwang
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | - Madhukar S Patel
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| | - Parsia A Vagefi
- From the Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX (Wang, Shubin, Harvey, Hwang, Patel, Vagefi)
| |
Collapse
|
21
|
Watson CJ, Gaurav R, Butler AJ. Current Techniques and Indications for Machine Perfusion and Regional Perfusion in Deceased Donor Liver Transplantation. J Clin Exp Hepatol 2024; 14:101309. [PMID: 38274508 PMCID: PMC10806097 DOI: 10.1016/j.jceh.2023.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/27/2023] [Indexed: 01/27/2024] Open
Abstract
Since the advent of University of Wisconsin preservation solution in the 1980s, clinicians have learned to work within its confines. While affording improved outcomes, considerable limitations still exist and contribute to the large number of livers that go unused each year, often for fear they may never work. The last 10 years have seen the widespread availability of new perfusion modalities which provide an opportunity for assessing organ viability and prolonged organ storage. This review will discuss the role of in situ normothermic regional perfusion for livers donated after circulatory death. It will also describe the different modalities of ex situ perfusion, both normothermic and hypothermic, and discuss how they are thought to work and the opportunities afforded by them.
Collapse
Affiliation(s)
- Christopher J.E. Watson
- University of Cambridge Department of Surgery, Box 210, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Rohit Gaurav
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| | - Andrew J. Butler
- University of Cambridge Department of Surgery, Box 210, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
- The Roy Calne Transplant Unit, Addenbrooke's Hospital, Cambridge, CB2 2QQ, UK
| |
Collapse
|
22
|
Kim SC, Foley DP. Strategies to Improve the Utilization and Function of DCD Livers. Transplantation 2024; 108:625-633. [PMID: 37496117 DOI: 10.1097/tp.0000000000004739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Despite the increased usage of livers from donation after circulatory death (DCD) donors in the last decade, many patients remaining on the waitlist who need a liver transplant. Recent efforts have focused on maximizing the utilization and outcomes of these allografts using advances in machine perfusion technology and other perioperative strategies such as normothermic regional perfusion (NRP). In addition to the standard donor and recipient matching that is required with DCD donation, new data regarding the impact of graft steatosis, extensive European experience with NRP, and the increasing use of normothermic and hypothermic machine perfusion have shown immense potential in increasing DCD organ overall utilization and improved outcomes. These techniques, along with viability testing of extended criteria donors, have generated early promising data to consider the use of higher-risk donor organs and more widespread adoption of these techniques in the United States. This review explores the most recent international literature regarding strategies to optimize the utilization and outcomes of DCD liver allografts, including donor-recipient matching, perioperative strategies including NRP versus rapid controlled DCD recovery, viability assessment of discarded livers, and postoperative strategies including machine perfusion versus pharmacologic interventions.
Collapse
Affiliation(s)
- Steven C Kim
- Division of Transplantation, Department of Surgery, Emory University School of Medicine, Atlanta, GA
| | - David P Foley
- Division of Transplantation, Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
23
|
Krendl FJ, Bellotti R, Sapisochin G, Schaefer B, Tilg H, Scheidl S, Margreiter C, Schneeberger S, Oberhuber R, Maglione M. Transplant oncology - Current indications and strategies to advance the field. JHEP Rep 2024; 6:100965. [PMID: 38304238 PMCID: PMC10832300 DOI: 10.1016/j.jhepr.2023.100965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 02/03/2024] Open
Abstract
Liver transplantation (LT) was originally described by Starzl as a promising strategy to treat primary malignancies of the liver. Confronted with high recurrence rates, indications drifted towards non-oncologic liver diseases with LT finally evolving from a high-risk surgery to an almost routine surgical procedure. Continuously improving outcomes following LT and evolving oncological treatment strategies have driven renewed interest in transplant oncology. This is not only reflected by constant refinements to the criteria for LT in patients with HCC, but especially by efforts to expand indications to other primary and secondary liver malignancies. With new patient-centred oncological treatments on the rise and new technologies to expand the donor pool, the field has the chance to come full circle. In this review, we focus on the concept of transplant oncology, current indications, as well as technical and ethical aspects in the context of donor organs as precious resources.
Collapse
Affiliation(s)
- Felix J. Krendl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Ruben Bellotti
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Gonzalo Sapisochin
- Multi-Organ Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Benedikt Schaefer
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Austria
| | - Herbert Tilg
- Department of Medicine I, Gastroenterology, Hepatology and Endocrinology, Medical University of Innsbruck, Austria
| | - Stefan Scheidl
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Christian Margreiter
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Rupert Oberhuber
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Center for Operative Medicine, Medical University of Innsbruck, Austria
| |
Collapse
|
24
|
Longchamp A, Nakamura T, Uygun K, Markmann JF. Role of Machine Perfusion in Liver Transplantation. Surg Clin North Am 2024; 104:45-65. [PMID: 37953040 DOI: 10.1016/j.suc.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Given the current severe shortage of available livers for transplantation, there is an urgent need to maximize the utilization of donor organs. One of the strategies to increase the number of available livers for transplantation is to improve organ utilization through the use of elderly, overweight, or organs donated after circulatory death. However, the utilization of these "marginal" organs was associated with an increased risk of early allograft dysfunction, primary nonfunction, ischemic biliary complications, or even re-transplantation. Ischemia-reperfusion injury is a key mechanism in the pathogenesis of these complications.
Collapse
Affiliation(s)
- Alban Longchamp
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Tsukasa Nakamura
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Division of Transplant Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Surgery, Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Brüggenwirth IM, Lantinga VA, Lascaris B, Thorne AM, Meerdink M, de Kleine RH, Blokzijl H, van den Berg AP, Reyntjens KM, Lisman T, Porte RJ, de Meijer VE. Prolonged hypothermic machine perfusion enables daytime liver transplantation - an IDEAL stage 2 prospective clinical trial. EClinicalMedicine 2024; 68:102411. [PMID: 38235423 PMCID: PMC10789636 DOI: 10.1016/j.eclinm.2023.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Background Liver transplantation is traditionally performed around the clock to minimize organ ischemic time. However, the prospect of prolonging preservation times holds the potential to streamline logistics and transform liver transplantation into a semi-elective procedure, reducing the need for nighttime surgeries. Dual hypothermic oxygenated machine perfusion (DHOPE) of donor livers for 1-2 h mitigates ischemia-reperfusion injury and improves transplant outcomes. Preclinical studies have shown that DHOPE can safely extend the preservation of donor livers for up to 24 h. Methods We conducted an IDEAL stage 2 prospective clinical trial comparing prolonged (≥4 h) DHOPE to conventional (1-2 h) DHOPE for brain-dead donor livers, enabling transplantation the following morning. Liver allocation to each group was based on donor hepatectomy end times. The primary safety endpoint was a composite of all serious adverse events (SAE) within 30 days after transplantation. The primary feasibility endpoint was defined as the number of patients assigned and successfully receiving a prolonged DHOPE-perfused liver graft. Trial registration at: WHO International Clinical Trial Registry Platform, number NL8740. Findings Between November 1, 2020 and July 16, 2022, 24 patients were enrolled. The median preservation time was 14.5 h (interquartile range [IQR], 13.9-15.5) for the prolonged group (n = 12) and 7.9 h (IQR, 7.6-8.6) for the control group (n = 12; p = 0.01). In each group, three patients (25%; 95% CI 3.9-46%, p = 1) experienced a SAE. Markers of ischemia-reperfusion injury and oxidative stress in both perfusate and recipients were consistently low and showed no notable discrepancies between the two groups. All patients assigned to either the prolonged group or control group successfully received a liver graft perfused with either prolonged DHOPE or control DHOPE, respectively. Interpretation This first-in-human clinical trial demonstrates the safety and feasibility of DHOPE in prolonging the preservation time of donor livers to enable daytime transplantation. The ability to extend the preservation window to up to 20 h using hypothermic oxygenated machine preservation at a 10 °C temperature has the potential to reshape the landscape of liver transplantation. Funding University Medical Center Groningen, the Netherlands.
Collapse
Affiliation(s)
- Isabel M.A. Brüggenwirth
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Veerle A. Lantinga
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Bianca Lascaris
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Adam M. Thorne
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Mark Meerdink
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Ruben H. de Kleine
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
| | - Hans Blokzijl
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Aad P. van den Berg
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Koen M.E.M. Reyntjens
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J. Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E. de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
26
|
López-Martínez S, Simón C, Santamaria X. Normothermic Machine Perfusion Systems: Where Do We Go From Here? Transplantation 2024; 108:22-44. [PMID: 37026713 DOI: 10.1097/tp.0000000000004573] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Normothermic machine perfusion (NMP) aims to preserve organs ex vivo by simulating physiological conditions such as body temperature. Recent advancements in NMP system design have prompted the development of clinically effective devices for liver, heart, lung, and kidney transplantation that preserve organs for several hours/up to 1 d. In preclinical studies, adjustments to circuit structure, perfusate composition, and automatic supervision have extended perfusion times up to 1 wk of preservation. Emerging NMP platforms for ex vivo preservation of the pancreas, intestine, uterus, ovary, and vascularized composite allografts represent exciting prospects. Thus, NMP may become a valuable tool in transplantation and provide significant advantages to biomedical research. This review recaps recent NMP research, including discussions of devices in clinical trials, innovative preclinical systems for extended preservation, and platforms developed for other organs. We will also discuss NMP strategies using a global approach while focusing on technical specifications and preservation times.
Collapse
Affiliation(s)
- Sara López-Martínez
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carlos Simón
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- Department of Obstetrics and Gynecology, Universidad de Valencia, Valencia, Spain
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX
| | - Xavier Santamaria
- Carlos Simon Foundation, Centro de Investigación Príncipe Felipe, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| |
Collapse
|
27
|
Mergental H, Laing RW, Kirkham AJ, Clarke G, Boteon YL, Barton D, Neil DAH, Isaac JR, Roberts KJ, Abradelo M, Schlegel A, Dasari BVM, Ferguson JW, Cilliers H, Morris C, Friend PJ, Yap C, Afford SC, Perera MTPR, Mirza DF. Discarded livers tested by normothermic machine perfusion in the VITTAL trial: Secondary end points and 5-year outcomes. Liver Transpl 2024; 30:30-45. [PMID: 38109282 DOI: 10.1097/lvt.0000000000000270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/27/2023] [Indexed: 12/20/2023]
Abstract
Normothermic machine perfusion (NMP) enables pretransplant assessment of high-risk donor livers. The VITTAL trial demonstrated that 71% of the currently discarded organs could be transplanted with 100% 90-day patient and graft survivals. Here, we report secondary end points and 5-year outcomes of this prospective, open-label, phase 2 adaptive single-arm study. The patient and graft survivals at 60 months were 82% and 72%, respectively. Four patients lost their graft due to nonanastomotic biliary strictures, one caused by hepatic artery thrombosis in a liver donated following brain death, and 3 in elderly livers donated after circulatory death (DCD), which all clinically manifested within 6 months after transplantation. There were no late graft losses for other reasons. All the 4 patients who died during the study follow-up had functioning grafts. Nonanastomotic biliary strictures developed in donated after circulatory death livers that failed to produce bile with pH >7.65 and bicarbonate levels >25 mmol/L. Histological assessment in these livers revealed high bile duct injury scores characterized by arterial medial necrosis. The quality of life at 6 months significantly improved in all but 4 patients suffering from nonanastomotic biliary strictures. This first report of long-term outcomes of high-risk livers assessed by normothermic machine perfusion demonstrated excellent 5-year survival without adverse effects in all organs functioning beyond 1 year (ClinicalTrials.gov number NCT02740608).
Collapse
Affiliation(s)
- Hynek Mergental
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Richard W Laing
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- Hepato-pancreato Biliary Unit, Royal Stoke University Hospital, Stoke on Trent, UK
| | - Amanda J Kirkham
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - George Clarke
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Yuri L Boteon
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- Liver Unit, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Darren Barton
- D3B team, Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
| | - Desley A H Neil
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
- Department of Cellular Pathology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
| | - John R Isaac
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
| | - Keith J Roberts
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Manuel Abradelo
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- HPB and Abdominal Organ Transplantation Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Andrea Schlegel
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Centre of Preclinical Research, Milan, Italy
| | - Bobby V M Dasari
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
| | - James W Ferguson
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
| | - Hentie Cilliers
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
| | | | - Peter J Friend
- OrganOx Limited, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Christina Yap
- Cancer Research UK Clinical Trials Unit, University of Birmingham, Birmingham, UK
- Clinical Trials and Statistics Unit, The Institute for Cancer Research, London
| | - Simon C Afford
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - M Thamara P R Perera
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Darius F Mirza
- Liver Unit, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust (UHBFT), Birmingham, UK
- National Institute for Health Research (NIHR), Birmingham Biomedical Research Centre, University of Birmingham and University Hospitals Birmingham NHS Foundation Trust, UK
- Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| |
Collapse
|
28
|
Nwaduru C, Baker E, Buff M, Selim M, Ovalle LA, Baker TB, Zimmerman MA. Assessing Liver Viability: Insights From Mitochondrial Bioenergetics in Ischemia-Reperfusion Injury. Transplant Proc 2024; 56:228-235. [PMID: 38171992 DOI: 10.1016/j.transproceed.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Orthotopic liver transplantation remains the definitive treatment for patients with end-stage liver disease. Unfortunately, the increasing demand for donor livers and the limited supply of viable organs have both led to a critical need for innovative strategies to expand the pool of transplantable organs. The mitochondrion, central to hepatic cellular function, plays a pivotal role in hepatic ischemic injury, with impaired mitochondrial function and oxidative stress leading to cell death. Mitochondrial protection strategies have shown promise in mitigating IRI and resuscitating marginal organs for transplant. Machine perfusion (MP) has been proven a valuable tool for reviving marginal organs with very promising results. Evaluation of liver viability during perfusion traditionally relies on parameters including lactate clearance, bile production, and transaminase levels. Nevertheless, the quest for more comprehensive and universally applicable viability markers persists. Normothermic regional perfusion has gained robust attention, offering extended recovery time for organs from donation after cardiac death donors. This approach has shown remarkable success in improving organ quality and reducing ischemic injury using the body's physiological conditions. The current challenge lies in the absence of a reliable assessment tool for predicting graft viability and post-transplant outcomes. To address this, exploring insights from mitochondrial function in the context of ischemia-reperfusion injury could offer a promising path toward better patient outcomes and graft longevity. Indeed, hypoxia-induced mitochondrial injury may serve as a surrogate marker of organ viability following oxygenated resuscitation techniques in the future.
Collapse
Affiliation(s)
- Chinedu Nwaduru
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah.
| | - Emma Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michelle Buff
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Motaz Selim
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Leo Aviles Ovalle
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Talia B Baker
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Michael A Zimmerman
- Department of Surgery, Division of Transplantation and Advanced Hepatobiliary Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
29
|
van Leeuwen OB, Bodewes SB, Porte RJ, de Meijer VE. Excellent long-term outcomes after sequential hypothermic and normothermic machine perfusion challenges the importance of functional donor warm ischemia time in DCD liver transplantation. J Hepatol 2023; 79:e244-e245. [PMID: 37516206 DOI: 10.1016/j.jhep.2023.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/16/2023] [Indexed: 07/31/2023]
Affiliation(s)
- Otto B van Leeuwen
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Silke B Bodewes
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Current affiliation: Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Division of HPB and Transplant Surgery, Rotterdam, the Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
30
|
Thorne AM, Wolters JC, Lascaris B, Bodewes SB, Lantinga VA, van Leeuwen OB, de Jong IEM, Ustyantsev K, Berezikov E, Lisman T, Kuipers F, Porte RJ, de Meijer VE. Bile proteome reveals biliary regeneration during normothermic preservation of human donor livers. Nat Commun 2023; 14:7880. [PMID: 38036513 PMCID: PMC10689461 DOI: 10.1038/s41467-023-43368-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
Normothermic machine perfusion (NMP) after static cold storage is increasingly used for preservation and assessment of human donor livers prior to transplantation. Biliary viability assessment during NMP reduces the risk of post-transplant biliary complications. However, understanding of molecular changes in the biliary system during NMP remains incomplete. We performed an in-depth, unbiased proteomics analysis of bile collected during sequential hypothermic machine perfusion, rewarming and NMP of 55 human donor livers. Longitudinal analysis during NMP reveals proteins reflective of cellular damage at early stages, followed by upregulation of secretory and immune response processes. Livers with bile chemistry acceptable for transplantation reveal protein patterns implicated in regenerative processes, including cellular proliferation, compared to livers with inadequate bile chemistry. These findings are reinforced by detection of regenerative gene transcripts in liver tissue before machine perfusion. Our comprehensive bile proteomics and liver transcriptomics data sets provide the potential to further evaluate molecular mechanisms during NMP and refine viability assessment criteria.
Collapse
Affiliation(s)
- Adam M Thorne
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Justina C Wolters
- Department of Pediatrics, University of Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Bianca Lascaris
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Silke B Bodewes
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Veerle A Lantinga
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Otto B van Leeuwen
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Iris E M de Jong
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands
| | - Kirill Ustyantsev
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Eugene Berezikov
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University of Groningen, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands
- Erasmus MC Transplant Institute, Department of Surgery, Division of HPB and Transplant Surgery, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent E de Meijer
- Department of Liver Transplantation and HPB Surgery, University of Groningen and University Medical Center Groningen, Groningen, the Netherlands.
- UMCG Comprehensive Transplant Center, Groningen, the Netherlands.
| |
Collapse
|
31
|
Bodewes SB, Lascaris B, Adelmeijer J, de Meijer VE, Porte RJ, Lisman T. Normothermic Machine-perfused Human Donor Livers Produce Functional Hemostatic Proteins. Transplantation 2023; 107:2377-2383. [PMID: 37291723 DOI: 10.1097/tp.0000000000004670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) is used for the viability assessment of high-risk donor livers before transplantation. The production of hemostatic proteins is one of the major synthetic functions of the liver. The objective of this study was to measure the concentration and functionality of hemostatic proteins concentration in the NMP perfusate of human donor livers. METHODS Thirty-six livers that underwent NMP for viability assessment were included in this study. Perfusate samples taken during NMP (start, 150 min, and 300 min) were used for the measurement of antigen and activity levels of hemostatic proteins (factors II, VII, and X; fibrinogen; plasminogen; antithrombin; tissue plasminogen activator; von Willebrand factor; and proteins induced by vitamin K absence). The antigen levels were correlated with hepatocellular function according to previously proposed individual hepatocellular viability criteria: lactate clearance and perfusate pH. RESULTS Antigen levels of hemostatic proteins reached subphysiological levels in the NMP perfusate. Hemostatic proteins that were produced during NMP were at least partially active. All livers produced all hemostatic proteins tested within 150 min of NMP. Hemostatic protein concentrations did not significantly correlate with perfusate lactate and perfusate pH after 150 min of NMP. CONCLUSIONS All livers produce functional hemostatic proteins during NMP. The generation of a functional hemostatic system in NMP perfusate confirms the need for adequate anticoagulation of the perfusate to avoid generation of (micro)thrombi that may harm the graft.
Collapse
Affiliation(s)
- Silke B Bodewes
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bianca Lascaris
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelle Adelmeijer
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
32
|
Iske J, Schroeter A, Knoedler S, Nazari-Shafti TZ, Wert L, Roesel MJ, Hennig F, Niehaus A, Kuehn C, Ius F, Falk V, Schmelzle M, Ruhparwar A, Haverich A, Knosalla C, Tullius SG, Vondran FWR, Wiegmann B. Pushing the boundaries of innovation: the potential of ex vivo organ perfusion from an interdisciplinary point of view. Front Cardiovasc Med 2023; 10:1272945. [PMID: 37900569 PMCID: PMC10602690 DOI: 10.3389/fcvm.2023.1272945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
Ex vivo machine perfusion (EVMP) is an emerging technique for preserving explanted solid organs with primary application in allogeneic organ transplantation. EVMP has been established as an alternative to the standard of care static-cold preservation, allowing for prolonged preservation and real-time monitoring of organ quality while reducing/preventing ischemia-reperfusion injury. Moreover, it has paved the way to involve expanded criteria donors, e.g., after circulatory death, thus expanding the donor organ pool. Ongoing improvements in EVMP protocols, especially expanding the duration of preservation, paved the way for its broader application, in particular for reconditioning and modification of diseased organs and tumor and infection therapies and regenerative approaches. Moreover, implementing EVMP for in vivo-like preclinical studies improving disease modeling raises significant interest, while providing an ideal interface for bioengineering and genetic manipulation. These approaches can be applied not only in an allogeneic and xenogeneic transplant setting but also in an autologous setting, where patients can be on temporary organ support while the diseased organs are treated ex vivo, followed by reimplantation of the cured organ. This review provides a comprehensive overview of the differences and similarities in abdominal (kidney and liver) and thoracic (lung and heart) EVMP, focusing on the organ-specific components and preservation techniques, specifically on the composition of perfusion solutions and their supplements and perfusion temperatures and flow conditions. Novel treatment opportunities beyond organ transplantation and limitations of abdominal and thoracic EVMP are delineated to identify complementary interdisciplinary approaches for the application and development of this technique.
Collapse
Affiliation(s)
- Jasper Iske
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Schroeter
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Samuel Knoedler
- Division of Plastic Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Z. Nazari-Shafti
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonard Wert
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilian J. Roesel
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Felix Hennig
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adelheid Niehaus
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Christian Kuehn
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Fabio Ius
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Volkmar Falk
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
- Department of Health Science and Technology, Translational Cardiovascular Technology, ETH Zurich, Zürich, Switzerland
| | - Moritz Schmelzle
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Axel Haverich
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| | - Christoph Knosalla
- Department of Cardiothoracic Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bettina Wiegmann
- Department for Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development (NIFE), Hannover, Germany
| |
Collapse
|
33
|
Tingle SJ, Dobbins JJ, Thompson ER, Figueiredo RS, Mahendran B, Pandanaboyana S, Wilson C. Machine perfusion in liver transplantation. Cochrane Database Syst Rev 2023; 9:CD014685. [PMID: 37698189 PMCID: PMC10496129 DOI: 10.1002/14651858.cd014685.pub2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
BACKGROUND Liver transplantation is the only chance of cure for people with end-stage liver disease and some people with advanced liver cancers or acute liver failure. The increasing prevalence of these conditions drives demand and necessitates the increasing use of donated livers which have traditionally been considered suboptimal. Several novel machine perfusion preservation technologies have been developed, which attempt to ameliorate some of the deleterious effects of ischaemia reperfusion injury. Machine perfusion technology aims to improve organ quality, thereby improving outcomes in recipients of suboptimal livers when compared to traditional static cold storage (SCS; ice box). OBJECTIVES To evaluate the effects of different methods of machine perfusion (including hypothermic oxygenated machine perfusion (HOPE), normothermic machine perfusion (NMP), controlled oxygenated rewarming, and normothermic regional perfusion) versus each other or versus static cold storage (SCS) in people undergoing liver transplantation. SEARCH METHODS We used standard, extensive Cochrane search methods. The latest search date was 10 January 2023. SELECTION CRITERIA We included randomised clinical trials which compared different methods of machine perfusion, either with each other or with SCS. Studies comparing HOPE via both hepatic artery and portal vein, or via portal vein only, were grouped. The protocol detailed that we also planned to include quasi-randomised studies to assess treatment harms. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcomes were 1. overall participant survival, 2. quality of life, and 3. serious adverse events. Secondary outcomes were 4. graft survival, 5. ischaemic biliary complications, 6. primary non-function of the graft, 7. early allograft function, 8. non-serious adverse events, 9. transplant utilisation, and 10. transaminase release during the first week post-transplant. We assessed bias using Cochrane's RoB 2 tool and used GRADE to assess certainty of evidence. MAIN RESULTS We included seven randomised trials (1024 transplant recipients from 1301 randomised/included livers). All trials were parallel two-group trials; four compared HOPE versus SCS, and three compared NMP versus SCS. No trials used normothermic regional perfusion. When compared with SCS, it was uncertain whether overall participant survival was improved with either HOPE (hazard ratio (HR) 0.91, 95% confidence interval (CI) 0.42 to 1.98; P = 0.81, I2 = 0%; 4 trials, 482 recipients; low-certainty evidence due to imprecision because of low number of events) or NMP (HR 1.08, 95% CI 0.31 to 3.80; P = 0.90; 1 trial, 222 recipients; very low-certainty evidence due to imprecision and risk of bias). No trials reported quality of life. When compared with SCS alone, HOPE was associated with improvement in the following clinically relevant outcomes: graft survival (HR 0.45, 95% CI 0.23 to 0.87; P = 0.02, I2 = 0%; 4 trials, 482 recipients; high-certainty evidence), serious adverse events in extended criteria DBD liver transplants (OR 0.45, 95% CI 0.22 to 0.91; P = 0.03, I2 = 0%; 2 trials, 156 participants; moderate-certainty evidence) and clinically significant ischaemic cholangiopathy in recipients of DCD livers (OR 0.31, 95% CI 0.11 to 0.92; P = 0.03; 1 trial, 156 recipients; high-certainty evidence). In contrast, NMP was not associated with improvement in any of these clinically relevant outcomes. NMP was associated with improved utilisation compared with SCS (one trial found a 50% lower rate of organ discard; P = 0.008), but the reasons underlying this effect are unknown. We identified 11 ongoing studies investigating machine perfusion technologies. AUTHORS' CONCLUSIONS In situations where the decision has been made to transplant a liver donated after circulatory death or donated following brain death, end-ischaemic HOPE will provide superior clinically relevant outcomes compared with SCS alone. Specifically, graft survival is improved (high-certainty evidence), serious adverse events are reduced (moderate-certainty evidence), and in donors after circulatory death, clinically relevant ischaemic biliary complications are reduced (high-certainty evidence). There is no good evidence that NMP has the same benefits over SCS in terms of these clinically relevant outcomes. NMP does appear to improve utilisation of grafts that would otherwise be discarded with SCS; however, the reasons for this, and whether this effect is specific to NMP, is not clear. Further studies into NMP viability criteria and utilisation, as well as head-to-head trials with other perfusion technologies are needed. In the setting of donation following circulatory death transplantation, further trials are needed to assess the effect of these ex situ machine perfusion methods against, or in combination with, normothermic regional perfusion.
Collapse
Affiliation(s)
- Samuel J Tingle
- NIHR Blood and Transplant Research Unit, Newcastle University and Cambridge University, Newcastle upon Tyne, UK
| | | | - Emily R Thompson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | - Sanjay Pandanaboyana
- HPB and Liver Transplant Surgery, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Colin Wilson
- Institute of Transplantation, The Freeman Hospital, Newcastle upon Tyne, UK
| |
Collapse
|
34
|
Yilma M, Dalal N, Wadhwani SI, Hirose R, Mehta N. Geographic disparities in access to liver transplantation. Liver Transpl 2023; 29:987-997. [PMID: 37232214 PMCID: PMC10914246 DOI: 10.1097/lvt.0000000000000182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/08/2023] [Indexed: 05/27/2023]
Abstract
Since the Final Rule regarding transplantation was published in 1999, organ distribution policies have been implemented to reduce geographic disparity. While a recent change in liver allocation, termed acuity circles, eliminated the donor service area as a unit of distribution to decrease the geographic disparity of waitlisted patients to liver transplantation, recently published results highlight the complexity of addressing geographic disparity. From geographic variation in donor supply, as well as liver disease burden and differing model for end-stage liver disease (MELD) scores of candidates and MELD scores necessary to receive liver transplantation, to the urban-rural disparity in specialty care access, and to neighborhood deprivation (community measure of socioeconomic status) in liver transplant access, addressing disparities of access will require a multipronged approach at the patient, transplant center, and national level. Herein, we review the current knowledge of these disparities-from variation in larger (regional) to smaller (census tract or zip code) levels to the common etiologies of liver disease, which are particularly affected by these geographic boundaries. The geographic disparity in liver transplant access must balance the limited organ supply with the growing demand. We must identify patient-level factors that contribute to their geographic disparity and incorporate these findings at the transplant center level to develop targeted interventions. We must simultaneously work at the national level to standardize and share patient data (including socioeconomic status and geographic social deprivation indices) to better understand the factors that contribute to the geographic disparity. The complex interplay between organ distribution policy, referral patterns, and variable waitlisting practices with the proportion of high MELD patients and differences in potential donor supply must all be considered to create a national policy strategy to address the inequities in the system.
Collapse
Affiliation(s)
- Mignote Yilma
- Department of Surgery, University of California San Francisco
- National Clinician Scholars Program, University of California San Francisco
| | - Nicole Dalal
- Department of Medicine, University of California San Francisco
| | | | - Ryutaro Hirose
- Department of Transplant, University of California San Francisco
| | - Neil Mehta
- Department of Medicine, University of California San Francisco
| |
Collapse
|
35
|
Blondeel J, Gilbo N, Heedfeld V, Wylin T, Libbrecht L, Jochmans I, Pirenne J, Korf H, Monbaliu D. The Distinct Innate Immune Response of Warm Ischemic Injured Livers during Continuous Normothermic Machine Perfusion. Int J Mol Sci 2023; 24:12831. [PMID: 37629012 PMCID: PMC10454045 DOI: 10.3390/ijms241612831] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Although normothermic machine perfusion (NMP) provides superior preservation of liver grafts compared to static cold storage and allows for viability testing of high-risk grafts, its effect on the liver immune compartment remains unclear. We investigated the innate immune response during 6 h of continuous NMP (cNMP) of livers that were directly procured (DP, n = 5) or procured after 60 min warm ischemia (WI, n = 5), followed by 12 h of whole blood (WB) reperfusion. WI livers showed elevated transaminase levels during cNMP but not after WB reperfusion. Perfusate concentrations of TNF-α were lower in WI livers during cNMP and WB reperfusion, whereas IL-8 concentrations did not differ significantly. TGF-β concentrations were higher in WI livers during NMP but not after WB reperfusion, whereas IL-10 concentrations were similar. Endoplasmic stress and apoptotic signaling were increased in WI livers during cNMP but not after WB reperfusion. Additionally, neutrophil mobilization increased to a significantly lesser extent in WI livers at the end of NMP. In conclusion, WI livers exhibit a distinct innate immune response during cNMP compared to DP livers. The cytokine profile shifted towards an anti-inflammatory phenotype during cNMP and WB reperfusion, and pro-apoptotic signaling was stronger during cNMP. During WB reperfusion, livers exhibited a blunted cytokine release, regardless of ischemic damage, supporting the potential reconditioning effect of cNMP.
Collapse
Affiliation(s)
- Joris Blondeel
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Nicholas Gilbo
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Veerle Heedfeld
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Tine Wylin
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Louis Libbrecht
- Department of Pathology, AZ Groeninge, 8500 Kortrijk, Belgium;
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, 3000 Leuven, Belgium;
| | - Ina Jochmans
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Jacques Pirenne
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Hannelie Korf
- Laboratory of Hepatology, CHROMETA Department, KU Leuven, 3000 Leuven, Belgium;
| | - Diethard Monbaliu
- Department of Abdominal Transplant Surgery and Transplant Coordination, University Hospitals Leuven, 3000 Leuven, Belgium; (J.B.); (N.G.); (V.H.); (T.W.); (I.J.); (J.P.)
- Laboratory of Abdominal Transplantation, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
36
|
Lau NS, Ly M, Dennis C, Jacques A, Cabanes-Creus M, Toomath S, Huang J, Mestrovic N, Yousif P, Chanda S, Wang C, Lisowski L, Liu K, Kench JG, McCaughan G, Crawford M, Pulitano C. Long-term ex situ normothermic perfusion of human split livers for more than 1 week. Nat Commun 2023; 14:4755. [PMID: 37553343 PMCID: PMC10409852 DOI: 10.1038/s41467-023-40154-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/14/2023] [Indexed: 08/10/2023] Open
Abstract
Current machine perfusion technology permits livers to be preserved ex situ for short periods to assess viability prior to transplant. Long-term normothermic perfusion of livers is an emerging field with tremendous potential for the assessment, recovery, and modification of organs. In this study, we aimed to develop a long-term model of ex situ perfusion including a surgical split and simultaneous perfusion of both partial organs. Human livers declined for transplantation were perfused using a red blood cell-based perfusate under normothermic conditions (36 °C) and then split and simultaneously perfused on separate machines. Ten human livers were split, resulting in 20 partial livers. The median ex situ viability was 125 h, and the median ex situ survival was 165 h. Long-term survival was demonstrated by lactate clearance, bile production, Factor-V production, and storage of adenosine triphosphate. Here, we report the long-term ex situ perfusion of human livers and demonstrate the ability to split and perfuse these organs using a standardised protocol.
Collapse
Affiliation(s)
- Ngee-Soon Lau
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Mark Ly
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Claude Dennis
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2006, Australia
| | - Andrew Jacques
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Sydney, New South Wales, 2145, Australia
| | - Shamus Toomath
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Joanna Huang
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Nicole Mestrovic
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Paul Yousif
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Sumon Chanda
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Chuanmin Wang
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, Sydney, New South Wales, 2145, Australia
- Military Institute of Medicine, Laboratory of Molecular Oncology and Innovative Therapies, 04-141, Warsaw, Poland
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW, 2145, Australia
| | - Ken Liu
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - James G Kench
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Department of Tissue Pathology and Diagnostic Oncology, NSW Health Pathology, Royal Prince Alfred Hospital, Sydney, New South Wales, 2006, Australia
| | - Geoffrey McCaughan
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Centenary Institute, Sydney, New South Wales, Australia
| | - Michael Crawford
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Carlo Pulitano
- Centre for Organ Assessment Repair and Optimisation, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia.
- Australian National Liver Transplantation Unit, Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia.
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| |
Collapse
|
37
|
Guo Z, Zhao Q, Jia Z, Huang C, Wang D, Ju W, Zhang J, Yang L, Huang S, Chen M, Zhu X, Hu A, Ma Y, Wu L, Chen Y, Han M, Tang Y, Wang G, Wang L, Li L, Xiong W, Zhang Z, Shen Y, Tang Z, Zhu C, Chen X, Hu X, Guo Y, Chen H, Ma Y, Zhang T, Huang S, Zeng P, Lai S, Wang T, Chen Z, Gong J, Yu J, Sun C, Li C, Tan H, Liu Y, Dong Y, Sun C, Liao B, Ren J, Zhou Z, Andrea S, Björn N, Cai C, Gong F, Rong J, Huang W, Guan X, Clavien PA, Stefan TG, Huang J, He X. A randomized-controlled trial of ischemia-free liver transplantation for end-stage liver disease. J Hepatol 2023; 79:394-402. [PMID: 37086919 DOI: 10.1016/j.jhep.2023.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/13/2023] [Accepted: 04/03/2023] [Indexed: 04/24/2023]
Abstract
BACKGROUND & AIMS Ischemia-reperfusion injury (IRI) has thus far been considered as an inevitable component of organ transplantation, compromising outcomes, and limiting organ availability. Ischemia-free organ transplantation is a novel approach designed to avoid IRI, with the potential to improve outcomes. METHODS In this randomized-controlled clinical trial, recipients of livers from donors after brain death were randomly assigned to receive either an ischemia-free or a 'conventional' transplant. The primary endpoint was the incidence of early allograft dysfunction. Secondary endpoints included complications related to graft IRI. RESULTS Out of 68 randomized patients, 65 underwent transplants and were included in the analysis. 32 patients received ischemia-free liver transplantation (IFLT), and 33 received conventional liver transplantation (CLT). Early allograft dysfunction occurred in two recipients (6%) randomized to IFLT and in eight (24%) randomized to CLT (difference -18%; 95% CI -35% to -1%; p = 0.044). Post-reperfusion syndrome occurred in three recipients (9%) randomized to IFLT and in 21 (64%) randomized to CLT (difference -54%; 95% CI -74% to -35%; p <0.001). Non-anastomotic biliary strictures diagnosed with protocol magnetic resonance cholangiopancreatography at 12 months were observed in two recipients (8%) randomized to IFLT and in nine (36%) randomized to CLT (difference, -28%; 95% CI -50% to -7%; p = 0.014). The comprehensive complication index at 1 year after transplantation was 30.48 (95% CI 23.25-37.71) in the IFLT group vs. 42.14 (95% CI 35.01-49.26) in the CLT group (difference -11.66; 95% CI -21.81 to -1.51; p = 0.025). CONCLUSIONS Among patients with end-stage liver disease, IFLT significantly reduced complications related to IRI compared to a conventional approach. CLINICAL TRIAL REGISTRATION chictr.org. ChiCTR1900021158. IMPACT AND IMPLICATIONS Ischemia-reperfusion injury has thus far been considered as an inevitable event in organ transplantation, compromising outcomes and limiting organ availability. Ischemia-free liver transplantation is a novel approach of transplanting donor livers without interruption of blood supply. We showed that in patients with end-stage liver disease, ischemia-free liver transplantation, compared with a conventional approach, led to reduced complications related to ischemia-reperfusion injury in this randomized trial. This new approach is expected to change the current practice in organ transplantation, improving transplant outcomes, increasing organ utilization, while providing a clinical model to delineate the impact of organ injury on alloimmunity.
Collapse
Affiliation(s)
- Zhiyong Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China; NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, China.
| | - Qiang Zhao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Zehua Jia
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Changjun Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Dongping Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Weiqiang Ju
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Jian Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510080, China
| | - Lu Yang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shanzhou Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Maogen Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Xiaofeng Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Anbin Hu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Linwei Wu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yinghua Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Ming Han
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yunhua Tang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Guodong Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Linhe Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Lifen Li
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhiheng Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yuekun Shen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhaoxia Tang
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Caihui Zhu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Xiaoxiang Chen
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoguang Hu
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yiwen Guo
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Honghui Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yihao Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Tao Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Shunwei Huang
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ping Zeng
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Simei Lai
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Tielong Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Zhitao Chen
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Jinlong Gong
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Jia Yu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Canhui Sun
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chang Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haiyi Tan
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yao Liu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Yuqi Dong
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Chengjun Sun
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jun Ren
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zhenhai Zhou
- Department of Blood Transfusion, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Schlegel Andrea
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, 20100, Italy
| | - Nashan Björn
- Organ Transplantation Center, The First Affiliated Hospital of the University of Science and Technology of China, Hefei, 230001, China
| | - Changjie Cai
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fengqiu Gong
- Operating Room and Anesthesia Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jian Rong
- Department of Cardiopulmonary Bypass, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiangdong Guan
- Surgical Intensive Care Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Pierre-Alain Clavien
- Department of Surgery and Transplantation, Swiss HPB Center, University Hospital Zurich, Zurich 8044, Switzerland
| | - Tullius G Stefan
- Division of Transplant Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Jiefu Huang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoshun He
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Guangzhou, 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Guangzhou, 510080, China.
| |
Collapse
|
38
|
van den Boom BP, Bodewes SB, Lascaris B, Adelmeijer J, Porte RJ, de Meijer VE, Lisman T. The international normalised ratio to monitor coagulation factor production during normothermic machine perfusion of human donor livers. Thromb Res 2023; 228:64-71. [PMID: 37290373 DOI: 10.1016/j.thromres.2023.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND Normothermic machine perfusion (NMP) of donor livers allows for new diagnostic and therapeutic strategies. As the liver produces most of the haemostatic proteins, coagulation assays such as the International Normalised Ratio (INR) performed in perfusate may be useful to assess hepatocellular function of donor livers undergoing NMP. However, high concentrations of heparin and low levels of fibrinogen may affect coagulation assays. METHODS Thirty donor livers that underwent NMP were retrospectively included in this study, of which 18 were subsequently transplanted. We measured INRs in perfusate in presence or absence of exogenously added fibrinogen and/or polybrene. Additionally, we prospectively included 14 donor livers that underwent NMP (of which 11 were transplanted) and measured INR using both a laboratory coagulation analyser and a point-of-care device. RESULTS In untreated perfusate samples, the INR was above the detection limit in all donor livers. Addition of both fibrinogen and polybrene was required for adequate INR assessment. INRs decreased over time and detectable perfusate INR values were found in 17/18 donor livers at the end of NMP. INR results were similar between the coagulation analyser and the point-of-care device, but did not correlate with established hepatocellular viability criteria. CONCLUSIONS Most of the donor livers that were transplanted showed a detectable perfusate INR at the end of NMP, but samples require processing to allow for INR measurements using laboratory coagulation analysers. Point-of-care devices bypass this need for processing. The INR does not correlate with established viability criteria and might therefore have additional predictive value.
Collapse
Affiliation(s)
- Bente P van den Boom
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Silke B Bodewes
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bianca Lascaris
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jelle Adelmeijer
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Robert J Porte
- Section of HPB Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Vincent E de Meijer
- Section of HPB Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ton Lisman
- Surgical Research Laboratory and Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Section of HPB Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
39
|
Patrono D, De Stefano N, Vissio E, Apostu AL, Petronio N, Vitelli G, Catalano G, Rizza G, Catalano S, Colli F, Chiusa L, Romagnoli R. How to Preserve Steatotic Liver Grafts for Transplantation. J Clin Med 2023; 12:3982. [PMID: 37373676 DOI: 10.3390/jcm12123982] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Liver allograft steatosis is a significant risk factor for postoperative graft dysfunction and has been associated with inferior patient and graft survival, particularly in the case of moderate or severe macrovesicular steatosis. In recent years, the increasing incidence of obesity and fatty liver disease in the population has led to a higher proportion of steatotic liver grafts being used for transplantation, making the optimization of their preservation an urgent necessity. This review discusses the mechanisms behind the increased susceptibility of fatty livers to ischemia-reperfusion injury and provides an overview of the available strategies to improve their utilization for transplantation, with a focus on preclinical and clinical evidence supporting donor interventions, novel preservation solutions, and machine perfusion techniques.
Collapse
Affiliation(s)
- Damiano Patrono
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicola De Stefano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Elena Vissio
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Ana Lavinia Apostu
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Nicoletta Petronio
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giovanni Vitelli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Giorgia Rizza
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Silvia Catalano
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Fabio Colli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Luigi Chiusa
- Department of Pathology, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| | - Renato Romagnoli
- General Surgery 2U-Liver Transplant Unit, Department of Surgical Sciences, Azienda Ospedaliero Universitaria Città della Salute e della Scienza di Torino, Università di Torino, Corso Bramante 88-90, 10126 Turin, Italy
| |
Collapse
|
40
|
Ozgur OS, Namsrai BE, Pruett TL, Bischof JC, Toner M, Finger EB, Uygun K. Current practice and novel approaches in organ preservation. FRONTIERS IN TRANSPLANTATION 2023; 2:1156845. [PMID: 38993842 PMCID: PMC11235303 DOI: 10.3389/frtra.2023.1156845] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation remains the only treatment option for patients with end-stage organ failure. The last decade has seen a flurry of activity in improving organ preservation technologies, which promise to increase utilization in a dramatic fashion. They also bring the promise of extending the preservation duration significantly, which opens the doors to sharing organs across local and international boundaries and transforms the field. In this work, we review the recent literature on machine perfusion of livers across various protocols in development and clinical use, in the context of extending the preservation duration. We then review the next generation of technologies that have the potential to further extend the limits and open the door to banking organs, including supercooling, partial freezing, and nanowarming, and outline the opportunities arising in the field for researchers in the short and long term.
Collapse
Affiliation(s)
- Ozge Sila Ozgur
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| | - Bat-Erdene Namsrai
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Timothy L. Pruett
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - John C. Bischof
- Departments of Mechanical and Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Mehmet Toner
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| | - Erik B. Finger
- Department of Surgery, University of Minnesota, Minneapolis, MN, United States
| | - Korkut Uygun
- Department of Surgery, Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Research Department, Shriners Children’s Boston, Boston, MA, United States
| |
Collapse
|
41
|
de Jong IE, Bodewes SB, van Leeuwen OB, Oosterhuis D, Lantinga VA, Thorne AM, Lascaris B, van den Heuvel MC, Wells RG, Olinga P, de Meijer VE, Porte RJ. Restoration of Bile Duct Injury of Donor Livers During Ex Situ Normothermic Machine Perfusion. Transplantation 2023; 107:e161-e172. [PMID: 36721302 PMCID: PMC10205124 DOI: 10.1097/tp.0000000000004531] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/06/2022] [Accepted: 11/14/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND End-ischemic ex situ normothermic machine perfusion (NMP) enables assessment of donor livers prior to transplantation. The objective of this study was to provide support for bile composition as a marker of biliary viability and to investigate whether bile ducts of high-risk human donor livers already undergo repair during NMP. METHODS Forty-two livers that were initially declined for transplantation were included in our NMP clinical trial. After NMP, livers were either secondary declined (n = 17) or accepted for transplantation (n = 25) based on the chemical composition of bile and perfusate samples. Bile duct biopsies were taken before and after NMP and assessed using an established histological injury severity scoring system and a comprehensive immunohistochemical assessment focusing on peribiliary glands (PBGs), vascular damage, and regeneration. RESULTS Bile ducts of livers that were transplanted after viability testing during NMP showed better preservation of PBGs, (micro)vasculature, and increased cholangiocyte proliferation, compared with declined livers. Biliary bicarbonate, glucose, and pH were confirmed as accurate biomarkers of bile duct vitality. In addition, we found evidence of PBG-based progenitor cell differentiation toward mature cholangiocytes during NMP. CONCLUSIONS Favorable bile chemistry during NMP correlates well with better-preserved biliary microvasculature and PBGs, with a preserved capacity for biliary regeneration. During NMP, biliary tree progenitor cells start to differentiate toward mature cholangiocytes, facilitating restoration of the ischemically damaged surface epithelium.
Collapse
Affiliation(s)
- Iris E.M. de Jong
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Silke B. Bodewes
- Surgical Research Laboratory, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Otto B. van Leeuwen
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dorenda Oosterhuis
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Veerle A. Lantinga
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adam M. Thorne
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Bianca Lascaris
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marius C. van den Heuvel
- Department of Pathology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Rebecca G. Wells
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Groningen, The Netherlands
| | - Vincent E. de Meijer
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert J. Porte
- Section of Hepatobiliary Surgery and Liver Transplantation, Department of Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Surgery, Division of HPB and Transplant Surgery, Rotterdam, The Netherlands
| |
Collapse
|
42
|
De Carlis R, Paolo Muiesan, Taner B. Donation after circulatory death: Novel strategies to improve the liver transplant outcome. J Hepatol 2023; 78:1169-1180. [PMID: 37208104 DOI: 10.1016/j.jhep.2023.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/07/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
In many countries, donation after circulatory death (DCD) liver grafts are used to overcome organ shortages; however, DCD grafts have been associated with an increased risk of complications and even graft loss after liver transplantation. The increased risk of complications is thought to correlate with prolonged functional donor warm ischaemia time. Stringent donor selection criteria and utilisation of in situ and ex situ organ perfusion technologies have led to improved outcomes. Additionally, the increased use of novel organ perfusion strategies has led to the possibility of reconditioning marginal DCD liver grafts. Moreover, these technologies enable the assessment of liver function before implantation, thus providing valuable data that can guide more precise graft-recipient selection. In this review, we first describe the different definitions of functional warm donor ischaemia time and its role as a determinant of outcomes after DCD liver transplantation, with a focus on the thresholds proposed for graft acceptance. Next, organ perfusion strategies, namely normothermic regional perfusion, hypothermic oxygenated perfusion, and normothermic machine perfusion are discussed. For each technique, clinical studies reporting on the transplant outcome are described, together with a discussion on the possible protective mechanisms involved and the functional criteria adopted for graft selection. Finally, we review multimodal preservation protocols involving a combination of more than one perfusion technique and potential future directions in the field.
Collapse
Affiliation(s)
- Riccardo De Carlis
- Division of General Surgery and Transplantation, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; Ph.D. Course in Clinical and Experimental Sciences, University of Padua, Padua, Italy
| | - Paolo Muiesan
- General and Liver Transplant Surgery Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, 20122, Italy
| | - Burcin Taner
- Department of Transplant, Mayo Clinic Florida, Jacksonville, United States.
| |
Collapse
|
43
|
Vargas PA, Yu C, Goldaracena N. Comprehensive review of the application of MP and the potential for graft modification. FRONTIERS IN TRANSPLANTATION 2023; 2:1163539. [PMID: 38993846 PMCID: PMC11235300 DOI: 10.3389/frtra.2023.1163539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Following procurement, the liver graft is exposed to an ischemic period that triggers several pathophysiologic changes in response to oxygen deprivation. Therefore, the goal during organ preservation is to attenuate such response and provide an adequate environment that prepares the graft for its metabolic reactivation following implantation. This has been widely achieved via static cold storage preservation, where the maintenance of the graft using cold preservation solutions reduce its metabolic activity and confer cytoprotection until transplantation. However, despite being the gold standard for organ preservation, static cold storage holds several disadvantages. In addition, the ongoing organ shortage has led to the use of unconventional grafts that could benefit from therapies pre-transplant. Organ preservation via machine perfusion systems appears as a promising solution to address both. Methods Here, we aim to present a state-of-the-art narrative review regarding liver graft modification options using machine perfusion systems in combination with adjuvant strategies including immunomodulation, gene therapy and pharmacotherapy. Results Available reports are scarce and mostly on experimental animal models. Most of the literature reflects the use of normothermic or subnormothermic machine perfusion devices given that these particular type of machine allows for a metabolically active organ, and therefore facilitates its modification. Although limited, promising findings in available reports suggest that organ preservation using machine perfusion system when combined with alternative therapies can be feasible and safe strategies for graft modification. Discussion Further research on clinical settings are needed to better elucidate the true effect of graft modification pre-transplant on short- and long-term graft and patient survival. There is a long way ahead to develop guidelines and approve these novel therapies for clinical practice. However, the path looks promising.
Collapse
Affiliation(s)
- Paola A. Vargas
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, VA, United States
| | - Christine Yu
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| | - Nicolas Goldaracena
- Division of Transplant Surgery, Department of Surgery, University of Virginia Health System, Charlottesville, VA, United States
| |
Collapse
|
44
|
Staubli SM, Ceresa CDL, Pollok JM. The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering (Basel) 2023; 10:bioengineering10050593. [PMID: 37237663 DOI: 10.3390/bioengineering10050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The relative paucity of donor livers suitable for transplantation has sparked innovations to preserve and recondition organs to expand the pool of transplantable organs. Currently, machine perfusion techniques have led to the improvement of the quality of marginal livers and to prolonged cold ischemia time and have allowed for the prediction of graft function through the analysis of the organ during perfusion, improving the rate of organ use. In the future, the implementation of organ modulation might expand the scope of machine perfusion beyond its current usage. The aim of this review was to provide an overview of the current clinical use of machine perfusion devices in liver transplantation and to provide a perspective for future clinical use, including therapeutic interventions in perfused donor liver grafts.
Collapse
Affiliation(s)
- Sebastian M Staubli
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
| | - Carlo D L Ceresa
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
- Oxford University Hospitals NHS Foundation Trust, University of Oxford, Oxfordshire OX3 9DU, UK
| | - Joerg M Pollok
- HPB and Liver Transplantation Service, Royal Free London NHS Foundation Trust, Pond Street, London NW3 QG, UK
- Division of Surgery & Interventional Science, University College London, London WC1E 6BT, UK
| |
Collapse
|
45
|
Li J, Lu H, Zhang J, Li Y, Zhao Q. Comprehensive Approach to Assessment of Liver Viability During Normothermic Machine Perfusion. J Clin Transl Hepatol 2023; 11:466-479. [PMID: 36643041 PMCID: PMC9817053 DOI: 10.14218/jcth.2022.00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/14/2022] [Accepted: 08/10/2022] [Indexed: 01/18/2023] Open
Abstract
Liver transplantation is the most effective treatment of advanced liver disease, and the use of extended criteria donor organs has broadened the source of available livers. Although normothermic machine perfusion (NMP) has become a useful tool in liver transplantation, there are no consistent criteria that can be used to evaluate the viability of livers during NMP. This review summarizes the criteria, indicators, and methods used to evaluate liver viability during NMP. The shape, appearance, and hemodynamics of the liver can be analyzed at a macroscopic level, while markers of liver injury, indicators of liver and bile duct function, and other relevant indicators can be evaluated by biochemical analysis. The liver can also be assessed by tissue biopsy at the microscopic level. Novel methods for assessment of liver viability are introduced. The limitations of evaluating liver viability during NMP are discussed and suggestions for future clinical practice are provided.
Collapse
Affiliation(s)
| | | | | | | | - Qiang Zhao
- Correspondence to: Qiang Zhao, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China. ORCID: https://orcid.org/0000-0002-6369-1393. Tel: +86-15989196835, E-mail:
| |
Collapse
|
46
|
Olumba FC, Zhou F, Park Y, Chapman WC. Normothermic Machine Perfusion for Declined Livers: A Strategy to Rescue Marginal Livers for Transplantation. J Am Coll Surg 2023; 236:614-625. [PMID: 36728302 DOI: 10.1097/xcs.0000000000000555] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Organ waste is a major cause of the donor liver shortage. Roughly 67% of recovered organ donors have liver utilization annually. A new technology called normothermic machine perfusion (NMP) offers a way to recover marginal and declined livers for transplant. We report interim results of the RESTORE trial (FDA investigational drug exemption trial NCT04483102) that aims to transplant NMP-treated livers that would otherwise be discarded. STUDY DESIGN Declined livers were screened for NMP eligibility (eg donation after circulatory death [DCD] grafts with warm ischemic time <40 minutes, donation after brain death [DBD] grafts with cold ischemic time <8 hours). Livers meeting pre-NMP eligibility criteria received NMP using the OrganOx metra device for a minimum of 4 hours. All NMP-treated livers meeting the viability criteria were transplanted to consented recipients. RESULTS Over 22 months, 60 declined livers from three organ procurement organizations (OPOs; 40 DCD and 20 DBD donor livers) were offered, and 22 livers (10 DCD and 12 DBD livers) met the pre-NMP eligibility. After NMP, 16 of 22 livers passed viability testing and were transplanted into needy recipients (median Model for End-Stage Liver Disease [MELD] score of 8, range 6 to 24), resulting in a 72.7% rescue rate (50% DCD, 91.7% DBD). The rate of early allograft dysfunction was 31.3%, but there were no graft-related deaths, primary nonfunction, or instances of nonanastomotic biliary strictures. CONCLUSIONS Interim results of the RESTORE trial suggest that a sizable number of declined livers can be reclaimed. They are safe for transplantation and can enable lower MELD patients at high risk of morbidity and mortality to receive lifesaving grafts while offering OPOs a way to allocate more livers and reduce organ waste.
Collapse
Affiliation(s)
- Franklin C Olumba
- From the Department of Abdominal Organ Transplantation Surgery, Washington University School of Medicine, St Louis, MO (Olumba, Zhou, Chapman)
| | - Fangyu Zhou
- From the Department of Abdominal Organ Transplantation Surgery, Washington University School of Medicine, St Louis, MO (Olumba, Zhou, Chapman)
| | - Yikyung Park
- the Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St Louis, MO (Park)
| | - William C Chapman
- From the Department of Abdominal Organ Transplantation Surgery, Washington University School of Medicine, St Louis, MO (Olumba, Zhou, Chapman)
| |
Collapse
|
47
|
Patrono D, Colli F, Colangelo M, De Stefano N, Apostu AL, Mazza E, Catalano S, Rizza G, Mirabella S, Romagnoli R. How Can Machine Perfusion Change the Paradigm of Liver Transplantation for Patients with Perihilar Cholangiocarcinoma? J Clin Med 2023; 12:jcm12052026. [PMID: 36902813 PMCID: PMC10004136 DOI: 10.3390/jcm12052026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Perihilar cholangiocarcinomas (pCCA) are rare yet aggressive tumors originating from the bile ducts. While surgery remains the mainstay of treatment, only a minority of patients are amenable to curative resection, and the prognosis of unresectable patients is dismal. The introduction of liver transplantation (LT) after neoadjuvant chemoradiation for unresectable pCCA in 1993 represented a major breakthrough, and it has been associated with 5-year survival rates consistently >50%. Despite these encouraging results, pCCA has remained a niche indication for LT, which is most likely due to the need for stringent candidate selection and the challenges in preoperative and surgical management. Machine perfusion (MP) has recently been reintroduced as an alternative to static cold storage to improve liver preservation from extended criteria donors. Aside from being associated with superior graft preservation, MP technology allows for the safe extension of preservation time and the testing of liver viability prior to implantation, which are characteristics that may be especially useful in the setting of LT for pCCA. This review summarizes current surgical strategies for pCCA treatment, with a focus on unmet needs that have contributed to the limited spread of LT for pCCA and how MP could be used in this setting, with a particular emphasis on the possibility of expanding the donor pool and improving transplant logistics.
Collapse
|
48
|
Banker A, Bhatt N, Rao PS, Agrawal P, Shah M, Nayak M, Mohanka R. A Review of Machine Perfusion Strategies in Liver Transplantation. J Clin Exp Hepatol 2023; 13:335-349. [PMID: 36950485 PMCID: PMC10025749 DOI: 10.1016/j.jceh.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 02/17/2023] Open
Abstract
The acceptance of liver transplantation as the standard of care for end-stage liver diseases has led to a critical shortage of donor allografts. To expand the donor organ pool, many countries have liberalized the donor criteria including extended criteria donors and donation after circulatory death. These marginal livers are at a higher risk of injury when they are preserved using the standard static cold storage (SCS) preservation techniques. In recent years, research has focused on optimizing organ preservation techniques to protect these marginal livers. Machine perfusion (MP) of the expanded donor liver has witnessed considerable advancements in the last decade. Research has showed MP strategies to confer significant advantages over the SCS techniques, such as longer preservation times, viability assessment and the potential to recondition high risk allografts prior to implantation. In this review article, we address the topic of MP in liver allograft preservation, with emphasis on current trends in clinical application. We discuss the relevant clinical trials related to the techniques of hypothermic MP, normothermic MP, hypothermic oxygenated MP, and controlled oxygenated rewarming. We also discuss the potential applications of ex vivo therapeutics which may be relevant in the future to further optimize the allograft prior to transplantation.
Collapse
Key Words
- ALP, Alkaline phosphatase
- ALT, Alanine transaminase
- ASO, Antisense oligonucleotides
- AST, Aspartate transaminase
- CIT, Cold ischemia times
- COPE, Consortium for Organ Preservation in Europe
- COR, Controlled oxygenated rewarming
- DBD, Donation after brain death
- DCD, Donation after circulatory death
- DHOPE, dual hypothermic oxygenated machine perfusion
- EAD, Early allograft dysfunction
- ECD, Extended criteria donors
- ETC, Electron transport chain
- GGT, Gamma glutamyl transferase
- HCV, Hepatitis C virus
- HMP, Hypothermic machine perfusion
- HOPE, Hypothermic oxygenated machine perfusion
- ICU, Intensive care unit
- IGL, Institute George Lopez-1
- INR, International normalized ratio
- IRI, ischemia reperfusion injury
- LDH, Lactate dehydrogenase
- MELD, Model for end-stage liver disease
- MP, Machine perfusion
- NAS, Non-anastomotic biliary strictures
- NMP, Normothermic machine perfusion
- NO, Nitric oxide
- PNF, Primary nonfunction
- ROS, Reactive oxygen species
- RT-PCR, Reverse transcription polymerase chain reaction
- SNMP, Sub-normothermic machine perfusion
- UW, University of Wisconsin
- WIT, Warm ischemia times
- hypothermic machine perfusion
- hypothermic oxygenated machine perfusion
- machine perfusion
- normothermic machine perfusion
- static cold storage
Collapse
Affiliation(s)
- Amay Banker
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Neha Bhatt
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Prashantha S. Rao
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Pravin Agrawal
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Mitul Shah
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Madhavi Nayak
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| | - Ravi Mohanka
- Department of Liver Transplant and HPB Surgery, Sir HN Reliance Foundation Hospital, Mumbai, India
| |
Collapse
|
49
|
Lozanovski VJ, Adigozalov S, Khajeh E, Ghamarnejad O, Aminizadeh E, Schleicher C, Hackert T, Müller-Stich BP, Merle U, Picardi S, Lund F, Chang DH, Mieth M, Fonouni H, Golriz M, Mehrabi A. Declined Organs for Liver Transplantation: A Right Decision or a Missed Opportunity for Patients with Hepatocellular Carcinoma? Cancers (Basel) 2023; 15:1365. [PMID: 36900157 PMCID: PMC10000136 DOI: 10.3390/cancers15051365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND Liver transplantation is the only promising treatment for end-stage liver disease and patients with hepatocellular carcinoma. However, too many organs are rejected for transplantation. METHODS We analyzed the factors involved in organ allocation in our transplant center and reviewed all livers that were declined for transplantation. Reasons for declining organs for transplantation were categorized as major extended donor criteria (maEDC), size mismatch and vascular problems, medical reasons and risk of disease transmission, and other reasons. The fate of the declined organs was analyzed. RESULTS 1086 declined organs were offered 1200 times. A total of 31% of the livers were declined because of maEDC, 35.5% because of size mismatch and vascular problems, 15.8% because of medical reasons and risk of disease transmission, and 20.7% because of other reasons. A total of 40% of the declined organs were allocated and transplanted. A total of 50% of the organs were completely discarded, and significantly more of these grafts had maEDC than grafts that were eventually allocated (37.5% vs. 17.7%, p < 0.001). CONCLUSION Most organs were declined because of poor organ quality. Donor-recipient matching at time of allocation and organ preservation must be improved by allocating maEDC grafts using individualized algorithms that avoid high-risk donor-recipient combinations and unnecessary organ declination.
Collapse
Affiliation(s)
- Vladimir J. Lozanovski
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Said Adigozalov
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Elias Khajeh
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Omid Ghamarnejad
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ehsan Aminizadeh
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christina Schleicher
- German Organ Procurement Organization (Deutsche Stiftung Organtransplantation, DSO), 60594 Frankfurt, Germany
| | - Thilo Hackert
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of General, Visceral and Thoracic Surgery, University Hospital Hamburg Eppendorf, 20251 Hamburg, Germany
| | - Beat Peter Müller-Stich
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Uta Merle
- Department of Internal Medicine IV, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Susanne Picardi
- Department of Anesthesiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Frederike Lund
- Department of Anesthesiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - De-Hua Chang
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Department of Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Markus Mieth
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Hamidreza Fonouni
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Mohammad Golriz
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Liver Cancer Center Heidelberg, University Hospital Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
50
|
Shen C, Cheng H, Zong T, Zhu H. The role of normothermic machine perfusion (NMP) in the preservation of ex-vivo liver before transplantation: A review. Front Bioeng Biotechnol 2023; 11:1072937. [PMID: 36845187 PMCID: PMC9947506 DOI: 10.3389/fbioe.2023.1072937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
The discrepancy between the number of patients awaiting liver transplantation and the number of available donors has become a key issue in the transplant setting. There is a limited access to liver transplantation, as a result, it is increasingly dependent on the use of extended criteria donors (ECD) to increase the organ donor pool and address rising demand. However, there are still many unknown risks associated with the use of ECD, among which preservation before liver transplantation is important in determining whether patients would experience complications survive after liver transplantation. In contrast to traditional static cold preservation of donor livers, normothermic machine perfusion (NMP) may reduce preservation injury, improve graft viability, and potentially ex vivo assessment of graft viability before transplantation. Data seem to suggest that NMP can enhance the preservation of liver transplantation to some extent and improve the early outcome after transplantation. In this review, we provided an overview of NMP and its application in ex vivo liver preservation and pre-transplantation, and we summarized the data from current clinical trials of normothermic liver perfusion.
Collapse
Affiliation(s)
- Chuanyan Shen
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hongwei Cheng
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Tingting Zong
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China
| | - Hongli Zhu
- The College of Life Sciences, Northwest University, Xi’an, Shaanxi, China,National Engineering Research Center for Miniaturized Detection Systems, Northwest University, Xi’an, China,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an, China,*Correspondence: Hongli Zhu,
| |
Collapse
|