1
|
Wang G, Zhou X, Guo Z, Huang N, Li J, Lv Y, Han L, Zheng W, Xu D, Chai D, Li H, Li L, Zheng J. The Anti-fibrosis drug Pirfenidone modifies the immunosuppressive tumor microenvironment and prevents the progression of renal cell carcinoma by inhibiting tumor autocrine TGF-β. Cancer Biol Ther 2022; 23:150-162. [PMID: 35130111 PMCID: PMC8824226 DOI: 10.1080/15384047.2022.2035629] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transforming growth factor-β (TGF-β) plays a critical role in regulating cell growth and differentiation. Epithelial to mesenchymal transition (EMT) induced by TGF-β promotes cancer cell migration, invasion, and proliferation. Pirfenidone (5-methyl-1-phenyl-2(1 H)-pyridone, PFD), an approved drug for treating pulmonary and renal fibrosis, is a potent TGF-β inhibitor and found reduced incidence of lung cancer and alleviated renal function decline. However, whether PFD plays a role in controlling renal cancer progression is largely unknown. In the present study, we demonstrated that high TGF-β1 expression was negatively associated with ten-year overall survival of patients with renal cancer. Functionally, blockade of TGF-β signaling with PFD significantly suppressed the progression of renal cancer in a murine model. Mechanistically, we revealed that PFD significantly decreased the expression and secretion of TGF-β both in vitro and in vivo tumor mouse model, which further prevented TGF-β-induced EMT and thus cell proliferation, migration, and invasion. Importantly, the downregulation of TGF-β upon PFD treatment shaped the immunosuppressive tumor microenvironment by limiting the recruitment of tumor-infiltrating MDSCs. Therefore, our study demonstrated that PFD prevents renal cancer progression by inhibiting TGF-β production of cancer cells and downstream signaling pathway, which might be presented as a therapeutic adjuvant for renal cancer.
Collapse
Affiliation(s)
- Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaowan Zhou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zengli Guo
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Huang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Juan Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanfang Lv
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lulu Han
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Wei Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dandan Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Liantao Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Fu L, Liu R, Ma V, Shi YB. Upregulation of proto-oncogene ski by thyroid hormone in the intestine and tail during Xenopus metamorphosis. Gen Comp Endocrinol 2022; 328:114102. [PMID: 35944650 PMCID: PMC9530006 DOI: 10.1016/j.ygcen.2022.114102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/31/2022] [Accepted: 08/03/2022] [Indexed: 11/12/2022]
Abstract
Thyroid hormone (T3) is important for adult organ function and vertebrate development, particularly during the postembryonic period when many organs develop/mature into their adult forms. Amphibian metamorphosis is totally dependent on T3 and can be easily manipulated, thus offering a unique opportunity for studying how T3 controls postembryonic development in vertebrates. Numerous early studies have demonstrated that T3 affects frog metamorphosis through T3 receptor (TR)-mediated regulation of T3 response genes, where TR forms a heterodimer with RXR (9-cis retinoic acid receptor) and binds to T3 response elements (TREs) in T3 response genes to regulate their expression. We have previously identified many candidate direct T3 response genes in Xenopus tropicalis tadpole intestine. Among them is the proto-oncogene Ski, which encodes a nuclear protein with complex function in regulating cell fate. We show here that Ski is upregulated in the intestine and tail of premetamorphic tadpoles upon T3 treatment and its expression peaks at stage 62, the climax of metamorphosis. We have further discovered a putative TRE in the first exon that can bind to TR/RXR in vitro and mediate T3 regulation of the promoter in vivo. These data demonstrate that Ski is activated by T3 through TR binding to a TRE in the first exon during Xenopus tropicalis metamorphosis, implicating a role of Ski in regulating cell fate during metamorphosis.
Collapse
Affiliation(s)
- Liezhen Fu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert Liu
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Vincent Ma
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA
| | - Yun-Bo Shi
- Section on Molecular Morphogenesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Dai H, Abdullah R, Wu X, Li F, Ma Y, Lu A, Zhang G. Pancreatic Cancer: Nucleic Acid Drug Discovery and Targeted Therapy. Front Cell Dev Biol 2022; 10:855474. [PMID: 35652096 PMCID: PMC9149368 DOI: 10.3389/fcell.2022.855474] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/07/2022] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal cancers with an almost 10% 5-year survival rate. Because PC is implicated in high heterogeneity, desmoplastic tumor-microenvironment, and inefficient drug-penetration, the chemotherapeutic strategy currently recommended for the treatment of PC has limited clinical benefit. Nucleic acid-based targeting therapies have become strong competitors in the realm of drug discovery and targeted therapy. A vast evidence has demonstrated that antibody-based or alternatively aptamer-based strategy largely contributed to the elevated drug accumulation in tumors with reduced systematic cytotoxicity. This review describes the advanced progress of antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), microRNAs (miRNAs), messenger RNA (mRNAs), and aptamer-drug conjugates (ApDCs) in the treatment of PC, revealing the bright application and development direction in PC therapy.
Collapse
Affiliation(s)
- Hong Dai
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Razack Abdullah
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute for the Advancement of Chinese medicine (IACM) .Ltd, Shatin, Hong Kong SAR, China
| | - Xiaoqiu Wu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Yuan Ma
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, Shenzhen, China
| |
Collapse
|
4
|
Rass M, Gizler L, Bayersdorfer F, Irlbeck C, Schramm M, Schneuwly S. The Drosophila functional Smad suppressing element fuss, a homologue of the human Skor genes, retains pro-oncogenic properties of the Ski/Sno family. PLoS One 2022; 17:e0262360. [PMID: 35030229 PMCID: PMC8759651 DOI: 10.1371/journal.pone.0262360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Over the years Ski and Sno have been found to be involved in cancer progression e.g. in oesophageal squamous cell carcinoma, melanoma, oestrogen receptor-positive breast carcinoma, colorectal carcinoma, and leukaemia. Often, their prooncogenic features have been linked to their ability of inhibiting the anti-proliferative action of TGF-ß signalling. Recently, not only pro-oncogenic but also anti-oncogenic functions of Ski/Sno proteins have been revealed. Besides Ski and Sno, which are ubiquitously expressed other members of Ski/Sno proteins exist which show highly specific neuronal expression, the SKI Family Transcriptional Corepressors (Skor). Among others Skor1 and Skor2 are involved in the development of Purkinje neurons and a mutation of Skor1 has been found to be associated with restless legs syndrome. But neither Skor1 nor Skor2 have been reported to be involved in cancer progression. Using overexpression studies in the Drosophila eye imaginal disc, we analysed if the Drosophila Skor homologue Fuss has retained the potential to inhibit differentiation and induce increased proliferation. Fuss expressed in cells posterior to the morphogenetic furrow, impairs photoreceptor axon pathfinding and inhibits differentiation of accessory cells. However, if its expression is induced prior to eye differentiation, Fuss might inhibit the differentiating function of Dpp signalling and might maintain proliferative action of Wg signalling, which is reminiscent of the Ski/Sno protein function in cancer.
Collapse
Affiliation(s)
- Mathias Rass
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
- * E-mail:
| | - Laura Gizler
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Florian Bayersdorfer
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Christoph Irlbeck
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Matthias Schramm
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| | - Stephan Schneuwly
- Department of Developmental Biology, Institute of Zoology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
5
|
Sun B, Huang Z, Yang H, Zhao X. MicroRNA‑195‑5p inhibits the progression of hemangioma via targeting SKI. Exp Ther Med 2021; 23:165. [PMID: 35069846 PMCID: PMC8753966 DOI: 10.3892/etm.2021.11088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 04/16/2021] [Indexed: 11/06/2022] Open
Abstract
Hemangioma (HA), which is characterized by aberrant endothelial cell proliferation in blood vessels, is a common tumor during infancy. MicroRNAs (miRNAs/miRs) collectively participate in the development of HA; however, the potential roles of miR-195-5p in HA are not completely understood. The aim of the present study was to investigate the roles of miR-195-5p in HA. In the present study, miR-195-5p was found to be downregulated in HA cells, such as the XPTS-1 human infantile hemangioma-derived endothelial cell line and the EOMA hemangioendothelioma cell line. Overexpression of miR-195-5p was shown to suppress HA cell viability, colony formation and proliferation, and induced HA cell apoptosis. Furthermore, miR-195-5p downregulated Bcl-2 expression and upregulated Bax and Bcl-2 expression levels. V-ski sarcoma viral oncogene homolog (SKI) was identified as a target of miR-195-5p. Co-transfection of miR-195-5p mimics and SKI 3'-untranslated region wild-type decreased HA cell luciferase activity. SKI overexpression alleviated the miR-195-5p-induced decrease in HA cell proliferation and increased HA cell apoptosis. In addition, the regulatory role of miR-195-5p on the expression of Bcl-2, Bax and poly(ADP-ribose) polymerase was reversed by SKI. Collectively, the results of the present study demonstrated that miR-195-5p suppressed HA progression and its effects were mediated via SKI. Therefore, the miR-195-5p/SKI axis may represent a novel therapeutic target for HA.
Collapse
Affiliation(s)
- Bin Sun
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Zhi Huang
- School of Basic Medical Science, Guizhou Medical University Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Hua Yang
- Department of Neurosurgery, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| | - Xuya Zhao
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, Guizhou 550002, P.R. China
| |
Collapse
|
6
|
Thompson-Elliott B, Johnson R, Khan SA. Alterations in TGFβ signaling during prostate cancer progression. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2021; 9:318-328. [PMID: 34541030 PMCID: PMC8446771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
During prostate cancer progression, TGF-β acts as both a tumor suppressor and tumor promoter. TGF-β inhibits cell proliferation in normal and early-stage prostate cancer cells, but during later stages of the disease the cancer cells develop resistance to inhibitory effects on cell proliferation. In these cells, TGF-β promotes cancer progression due to its effects on epithelial to mesenchymal transition (EMT), cell migration and invasion, and immune suppression. The intracellular mechanisms involved in the development of resistance to TGF-β effects on cell proliferation are largely unknown. In this review, we summarized the roles of several intracellular proteins including PTEN, Id1 and JunD, which may play a role in this transition. The role of Ski/SnoN proteins in inhibition of Smad2/3 signaling is highlighted.
Collapse
Affiliation(s)
| | - Rarnice Johnson
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| | - Shafiq A Khan
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University Atlanta, Georgia, USA
| |
Collapse
|
7
|
Liao HY, Da CM, Wu ZL, Zhang HH. Ski: Double roles in cancers. Clin Biochem 2020; 87:1-12. [PMID: 33188772 DOI: 10.1016/j.clinbiochem.2020.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/07/2023]
Abstract
The Ski (Sloan-Kettering Institute) is an evolutionarily conserved protein that plays a dual role as an oncoprotein and tumor suppressor gene in the development of human cancer. The Ski oncogene was first identified as a transforming protein of the avian Sloan-Kettering retrovirus in 1986. Since its discovery, Ski has been identified as a carcinogenic regulator in a variety of malignant tumors. Later, it was reported that Ski regulates the occurrence and development of some cancers by acting as an oncogene. Ski mediates the proliferation, differentiation, metastasis, and invasion of numerous cancer cells through various mechanisms. Several studies have shown that Ski expression is correlated with the clinical characteristics of cancer patients and is a promising biomarker and therapeutic target for cancer. In this review, we summarize the mechanisms and potential clinical implications of Ski in dimorphism, cancer occurrence, and progression in various types of cancer.
Collapse
Affiliation(s)
- Hai-Yang Liao
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
8
|
Ponath V, Frech M, Bittermann M, Al Khayer R, Neubauer A, Brendel C, Pogge von Strandmann E. The Oncoprotein SKI Acts as A Suppressor of NK Cell-Mediated Immunosurveillance in PDAC. Cancers (Basel) 2020; 12:E2857. [PMID: 33023028 PMCID: PMC7601115 DOI: 10.3390/cancers12102857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Drugs targeting epigenetic mechanisms such as histone deacetylase inhibitors (HDACi) suppress tumor growth. HDACi also induce the expression of ligands for the cytotoxicity receptor NKG2D rendering tumors more susceptible to natural killer (NK) cell-dependent killing. The major acetylases responsible for the expression of NKG2D ligands (NKG2D-L) are CBP and p300. The role of the oncogene and transcriptional repressor SKI, an essential part of an HDAC-recruiting co-repressor complex, which competes with CBP/p300 for binding to SMAD3 in TGFβ signaling, is unknown. Here we show that the siRNA-mediated downregulation of SKI in the pancreatic cancer cell lines Panc-1 and Patu8988t leads to an increased target cell killing by primary NK cells. However, the higher cytotoxicity of NK cells did not correlate with the induction of NKG2D-L. Of note, the expression of NKG2D-L and consequently NK cell-dependent killing could be induced upon LBH589 (LBH, panobinostat) or valproic acid (VPA) treatment irrespective of the SKI expression level but was significantly higher in pancreatic cancer cells upon genetic ablation of SKI. These data suggest that SKI represses the inducible expression of NKG2D-L. The combination of HDACi with NK cell-based immunotherapy is an attractive treatment option for pancreatic tumors, specifically for patients with high SKI protein levels.
Collapse
Affiliation(s)
- Viviane Ponath
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University of Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; (V.P.); (M.B.); (R.A.K.)
| | - Miriam Frech
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, Baldingerstrasse, 35037 Marburg, Germany; (M.F.); (A.N.); (C.B.)
| | - Mathis Bittermann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University of Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; (V.P.); (M.B.); (R.A.K.)
| | - Reem Al Khayer
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University of Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; (V.P.); (M.B.); (R.A.K.)
| | - Andreas Neubauer
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, Baldingerstrasse, 35037 Marburg, Germany; (M.F.); (A.N.); (C.B.)
| | - Cornelia Brendel
- Clinic for Hematology, Oncology, Immunology and Center for Tumor Biology and Immunology, Philipps University of Marburg, Baldingerstrasse, 35037 Marburg, Germany; (M.F.); (A.N.); (C.B.)
| | - Elke Pogge von Strandmann
- Institute for Tumor Immunology, Clinic for Hematology, Oncology and Immunology, Philipps University of Marburg, Hans-Meerwein-Strasse 3, 35043 Marburg, Germany; (V.P.); (M.B.); (R.A.K.)
| |
Collapse
|
9
|
SMAD-oncoprotein interplay: Potential determining factors in targeted therapies. Biochem Pharmacol 2020; 180:114155. [DOI: 10.1016/j.bcp.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
|
10
|
Li P, Wang QS, Zhai Y, Xiong RP, Chen X, Liu P, Peng Y, Zhao Y, Ning YL, Yang N, Zhou YG. Ski mediates TGF-β1-induced fibrosarcoma cell proliferation and promotes tumor growth. J Cancer 2020; 11:5929-5940. [PMID: 32922535 PMCID: PMC7477421 DOI: 10.7150/jca.46074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/20/2020] [Indexed: 11/05/2022] Open
Abstract
Background: TGF-β1 promotes cell proliferation in only some tumors and exerts bidirectional regulatory effects on the proliferation of fibroblasts. This study intends to explore whether the mechanism is related to increased expression of Ski. Methods: Cell proliferation of the fibrosarcoma cell line L929 was assessed with an ELISA BrdU kit. The mRNA and protein expression levels of the corresponding factors were measured by RT-qPCR, immunohistochemistry or Western blotting in vitro and in vivo. Additionally, c-Ski was knocked down using RNAi. The expression of Ski in human dermatofibrosarcoma protuberans (DFSP) specimens was measured by immunohistochemistry. Results: TGF-β1 promoted the continued proliferation of L929 cells in a dose-dependent manner, with increased c-Ski expression levels. Conversely, inhibition of c-Ski significantly abrogated this unidirectional effect, significantly inhibited the decrease in p21 protein levels and did not affect the increase in p-Smad2/3 levels upon TGF-β1 treatment. Similarly, inhibition of c-Ski significantly abrogated the growth-promoting effect of TGF-β1 on xenograft tumors. Furthermore, we found that high expression of Ski in DFSP was correlated with a low degree of tumor differentiation. Conclusions: Our data reveal that high c-Ski expression is a cause of TGF-β1-promoted proliferation in fibrosarcoma tumor cells and show that inhibiting Ski expression might be effective for treating tumors with high Ski levels.
Collapse
Affiliation(s)
- Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Qiu-Shi Wang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China.,Department of Pathology, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yu Zhai
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ping Liu
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University (Third Military Medical University), Chongqing 400042, People's Republic of China
| |
Collapse
|
11
|
Wang QS, Zhai Y, Li P, Xiao HL, Zhou YG. Increased ski expression levels are associated with a higher risk and poor prognosis in patients with gastrointestinal stromal tumors. Oncol Lett 2020; 19:1735-1740. [PMID: 32194666 PMCID: PMC7039079 DOI: 10.3892/ol.2020.11280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/21/2019] [Indexed: 11/25/2022] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most commonly diagnosed primary mesenchymal tumors of the gastrointestinal tract and 30% of GISTs are associated with a high recurrence risk or metastasis. The current risk classification criteria of the National Comprehensive Cancer Network are based on tumor size, mitotic activity and localization. Investigating additional biomarkers associated with clinical risk may aid in the diagnosis of GIST and improves prediction of patient prognosis. In the present study, the value of using the expression levels of the oncoprotein ski as a prognostic predictor for GISTs was investigated. The results demonstrated that high ski expression levels were correlated with high risk and recurrence rates and indicated poor prognosis regarding median disease-free survival. Overall, the present study suggests that ski expression levels may serve as a predictor for clinical risk and prognosis of patients with GISTs.
Collapse
Affiliation(s)
- Qiu-Shi Wang
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, The Army Medical University, Chongqing 400042, P.R. China.,Department of Pathology, Daping Hospital and Research Institute of Surgery, The Army Medical University, Chongqing 400042, P.R. China.,Clinical Biobank, Daping Hospital and Research Institute of Surgery, The Army Medical University, Chongqing 400042, P.R. China
| | - Yu Zhai
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, The Army Medical University, Chongqing 400042, P.R. China
| | - Ping Li
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, The Army Medical University, Chongqing 400042, P.R. China
| | - Hua-Liang Xiao
- Department of Pathology, Daping Hospital and Research Institute of Surgery, The Army Medical University, Chongqing 400042, P.R. China
| | - Yuan-Guo Zhou
- Molecular Biology Center, State Key Laboratory of Trauma, Burn and Combined Injury, Research Institute of Surgery and Daping Hospital, The Army Medical University, Chongqing 400042, P.R. China
| |
Collapse
|
12
|
Zhao X, Fang Y, Wang X, Yang Z, Li D, Tian M, Kang P. Knockdown of Ski decreases osteosarcoma cell proliferation and migration by suppressing the PI3K/Akt signaling pathway. Int J Oncol 2019; 56:206-218. [PMID: 31746363 PMCID: PMC6910224 DOI: 10.3892/ijo.2019.4914] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
Ski, an evolutionary conserved protein, is involved in the development of a number of tumors, such as Barrett's esophagus, leukemia, colorectal cancer, gastric cancer, pancreatic cancer, hemangiomas and melanoma. However, studies on the functions of Ski in osteosarcoma (OS) are limited. In this study, firstly the differential expression of Ski in OS tissues and osteochondroma tissues was detected, and the expression of Ski in both human OS cell lines (MG63 and U2OS) and normal osteoblasts (hFoB1.19) was then detected. The results demonstrated that Ski expression was significantly upregulated in both human OS tissues and cell lines. The results led us to hypothesize that Ski may play an essential role in the pathological process of OS. Thus, Ski specific small interfere RNA (Ski-siRNA) was used. The results revealed that OS cell proliferation was markedly inhibited following the knockdown of Ski, which was identified by CCK8 assay, EdU staining and cell cycle analysis. In addition, OS cell migration was significantly suppressed following Ski knockdown, which was identified by wound healing assay. Moreover, the protein levels of p-PI3K and p-Akt in OS cells declined prominently following Ski knockdown. On the whole, the findings of this study revealed that Ski expression was significantly upregulated in OS tissue and OS cells. The knockdown of Ski decreased OS cell proliferation and migration, which was mediated by blocking the PI3K/Akt signaling pathway. Thus, Ski may act as a tumor promoter gene in tumorigenesis, and Ski may prove to be a potential therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yuying Fang
- Weifang Maternal and Child Health Hospital, Weifang, Shandong 261000, P.R. China
| | - Xingwen Wang
- The Second Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730030, P.R. China
| | - Zhouyuan Yang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Donghai Li
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan Univerisity, Chengdu, Sichuan 610041, P.R. China
| | - Pengde Kang
- Department of Orthopedic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
13
|
Are Ski and SnoN Involved in the Tumorigenesis of Oral Squamous Cell Carcinoma Through Smad4? Appl Immunohistochem Mol Morphol 2019; 27:626-630. [DOI: 10.1097/pai.0000000000000667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Feld C, Sahu P, Frech M, Finkernagel F, Nist A, Stiewe T, Bauer UM, Neubauer A. Combined cistrome and transcriptome analysis of SKI in AML cells identifies SKI as a co-repressor for RUNX1. Nucleic Acids Res 2019; 46:3412-3428. [PMID: 29471413 PMCID: PMC5909421 DOI: 10.1093/nar/gky119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/09/2018] [Indexed: 11/16/2022] Open
Abstract
SKI is a transcriptional co-regulator and overexpressed in various human tumors, for example in acute myeloid leukemia (AML). SKI contributes to the origin and maintenance of the leukemic phenotype. Here, we use ChIP-seq and RNA-seq analysis to identify the epigenetic alterations induced by SKI overexpression in AML cells. We show that approximately two thirds of differentially expressed genes are up-regulated upon SKI deletion, of which >40% harbor SKI binding sites in their proximity, primarily in enhancer regions. Gene ontology analysis reveals that many of the differentially expressed genes are annotated to hematopoietic cell differentiation and inflammatory response, corroborating our finding that SKI contributes to a myeloid differentiation block in HL60 cells. We find that SKI peaks are enriched for RUNX1 consensus motifs, particularly in up-regulated SKI targets upon SKI deletion. RUNX1 ChIP-seq displays that nearly 70% of RUNX1 binding sites overlap with SKI peaks, mainly at enhancer regions. SKI and RUNX1 occupy the same genomic sites and cooperate in gene silencing. Our work demonstrates for the first time the predominant co-repressive function of SKI in AML cells on a genome-wide scale and uncovers the transcription factor RUNX1 as an important mediator of SKI-dependent transcriptional repression.
Collapse
Affiliation(s)
- Christine Feld
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany.,Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Peeyush Sahu
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Miriam Frech
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| | - Florian Finkernagel
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andrea Nist
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.,Institute of Molecular Oncology, Philipps University Marburg, Hans-Meerwein-Str. 3, 35043 Marburg, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research (IMT), School of Medicine, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| | - Andreas Neubauer
- Department of Internal Medicine and Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen and Marburg, Baldingerstr., 35043 Marburg, Germany
| |
Collapse
|
15
|
Tecalco-Cruz AC, Ríos-López DG, Vázquez-Victorio G, Rosales-Alvarez RE, Macías-Silva M. Transcriptional cofactors Ski and SnoN are major regulators of the TGF-β/Smad signaling pathway in health and disease. Signal Transduct Target Ther 2018; 3:15. [PMID: 29892481 PMCID: PMC5992185 DOI: 10.1038/s41392-018-0015-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 02/16/2018] [Accepted: 03/15/2018] [Indexed: 12/19/2022] Open
Abstract
The transforming growth factor-β (TGF-β) family plays major pleiotropic roles by regulating many physiological processes in development and tissue homeostasis. The TGF-β signaling pathway outcome relies on the control of the spatial and temporal expression of >500 genes, which depend on the functions of the Smad protein along with those of diverse modulators of this signaling pathway, such as transcriptional factors and cofactors. Ski (Sloan-Kettering Institute) and SnoN (Ski novel) are Smad-interacting proteins that negatively regulate the TGF-β signaling pathway by disrupting the formation of R-Smad/Smad4 complexes, as well as by inhibiting Smad association with the p300/CBP coactivators. The Ski and SnoN transcriptional cofactors recruit diverse corepressors and histone deacetylases to repress gene transcription. The TGF-β/Smad pathway and coregulators Ski and SnoN clearly regulate each other through several positive and negative feedback mechanisms. Thus, these cross-regulatory processes finely modify the TGF-β signaling outcome as they control the magnitude and duration of the TGF-β signals. As a result, any alteration in these regulatory mechanisms may lead to disease development. Therefore, the design of targeted therapies to exert tight control of the levels of negative modulators of the TGF-β pathway, such as Ski and SnoN, is critical to restore cell homeostasis under the specific pathological conditions in which these cofactors are deregulated, such as fibrosis and cancer. Proteins that repress molecular signaling through the transforming growth factor-beta (TGF-β) pathway offer promising targets for treating cancer and fibrosis. Marina Macías-Silva and colleagues from the National Autonomous University of Mexico in Mexico City review the ways in which a pair of proteins, called Ski and SnoN, interact with downstream mediators of TGF-β to inhibit the effects of this master growth factor. Aberrant levels of Ski and SnoN have been linked to diverse range of diseases involving cell proliferation run amok, and therapies that regulate the expression of these proteins could help normalize TGF-β signaling to healthier physiological levels. For decades, drug companies have tried to target the TGF-β pathway, with limited success. Altering the activity of these repressors instead could provide a roundabout way of remedying pathogenic TGF-β activity in fibrosis and oncology.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- 1Instituto de Investigaciones Biomédicas at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Diana G Ríos-López
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | | | - Reyna E Rosales-Alvarez
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| | - Marina Macías-Silva
- 2Instituto de Fisiología Celular at Universidad Nacional Autónoma de México, Mexico city, 04510 Mexico
| |
Collapse
|
16
|
Deregulation of Negative Controls on TGF-β1 Signaling in Tumor Progression. Cancers (Basel) 2018; 10:cancers10060159. [PMID: 29799477 PMCID: PMC6025439 DOI: 10.3390/cancers10060159] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/19/2022] Open
Abstract
The multi-functional cytokine transforming growth factor-β1 (TGF-β1) has growth inhibitory and anti-inflammatory roles during homeostasis and the early stages of cancer. Aberrant TGF-β activation in the late-stages of tumorigenesis, however, promotes development of aggressive growth characteristics and metastatic spread. Given the critical importance of this growth factor in fibrotic and neoplastic disorders, the TGF-β1 network is subject to extensive, multi-level negative controls that impact receptor function, mothers against decapentaplegic homolog 2/3 (SMAD2/3) activation, intracellular signal bifurcation into canonical and non-canonical pathways and target gene promotor engagement. Such negative regulators include phosphatase and tensin homologue (PTEN), protein phosphatase magnesium 1A (PPM1A), Klotho, bone morphogenic protein 7 (BMP7), SMAD7, Sloan-Kettering Institute proto-oncogene/ Ski related novel gene (Ski/SnoN), and bone morphogenetic protein and activin membrane-bound Inhibitor (BAMBI). The progression of certain cancers is accompanied by loss of expression, overexpression, mislocalization, mutation or deletion of several endogenous repressors of the TGF-β1 cascade, further modulating signal duration/intensity and phenotypic reprogramming. This review addresses how their aberrant regulation contributes to cellular plasticity, tumor progression/metastasis and reversal of cell cycle arrest and discusses the unexplored therapeutic value of restoring the expression and/or function of these factors as a novel approach to cancer treatment.
Collapse
|
17
|
Kinugawa Y, Uehara T, Matsuda K, Kobayashi Y, Nakajima T, Hamano H, Kawa S, Higuchi K, Hosaka N, Shiozawa S, Ishigame H, Nakamura T, Maruyama Y, Nakazawa K, Nakaguro M, Sano K, Ota H. Promoter hypomethylation of SKI in autoimmune pancreatitis. Pathol Res Pract 2018. [PMID: 29534839 DOI: 10.1016/j.prp.2018.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The relationship between methylation abnormality and autoimmune pancreatitis (AIP)-a representative IgG4-related disease-has not yet been elucidated. We identified SKI might have a significant methylation abnormality in AIP through methylation array analysis using the Illumina Infinium Human Methylation 450K BeadChip array, and investigated the relationship of SKI with AIP clinicopathological features. The methylation rate of SKI was assessed by quantitative SYBR green methylation-specific PCR, and the degree of SKI expression in tissue specimens was assessed by immunohistochemistry in 10 AIP cases, 14 cases of obstructive pancreatitis area in pancreatic ductal adenocarcinoma (PDA) without a history of AIP, and 9 normal pancreas (NP) cases. The SKI methylation ratio was significantly lower in AIP than in PDA and NP. Additionally, the immunohistochemical staining-index (SI) score for SKI was significantly higher in AIP than NP, although there was no significant difference between AIP and PDA. There was a strong negative correlation between SI score and SKI methylation ratio, and between the serum concentrations of IgG4 and the SKI methylation ratio. There was a moderate positive correlation between the serum concentrations of IgG4 and SI. SKI is thought to be an oncogene indicating that SKI hypomethylation and carcinogenesis might be linked to AIP. Furthermore, the correlation between serum concentrations of IgG4 and SKI methylation levels suggest SKI might be involved in the pathogenesis of AIP. However, the role of SKI has not been clearly elucidated. Further studies are needed to understand further the function of SKI.
Collapse
Affiliation(s)
- Yasuhiro Kinugawa
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takeshi Uehara
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan.
| | - Kazuyuki Matsuda
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yukihiro Kobayashi
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoyuki Nakajima
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Hamano
- Department of Gastroenterology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shigeyuki Kawa
- Internal Medicine, Matsumoto Dental University, Shiojiri, Japan
| | - Kayoko Higuchi
- Department of Pathology, Aizawa Hospital, Matsumoto, Japan
| | - Noriko Hosaka
- Department of Pathology, Nagano Municipal Hospital, Nagano, Japan
| | | | | | | | | | - Koh Nakazawa
- Department of Clinical Laboratory, National Hospital Organization, Matsumoto Medical Center, Matsumoto Hospital, Matsumoto, Japan
| | - Masato Nakaguro
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Kenji Sano
- Department of Pathology, Iida Municipal Hospital, Iida, Japan
| | - Hiroyoshi Ota
- Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biomedical Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
18
|
Dichotomous roles of TGF-β in human cancer. Biochem Soc Trans 2017; 44:1441-1454. [PMID: 27911726 DOI: 10.1042/bst20160065] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/27/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
Abstract
Transforming growth factor-β (TGF-β) mediates numerous biological processes, including embryonic development and the maintenance of cellular homeostasis in a context-dependent manner. Consistent with its central role in maintaining cellular homeostasis, inhibition of TGF-β signaling results in disruption of normal homeostatic processes and subsequent carcinogenesis, defining the TGF-β signaling pathway as a tumor suppressor. However, once carcinogenesis is initiated, the TGF-β signaling pathway promotes cancer progression. This dichotomous function of the TGF-β signaling pathway is mediated through altering effects on both the cancer cells, by inducing apoptosis and inhibiting proliferation, and the tumor microenvironment, by promoting angiogenesis and inhibiting immunosurveillance. Current studies support inhibition of TGF-β signaling either alone, or in conjunction with anti-angiogenic therapy or immunotherapy as a promising strategy for the treatment of human cancers.
Collapse
|
19
|
Rivas S, Armisén R, Rojas DA, Maldonado E, Huerta H, Tapia JC, Espinoza J, Colombo A, Michea L, Hayman MJ, Marcelain K. The Ski Protein is Involved in the Transformation Pathway of Aurora Kinase A. J Cell Biochem 2016; 117:334-43. [PMID: 26138431 DOI: 10.1002/jcb.25275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
Oncogenic kinase Aurora A (AURKA) has been found to be overexpresed in several tumors including colorectal, breast, and hematological cancers. Overexpression of AURKA induces centrosome amplification and aneuploidy and it is related with cancer progression and poor prognosis. Here we show that AURKA phosphorylates in vitro the transcripcional co-repressor Ski on aminoacids Ser326 and Ser383. Phosphorylations on these aminoacids decreased Ski protein half-life. Reduced levels of Ski resulted in centrosomes amplification and multipolar spindles formation, same as AURKA overexpressing cells. Importantly, overexpression of Ski wild type, but not S326D and S383D mutants inhibited centrosome amplification and cellular transformation induced by AURKA. Altogether, these results suggest that the Ski protein is a target in the transformation pathway mediated by the AURKA oncogene.
Collapse
Affiliation(s)
- Solange Rivas
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Ricardo Armisén
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Diego A Rojas
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Edio Maldonado
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Hernán Huerta
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Julio C Tapia
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Jaime Espinoza
- Department of Pathology, UC-Center for Investigational Oncology (CITO), School of Medicine, Pontificia Universidad Católica de Chile 8330034, Santiago, Chile
| | - Alicia Colombo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| | - Luis Michea
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Millenium Institute of Immunology and Immunotherapy, Santiago, Chile
| | - Michael J Hayman
- Department of Microbiology and Molecular Genetics, Stony Brook University, Stony Brook, New York 11794
| | - Katherine Marcelain
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile.,Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Chile
| |
Collapse
|
20
|
Song L, Chen X, Gao S, Zhang C, Qu C, Wang P, Liu L. Ski modulate the characteristics of pancreatic cancer stem cells via regulating sonic hedgehog signaling pathway. Tumour Biol 2016; 37:10.1007/s13277-016-5461-8. [PMID: 27734340 DOI: 10.1007/s13277-016-5461-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 09/23/2016] [Indexed: 01/03/2023] Open
Abstract
Evidence from in vitro and in vivo studies shows that Ski may act as both a tumor proliferation-promoting factor and a metastatic suppressor in human pancreatic cancer and also may be a therapeutic target of integrative therapies. At present, pancreatic cancer stem cells (CSCs) are responsible for tumor recurrence accompanied by resistance to conventional therapies. Sonic hedgehog (Shh) signaling pathway is found to be aberrantly activated in CSCs. The objectives of this study were to investigate the role of Ski in modulating pancreatic CSCs and to examine the molecular mechanisms involved in pancreatic cancer treatment both in vivo and in vitro. In in vitro study, the results showed that enhanced Ski expression could increase the expression of pluripotency maintaining markers, such as CD24, CD44, Sox-2, and Oct-4, and also components of Shh signaling pathway, such as Shh, Ptch-1, Smo, Gli-1, and Gli-2, whereas depletion of Ski to the contrary. Then, we investigated the underlying mechanism and found that inhibiting Gli-2 expression by short interfering RNA (siRNA) can decrease the effects of Ski on the maintenance of pancreatic CSCs, indicating that Ski mediates the pluripotency of pancreatic CSCs mainly through Shh pathway. The conclusion is that Ski may be an important factor in maintaining the stemness of pancreatic CSCs through modulating Shh pathway.
Collapse
Affiliation(s)
- Libin Song
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiangyuan Chen
- Department of Anaesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Anaesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Song Gao
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Zhang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chao Qu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Luming Liu
- Department of Integrative Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
YANG HAIPING, ZHAN LEI, YANG TIANJIE, WANG LONGQIANG, LI CHANG, ZHAO JUN, LEI ZHE, LI XIANGDONG, ZHANG HONGTAO. Ski prevents TGF-β-induced EMT and cell invasion by repressing SMAD-dependent signaling in non-small cell lung cancer. Oncol Rep 2015; 34:87-94. [DOI: 10.3892/or.2015.3961] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/13/2015] [Indexed: 11/06/2022] Open
|
22
|
Luo K, VanHook AM. Science Signaling
Podcast: 10 February 2015. Sci Signal 2015. [DOI: 10.1126/scisignal.aaa7572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Ski inhibits activity of the transcriptional coactivator TAZ and breast cancer progression through multiple mechanisms.
Collapse
Affiliation(s)
- Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|
23
|
Rashidian J, Le Scolan E, Ji X, Zhu Q, Mulvihill MM, Nomura D, Luo K. Ski regulates Hippo and TAZ signaling to suppress breast cancer progression. Sci Signal 2015; 8:ra14. [PMID: 25670202 DOI: 10.1126/scisignal.2005735] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ski, the transforming protein of the avian Sloan-Kettering retrovirus, inhibits transforming growth factor-β (TGF-β)/Smad signaling and displays both pro-oncogenic and anti-oncogenic activities in human cancer. Inhibition of TGF-β signaling is likely responsible for the pro-oncogenic activity of Ski. We investigated the mechanism(s) underlying the tumor suppressor activity of Ski and found that Ski suppressed the activity of the Hippo signaling effectors TAZ and YAP to inhibit breast cancer progression. TAZ and YAP are transcriptional coactivators that can contribute to cancer by promoting proliferation, tumorigenesis, and cancer stem cell expansion. Hippo signaling activates the the Lats family of kinases, which phosphorylate TAZ and YAP, resulting in cytoplasmic retention and degradation and inhibition of their transcriptional activity. We showed that Ski interacted with multiple components of the Hippo pathway to facilitate activation of Lats2, resulting in increased phosphorylation and subsequent degradation of TAZ. Ski also promoted the degradation of a constitutively active TAZ mutant that is not phosphorylated by Lats, suggesting the existence of a Lats2-independent degradation pathway. Finally, we showed that Ski repressed the transcriptional activity of TAZ by binding to the TAZ partner TEAD and recruiting the transcriptional co-repressor NCoR1 to the TEAD-TAZ complex. Ski effectively reversed transformation and epithelial-to-mesenchyme transition in cultured breast cancer cells and metastasis in TAZ-expressing xenografted tumors. Thus, Ski inhibited the function of TAZ through multiple mechanisms in human cancer cells.
Collapse
Affiliation(s)
- Juliet Rashidian
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Erwan Le Scolan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaodan Ji
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Qingwei Zhu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Melinda M Mulvihill
- Department of Nutritional Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel Nomura
- Department of Nutritional Sciences, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kunxin Luo
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
24
|
Expression and prognostic role of SKIP in human breast carcinoma. J Mol Histol 2013; 45:169-80. [PMID: 24150787 DOI: 10.1007/s10735-013-9546-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 10/09/2013] [Indexed: 10/26/2022]
Abstract
Ski-interacting protein (SKIP) is a nuclear hormone receptor-interacting cofactor, interactions with the proto-oncogene Ski, appears to modulate a number of signalling pathways involved in control of cell proliferation and differentiation, and may play a critical role in oncogenesis. In the present study, to investigate the potential roles of SKIP in breast cancer, expression patterns, interaction and the correlation with clinical/prognostic factors of SKIP and Ki-67 were examined among patients with breast cancer. Immunohistochemistry and Western blot analysis were performed for SKIP in 85 breast carcinoma samples. The data were correlated with clinicopathological features. The univariate and multivariate survival analyses were also performed to determine their prognostic significance. We found that SKIP was over expressed in breast carcinoma as compared with the adjacent normal tissues. High expression of SKIP was positively associated with histological grade (P = 0.01) and Ki-67 (P = 0.004). Univariate analysis showed that SKIP expression was associated with a poor prognosis (P = 0.006). While in vitro, following release of breast cancer cell lines from serum starvation, the expression of SKIP was up-regulated, whereas p27 was down-regulated. In addition, we employed small interfering RNA (siRNA) technique to knock down SKIP expression and observed it effects on MDA-MB-231 cells growth. SKIP depletion by siRNA inhibited cell proliferation, blocked S phase and decreased cyclin A and cyclin B levels. On the basis of these results, we suggested that SKIP overexpression was involved in the pathogenesis of breast cancer, which might serve as a future target for breast cancer.
Collapse
|
25
|
Wang L, Hou Y, Sun Y, Zhao L, Tang X, Hu P, Yang J, Zeng Z, Yang G, Cui X, Liu M. c-Ski activates cancer-associated fibroblasts to regulate breast cancer cell invasion. Mol Oncol 2013; 7:1116-28. [PMID: 24011664 DOI: 10.1016/j.molonc.2013.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 12/14/2022] Open
Abstract
Aberrant expression of c-Ski oncoprotein in some tumor cells has been shown to be associated with cancer development. However, the role of c-Ski in cancer-associated fibroblasts (CAFs) of tumor microenvironment has not been characterized. In the current study, we found that c-Ski is highly expressed in CAFs derived from breast carcinoma microenvironment and this CAF-associated c-Ski expression is associated with invasion and metastasis of human breast tumors. We showed that c-Ski overexpression in immortalized breast normal fibroblasts (NFs) induces conversion to breast CAFs by repressing p53 and thereby upregulating SDF-1 in NFs. SDF-1 treatment or p53 knockdown in NFs had similar effects on the activation of NFs as c-Ski overexpression. The c-Ski-activated CAFs show increased proliferation, migration, invasion and contraction compared with NFs. Furthermore, c-Ski-activated CAFs facilitated the migration and invasion of MDA-MB-231 breast cancer cells. Our data suggest that c-Ski is an important regulator in the activation of CAFs and may serve as a potential therapeutic target to block breast cancer progression.
Collapse
Affiliation(s)
- Liyang Wang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yixuan Hou
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
- Experimental teaching center of Basic Medicine Science, Chongqing Medical University, Chongqing 400016, China
| | - Yan Sun
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Liuyang Zhao
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Xi Tang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ping Hu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jiajia Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Zongyue Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Guanglun Yang
- Department of Endocrine and Breast Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiaojiang Cui
- Department of Surgery, Department of Obstetrics and Gynecology, Women's Cancer Program, Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai Medical Center. Los Angeles, CA 91006, USA
| | - Manran Liu
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
26
|
Ski protein levels increase during in vitro progression of HPV16-immortalized human keratinocytes and in cervical cancer. Virology 2013; 444:100-8. [PMID: 23809940 DOI: 10.1016/j.virol.2013.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/23/2013] [Accepted: 05/30/2013] [Indexed: 01/23/2023]
Abstract
We compared the levels of the Ski oncoprotein, an inhibitor of transforming growth factor-beta (TGF-β) signaling, in normal human keratinocytes (HKc), HPV16 immortalized HKc (HKc/HPV16), and differentiation resistant HKc/HPV16 (HKc/DR) in the absence and presence of TGF-β. Steady-state Ski protein levels increased in HKc/HPV16 and even further in HKc/DR, compared to HKc. TGF-β treatment of HKc, HKc/HPV16, and HKc/DR dramatically decreased Ski. TGF-β-induced Ski degradation was delayed in HKc/DR. Ski and phospho-Ski protein levels are cell cycle dependent with maximal Ski expression and localization to centrosomes and mitotic spindles during G2/M. ShRNA knock down of Ski in HKc/DR inhibited cell proliferation. More intense nuclear and cytoplasmic Ski staining and altered Ski localization were found in cervical cancer samples compared to adjacent normal tissue in a cervical cancer tissue array. Overall, these studies demonstrate altered Ski protein levels, degradation and localization in HPV16-transformed human keratinocytes and in cervical cancer.
Collapse
|
27
|
Vo BT, Cody B, Cao Y, Khan SA. Differential role of Sloan-Kettering Institute (Ski) protein in Nodal and transforming growth factor-beta (TGF-β)-induced Smad signaling in prostate cancer cells. Carcinogenesis 2012; 33:2054-64. [PMID: 22843506 DOI: 10.1093/carcin/bgs252] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Transforming growth factor-beta (TGF-β) signaling pathways contain both tumor suppressor and tumor promoting activities. We have demonstrated that Nodal, another member of the TGF-β superfamily, and its receptors are expressed in prostate cancer cells. Nodal and TGF-β exerted similar biological effects on prostate cells; both inhibited proliferation in WPE, RWPE1 and DU145 cells, whereas neither had any effect on the proliferation of LNCaP or PC3 cells. Interestingly, Nodal and TGF-β induced migration in PC3 cells, but not in DU145 cells. TGF-β induced predominantly phosphorylation of Smad3, whereas Nodal induced phosphorylation of only Smad2. We also determined the expression and differential role of Ski, a corepressor of Smad2/3, in Nodal and TGF-β signaling in prostate cancer cells. Similar levels of Ski mRNA were found in several established prostate cell lines; however, high levels of Ski protein were only detected in prostate cancer cells and prostate cancer tissue samples. Exogenous Nodal and TGF-β had no effects on Ski mRNA levels. On the other hand, TGF-β induced a rapid degradation of Ski protein mediated by the proteasomal pathway, whereas Nodal had no effect on Ski protein. Reduced Ski levels correlated with increased basal and TGF-β-induced Smad2/3 phosphorylation. Knockdown of endogenous Ski reduced proliferation in DU145 cells and enhanced migration of PC3 cells. We conclude that high levels of Ski expression in prostate cancer cells may be responsible for repression of TGF-β and Smad3 signaling, but Ski protein levels do not influence Nodal and Smad2 signaling.
Collapse
Affiliation(s)
- BaoHan T Vo
- Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, GA 30314, USA
| | | | | | | |
Collapse
|
28
|
Ding B, Sun Y, Huang J. Overexpression of SKI oncoprotein leads to p53 degradation through regulation of MDM2 protein sumoylation. J Biol Chem 2012; 287:14621-30. [PMID: 22411991 DOI: 10.1074/jbc.m111.301523] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protooncogene Ski was identified based on its ability to transform avian fibroblasts in vitro. In support of its oncogenic activity, SKI was found to be overexpressed in a variety of human cancers, although the exact molecular mechanism(s) responsible for its oncogenic activity is not fully understood. We found that SKI can negatively regulate p53 by decreasing its level through up-regulation of MDM2 activity, which is mediated by the ability of SKI to enhance sumoylation of MDM2. This stimulation of MDM2 sumoylation is accomplished through a direct interaction of SKI with SUMO-conjugating enzyme E2, Ubc9, resulting in enhanced thioester bond formation and mono-sumoylation of Ubc9. A mutant SKI defective in transformation fails to increase p53 ubiquitination and is unable to increase MDM2 levels and to increase mono-sumoylation of Ubc9, suggesting that the ability of SKI to enhance Ubc9 activity is essential for its transforming function. These results established a detailed molecular mechanism that underlies the ability of SKI to cause cellular transformation while unraveling a novel connection between sumoylation and tumorigenesis, providing potential new therapeutic targets for cancer.
Collapse
Affiliation(s)
- Boxiao Ding
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
29
|
Theohari I, Giannopoulou I, Magkou C, Nomikos A, Melissaris S, Nakopoulou L. Differential effect of the expression of TGF-β pathway inhibitors, Smad-7 and Ski, on invasive breast carcinomas: relation to biologic behavior. APMIS 2011; 120:92-100. [PMID: 22229264 DOI: 10.1111/j.1600-0463.2011.02814.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of our study was to investigate the expression of Smad-7 and Ski proteins in invasive breast carcinomas, to determine their clinicopathological value and their influence on carcinomas biologic behavior. Immunohistochemistry was applied on 150 invasive breast carcinomas to detect the expression of Smad-7 and Ski. Their correlation to clinicopathologic parameters and markers of metastasis was statistically processed using chi-squared test. Overall and disease-free survival was assessed using Kaplan-Meier test and log-rank statistics. Smad-7 was immunodetected in the cytoplasm of cancer cells in 60%, whereas Ski was immunodetected in the cytoplasm and nuclei in 44.5% and 17.6% of the cases, respectively. Smad-7 expression was positively correlated with tumor size, stage, matrix metalloproteinase (MMP)-9, and MMP-14. Cytoplasmic Ski expression was negatively associated with tumor size, stage, and lymph node status, and its nuclear expression was negatively related to histologic grade. Cytoplasmic Ski expression was associated with longer overall and disease-free survival. It appears that two negative regulators of the transforming growth factor-β pathway, Smad-7 and Ski, behave differentially in invasive breast carcinomas. Smad-7 appears to be related with an aggressive phenotype, whereas Ski expression is related to a less aggressive behavior and positively influences patients' survival.
Collapse
Affiliation(s)
- Irini Theohari
- First Department of Pathology, Medical School, University of Athens, Greece
| | | | | | | | | | | |
Collapse
|
30
|
Ye F, Lemieux H, Hoppel CL, Hanson RW, Hakimi P, Croniger CM, Puchowicz M, Anderson VE, Fujioka H, Stavnezer E. Peroxisome proliferator-activated receptor γ (PPARγ) mediates a Ski oncogene-induced shift from glycolysis to oxidative energy metabolism. J Biol Chem 2011; 286:40013-24. [PMID: 21917928 DOI: 10.1074/jbc.m111.292029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the Ski oncogene induces oncogenic transformation of chicken embryo fibroblasts (CEFs). However, unlike most other oncogene-transformed cells, Ski-transformed CEFs (Ski-CEFs) do not display the classical Warburg effect. On the contrary, Ski transformation reduced lactate production and glucose utilization in CEFs. Compared with CEFs, Ski-CEFs exhibited enhanced TCA cycle activity, fatty acid catabolism through β-oxidation, glutamate oxidation, oxygen consumption, as well as increased numbers and mass of mitochondria. Interestingly, expression of PPARγ, a key transcription factor that regulates adipogenesis and lipid metabolism, was dramatically elevated at both the mRNA and protein levels in Ski-CEFs. Accordingly, PPARγ target genes that are involved in lipid uptake, transport, and oxidation were also markedly up-regulated by Ski. Knocking down PPARγ in Ski-CEFs by RNA interference reversed the elevated expression of these PPARγ target genes, as well as the shift to oxidative metabolism and the increased mitochondrial biogenesis. Moreover, we found that Ski co-immunoprecipitates with PPARγ and co-activates PPARγ-driven transcription.
Collapse
Affiliation(s)
- Fang Ye
- Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bonnon C, Atanasoski S. c-Ski in health and disease. Cell Tissue Res 2011; 347:51-64. [DOI: 10.1007/s00441-011-1180-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 04/15/2011] [Indexed: 01/28/2023]
|
32
|
Inoue Y, Iemura SI, Natsume T, Miyazawa K, Imamura T. Suppression of p53 activity through the cooperative action of Ski and histone deacetylase SIRT1. J Biol Chem 2010; 286:6311-20. [PMID: 21149449 DOI: 10.1074/jbc.m110.177683] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ski was originally identified as an oncogene based on the fact that Ski overexpression transformed chicken and quail embryo fibroblasts. Consistent with these proposed oncogenic roles, Ski is overexpressed in various human tumors. However, whether and how Ski functions in mammalian tumorigenesis has not been fully investigated. Here, we show that Ski interacts with p53 and attenuates the biological functions of p53. Ski overexpression attenuated p53-dependent transactivation, whereas Ski knockdown enhanced the transcriptional activity of p53. Interestingly, Ski bound to the histone deacetylase SIRT1 and stabilized p53-SIRT1 interaction to promote p53 deacetylation, which subsequently decreased the DNA binding activity of p53. Consistent with the ability of Ski to inactivate p53, overexpressing Ski desensitized cells to genotoxic drugs and Nutlin-3, a small-molecule antagonist of Mdm2 that stabilizes p53 and activates the p53 pathway, whereas knocking down Ski increased the cellular sensitivity to these agents. These results indicate that Ski negatively regulates p53 and suggest that the p53-Ski-SIRT1 axis is an attractive target for cancer therapy.
Collapse
Affiliation(s)
- Yasumichi Inoue
- Division of Biochemistry, Cancer Institute of the Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | |
Collapse
|
33
|
Wang P, Chen Z, Meng ZQ, Luo JM, Lin JH, Zhou ZH, Chen H, Wang K, Shen YH, Liu LM. Ski acts as therapeutic target of qingyihuaji formula in the treatment of SW1990 pancreatic cancer. Integr Cancer Ther 2010; 9:50-8. [PMID: 20308085 DOI: 10.1177/1534735409359179] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Qingyihuaji formula (QYHJ) is a widely used herbal formula that has shown promising antitumor effect in the treatment of pancreatic cancer in the Cancer Hospital, Fudan University, Shanghai, China. OBJECTIVE This research was conducted to study whether Ski acts as a therapeutic target of QYHJ formula in the treatment of SW1990 pancreatic cancer. METHODS The expression changes of Ski mRNA and protein in SW1990 pancreatic cancer subcutaneously transplanted tumor treated with QYHJ were detected by real-time polymerase chain reaction and Western blot. Then, we established a stable transfection SW1990 cell with low expression of Ski through lentivirus-mediated RNA interference (RNAi) technique. The responses to QYHJ treatment on a subcutaneously transplanted tumor with different Ski expression statuses were evaluated. Finally, the effect of Ski downregulation on SW1990 cell biological behavior was also evaluated. RESULTS Expression of Ski mRNA and protein in SW1990 subcutaneously transplanted tumor decreased dramatically after the treatment with QYHJ. Stable transfection cells with low expression of Ski (SW1990/Ski RNAi) were created, and negative vector-transfected cells (SW1990/con RNAi) were used as controls. The tumor weight inhibitory rates of QYHJ on subcutaneously transplanted tumors formed by SW1990 or SW1990/con RNAi were 29.6% and 32.2%, respectively, whereas they were 16.0% to 17.8% when the tumors were formed by SW1990/Ski RNAi. Ski downregulation sensitized the response of SW1990 cells to TGF-beta1-induced growth inhibition in vitro. Flow cytometric analyses revealed that the percentage of cells in the G1 phase increased from 40.4% to 62.9% when Ski was downregulated. The subcutaneously transplanted tumors formed by SW1990/Ski RNAi grew much more slowly than those formed by parental and control vector-transfected cells. CONCLUSION Ski acts as therapeutic target of QYHJ in the treatment of SW1990 pancreatic cancer cells, and its expression status mediates different responses to QYHJ treatment.
Collapse
Affiliation(s)
- Peng Wang
- Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The distortion of growth factor signalling is the most important prerequisite in tumour progression. Transforming growth factor-beta (TGFbeta) signalling regulates tumour progression by a tumour cell-autonomous mechanism or through tumour-stroma interaction, and has either a tumour-suppressing or tumour-promoting function depending on cellular context. Such inherent complexity of TGFbeta signalling results in arduous, but promising, assignments for developing therapeutic strategies against malignant tumours. As numerous cellular context-dependent factors tightly maintain the balance of TGFbeta signalling and contribute to the regulation of TGFbeta-induced cell responses, in this Review we discuss how they maintain the balance of TGFbeta signalling and how their collapse leads to tumour progression.
Collapse
Affiliation(s)
- Hiroaki Ikushima
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | |
Collapse
|
35
|
Chen D, Lin Q, Box N, Roop D, Ishii S, Matsuzaki K, Fan T, Hornyak TJ, Reed JA, Stavnezer E, Timchenko NA, Medrano EE. SKI knockdown inhibits human melanoma tumor growth in vivo. Pigment Cell Melanoma Res 2010; 22:761-72. [PMID: 19845874 DOI: 10.1111/j.1755-148x.2009.00603.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The SKI protein represses the TGF-beta tumor suppressor pathway by associating with the Smad transcription factors. SKI is upregulated in human malignant melanoma tumors in a disease-progression manner and its overexpression promotes proliferation and migration of melanoma cells in vitro. The mechanisms by which SKI antagonizes TGF-beta signaling in vivo have not been fully elucidated. Here we show that human melanoma cells in which endogenous SKI expression was knocked down by RNAi produced minimal orthotopic tumor xenograft nodules that displayed low mitotic rate and prominent apoptosis. These minute tumors exhibited critical signatures of active TGF-beta signaling including high levels of nuclear Smad3 and p21(Waf-1), which are not found in the parental melanomas. To understand how SKI promotes tumor growth we used gain- and loss-of-function approaches and found that simultaneously to blocking the TGF-beta-growth inhibitory pathway, SKI promotes the switch of Smad3 from tumor suppression to oncogenesis by favoring phosphorylations of the Smad3 linker region in melanoma cells but not in normal human melanocytes. In this context, SKI is required for preventing TGF-beta-mediated downregulation of the oncogenic protein c-MYC, and for inducing the plasminogen activator inhibitor-1, a mediator of tumor growth and angiogenesis. Together, the results indicate that SKI exploits multiple regulatory levels of the TGF-beta pathway and its deficiency restores TGF-beta tumor suppressor and apoptotic activities in spite of the likely presence of oncogenic mutations in melanoma tumors.
Collapse
Affiliation(s)
- Dahu Chen
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kiyono K, Suzuki HI, Morishita Y, Komuro A, Iwata C, Yashiro M, Hirakawa K, Kano MR, Miyazono K. c-Ski overexpression promotes tumor growth and angiogenesis through inhibition of transforming growth factor-beta signaling in diffuse-type gastric carcinoma. Cancer Sci 2009; 100:1809-16. [PMID: 19594546 PMCID: PMC11158587 DOI: 10.1111/j.1349-7006.2009.01248.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
c-Ski, originally identified as a proto-oncogene product, is an important negative regulator of transforming growth factor (TGF)-beta family signaling through interaction with Smad2, Smad3, and Smad4. High expression of c-Ski has been found in some cancers, including gastric cancer. We previously showed that disruption of TGF-beta signaling by dominant-negative TGF-beta type II receptor in a diffuse-type gastric carcinoma model accelerated tumor growth through induction of tumor angiogenesis by decreased expression of the anti-angiogenic factor thrombospondin (TSP)-1. Here, we examined the function of c-Ski in human diffuse-type gastric carcinoma OCUM-2MLN cells. Overexpression of c-Ski inhibited TGF-beta signaling in OCUM-2MLN cells. Interestingly, c-Ski overexpression resulted in extensive acceleration of the growth of subcutaneous xenografts in BALB/c nu/nu female mice (6 weeks of age). Similar to tumors expressing dominant-negative TGF-beta type II receptor, histochemical studies revealed less fibrosis and increased angiogenesis in xenografted tumors expressing c-Ski compared to control tumors. Induction of TSP-1 mRNA by TGF-beta was attenuated by c-Ski in vitro, and expression of TSP-1 mRNA was decreased in tumors expressing c-Ski in vivo. These findings suggest that c-Ski overexpression promotes the growth of diffuse-type gastric carcinoma through induction of angiogenesis.
Collapse
Affiliation(s)
- Kunihiko Kiyono
- Department of Molecular Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Differential Expression of SKI Oncogene Protein in Hemangiomas. Otolaryngol Head Neck Surg 2009; 141:213-8. [DOI: 10.1016/j.otohns.2009.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 03/16/2009] [Accepted: 05/07/2009] [Indexed: 11/21/2022]
Abstract
OBJECTIVE: The pathogenesis for benign tumorigenesis in hemangiomas is unknown. Oncogene proteins may be influential in this process. SKI proteins have been previously described in various malignancies. We investigated the differential expression of the SKI (sarcoma viral oncogene) protein in hemangiomas. STUDY DESIGN: Prospective basic science study. SUBJECTS AND METHODS: Paraffin-embedded hemangioma tissues were obtained from the senior author from 2005 to 2006. We created the first vascular tissue array composed of 12 hemangioma specimens at various stages of growth and anatomic location. Two cores were taken from each sample. Controls were also included. Immunohistochemical studies were performed using SKI, CD31, and Ki67. RESULTS: All 12 hemangioma tissues overexpressed the SKI protein. The staining pattern was perinuclear within the endothelial cells. The intensity of staining was inversely proportional to the growth stage. The endothelial cells that were SKI-positive were involved in active cell division. CONCLUSION: SKI oncogene protein is differentially and specifically expressed in hemangioma tissues. SKI acts as a transcriptional co-repressor and inhibits the TGF-β pathway, thus leading to uncontrolled cellular proliferation and transformation. All vascular controls were negative for SKI staining. CLINICAL SIGNIFICANCE OF STUDY: The SKI oncogene protein is upregulated by hemangiomas and may play a role in hemangioma tumorigenesis.
Collapse
|
38
|
Wang P, Chen Z, Meng ZQ, Fan J, Luo JM, Liang W, Lin JH, Zhou ZH, Chen H, Wang K, Shen YH, Xu ZD, Liu LM. Dual role of Ski in pancreatic cancer cells: tumor-promoting versus metastasis-suppressive function. Carcinogenesis 2009; 30:1497-506. [PMID: 19546161 DOI: 10.1093/carcin/bgp154] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ski used to be defined as an oncogene that contributes to the resistance of tumor cells to transforming growth factor-beta (TGF-beta)-induced growth arrest. As TGF-beta has a dual effect on tumor growth with both tumor-suppressing and -promoting activity depending on the stage of carcinogenesis and the cell type, the precise role of Ski in carcinogenesis remains unclear. In this study, we show that downregulation of Ski through lentivirus-mediated RNA interference decreases tumor growth both in vitro and in vivo, yet promotes cell invasiveness in vitro, and lung metastasis in vivo in the pancreatic cancer cell line SW1990, which contain wild-type Smad4 expression, and the BxPC3 cell line, which is Smad4 deficient. We also show that the downregulation of Ski increases TGF-beta-induced transcriptional activity, which is associated with increased TGF-beta-dependent Smad2/3 phosphorylation, and results in an altered expression profile of TGF-beta-inducible genes involved in metastasis, angiogenesis and cell proliferation and epithelial-mesenchymal transition. Immunohistochemical analysis of specimens from 71 patients with pancreatic adenocarcinoma showed a significant association between overexpression of Ski and decreased patient survival time (P = 0.0024). Our results suggest that Ski may act as a tumor proliferation-promoting factor or as a metastatic suppressor in human pancreatic cancer.
Collapse
Affiliation(s)
- Peng Wang
- Department of Hepatobiliary and Pancreatic Oncology, Cancer Hospital, Fudan University, Shanghai 200032, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Deheuninck J, Luo K. Ski and SnoN, potent negative regulators of TGF-beta signaling. Cell Res 2009; 19:47-57. [PMID: 19114989 DOI: 10.1038/cr.2008.324] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Ski and the closely related SnoN were discovered as oncogenes by their ability to transform chicken embryo fibroblasts upon overexpression. While elevated expressions of Ski and SnoN have also been reported in many human cancer cells and tissues, consistent with their pro-oncogenic activity, emerging evidence also suggests a potential anti-oncogenic activity for both. In addition, Ski and SnoN have been implicated in regulation of cell differentiation, especially in the muscle and neuronal lineages. Multiple cellular partners of Ski and SnoN have been identified in an effort to understand the molecular mechanisms underlying the complex roles of Ski and SnoN. In this review, we summarize recent findings on the biological functions of Ski and SnoN, their mechanisms of action and how their levels of expression are regulated.
Collapse
Affiliation(s)
- Julien Deheuninck
- UC Berkeley, Department of Molecular and Cellular Biology, 16 Barker Hall, MC3204, Berkeley, CA 94720, USA
| | | |
Collapse
|
40
|
Boone B, Haspeslagh M, Brochez L. Clinical significance of the expression of c-Ski and SnoN, possible mediators in TGF-beta resistance, in primary cutaneous melanoma. J Dermatol Sci 2008; 53:26-33. [PMID: 18782659 DOI: 10.1016/j.jdermsci.2008.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/09/2008] [Accepted: 07/22/2008] [Indexed: 01/10/2023]
Abstract
BACKGROUND Loss of TGF-beta growth control is considered as a hallmark of several human neoplasms including melanoma. Resistance of cancer cells to TGF-beta has been linked to mutations in proteins involved in the TGF-beta pathway. In melanoma such mutations have not been observed. C-Ski and SnoN, two structurally and functionally highly homologous proteins, are known as negative regulators in the TGF-beta signaling pathway. C-Ski and SnoN expression levels and subcellular localization have been associated with clinicopathological parameters and tumour progression in several human malignancies. In melanoma cell lines, high c-Ski and SnoN expression levels have been described. OBJECTIVE The objective of this study was to evaluate the clinical value of c-Ski and SnoN expression in primary cutaneous melanoma. METHODS We evaluated c-Ski and SnoN expression by immunohistochemical staining in 120 primary melanomas. Possible associations between c-Ski and SnoN staining patterns and clinicopathological parameters were analyzed. RESULTS Nuclear c-Ski expression was significantly associated with thicker and ulcerated tumours. The percentage of SnoN positivity was higher in ulcerated tumours and in the sentinel node positive group. CONCLUSION These results suggest that c-Ski and SnoN, mediators in TGF-beta resistance, might be implicated in melanoma growth and progression.
Collapse
Affiliation(s)
- Barbara Boone
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium.
| | | | | |
Collapse
|
41
|
Le Scolan E, Zhu Q, Wang L, Bandyopadhyay A, Javelaud D, Mauviel A, Sun L, Luo K. Transforming growth factor-beta suppresses the ability of Ski to inhibit tumor metastasis by inducing its degradation. Cancer Res 2008; 68:3277-85. [PMID: 18451154 DOI: 10.1158/0008-5472.can-07-6793] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
c-Ski is an important corepressor of transforming growth factor-beta (TGF-beta) signaling through its ability to bind to and repress the activity of the Smad proteins. It was initially identified as an oncogene that promotes anchorage-independent growth of chicken and quail embryo fibroblasts when overexpressed. Although increased Ski expression is detected in many human cancer cells, the roles of Ski in mammalian carcinogenesis have yet to be defined. Here, we report that reducing Ski expression in breast and lung cancer cells does not affect tumor growth but enhances tumor metastasis in vivo. Thus, in these cells, Ski plays an antitumorigenic role. We also showed that TGF-beta, a cytokine that is often highly expressed in metastatic tumors, induces Ski degradation through the ubiquitin-dependent proteasome in malignant human cancer cells. On TGF-beta treatment, the E3 ubiquitin ligase Arkadia mediates degradation of Ski in a Smad-dependent manner. Although Arkadia interacts with Ski in the absence of TGF-beta, binding of phosphorylated Smad2 or Smad3 to Ski is required to induce efficient degradation of Ski by Arkadia. Our results suggest that the ability of TGF-beta to induce degradation of Ski could be an additional mechanism contributing to its protumorigenic activity.
Collapse
Affiliation(s)
- Erwan Le Scolan
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Reed JA, Chen D, Lin Q, Medrano EE. SKI is critical for repressing the growth inhibitory function of TGF-beta in human melanoma. Pigment Cell Melanoma Res 2008; 21:494-5; author reply 496-7. [PMID: 18510588 DOI: 10.1111/j.1755-148x.2008.00476.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, Pavasant P. TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun 2008; 371:713-8. [PMID: 18457660 DOI: 10.1016/j.bbrc.2008.04.128] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Accepted: 04/25/2008] [Indexed: 10/22/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) plays roles in cancer progression by degrading the extracellular matrix and basement membrane. Many growth factors including Transforming growth factor-beta1 (TGF-beta1) could induce MMP-9 expression. We demonstrated that TGF-beta1 induced MMP-9 mRNA and protein in human head and neck squamous cell carcinoma cell lines. Application of TGF-beta receptor type I inhibitor (SB505124) reduced the MMP-9 expression markedly. Whilst, inhibitor of Myosin light chain kinase (MLCK) could reduce the level of secreted MMP-9 in both the supernatants and cell lysate but not the level of MMP-9 mRNA. These suggested that MLCK might regulate MMP-9 expression post-transcriptionally. Application of SB505124 and siRNA Smad2/3 reduced the phosphorylation of myosin light chain (MLC) suggested that MLC is downstream to TbetaRI/Smad2/3 signaling pathway. In conclusion, these results describe a novel mechanism for the potentiation of TGF-beta1 signaling to induce MMP-9 expression via Smad and MLCK.
Collapse
|