1
|
Korda DA, Bibok A, Doros A, Horvathy D, Hahn O, Kokas B, Pekli D, Meltzer AZ, Szijarto A, Nadasdy-Horvath D, Deak PA. Initial experience with Double-vein Embolization in Hungary. Eur J Radiol Open 2024; 13:100613. [PMID: 39639858 PMCID: PMC11618029 DOI: 10.1016/j.ejro.2024.100613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/02/2024] [Accepted: 11/17/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction In recent years several new techniques have emerged to induce hypertrophy of the future liver remnant prior to major hepatectomies. We aimed to summarize our initial experience with Double-vein Embolization as the first center in Hungary. Methods Between March 2023 and August 2024 a total of 16 Double-vein Embolization procedures were performed in Semmelweis University. Future liver remnant volume was calculated based on computed tomography scans obtained within 4 weeks prior and 2-3 weeks after the procedure. Tc-99m mebrofenin hepatobiliary scintigraphy results were available for 12/16 patients. Results Technical success rate was 100 %. No major complication was observed. Successful resection rate was 93.8 %. One patient died due to post-hepatectomy liver failure. Future liver remnant volume and ratio increased significantly after the procedure compared to baseline (433.1 ± 163.8 cm3 vs. 603.5 ± 201.8 cm3, p < 0.0001 and 27.2 ± 6.5 % vs. 37 ± 8.8 %, p < 0.0001, respectively). Future liver remnant clearance improved significantly 1 and 2 weeks after the procedure (1.68 ± 0.58 %/min/m2 vs. 2.44 ± 0.64 %/min/m2 and 2.39 ± 0.31 %/min/m2, respectively). Mean function gain was 50.6 % after one week and 60.1% after two weeks, respectively. Discussion Volumetric and functional outcomes in the present study are comparable with results reported in the literature. Our findings provide further evidence that Double-vein Embolization is a safe procedure that offers sufficient volumetric and functional gain in most candidates for liver resection. However, further studies are needed to define the exact place of this new technique in clinical practice.
Collapse
Affiliation(s)
- David Adam Korda
- Semmelweis University, Department of Interventional Radiology, Határőr út 18, Budapest H-1122, Hungary
| | - Andras Bibok
- Semmelweis University, Department of Interventional Radiology, Határőr út 18, Budapest H-1122, Hungary
| | - Attila Doros
- Semmelweis University, Department of Interventional Radiology, Határőr út 18, Budapest H-1122, Hungary
| | - Denes Horvathy
- Semmelweis University, Department of Interventional Radiology, Határőr út 18, Budapest H-1122, Hungary
| | - Oszkar Hahn
- Semmelweis University, Department of Surgery, Transplantation and Gastroenterology, Üllői út 78, Budapest H-1082, Hungary
| | - Balint Kokas
- Semmelweis University, Department of Surgery, Transplantation and Gastroenterology, Üllői út 78, Budapest H-1082, Hungary
| | - Damjan Pekli
- Semmelweis University, Department of Surgery, Transplantation and Gastroenterology, Üllői út 78, Budapest H-1082, Hungary
| | - Anna Zsofia Meltzer
- Semmelweis University, Department of Surgery, Transplantation and Gastroenterology, Üllői út 78, Budapest H-1082, Hungary
| | - Attila Szijarto
- Semmelweis University, Department of Surgery, Transplantation and Gastroenterology, Üllői út 78, Budapest H-1082, Hungary
| | | | - Pal Akos Deak
- Semmelweis University, Department of Interventional Radiology, Határőr út 18, Budapest H-1122, Hungary
| |
Collapse
|
2
|
Stockmann M, Lock JF, Vondran FWR, Seehofer D. Comparison of the LiMAx test vs. the APRI+ALBI score - Incorrect comparison parameters lead to questionable results. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108697. [PMID: 39305809 DOI: 10.1016/j.ejso.2024.108697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 12/02/2024]
Affiliation(s)
- Martin Stockmann
- Department of General, Visceral and Vascular Surgery, Ev. Krankenhaus Paul Gerhardt Stift, Lutherstadt Wittenberg, Germany; Department of Surgery, University Hospital Charité, Berlin, Germany.
| | - Johan F Lock
- Department of General, Visceral, Transplant, Vascular and Pediatric Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Florian W R Vondran
- Department of General, Visceral, Pediatric and Transplant Surgery, University Hospital Aachen, Germany
| | - Daniel Seehofer
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
3
|
Santol J, Ammann M, Reese T, Oldhafer F, Dong Y, Schmelzle M, Oldhafer KJ, Hackl H, Gruenberger T, Starlinger P. Reply to: Comparison of the LiMAx test vs. the APRI+ALBI score - Incorrect comparison parameters lead to questionable results. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108696. [PMID: 39306501 DOI: 10.1016/j.ejso.2024.108696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 12/02/2024]
Affiliation(s)
- Jonas Santol
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria; Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA; Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Ammann
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA; Department of Surgery, State Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Tim Reese
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany; Semmelweis University, Asklepios Campus Hamburg, Hamburg, Germany
| | - Felix Oldhafer
- Hannover Medical School, General, Visceral and Transplant Surgery, Hannover, Germany
| | - Yawen Dong
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Moritz Schmelzle
- Hannover Medical School, General, Visceral and Transplant Surgery, Hannover, Germany
| | - Karl J Oldhafer
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany; Semmelweis University, Asklepios Campus Hamburg, Hamburg, Germany
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA; Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Kusuhara T, Gon H, Terashima K, Komatsu S, Matsuo Y, Tokumaru S, Toyama H, Kido M, Okimoto T, Fukumoto T. Comparison of Prognostic Outcomes Between Repeat Liver Resection and Particle Therapy for Patients with Recurrent Hepatocellular Carcinoma. Ann Surg Oncol 2024:10.1245/s10434-024-16363-w. [PMID: 39453585 DOI: 10.1245/s10434-024-16363-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Particle therapy (PT) as an initial hepatocellular carcinoma (HCC) treatment has been reported to be effective; however, its efficacy for the treatment of recurrent HCC remains unclear. OBJECTIVE This study aimed to evaluate the efficacy of PT compared with repeat liver resection for treating recurrent HCC after initial LR, with a focus on prognostic outcomes. METHODS Between 2005 and 2019, 89 and 49 patients underwent repeat LR and PT for recurrent HCC after initial LR, respectively. The 5-year overall survival (OS) and recurrence-free survival (RFS) were evaluated using propensity score matching. Treatment-related complications were scored using the National Institute Common Terminology Criteria for Adverse Events (CTCAE) and were compared between the repeat LR and PT groups. RESULTS In the entire cohort, the 5-year OS was significantly better in the repeat LR group than in the PT group (75% vs. 48%; p = 0.0003), and the 5-year RFS was comparable in both groups (22% vs. 13%; p = 0.088). Propensity score matching created 34 pairs of patients; no significant differences in the 5-year OS (65% vs. 48%; p = 0.310) and RFS (21% vs. 8%; p = 0.271) were observed between the repeat LR and PT groups. The proportion of CTCAE grade ≥3 complications was 8.8% and 5.9% in the repeat LR and PT groups, respectively (p = 0.641). CONCLUSIONS After initial LR, the prognosis and treatment-related complications in patients with recurrent HCC were comparable between the repeat LR and PT groups in the matched cohort; therefore, PT may remain one of the multidisciplinary treatment options for recurrent HCC.
Collapse
Affiliation(s)
- Tatsuki Kusuhara
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hidetoshi Gon
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan.
| | - Kazuki Terashima
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Shohei Komatsu
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yoshiro Matsuo
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Sunao Tokumaru
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Hirochika Toyama
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masahiro Kido
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoaki Okimoto
- Department of Radiology, Hyogo Ion Beam Medical Center, Tatsuno, Hyogo, Japan
| | - Takumi Fukumoto
- Department of Surgery, Division of Hepato-Biliary-Pancreatic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
5
|
Schurink IJ, de Goeij FHC, van der Heijden FJ, van Rooden RM, van Dijk MC, Polak WG, van der Laan LJW, Huurman VAL, de Jonge J. Liver function maximum capacity test during normothermic regional perfusion predicts graft function after transplantation. EPMA J 2024; 15:545-558. [PMID: 39239110 PMCID: PMC11372035 DOI: 10.1007/s13167-024-00371-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/29/2024] [Indexed: 09/07/2024]
Abstract
Purpose In an effort to reduce waitlist mortality, extended criteria donor organs, including those from donation after circulatory death (DCD), are being used with increasing frequency. These donors carry an increased risk for postoperative complications, and balancing donor-recipient risks is currently based on generalized nomograms. Abdominal normothermic regional perfusion (aNRP) enables individual evaluation of DCD organs, but a gold standard to determine suitability for transplantation is lacking. This study aimed to incorporate individualized and predictive measurements of the liver maximum capacity (LiMAx) test to objectively grade liver function during aNRP and prevent post-op complications. Methods aNRP was performed to salvage 18 DCD liver grafts, otherwise discarded. Continuous variables were presented as the median with the interquartile range. Results The liver function maximum capacity (LiMAx) test was successfully performed within the aNRP circuit in 17 aNRPs (94%). Donor livers with good lactate clearance during aNRP demonstrated significantly higher LiMAx scores (396 (301-451) µg/kg/h versus those who did not 105 (70-158) µg/kg/h; P = 0.006). This was also true for manifesting stress hyperglycemia > 20 mmol/l (P = 0.032). LiMAx score correlated with alanine aminotransferase (ALT; R = - 0.755) and aspartate transaminase (AST; R = - 0.800) levels during perfusion and distinguished livers that were selected for transplantation (397 (346-453) µg/kg/h) from those who were discarded (155 (87-206) µg/kg/h; P < 0.001). Twelve livers were accepted for transplantation, blinded for LiMAx results, and all had LiMAx scores of > 241 µg/kg/h. Postoperatively, LiMAx during aNRP displayed correlation with 24-h lactate levels. Conclusions This study shows for the first time the feasibility to assess liver function during aNRP in individual donor livers. LiMAx presents an objective tool to predict donor liver function and risk of complications in the recipient, thus enabling individualized matching of donor livers for an individual recipient. The LiMAx test may present a valuable test for the prediction of donor liver function, preventing post-transplant complication, and personalizing the selection of donor livers for individual recipients. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-024-00371-7.
Collapse
Affiliation(s)
- Ivo J Schurink
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, Zuid Holland The Netherlands
| | - Femke H C de Goeij
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, Zuid Holland The Netherlands
| | - Fenna J van der Heijden
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, Zuid Holland The Netherlands
| | - Rutger M van Rooden
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Madeleine C van Dijk
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Wojciech G Polak
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, Zuid Holland The Netherlands
| | - Luc J W van der Laan
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, Zuid Holland The Netherlands
| | - Volkert A L Huurman
- LUMC Transplant Center, Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen de Jonge
- Division of HPB and Transplant Surgery, Department of Surgery, Erasmus MC Transplant Institute, Erasmus University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, Zuid Holland The Netherlands
| |
Collapse
|
6
|
Kamali C, Brunnbauer P, Kamali K, Saqr AHA, Arnold A, Harman Kamali G, Babigian J, Keshi E, Mohr R, Felsenstein M, Moosburner S, Hillebrandt KH, Bartels J, Sauer IM, Tacke F, Schmelzle M, Pratschke J, Krenzien F. Extracellular NAD + response to post-hepatectomy liver failure: bridging preclinical and clinical findings. Commun Biol 2024; 7:991. [PMID: 39143151 PMCID: PMC11324947 DOI: 10.1038/s42003-024-06661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/31/2024] [Indexed: 08/16/2024] Open
Abstract
Liver fibrosis progressing to cirrhosis is a major risk factor for liver cancer, impacting surgical treatment and survival. Our study focuses on the role of extracellular nicotinamide adenine dinucleotide (eNAD+) in liver fibrosis, analyzing liver disease patients undergoing surgery. Additionally, we explore NAD+'s therapeutic potential in a mouse model of extended liver resection and in vitro using 3D hepatocyte spheroids. eNAD+ correlated with aspartate transaminase (AST) and bilirubin after liver resection (AST: r = 0.2828, p = 0.0087; Bilirubin: r = 0.2584, p = 0.0176). Concordantly, post-hepatectomy liver failure (PHLF) was associated with higher eNAD+ peaks (n = 10; p = 0.0063). Post-operative eNAD+ levels decreased significantly (p < 0.05), but in advanced stages of liver fibrosis or cirrhosis, this decline not only diminished but actually showed a trend towards an increase. The expression of NAD+ biosynthesis rate-limiting enzymes, nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase 3 (NMNAT3), were upregulated significantly in the liver tissue of patients with higher liver fibrosis stages (p < 0.0001). Finally, the administration of NAD+ in a 3D hepatocyte spheroid model rescued hepatocytes from TNFalpha-induced cell death and improved viability (p < 0.0001). In a mouse model of extended liver resection, NAD+ treatment significantly improved survival (p = 0.0158) and liver regeneration (p = 0.0186). Our findings reveal that eNAD+ was upregulated in PHLF, and rate-limiting enzymes of NAD+ biosynthesis demonstrated higher expressions under liver fibrosis. Further, eNAD+ administration improved survival after extended liver resection in mice and enhanced hepatocyte viability in vitro. These insights may offer a potential target for future therapies.
Collapse
Affiliation(s)
- Can Kamali
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Philipp Brunnbauer
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Kaan Kamali
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Al-Hussein Ahmed Saqr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Alexander Arnold
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Gulcin Harman Kamali
- University of Health Sciences, Prof. Dr. Cemil Taşçıoğlu City Hospital, Department of Pathology, Istanbul, Turkey
| | - Julia Babigian
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Eriselda Keshi
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Raphael Mohr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Matthäus Felsenstein
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Simon Moosburner
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Karl-Herbert Hillebrandt
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Academy, Clinician Scientist Program, Charitéplatz 1, 10117, Berlin, Germany
| | - Jasmin Bartels
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Igor Maximilian Sauer
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Moritz Schmelzle
- Hannover Medical School, Department of General, Visceral and Transplant Surgery, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Johann Pratschke
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Felix Krenzien
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Department of Surgery - Campus Charité Mitte and Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany.
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Pathology, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
7
|
Chan SM, Cornman-Homonoff J, Lucatelli P, Madoff DC. Image-guided percutaneous strategies to improve the resectability of HCC: Portal vein embolization, liver venous deprivation, or radiation lobectomy? Clin Imaging 2024; 111:110185. [PMID: 38781614 DOI: 10.1016/j.clinimag.2024.110185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 04/20/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Despite considerable advances in surgical technique, many patients with hepatic malignancies are not operative candidates due to projected inadequate hepatic function following resection. Consequently, the size of the future liver remnant (FLR) is an essential consideration when predicting a patient's likelihood of liver insufficiency following hepatectomy. Since its initial description 30 years ago, portal vein embolization has become the standard of care for augmenting the size and function of the FLR preoperatively. However, new minimally invasive techniques have been developed to improve surgical candidacy, chief among them liver venous deprivation and radiation lobectomy. The purpose of this review is to discuss the status of preoperative liver augmentation prior to resection of hepatocellular carcinoma with a focus on these three techniques, highlighting the distinctions between them and suggesting directions for future investigation.
Collapse
Affiliation(s)
- Shin Mei Chan
- Department of Radiology & Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Joshua Cornman-Homonoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Pierleone Lucatelli
- Department of Radiological, Oncological, and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - David C Madoff
- Department of Radiology and Biomedical Imaging, Section of Interventional Radiology, Yale School of Medicine, New Haven, CT, USA; Department of Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA; Department of Surgery, Section of Surgical Oncology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
8
|
O'Connell RM, Hoti E. Challenges and Opportunities for Precision Surgery for Colorectal Liver Metastases. Cancers (Basel) 2024; 16:2379. [PMID: 39001441 PMCID: PMC11240734 DOI: 10.3390/cancers16132379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence of colorectal cancer and colorectal liver metastases (CRLM) is increasing globally due to an interaction of environmental and genetic factors. A minority of patients with CRLM have surgically resectable disease, but for those who have resection as part of multimodal therapy for their disease, long-term survival has been shown. Precision surgery-the idea of careful patient selection and targeting of surgical intervention, such that treatments shown to be proven to benefit on a population level are the optimal treatment for each individual patient-is the new paradigm of care. Key to this is the understanding of tumour molecular biology and clinically relevant mutations, such as KRAS, BRAF, and microsatellite instability (MSI), which can predict poorer overall outcomes and a poorer response to systemic therapy. The emergence of immunotherapy and hepatic artery infusion (HAI) pumps show potential to convert previously unresectable disease to resectable disease, in addition to established systemic and locoregional therapies, but the surgeon must be wary of poor-quality livers and the spectre of post-hepatectomy liver failure (PHLF). Volume modulation, a cornerstone of hepatic surgery for a generation, has been given a shot in the arm with the advent of liver venous depletion (LVD) ensuring significantly more hypertrophy of the future liver remnant (FLR). The optimal timing of liver resection for those patients with synchronous disease is yet to be truly established, but evidence would suggest that those patients requiring complex colorectal surgery and major liver resection are best served with a staged approach. In the operating room, parenchyma-preserving minimally invasive surgery (MIS) can dramatically reduce the surgical insult to the patient and lead to better perioperative outcomes, with quicker return to function.
Collapse
Affiliation(s)
- Robert Michael O'Connell
- Department of Hepatopancreaticobiliary and Transplantation Surgery, Saint Vincent's University Hospital, D04 T6F4 Dublin, Ireland
| | - Emir Hoti
- Department of Hepatopancreaticobiliary and Transplantation Surgery, Saint Vincent's University Hospital, D04 T6F4 Dublin, Ireland
| |
Collapse
|
9
|
Gierej P, Radziszewski M, Figiel W, Grąt M. Advancements in Predictive Tools for Primary Graft Dysfunction in Liver Transplantation: A Comprehensive Review. J Clin Med 2024; 13:3762. [PMID: 38999328 PMCID: PMC11242128 DOI: 10.3390/jcm13133762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
Orthotopic liver transplantation stands as the sole curative solution for end-stage liver disease. Nevertheless, the discrepancy between the demand and supply of grafts in transplant medicine greatly limits the success of this treatment. The increasing global shortage of organs necessitates the utilization of extended criteria donors (ECD) for liver transplantation, thereby increasing the risk of primary graft dysfunction (PGD). Primary graft dysfunction (PGD) encompasses early allograft dysfunction (EAD) and the more severe primary nonfunction (PNF), both of which stem from ischemia-reperfusion injury (IRI) and mitochondrial damage. Currently, the only effective treatment for PNF is secondary transplantation within the initial post-transplant week, and the occurrence of EAD suggests an elevated, albeit still uncertain, likelihood of retransplantation urgency. Nonetheless, the ongoing exploration of novel IRI mitigation strategies offers hope for future improvements in PGD outcomes. Establishing an intuitive and reliable tool to predict upcoming graft dysfunction is vital for early identification of high-risk patients and for making informed retransplantation decisions. Accurate diagnostics for PNF and EAD constitute essential initial steps in implementing future mitigation strategies. Recently, novel methods for PNF prediction have been developed, and several models for EAD assessments have been introduced. Here, we provide an overview of the currently scrutinized predictive tools for PNF and EAD evaluation strategies, accompanied by recommendations for future studies.
Collapse
Affiliation(s)
- Piotr Gierej
- Department of General Transplant and Liver Surgery, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | | | | | |
Collapse
|
10
|
Kalil JA, Deschenes M, Perrier H, Zlotnik O, Metrakos P. Navigating Complex Challenges: Preoperative Assessment and Surgical Strategies for Liver Resection in Patients with Fibrosis or Cirrhosis. Biomedicines 2024; 12:1264. [PMID: 38927471 PMCID: PMC11201140 DOI: 10.3390/biomedicines12061264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
This review explores the intricacies of evaluating cirrhotic patients for liver resection while exploring how to extend surgical intervention to those typically excluded by the Barcelona Clinic Liver Cancer (BCLC) criteria guidelines by focusing on the need for robust preoperative assessment and innovative surgical strategies. Cirrhosis presents unique challenges and complicates liver resection due to the altered physiology of the liver, portal hypertension, and liver decompensation. The primary objective of this review is to discuss the current approaches in assessing the suitability of cirrhotic patients for liver resection and aims to identify which patients outside of the BCLC criteria can safely undergo liver resection by highlighting emerging strategies that can improve surgical safety and outcomes.
Collapse
Affiliation(s)
- Jennifer A. Kalil
- Department of Surgery, Royal Victoria Hospital, McGill University Health Center, 1001 Blvd Decarie, Montreal, QC H4A 3J1, Canada; (J.A.K.); (H.P.); (O.Z.)
- Cancer Research Program, McGill University Health Center, Research Institute, 1001 Blvd Decarie, Montreal, QC H4A 3J1, Canada
| | - Marc Deschenes
- Department of Medicine, Division of Gastroenterology & Hepatology & Transplantation, Royal Victoria Hospital, McGill University Health Center, 1001 Blvd Decarie, Montreal, QC H4A 3J1, Canada;
| | - Hugo Perrier
- Department of Surgery, Royal Victoria Hospital, McGill University Health Center, 1001 Blvd Decarie, Montreal, QC H4A 3J1, Canada; (J.A.K.); (H.P.); (O.Z.)
| | - Oran Zlotnik
- Department of Surgery, Royal Victoria Hospital, McGill University Health Center, 1001 Blvd Decarie, Montreal, QC H4A 3J1, Canada; (J.A.K.); (H.P.); (O.Z.)
- Cancer Research Program, McGill University Health Center, Research Institute, 1001 Blvd Decarie, Montreal, QC H4A 3J1, Canada
| | - Peter Metrakos
- Department of Surgery, Royal Victoria Hospital, McGill University Health Center, 1001 Blvd Decarie, Montreal, QC H4A 3J1, Canada; (J.A.K.); (H.P.); (O.Z.)
- Cancer Research Program, McGill University Health Center, Research Institute, 1001 Blvd Decarie, Montreal, QC H4A 3J1, Canada
| |
Collapse
|
11
|
Lauscher JC, Dixon MEB, Jada G, Afshin M, Neumann K, Cheung H, Martel G, Hallet J, Coburn N, Law C, Milot L, Karanicolas PJ. Prediction of post-hepatectomy liver failure by preoperative gadoxetate disodium-enhanced magnetic resonance imaging. HPB (Oxford) 2024; 26:782-788. [PMID: 38472015 DOI: 10.1016/j.hpb.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 03/14/2024]
Abstract
BACKGROUND Approximately 15% of patients experience post-hepatectomy liver failure after major hepatectomy. Poor hepatocyte uptake of gadoxetate disodium, a magnetic resonance imaging contrast agent, may be a predictor of post-hepatectomy liver failure. METHODS A retrospective cohort study of patients undergoing major hepatectomy (≥3 segments) with a preoperative gadoxetate disodium-enhanced magnetic resonance imaging was conducted. The liver signal intensity (standardized to the spleen) and the functional liver remnant was calculated to determine if this can predict post-hepatectomy liver failure after major hepatectomy. RESULTS In 134 patients, low signal intensity of the remnant liver standardized by signal intensity of the spleen in post-contrast images was associated with post-hepatectomy liver failure in multiple logistic regression analysis (Odds Ratio 0.112; 95% CI 0.023-0.551). In a subgroup of 33 patients with lower quartile of functional liver remnant, area under the curve analysis demonstrated a diagnostic accuracy of functional liver remnant to predict post-hepatectomy liver failure of 0.857 with a cut-off value for functional liver remnant of 1.4985 with 80.0% sensitivity and 89.3% specificity. CONCLUSION Functional liver remnant determined by gadoxetate disodium-enhanced magnetic resonance imaging is a predictor of post-hepatectomy liver failure which may help identify patients for resection, reducing morbidity and mortality.
Collapse
Affiliation(s)
- Johannes C Lauscher
- Department of General and Visceral Surgery, Charité Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Matthew E B Dixon
- Division of Surgical Oncology, Rush University Medical Center 1725 W Harrison St, Chicago, Illinois, 60612 USA
| | - George Jada
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto ON M4N 3M5, Canada
| | - Mariam Afshin
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto ON M4N 3M5, Canada
| | - Konrad Neumann
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin
| | - Helen Cheung
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto ON M4N 3M5, Canada
| | | | - Julie Hallet
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto ON M4N 3M5, Canada
| | - Natalie Coburn
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto ON M4N 3M5, Canada
| | - Calvin Law
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto ON M4N 3M5, Canada
| | | | - Paul J Karanicolas
- Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto ON M4N 3M5, Canada.
| |
Collapse
|
12
|
Köhler T, Schwier E, Praxenthaler J, Kirchner C, Winde G, Koos B, Henzler D. Isoflurane, like sepsis, decreases CYP1A2 liver enzyme activity in intensive care patients: a clinical study and network model. Intensive Care Med Exp 2024; 12:33. [PMID: 38589754 PMCID: PMC11001842 DOI: 10.1186/s40635-024-00617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
PURPOSE Liver function of intensive care patients is routinely monitored by static blood pathology. For specific indications, liver specific cytochrome activity may be measured by the commercially available maximum liver function capacity (LiMAx) test via quantification of the cytochrome P450 1A2 (CYP1A2) dependent C-methacetin metabolism. Sedation with the volatile anesthetic isoflurane was suspected to abrogate the correlation of LiMAx test with global liver function. We hypothesized that isoflurane has a CYP1A2-activity and LiMAx test result decreasing effect. METHODS In this monocentric, observational clinical study previously liver healthy intensive care patients, scheduled to be changed from propofol to isoflurane sedation, were enrolled. LiMAx testing was done before, during and after termination of isoflurane sedation. RESULTS The mean LiMAx value decreased during isoflurane sedation. Septic patients (n = 11) exhibited lower LiMAx values compared to non-septic patients (n = 11) at all time points. LiMAx values decreased with isoflurane from 140 ± 82 to 30 ± 34 µg kg-1 h-1 in the septic group and from 253 ± 92 to 147 ± 131 µg kg-1 h-1 in the non-septic group while laboratory markers did not imply significant hepatic impairment. Lactate increased during isoflurane inhalation without clinical consequence. CONCLUSION Sepsis and isoflurane have independently demonstrated an effect on reducing the hepatic CYP1A2-activity. A network model was constructed that could explain the mechanism through the influence of isoflurane on hypoxia inducible factor (HIF-1α) by upregulation of the hypoxia-inducible pathway and the downregulation of CYP1A2-activity via the ligand-inducible pathway. Thus, the increased anaerobic metabolism may result in lactate accumulation. The influence of isoflurane sedation on the validated correlation of global liver function with CYP1A2-activity measured by LiMAx testing needs to be investigated in more detail.
Collapse
Affiliation(s)
- Thomas Köhler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, Herford, Germany.
- Department of Anesthesiology and Intensive Care Medicine, AMEOS-Klinikum Halberstadt, Academic Teaching Hospital, Gleimstraße 5, 38820, Halberstadt, Germany.
| | - Elke Schwier
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, Herford, Germany
| | - Janina Praxenthaler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, Herford, Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, Southeast Bavaria Hospitals, Klinikum Traunstein, Traunstein, Germany
| | - Carmen Kirchner
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, Ruhr University Bochum, Klinikum Herford, Herford, Germany
| | - Günther Winde
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, Ruhr University Bochum, Klinikum Herford, Herford, Germany
| | - Björn Koos
- Department of Anesthesiology, Intensive Care and Pain Medicine, Ruhr University Bochum, Knappschaftskrankenhaus Bochum GmbH, Bochum, Germany
| | - Dietrich Henzler
- Department of Anesthesiology, Surgical Intensive Care, Emergency and Pain Medicine, Ruhr University Bochum, Klinikum Herford, Herford, Germany
| |
Collapse
|
13
|
Santol J, Ammann M, Reese T, Kern AE, Laferl V, Oldhafer F, Dong Y, Rumpf B, Vali M, Wiemann B, Ortmayr G, Brunner SE, Probst J, Aiad M, Jankoschek AS, Gramberger M, Tschoegl MM, Salem M, Surci N, Thonhauser R, Mazari V, Hoblaj T, Thalhammer S, Schmelzle M, Oldhafer KJ, Gruenberger T, Starlinger P. Comparison of the LiMAx test vs. the APRI+ALBI score for clinical utility in preoperative risk assessment in patients undergoing liver surgery - A European multicenter study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2024; 50:108048. [PMID: 38471374 DOI: 10.1016/j.ejso.2024.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024]
Abstract
INTRODUCTION Posthepatectomy liver failure (PHLF) remains the main reason for short-term mortality after liver surgery. APRI+ALBI, aspartate aminotransferase to platelet ratio (APRI) combined with albumin-bilirubin grade (ALBI), score and the liver function maximum capacity test (LiMAx) are both established preoperative (preop) liver function tests. The aim of this study was to compare both tests for their predictive potential for clinically significant PHLF grade B and C (B+C). MATERIALS AND METHODS 352 patients were included from 4 European centers. Patients had available preop APRI+ALBI scores and LiMAx results. Predictive potential for PHLF, PHLF B+C and 90-day mortality was compared using receiver operating characteristic (ROC) curve analysis and calculation of the area under the curve (AUC). Published cutoffs of ≥ -2.46 for APRI+ALBI and of <315 for LiMAx were assessed using chi-squared test. RESULTS APRI+ALBI showed superior predictive potential for PHLF B+C (N = 34; AUC = 0.766), PHLF grade C (N = 20; AUC = 0.782) and 90-day mortality (N = 15; AUC = 0.750). When comparing the established cutoffs of both tests, APRI+ALBI outperformed LiMAx in prediction of PHLF B+C (APRI+ALBI ≥2.46: Positive predictive value (PPV) = 19%, negative predictive value (NPV) = 97%; LiMAx <315: PPV = 3%, NPV = 90%) and 90-day mortality (APRI+ALBI ≥2.46: PPV = 12%, NPV = 99%; LiMAx <315: PPV = 0%, NPV = 94%) CONCLUSION: In our analysis, APRI+ALBI outperformed LiMAx measurement in the preop prediction of PHLF B+C and postoperative mortality, at a fraction of the costs, manual labor and invasiveness.
Collapse
Affiliation(s)
- Jonas Santol
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria; Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA; Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Markus Ammann
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA; Department of Surgery, State Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Tim Reese
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany; Semmelweis University Asklepios Campus Hamburg, Hamburg, Germany
| | - Anna E Kern
- Medical University of Vienna, Vienna, Austria
| | | | - Felix Oldhafer
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Yawen Dong
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Benedikt Rumpf
- Hospital Barmherzige Schwestern, Department of Surgery, Vienna, Austria
| | - Marjan Vali
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany; Semmelweis University Asklepios Campus Hamburg, Hamburg, Germany
| | - Bengt Wiemann
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | | | - Joel Probst
- Medical University of Vienna, Vienna, Austria
| | - Monika Aiad
- Medical University of Vienna, Vienna, Austria
| | | | - Mariel Gramberger
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Madita M Tschoegl
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Mohamed Salem
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Niccolò Surci
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Rebecca Thonhauser
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Vulnet Mazari
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Thomas Hoblaj
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Sabine Thalhammer
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Moritz Schmelzle
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Karl J Oldhafer
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany; Semmelweis University Asklepios Campus Hamburg, Hamburg, Germany
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic, Rochester, MN, USA; Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Vienna, Austria; Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Arend J, Franz M, Rose A, March C, Rahimli M, Perrakis A, Lorenz E, Croner R. Robotic Complete ALPPS (rALPPS)-First German Experiences. Cancers (Basel) 2024; 16:1070. [PMID: 38473426 DOI: 10.3390/cancers16051070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND ALPPS leads to fast and effective liver hypertrophy. This enables the resection of extended tumors. Conventional ALPPS is associated with high morbidity and mortality. MILS reduces morbidity and the robot adds technical features that make complex procedures safe. MATERIAL AND METHODS The MD-MILS was screened for patients who underwent rALPPS. Demographic and perioperative data were evaluated retrospectively. Ninety days postoperative morbidity was scored according to the CD classification. The findings were compared with the literature. RESULTS Since November 2021, five patients have been identified. The mean age and BMI of the patients were 50.0 years and 22.7 kg/m2. In four cases, patients suffered from colorectal liver metastases and, in one case, intrahepatic cholangiocarcinoma. Prior to the first operation, the mean liver volume of the residual left liver was 380.9 mL with a FLR-BWR of 0.677%. Prior to the second operation, the mean volume of the residual liver was 529.8 mL with a FLR-BWR of 0.947%. This was an increase of 41.9% of the residual liver volume. The first and second operations were carried out within 17.8 days. The mean time of the first and second operations was 341.2 min and 440.6 min. The mean hospital stay was 27.2 days. Histopathology showed the largest tumor size of 39 mm in diameter with a mean amount of 4.7 tumors. The mean tumor-free margin was 12.3 mm. One complication CD > 3a occurred. No patient died during the 90-day follow up. CONCLUSION In the first German series, we demonstrated that rALPPS can be carried out safely with reduced morbidity and mortality in selected patients.
Collapse
Affiliation(s)
- Jörg Arend
- Department of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Mareike Franz
- Department of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Alexander Rose
- Department of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Christine March
- Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Mirhasan Rahimli
- Department of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Aristotelis Perrakis
- Department of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Eric Lorenz
- Department of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Roland Croner
- Department of General-, Visceral-, Vascular- and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| |
Collapse
|
15
|
Knitter S, Sauer L, Hillebrandt KH, Moosburner S, Fehrenbach U, Auer TA, Raschzok N, Lurje G, Krenzien F, Pratschke J, Schöning W. Extended Right Hepatectomy following Clearance of the Left Liver Lobe and Portal Vein Embolization for Curatively Intended Treatment of Extensive Bilobar Colorectal Liver Metastases: A Single-Center Case Series. Curr Oncol 2024; 31:1145-1161. [PMID: 38534918 PMCID: PMC10969123 DOI: 10.3390/curroncol31030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Two-staged hepatectomy (TSH) including portal vein embolization (PVE) may offer surgical treatment for extensive bilobar colorectal liver metastases (CRLM). This study aimed to investigate the feasibility and outcomes of extended right hepatectomy (ERH) within TSH including PVE for patients with extended CRLM. METHODS We retrospectively collected data of patients who underwent TSH for extended CRLM between 2015 and 2021 at our institution. Clearance of the left liver lobe (clear-up, CU) associated with PVE was followed by ERH. RESULTS Minimally invasive (n = 12, 46%, MIH) or open hepatectomy (n = 14, 54%, OH) was performed. Postoperative major morbidity and 90-day mortality were 54% and 0%. Three-year overall survival was 95%. Baseline characteristics, postoperative and long-term outcomes were comparable between MIH and OH. However, hospital stay was significantly shorter after MIH (8 vs. 15 days, p = 0.008). Additionally, the need for intraoperative transfusions tended to be lower in the MIH group (17% vs. 50%, p = 0.110). CONCLUSIONS ERH following CU and PVE for extended CRLM is feasible and safe in laparoscopic and open approaches. MIH for ERH may result in shorter postoperative hospital stays. Further high-volume, multicenter studies are required to evaluate the potential superiority of MIH.
Collapse
Affiliation(s)
- Sebastian Knitter
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Linda Sauer
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Karl-H. Hillebrandt
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Uli Fehrenbach
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Timo A. Auer
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Georg Lurje
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| |
Collapse
|
16
|
Groß S, Bitzer M, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, La Fougère C, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. S3-Leitlinie „Diagnostik und Therapie biliärer Karzinome“ – Langversion 4.0. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e213-e282. [PMID: 38364849 DOI: 10.1055/a-2189-8567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Affiliation(s)
- Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein, Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V. (AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | - Hans J Schlitt
- Klinik und Poliklinik für Chirurgie, Universitätsklinikum Regensburg
| | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
17
|
Rühlmann F, Azizian A, Moosmann C, Bernhardt M, Keck J, Flebbe H, Al-Bourini O, Hosseini ASA, Grade M, Lorf T, Ghadimi M, Perl T, Gaedcke J. Perioperative LiMAx Test Analysis: Impact of Portal Vein Embolisation, Chemotherapy and Major Liver Resection. Biomedicines 2024; 12:254. [PMID: 38397856 PMCID: PMC10886999 DOI: 10.3390/biomedicines12020254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/31/2023] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Postoperative liver failure (PLF) is a severe complication after major liver resection (MLR). To increase the safety of patients, clinical bedside tests are of great importance. However, limitations of their applicability and validity impair their value. METHODS Preoperative measurements of the liver maximum capacity (LiMAx) were performed in n = 40 patients, who underwent MLR (≥3 segments). Matched postoperative LiMAx was measured in n = 21 patients. Liver function was compared between pretreated patients (n = 11 with portal vein embolisation (PVE) and n = 19 patients with preoperative chemotherapy) and therapy naïve patients. The LiMAx values were compared with liver-specific blood parameters and volumetric analysis. RESULTS In total, n = 40 patients were enrolled in this study. The majority of patients (n = 33; 82.5%) had high preoperative LiMAx values (>315 µg/kg/h), while only seven patients (17.5%) had medium values (140-315 µg/kg/h), and none of the patients had low values (<140 µg/kg/h). A comparison of pretreated patients (with PVE and/or chemotherapy) and therapy naïve patients showed no significant difference in the preoperative LiMAx values (p > 0.05). The preoperative LiMAx values were significantly higher than the matched postoperative values on postoperative day 1 (p < 0.0001). A comparison between the expected and measured postoperative LiMAx showed a difference (≥10%) in 7 out of 13 patients (53.8%). After an initial postoperative decrease in the LiMAx, the patients without complications (n = 12) showed a continuous increase until 14 days after surgery. In the patients with postoperative complications, a decrease in the LiMAx was associated with a prolonged recovery. CONCLUSIONS For patients undergoing MLR within the 0.5% rule, which is the clinical gold standard, the LiMAx values do not offer any additional information. Additionally, the LiMAx may have reflected liver function, but it did not deliver additional information regarding postoperative liver recovery. The clinical use of LiMAx might be relevant in selected patients beyond the 0.5% rule.
Collapse
Affiliation(s)
- Felix Rühlmann
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Azadeh Azizian
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Christian Moosmann
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Markus Bernhardt
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Jan Keck
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Hannah Flebbe
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Omar Al-Bourini
- Institute for Diagnostic and Interventional Radiology, University Medical Centre Göttingen, D-37075 Göttingen, Germany (A.S.A.H.)
| | - Ali Seif Amir Hosseini
- Institute for Diagnostic and Interventional Radiology, University Medical Centre Göttingen, D-37075 Göttingen, Germany (A.S.A.H.)
| | - Marian Grade
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Thomas Lorf
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Michael Ghadimi
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Thorsten Perl
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| | - Jochen Gaedcke
- Department of General, Visceral, and Paediatric Surgery, University Medical Centre, D-37075 Göttingen, Germany; (F.R.); (A.A.); (C.M.); (M.B.); (J.K.); (H.F.); (M.G.); (T.L.); (M.G.); (T.P.)
| |
Collapse
|
18
|
Senk K, Rio Bartulos C, Belkoura JMC, Schmid S, Schlosser-Hupf S, Jung EM, Wiggermann P, Einspieler I. LiMAx test and ultrasound elastography to measure biomarkers of declining liver function in patients with liver fibrosis: A correlation analysis. Clin Hemorheol Microcirc 2024; 88:S85-S93. [PMID: 39422931 PMCID: PMC11613062 DOI: 10.3233/ch-248107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
BACKGROUND Monitoring liver changes is crucial in the management of liver fibrosis. Current diagnostic methods include liver function tests such as the Liver Maximum Capacity (LiMAx) test and measurements of liver stiffness. While the LiMAx test quantifies liver function through 13C-methacetin metabolism, ultrasound (US) elastography noninvasively assesses liver stiffness. The relationship between the findings of these methods in patients with liver fibrosis is not fullyunderstood. OBJECTIVE This study evaluated the correlation between LiMAx measurements of liver function and US elastography-based liver stiffness measurements to better understand the interplay between functional and structural liver parameters in fibrotic liver disease. Additionally, the relationship between body mass index (BMI) and these parameters isevaluated. METHODS This retrospective study analysed data from 97 patients who underwent both LiMAx testing and real-time elastography, resulting in a total data set of 108 examinations. The correlations between the results of the LiMAx test and elastography and their relationships with body mass index (BMI) were analysed. RESULTS There was a significant negative correlation (r = -0.25, p < 0.05) between LiMAx test values and liver stiffness measurements. BMI was significantly negatively correlated with LiMAx values (r = -0.29, p < 0.001) but not significantly correlated with liver stiffness values. CONCLUSIONS This retrospective study confirms the results of previous studies showing a notable but weak association between liver function and liver stiffness. Our results highlight the potential value of both tests as complementary tools for the evaluation of liver health, reinforcing the necessity for a multimodal approach to liver assessment.
Collapse
Affiliation(s)
- Karin Senk
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Carolina Rio Bartulos
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtischen Klinikum Braunschweig gGmbH, Braunschweig. Germany
| | | | - Stephan Schmid
- Klinik für Innere Medizin I, Gastroenterologie, Hepatologie, Endokrinologie, Rheumatologie, Immunologie und Infektiologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Sophie Schlosser-Hupf
- Klinik für Innere Medizin I, Gastroenterologie, Hepatologie, Endokrinologie, Rheumatologie, Immunologie und Infektiologie, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Ernst Michael Jung
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Philipp Wiggermann
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtischen Klinikum Braunschweig gGmbH, Braunschweig. Germany
| | - Ingo Einspieler
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| |
Collapse
|
19
|
Bitzer M, Groß S, Albert J, Blödt S, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Follmann M, Freudenberger P, Gani C, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Krug D, Fougère CL, Lang H, Langer T, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Nothacker M, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Steubesand N, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. S3-Leitlinie „Diagnostik und Therapie des Hepatozellulären Karzinoms“ – Langversion 4.0. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2024; 62:e67-e161. [PMID: 38195102 DOI: 10.1055/a-2189-6353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Affiliation(s)
- Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | - Susanne Blödt
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Markus Follmann
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | | | - Cihan Gani
- Klinik für Radioonkologie, Universitätsklinikum Tübingen
| | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Thomas Langer
- Office des Leitlinienprogrammes Onkologie, Deutsche Krebsgesellschaft e. V., Berlin
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Eberhard-Karls Universität, Tübingen
| | | | - Monika Nothacker
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften e. V.(AWMF), Berlin
| | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
20
|
Makridis G, Reese T, Zádori ZS, Suling AI, Stark M, Horling K, Brüning R, Schneider MA, Beumer M, Oldhafer KJ. Is an intraoperative liver function assessment possible? Application of the 13C-methacetin-breath-test during major liver resections - a pilot study. HPB (Oxford) 2024; 26:91-101. [PMID: 37806830 DOI: 10.1016/j.hpb.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/24/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
BACKGROUND As prevention of posthepatectomy-liver-failure is crucial, there is need of dynamic assessment of liver function, even intraoperatively. 13C-methacetin-breath-test estimates the organ's microsomal functional capacity. This is its first intraoperative evaluation in major liver surgery. METHODS 30 patients planed for resection of ≥3 liver segments, between March-November 2019, were prospectively enrolled in this "single-center", pilot study. Using the 13C-methacetin-breath-test, liver function was assessed four times: preoperatively, intraoperatively before and after resection and postoperatively. The resulted maximum-liver-function-capacity (LiMAx)-values and delta-over-baseline (DOB)-curves were compared, further analyzed and correlated to respective liver volumes. RESULTS The intraoperative LiMAx-values before resection were mostly lower than the preoperative ones (-11.3% ± 28%). The intraoperative measurements after resection resulted to mostly higher values than the postoperative ones (42.35% ± 46.19%). Pharmacokinetically, an interference between the two intraoperative tests was observed. There was no strong correlation between residual liver volume and function with a percentual residual-LiMAx mostly lower than the percentual residual volume (-17.7% ± 4.1%). CONCLUSIONS Intraoperative application of the 13C-methacetin-breath-test during major liver resections seems to deliver lower values than the standard preoperative test. As multiple intraoperative tests interfere significantly to each other, a single intraoperative measurement is suggested. Multicentric standardized measurements could define the "normal" range for intraoperative measurements and control their predictive value.
Collapse
Affiliation(s)
- Georgios Makridis
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany; Department of General and Visceral Surgery, St. Josef's-Hospital Wiesbaden, Wiesbaden, Germany; Semmelweis University, Asklepios Campus Hamburg, Hamburg, Germany
| | - Tim Reese
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany; Semmelweis University, Asklepios Campus Hamburg, Hamburg, Germany
| | - Zoltán S Zádori
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Anna I Suling
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maria Stark
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katja Horling
- Institute for Hematopathology Hamburg, Hamburg, Germany
| | - Roland Brüning
- Semmelweis University, Asklepios Campus Hamburg, Hamburg, Germany; Department of Radiology and Neuroradiology, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Martin A Schneider
- Semmelweis University, Asklepios Campus Hamburg, Hamburg, Germany; Department of Radiology and Neuroradiology, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Michael Beumer
- Department of Anaesthesiology and Surgical Intensive Care, Asklepios Hospital Barmbek, Hamburg, Germany
| | - Karl J Oldhafer
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Asklepios Hospital Barmbek, Hamburg, Germany; Semmelweis University, Asklepios Campus Hamburg, Hamburg, Germany.
| |
Collapse
|
21
|
Senk K, Rio Bartulos C, Wilcke J, Einspieler I, Luerken L, Baeumler W, Stroszczynski C, Wiggermann P. Peri-interventional LiMAx test for liver ablation - A feasibility study. Clin Hemorheol Microcirc 2024; 86:213-224. [PMID: 37638427 DOI: 10.3233/ch-238107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
BACKGROUND Local ablation is an important treatment for liver cancer in cases of cirrhosis. Liver failure may occur after ablation, especially in advanced liver diseases. Currently, there is no standardization for peri-interventional risk assessment. The liver maximum capacity test (LiMAx) is used to assess functional liver capacity, but there is a lack of exploration of its use in this context. OBJECTIVE The aim of this study was to retrospectively evaluate the usefulness of peri-interventional LiMAx measurements in patients with primary or secondary liver cancer who underwent ablation treatment. METHODS A LiMAx test was performed at 24 hours pre- and postablation in 49 patients. Blood parameters were collected to determine liver function using MELD and ALBI scores. The results of the LiMAx test were related with these scores and to critical postintervention LiMAx values. RESULTS LiMAx values correlated strongly with MELD and ALBI scores before the intervention and reflected the change in liver function, as shown by an increase in scores after the intervention. Notably, LiMAx values decreased during the intervention. AUC analysis for patients at risk of reaching a critical liver level after the intervention showed a cutoff value of 186μg/kg/h. CONCLUSIONS The LiMAx test may be a valuable tool in liver ablation for both peri-interventional monitoring of liver function and preintervention risk assessment.
Collapse
Affiliation(s)
- Karin Senk
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Carolina Rio Bartulos
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Juliane Wilcke
- Institut für Psychologie, Universität Kassel, Kassel, Germany
- Medizinische Fakultät, Institut für Medizinische Informationsverarbeitung, Biometrie und Epidemiologie (IBE), LMU München, München, Germany
| | - Ingo Einspieler
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Lukas Luerken
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Wolf Baeumler
- Institut für Röntgendiagnostik, Universitätsklinikum Regensburg, Regensburg, Germany
| | | | - Philipp Wiggermann
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| |
Collapse
|
22
|
Nevermann N, Bode J, Vischer M, Krenzien F, Lurje G, Pelzer U, Fehrenbach U, Auer TA, Schmelzle M, Pratschke J, Schöning W. Perioperative outcome and long-term survival for intrahepatic cholangiocarcinoma after portal vein embolization and subsequent resection: A propensity-matched study. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:107100. [PMID: 37918318 DOI: 10.1016/j.ejso.2023.107100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION In view of the high therapeutic value of surgical resection for intrahepatic cholangiocarcinomas (ICC), our study addresses the question of clinical management and outcome in case of borderline resectability requiring hypertrophy induction of the future liver remnant prior to resection. METHODS Clinical data was collected of all primary ICC cases receiving major liver resection with or without prior portal vein embolization (PVE) from a single high-volume center. PVE was performed via a percutaneous transhepatic access. Propensity score matching was performed. Perioperative morbidity was assessed as well as long-term survival with a minimum follow-up of 36 months. RESULTS No significant difference in perioperative morbidity was seen between the PVE and the control group. For the PVE group, median OS was 28 months vs. 37 months for the control group (p = 0.418), median DFS 18 and 14 months (p = 0.703). Disease progression during hypertrophy was observed in 38% of cases. Here, OS and DFS was reduced to 18 months (p = 0.479) and 6 months (p = 0.013), respectively. In case of positive N-status or multifocal tumor (MF+) OS was also reduced (18 vs. 26 months, p = 0.033; MF+: 9 vs. 36months p = 0.013). CONCLUSION Our results suggest that the surgical therapy in case of borderline resectability offers acceptable results with non-inferior OS rates compared to cases without preoperative hypertrophy induction and comparable oncological features. In the presence of additional risk factors (multifocal tumor, lymph node metastasis, PD during hypertrophy) the OS is notably reduced.
Collapse
Affiliation(s)
- N Nevermann
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - J Bode
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - M Vischer
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - F Krenzien
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany; Clinical Scientist Program, Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - G Lurje
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - U Pelzer
- Department of Hematology, Oncology and Tumorimmunology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - U Fehrenbach
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - T A Auer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - M Schmelzle
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - J Pratschke
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany
| | - W Schöning
- Department of Surgery, Campus Charité-Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Germany.
| |
Collapse
|
23
|
Angeli-Pahim I, Chambers A, Duarte S, Zarrinpar A. Current Trends in Surgical Management of Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5378. [PMID: 38001637 PMCID: PMC10670586 DOI: 10.3390/cancers15225378] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide. Surgical management, including hepatic resection, liver transplantation, and ablation, offers the greatest potential for a curative approach. This review aims to discuss recent advancements in HCC surgery and identify unresolved issues in the field. Treatment selection relies on the BCLC staging system, with surgical therapies primarily recommended for early-stage disease. Recent studies have shown that patients previously considered unresectable, such as those with portal vein tumor thrombus and uncomplicated portal hypertension, may benefit from hepatic resection. Minimally invasive surgery and improved visualization techniques are also explored, alongside new techniques for optimizing future liver remnant, ex vivo resection, and advancements in hemorrhage control. Liver transplantation criteria, particularly the long-standing Milan criteria, are critically examined. Alternative criteria proposed and tested in specific regions are presented. In the context of organ shortage, bridging therapy plays a critical role in preventing tumor progression and maintaining patients eligible for transplantation. Lastly, we explore emerging ablation modalities, comparing them with the current standard, radiofrequency ablation. In conclusion, this comprehensive review provides insights into recent trends and future prospects in the surgical management of HCC, highlighting areas that require further investigation.
Collapse
Affiliation(s)
| | | | | | - Ali Zarrinpar
- Department of Surgery, College of Medicine, University of Florida, Gainesville, FL 32608, USA; (I.A.-P.); (A.C.); (S.D.)
| |
Collapse
|
24
|
Merath K, Tiwari A, Court C, Parikh A, Dillhoff M, Cloyd J, Ejaz A, Pawlik TM. Postoperative Liver Failure: Definitions, Risk factors, Prediction Models and Prevention Strategies. J Gastrointest Surg 2023; 27:2640-2649. [PMID: 37783906 DOI: 10.1007/s11605-023-05834-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/07/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Liver resection is the treatment for a variety of benign and malignant conditions. Despite advances in preoperative selection, surgical technique, and perioperative management, post hepatectomy liver failure (PHLF) is still a leading cause of morbidity and mortality following liver resection. METHODS A review of the literature was performed utilizing MEDLINE/PubMed and Web of Science databases in May of 2023. The MESH terms "liver failure," "liver insufficiency," and "hepatic failure" in combination with "liver surgery," "liver resection," and "hepatectomy" were searched in the title and/or abstract. The references of relevant articles were reviewed to identify additional eligible publications. RESULTS PHLF can have devastating physiological consequences. In general, risk factors can be categorized as patient-related, primary liver function-related, or perioperative factors. Currently, no effective treatment options are available and the management of PHLF is largely supportive. Therefore, identifying risk factors and preventative strategies for PHLF is paramount. Ensuring an adequate future liver remnant is important to mitigate risk of PHLF. Dynamic liver function tests provide more objective assessment of liver function based on the metabolic capacity of the liver and have the advantage of easy administration, low cost, and easy reproducibility. CONCLUSION Given the absence of randomized data specifically related to the management of PHLF, current strategies are based on the principles of management of acute liver failure from any cause. In addition, goal-directed therapy for organ dysfunction, as well as identification and treatment of reversible factors in the postoperative period are critical.
Collapse
Affiliation(s)
- Katiuscha Merath
- Division of Surgical Oncology, University of Texas Health Science Center San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Ankur Tiwari
- Division of Surgical Oncology, University of Texas Health Science Center San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Colin Court
- Division of Surgical Oncology, University of Texas Health Science Center San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Alexander Parikh
- Division of Surgical Oncology, University of Texas Health Science Center San Antonio MD Anderson Cancer Center, San Antonio, TX, USA
| | - Mary Dillhoff
- Department of Surgery, Division of Surgical Oncology, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12Th Ave., Suite 670, Columbus, OH, USA
| | - Jordan Cloyd
- Department of Surgery, Division of Surgical Oncology, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12Th Ave., Suite 670, Columbus, OH, USA
| | - Aslam Ejaz
- Department of Surgery, Division of Surgical Oncology, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12Th Ave., Suite 670, Columbus, OH, USA
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Urban Meyer III and Shelley Meyer Chair for Cancer Research, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12Th Ave., Suite 670, Columbus, OH, USA.
| |
Collapse
|
25
|
Nishio T, Taura K, Koyama Y, Ishii T, Hatano E. Current status of preoperative risk assessment for posthepatectomy liver failure in patients with hepatocellular carcinoma. Ann Gastroenterol Surg 2023; 7:871-886. [PMID: 37927928 PMCID: PMC10623981 DOI: 10.1002/ags3.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/08/2023] [Accepted: 05/03/2023] [Indexed: 11/07/2023] Open
Abstract
Liver resection is an effective therapeutic option for patients with hepatocellular carcinoma. However, posthepatectomy liver failure (PHLF) remains a major cause of hepatectomy-related mortality, and the accurate prediction of PHLF based on preoperative assessment of liver functional reserve is a critical issue. The definition of PHLF proposed by the International Study Group for Liver Surgery has gained acceptance as a standard grading criterion. Liver function can be estimated using a variety of parameters, including routine blood biochemical examinations, clinical scoring systems, dynamic liver function tests, liver stiffness and fibrosis markers, and imaging studies. The Child-Pugh score and model for end-stage liver disease scores are conventionally used for estimating liver decompensation, although the alternatively developed albumin-bilirubin score shows superior performance for predicting hepatic dysfunction. Indocyanine green clearance, a dynamic liver function test mostly used in Japan and other Asian countries, serves as a quantitative estimation of liver function reserve and helps determine indications for surgical procedures according to the estimated risk of PHLF. In an attempt to improve predictive accuracy, specific evaluation of liver fibrosis and portal hypertension has gained popularity, including liver stiffness measurements using ultrasonography or magnetic resonance elastography, as well as noninvasive fibrosis markers. Imaging modalities, including Tc-99m-labeled galactosyl serum albumin scintigraphy and gadolinium-enhanced magnetic resonance imaging, are used for preoperative evaluation in combination with liver volume. This review aims to provide an overview of the usefulness of current options for the preoperative assessment of liver function in predicting PHLF.
Collapse
Affiliation(s)
- Takahiro Nishio
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Kojiro Taura
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
- Department of Gastroenterological Surgery and OncologyKitano HospitalOsakaJapan
| | - Yukinori Koyama
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takamichi Ishii
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Etsuro Hatano
- Department of Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
26
|
Primavesi F, Maglione M, Cipriani F, Denecke T, Oberkofler CE, Starlinger P, Dasari BVM, Heil J, Sgarbura O, Søreide K, Diaz-Nieto R, Fondevila C, Frampton AE, Geisel D, Henninger B, Hessheimer AJ, Lesurtel M, Mole D, Öllinger R, Olthof P, Reiberger T, Schnitzbauer AA, Schwarz C, Sparrelid E, Stockmann M, Truant S, Aldrighetti L, Braunwarth E, D’Hondt M, DeOliveira ML, Erdmann J, Fuks D, Gruenberger T, Kaczirek K, Malik H, Öfner D, Rahbari NN, Göbel G, Siriwardena AK, Stättner S. E-AHPBA-ESSO-ESSR Innsbruck consensus guidelines for preoperative liver function assessment before hepatectomy. Br J Surg 2023; 110:1331-1347. [PMID: 37572099 PMCID: PMC10480040 DOI: 10.1093/bjs/znad233] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/09/2023] [Accepted: 07/04/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Posthepatectomy liver failure (PHLF) contributes significantly to morbidity and mortality after liver surgery. Standardized assessment of preoperative liver function is crucial to identify patients at risk. These European consensus guidelines provide guidance for preoperative patient assessment. METHODS A modified Delphi approach was used to achieve consensus. The expert panel consisted of hepatobiliary surgeons, radiologists, nuclear medicine specialists, and hepatologists. The guideline process was supervised by a methodologist and reviewed by a patient representative. A systematic literature search was performed in PubMed/MEDLINE, the Cochrane library, and the WHO International Clinical Trials Registry. Evidence assessment and statement development followed Scottish Intercollegiate Guidelines Network methodology. RESULTS Based on 271 publications covering 4 key areas, 21 statements (at least 85 per cent agreement) were produced (median level of evidence 2- to 2+). Only a few systematic reviews (2++) and one RCT (1+) were identified. Preoperative liver function assessment should be considered before complex resections, and in patients with suspected or known underlying liver disease, or chemotherapy-associated or drug-induced liver injury. Clinical assessment and blood-based scores reflecting liver function or portal hypertension (for example albumin/bilirubin, platelet count) aid in identifying risk of PHLF. Volumetry of the future liver remnant represents the foundation for assessment, and can be combined with indocyanine green clearance or LiMAx® according to local expertise and availability. Functional MRI and liver scintigraphy are alternatives, combining FLR volume and function in one examination. CONCLUSION These guidelines reflect established methods to assess preoperative liver function and PHLF risk, and have uncovered evidence gaps of interest for future research.
Collapse
Affiliation(s)
- Florian Primavesi
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Department of General, Visceral and Vascular Surgery, Centre for Hepatobiliary Surgery, Vöcklabruck, Austria
| | - Manuel Maglione
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Federica Cipriani
- Hepatobiliary Surgery Division, San Raffaele Scientific Institute, Milan, Italy
| | - Timm Denecke
- Department of Diagnostic and Interventional Radiology, University Medical Centre Leipzig, Leipzig, Germany
| | - Christian E Oberkofler
- Swiss Hepatopancreatobiliary Transplant Centre, Department of Surgery, University Hospital Zürich, Zürich, Switzerland
- Vivévis AG—Visceral, Tumour and Robotic Surgery, Clinic Hirslanden Zürich, Zürich, Switzerland
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Centre of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bobby V M Dasari
- Department of Hepatobiliary–pancreatic and Liver Transplantation Surgery, University of Birmingham, Birmingham, UK
| | - Jan Heil
- Department of General, Visceral, Transplant and Thoracic Surgery, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Olivia Sgarbura
- Department of Surgical Oncology, Cancer Institute of Montpellier, University of Montpellier, Montpellier, France
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France
| | - Kjetil Søreide
- Department of Gastrointestinal Surgery, Hepatopancreatobiliary Unit, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Rafael Diaz-Nieto
- Liver Surgery Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Constantino Fondevila
- General and Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Adam E Frampton
- Hepatopancreatobiliary Surgical Unit, Royal Surrey NHS Foundation Trust, Guildford, UK
- Section of Oncology, Department of Clinical and Experimental Medicine, University of Surrey, Guildford, UK
| | - Dominik Geisel
- Department of Radiology, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Benjamin Henninger
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Amelia J Hessheimer
- General and Digestive Surgery Service, Hospital Universitario La Paz, IdiPAZ, CIBERehd, Madrid, Spain
| | - Mickaël Lesurtel
- Department of Hepatopancreatobiliary Surgery and Liver Transplantation, Beaujon Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Cité, Clichy, France
| | - Damian Mole
- Hepatopancreatobiliary Surgery Unit, Department of Clinical Surgery, University of Edinburgh, Edinburgh, UK
| | - Robert Öllinger
- Department of Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Pim Olthof
- Department of Surgery, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Surgery, Amsterdam University Medical Centres, University of Amsterdam, Amsterdam, the Netherlands
| | - Thomas Reiberger
- Division of Gastroenterology and Hepatology, Department of Medicine III and CD-Lab for Portal Hypertension and Liver Fibrosis, Medical University of Vienna, Vienna, Austria
| | - Andreas A Schnitzbauer
- Department of General, Visceral, Transplant and Thoracic Surgery, Goethe University Frankfurt, University Hospital, Frankfurt, Germany
| | - Christoph Schwarz
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Vienna, Austria
| | - Ernesto Sparrelid
- Department of Clinical Science, Intervention and Technology, Division of Surgery and Oncology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Stockmann
- Department of Surgery, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Department of General, Visceral and Vascular Surgery, Evangelisches Krankenhaus Paul Gerhardt Stift, Lutherstadt Wittenberg, Germany
| | - Stéphanie Truant
- Department of Digestive Surgery and Transplantation, CHU Lille, Lille University, Lille, France
- CANTHER Laboratory ‘Cancer Heterogeneity, Plasticity and Resistance to Therapies’ UMR-S1277, Team ‘Mucins, Cancer and Drug Resistance’, Lille, France
| | - Luca Aldrighetti
- Hepatobiliary Surgery Division, San Raffaele Scientific Institute, Milan, Italy
| | - Eva Braunwarth
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Mathieu D’Hondt
- Department of Digestive and Hepatobiliary/Pancreatic Surgery, Groeninge Hospital Kortrijk, Kortrijk, Belgium
| | - Michelle L DeOliveira
- Swiss Hepatopancreatobiliary Transplant Centre, Department of Surgery, University Hospital Zürich, Zürich, Switzerland
| | - Joris Erdmann
- Department of Surgery, Amsterdam UMC, Cancer Centre Amsterdam, the Netherlands
| | - David Fuks
- Department of Digestive, Hepatobiliary and Endocrine Surgery, Assistance Publique-Hôpitaux de Paris Centre Hopital Cochin, Paris, France
| | - Thomas Gruenberger
- Department of Surgery, Clinic Favoriten, Hepatopancreatobiliary Centre, Health Network Vienna and Sigmund Freud Private University, Vienna, Austria
| | - Klaus Kaczirek
- Department of General Surgery, Division of Visceral Surgery, Medical University Vienna, Vienna, Austria
| | - Hassan Malik
- Liver Surgery Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Nuh N Rahbari
- Department of Surgery, University Hospital Mannheim, University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Georg Göbel
- Department of Medical Statistics, Informatics, and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Ajith K Siriwardena
- Regional Hepato-Pancreato-Biliary Unit, Manchester Royal Infirmary, Manchester, UK
| | - Stefan Stättner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, Innsbruck, Austria
- Department of General, Visceral and Vascular Surgery, Centre for Hepatobiliary Surgery, Vöcklabruck, Austria
| |
Collapse
|
27
|
Luerken L, Dollinger M, Goetz A, Utpatel K, Doppler MC, Weiss JB, Uller W, Ignee A, Verloh N, Haimerl M. Diagnostic Accuracy of Indocyanine Green Clearance Test for Different Stages of Liver Fibrosis and Cirrhosis. Diagnostics (Basel) 2023; 13:2663. [PMID: 37627922 PMCID: PMC10453681 DOI: 10.3390/diagnostics13162663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: This study aimed to correlate the indocyanine green clearance (ICG) test with histopathological grades of liver fibrosis and liver cirrhosis to assess its diagnostic accuracy in differentiating normal liver parenchyma from liver fibrosis and liver cirrhosis. (2) Methods: A total of 82 patients who received a histopathological liver examination, imaging, and ICG test within three months were included in this retrospective study. The histopathological level of fibrosis was graded using the Ishak scoring system, and the patients were divided into five categories: no liver fibrosis (NLF), mild liver fibrosis (MLF), advanced liver fibrosis (ALF), severe liver fibrosis (SLF), and liver cirrhosis (LC). The non-parametric Kruskal-Wallis test with post hoc pairwise comparison utilizing Mann-Whitney U tests and Bonferroni adjustment was used to analyze differences in the ICG test results between the patient groups. Cross correlation between the individual fibrosis/cirrhosis stages and the score of the ICG test was performed, and the sensitivity, specificity, and positive and negative predictive values were calculated for each model predicting liver fibrosis/cirrhosis. (3) Results: A significant difference (p ≤ 0.001) between stages of NLF, LF, and LC was found for the ICG parameters (ICG plasma disappearance rate (ICG-PDR) and ICG retention percentage at 15 min (ICG-R15)). The post hoc analysis revealed that NLF significantly differed from SLF (ICG-PDR: p = 0.001; ICG-R15: p = 0.001) and LC (ICG-PDR: p = 0.001; ICG-R15: p = 0.001). ALF also significantly differed from SLF (ICG-PDR: p = 0.033; ICG-R15: p = 0.034) and LC (ICG-PDR: p = 0.014; ICG-R15: p = 0.014). The sensitivity for detection of an initial stage of liver fibrosis compared to no liver fibrosis (Ishak ≥ 1) was 0.40; the corresponding specificity was 0.80. The differentiation of advanced liver fibrosis or cirrhosis (Ishak ≥ 4) compared to other stages of liver fibrosis was 0.75, with a specificity of 0.81. (4) Conclusions: This study shows that the ICG test, as a non-invasive diagnostic test, is able to differentiate patients with no liver fibrosis from patients with advanced liver fibrosis and liver cirrhosis. The ICG test seems to be helpful in monitoring patients with liver fibrosis regarding compensation levels, thus potentially enabling physicians to both detect progression from compensated liver fibrosis to advanced liver fibrosis and cirrhosis and to initiate antifibrotic treatment at an earlier stage.
Collapse
Affiliation(s)
- Lukas Luerken
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.L.)
| | - Marco Dollinger
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.L.)
| | - Andrea Goetz
- Department of Radiology, University Hospital Regensburg, 93053 Regensburg, Germany; (L.L.)
| | - Kirstin Utpatel
- Department of Pathology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Michael Christian Doppler
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Jakob Benedikt Weiss
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Wibke Uller
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - André Ignee
- Department of Gastroenterology, Hospital Wuerzburg Mitte, 97074 Wuerzburg, Germany
| | - Niklas Verloh
- Department of Diagnostic and Interventional Radiology, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, 79085 Freiburg, Germany
| | - Michael Haimerl
- Department of Diagnostic and Interventional Radiology, Hospital Wuerzburg Mitte, 97074 Wuerzburg, Germany
| |
Collapse
|
28
|
Bitzer M, Groß S, Albert J, Boda-Heggemann J, Brunner T, Caspari R, De Toni E, Dombrowski F, Evert M, Geier A, Gkika E, Götz M, Helmberger T, Hoffmann RT, Huppert P, Kautz A, Krug D, Fougère CL, Lang H, Lenz P, Lüdde T, Mahnken A, Nadalin S, Nguyen HHP, Ockenga J, Oldhafer K, Paprottka P, Pereira P, Persigehl T, Plentz R, Pohl J, Recken H, Reimer P, Riemer J, Ritterbusch U, Roeb E, Rüssel J, Schellhaas B, Schirmacher P, Schlitt HJ, Schmid I, Schuler A, Seehofer D, Sinn M, Stengel A, Stoll C, Tannapfel A, Taubert A, Tholen R, Trojan J, van Thiel I, Vogel A, Vogl T, Wacker F, Waidmann O, Wedemeyer H, Wege H, Wildner D, Wörns MA, Galle P, Malek N. S3-Leitlinie Diagnostik und Therapie biliärer Karzinome – Langversion. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2023; 61:e92-e156. [PMID: 37040776 DOI: 10.1055/a-2026-1240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Affiliation(s)
- Michael Bitzer
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Sabrina Groß
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| | - Jörg Albert
- Katharinenhospital, Klinik für Allgemeine Innere Medizin, Gastroenterologie, Hepatologie, Infektiologie und Pneumologie, Stuttgart
| | | | - Thomas Brunner
- Universitätsklinik für Strahlentherapie-Radioonkologie, Medizinische Universität Graz
| | - Reiner Caspari
- Klinik Niederrhein Erkrankungen des Stoffwechsels der Verdauungsorgane und Tumorerkrankungen, Bad Neuenahr-Ahrweiler
| | | | | | | | - Andreas Geier
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg
| | - Eleni Gkika
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg
| | - Martin Götz
- Medizinische Klinik IV - Gastroenterologie/Onkologie, Klinikverbund Südwest, Böblingen
| | - Thomas Helmberger
- Institut für Radiologie, Neuroradiologie und minimal invasive Therapie, München Klinik Bogenhausen
| | - Ralf-Thorsten Hoffmann
- Institut und Poliklinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Dresden
| | - Peter Huppert
- Radiologisches Zentrum, Max Grundig Klinik, Bühlerhöhe
| | | | - David Krug
- Strahlentherapie Campus Kiel, Universitätsklinikum Schleswig-Holstein
| | - Christian La Fougère
- Nuklearmedizin und Klinische Molekulare Bildgebung, Eberhard-Karls Universität, Tübingen
| | - Hauke Lang
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Johannes Gutenberg-Universität, Mainz
| | - Philipp Lenz
- Zentrale Einrichtung Palliativmedizin, Universitätsklinikum Münster
| | - Tom Lüdde
- Medizinische Klinik für Gastroenterologie, Hepatologie und Infektiologie, Universitätsklinikum Düsseldorf
| | - Andreas Mahnken
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Marburg
| | - Silvio Nadalin
- Klinik für Allgemein-, Viszeral- und Transplantationschrirugie, Eberhard-Karls Universität, Tübingen
| | | | - Johann Ockenga
- Medizinische Klinik II, Gesundheit Nord, Klinikverbund Bremen
| | - Karl Oldhafer
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Asklepios Klinik Barmbek
| | - Philipp Paprottka
- Sektion für Interventionelle Radiologie, Klinikum rechts der Isar, Technische Universität München
| | - Philippe Pereira
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, SLK-Klinken Heilbronn
| | - Thorsten Persigehl
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln
| | - Ruben Plentz
- Klinik für Innere Medizin, Gesundheit Nord, Klinikverbund Bremen
| | - Jürgen Pohl
- Abteilung für Gastroenterologie, Asklepios Klinik Altona
| | | | - Peter Reimer
- Institut für Diagnostische und Interventionelle Radiologie, Städtisches Klinikum Karlsruhe
| | | | | | - Elke Roeb
- Medizinische Klinik II Pneumologie, Nephrologie und Gastroenterologie, Universitätsklinikum Gießen
| | - Jörn Rüssel
- Medizinische Klinik IV Hämatologie und Onkologie, Universitätsklinikum Halle (Saale)
| | - Barbara Schellhaas
- Medizinische Klinik I Gastroenterologie, Pneumologie und Endokrinologie, Friedrich-Alexander-Universität, Erlangen
| | - Peter Schirmacher
- Allgemeine Pathologie und pathologische Anatomie, Universitätsklinikum Heidelberg
| | | | - Irene Schmid
- Kinderklinik und Kinderpoliklinik im Dr. von Haunerschen Kinderspital, LMU München
| | - Andreas Schuler
- Medizinische Klinik, Gastroenterologie, Alb-Fils-Kliniken, Geislingen an der Steige
| | - Daniel Seehofer
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig
| | - Marianne Sinn
- II. Medizinische Klinik und Poliklinik (Onkologie, Hämatologie, Knochenmarktransplantation mit Abteilung für Pneumologie), Universitätsklinikum Hamburg-Eppendorf
| | - Andreas Stengel
- Innere Medizin VI - Psychosomatische Medizin und Psychotherapie, Eberhard-Karls Universität, Tübingen
| | | | | | - Anne Taubert
- Klinische Sozialarbeit, Universitätsklinikum Heidelberg
| | - Reina Tholen
- Deutscher Bundesverband für Physiotherapie (ZVK) e. V
| | - Jörg Trojan
- Medizinische Klinik 1: Gastroenterologie und Hepatologie, Pneumologie und Allergologie, Endokrinologie und Diabetologie sowie Ernährungsmedizin, Goethe-Universität, Frankfurt
| | | | - Arndt Vogel
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Thomas Vogl
- Institut für Diagnostische und Interventionelle Radiologie, Goethe-Universität, Frankfurt
| | - Frank Wacker
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover
| | | | - Heiner Wedemeyer
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie, Medizinische Hochschule Hannover
| | - Henning Wege
- Klinik für Allgemeine Innere Medizin, Onkologie/Hämatologie, Gastroenterologie und Infektiologie, Klinikum Esslingen
| | - Dane Wildner
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Standort Lauf
| | - Marcus-Alexander Wörns
- Klinik für Gastroenterologie, Hämatologie und internistische Onkologie und Endokrinologie, Klinikum Dortmund
| | - Peter Galle
- 1. Medizinische Klinik und Poliklinik, Gastroenterologie, Hepatologie, Nephrologie, Rheumatologie, Infektiologie, Johannes Gutenberg-Universität, Mainz
| | - Nisar Malek
- Abteilung für Gastroenterologie, Gastrointestinale Onkologie, Hepatologie, Infektiologie und Geriatrie, Eberhard-Karls Universität, Tübingen
| |
Collapse
|
29
|
Parmar KL, O'Reilly D, Valle J, Braun M, Malcomson L, Jones RP, Balaa F, Rees M, Welsh FKS, Filobbos R, Renehan AG. Protocol for the CoNoR Study: A prospective multi-step study of the potential added benefit of two novel assessment tools in colorectal liver metastases technical resectability decision-making. BMJ Open 2023; 13:e059369. [PMID: 36997247 PMCID: PMC10069542 DOI: 10.1136/bmjopen-2021-059369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
INTRODUCTION Liver resection is the only curative treatment for colorectal liver metastases (CLM). Resectability decision-making is therefore a key determinant of outcomes. Wide variation has been demonstrated in resectability decision-making, despite the existence of criteria. This paper summarises a study protocol to evaluate the potential added value of two novel assessment tools in assessing CLM technical resectability: the Hepatica preoperative MR scan (MR-based volumetry, Couinaud segmentation, liver tissue characteristics and operative planning tool) and the LiMAx test (hepatic functional capacity). METHODS AND ANALYSIS This study uses a systematic multistep approach, whereby three preparatory workstreams aid the design of the final international case-based scenario survey:Workstream 1: systematic literature review of published resectability criteria.Workstream 2: international hepatopancreatobiliary (HPB) interviews.Workstream 3: international HPB questionnaire.Workstream 4: international HPB case-based scenario survey.The primary outcome measures are change in resectability decision-making and change in planned operative strategy, resulting from the novel test results. Secondary outcome measures are variability in CLM resectability decision-making and opinions on the role for novel tools. ETHICS AND DISSEMINATION The study protocol has been approved by a National Health Service Research Ethics Committee and registered with the Health Research Authority. Dissemination will be via international and national conferences. Manuscripts will be published. REGISTRATION DETAILS The CoNoR Study is registered with ClinicalTrials.gov (registration number NCT04270851). The systematic review is registered on the PROSPERO database (registration number CRD42019136748).
Collapse
Affiliation(s)
- Kat L Parmar
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Cancer Research Centre, Manchester, UK
| | - Derek O'Reilly
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Hepatobiliary Surgery, Manchester University NHS Foundation Trust, Manchester, UK
| | - Juan Valle
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Michael Braun
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
| | - Lee Malcomson
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Cancer Research Centre, Manchester, UK
| | - Robert P Jones
- Department of Hepatobiliary Surgery, Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Fady Balaa
- Department of Surgery, Ottawa Hospital, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Myrddin Rees
- Department of Surgery, Basingstoke and North Hampshire Hospital, Basingstoke, UK
| | - Fenella K S Welsh
- Department of Surgery, Basingstoke and North Hampshire Hospital, Basingstoke, UK
| | - Rafik Filobbos
- Department of Radiology, Manchester University NHS Foundation Trust, Manchester, UK
| | - Andrew G Renehan
- Division of Cancer Sciences, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester Cancer Research Centre, Manchester, UK
| |
Collapse
|
30
|
Prediction of left lobe hypertrophy after right lobe radioembolization of the liver using a clinical data model with external validation. Sci Rep 2022; 12:20718. [PMID: 36456637 PMCID: PMC9715713 DOI: 10.1038/s41598-022-25077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
In cirrhotic patients with hepatocellular carcinoma (HCC), right-sided radioembolization (RE) with Yttrium-90-loaded microspheres is an established palliative therapy and can be considered a "curative intention" treatment when aiming for sequential tumor resection. To become surgical candidate, hypertrophy of the left liver lobe to > 40% (future liver remnant, FLR) is mandatory, which can develop after RE. The amount of radiation-induced shrinkage of the right lobe and compensatory hypertrophy of the left lobe is difficult for clinicians to predict. This study aimed to utilize machine learning to predict left lobe liver hypertrophy in patients with HCC and cirrhosis scheduled for right lobe RE, with external validation. The results revealed that machine learning can accurately predict relative and absolute volume changes of the left liver lobe after right lobe RE. This prediction algorithm could help to estimate the chances of conversion from palliative RE to curative major hepatectomy following significant FLR hypertrophy.
Collapse
|
31
|
Liver Function-How to Screen and to Diagnose: Insights from Personal Experiences, Controlled Clinical Studies and Future Perspectives. J Pers Med 2022; 12:jpm12101657. [PMID: 36294796 PMCID: PMC9605048 DOI: 10.3390/jpm12101657] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/21/2022] [Accepted: 09/29/2022] [Indexed: 01/24/2023] Open
Abstract
Acute and chronic liver disease is a relevant problem worldwide. Liver function plays a crucial role in the course of liver diseases not only in estimating prognosis but also with regard to therapeutic interventions. Within this review, we discuss and evaluate different tools from screening to diagnosis and give insights from personal experiences, controlled clinical studies and future perspectives. Finally, we offer our novel diagnostic algorithm to screen patients with presumptive acute or chronic liver disease in the daily clinical routine.
Collapse
|
32
|
Gairing SJ, Kuchen R, Müller L, Cankaya A, Weerts J, Kapucu A, Sachse S, Zimpel C, Stoehr F, Pitton MB, Mittler J, Straub BK, Marquardt JU, Schattenberg JM, Labenz C, Kloeckner R, Weinmann A, Galle PR, Wörns MA, Foerster F. 13 C-Methacetin Breath Test Predicts Survival in Patients With Hepatocellular Carcinoma Undergoing Transarterial Chemoembolization. Clin Transl Gastroenterol 2022; 13:e00529. [PMID: 36087052 PMCID: PMC9624494 DOI: 10.14309/ctg.0000000000000529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
INTRODUCTION The 13 C-methacetin breath test ( 13 C-MBT) is a dynamic method for assessing liver function. This proof-of-concept study aimed to investigate the association between 13 C-MBT values and outcomes in patients with hepatocellular carcinoma (HCC) undergoing transarterial chemoembolization (TACE). METHODS A total of 30 patients with HCC were prospectively recruited. Of these, 25 were included in baseline and 20 in longitudinal analysis. 13 C-MBTs were performed before the first and second TACE session. Patients were followed for at least 1 year. RESULTS At baseline, the median 13 C-MBT value was 261 μg/kg/hr (interquartile range 159-387). 13 C-MBT, albumin-bilirubin, Child-Pugh, and Model for End-Stage Liver Disease scores were associated with overall survival in extended univariable Cox regression ( 13 C-MBT: standardized hazard ratio [sHR] 0.297, 95% confidence interval [CI] 0.111-0.796; albumin-bilirubin score: sHR 4.051, 95% CI 1.813-9.052; Child-Pugh score: sHR 2.616, 95% CI 1.450-4.719; Model for End-Stage Liver Disease score: sHR 2.781, 95% CI 1.356-5.703). Using a cutoff of 140 μg/kg/hr at baseline, 13 C-MBT was associated with prognosis (median overall survival 28.5 months [95% CI 0.0-57.1] vs 3.5 months [95% CI 0.0-8.1], log-rank P < 0.001). Regarding prediction of 90-day mortality after second 13 C-MBT, the relative change in 13 C-MBT values yielded an area under the receiver-operating characteristic curve of 1.000 ( P = 0.007). DISCUSSION Baseline and longitudinal 13 C-MBT values predict survival of patients with HCC undergoing TACE. The relative change in 13 C-MBT values predicts short-term mortality and may assist in identifying patients who will not benefit from further TACE treatment.
Collapse
Affiliation(s)
- Simon Johannes Gairing
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Robert Kuchen
- Institute of Medical Biometry, Epidemiology and Informatics of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Lukas Müller
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alper Cankaya
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jan Weerts
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Akin Kapucu
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Simon Sachse
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Carolin Zimpel
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Fabian Stoehr
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael B. Pitton
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jens Mittler
- Department of General, Visceral and Transplant Surgery, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beate Katharina Straub
- Institute of Pathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jens Uwe Marquardt
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Medicine I, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Jörn M. Schattenberg
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Labenz
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roman Kloeckner
- Department of Diagnostic and Interventional Radiology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arndt Weinmann
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter Robert Galle
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Marcus-Alexander Wörns
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Department of Gastroenterology, Hematology, Oncology and Endocrinology, Dortmund Hospital, Dortmund, Germany
| | - Friedrich Foerster
- Department of Internal Medicine I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
33
|
LiMAx Prior to Radioembolization for Hepatocellular Carcinoma as an Additional Tool for Patient Selection in Patients with Liver Cirrhosis. Cancers (Basel) 2022; 14:cancers14194584. [PMID: 36230506 PMCID: PMC9558955 DOI: 10.3390/cancers14194584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aims: Radioembolization (RE) has recently demonstrated a non-inferior survival outcome compared to systemic therapy for advanced hepatocellular carcinoma (HCC). Therefore, current guidelines recommend RE for patients with advanced HCC and preserved liver function who are unsuitable for transarterial chemoembolization (TACE) or systemic therapy. However, despite the excellent safety profile of RE, post-therapeutic hepatic decompensation remains a serious complication that is difficult to predicted by standard laboratory liver function parameters or imaging modalities. LiMAx® is a non-invasive test for liver function assessment, measuring the maximum metabolic capacity for 13C-Methacetin by the liver-specific enzyme CYP 450 1A2. Our study investigates the potential of LiMAx® for predicting post-interventional decompensation of liver function. Patients and methods: In total, 50 patients with HCC with or without liver cirrhosis and not amenable to TACE or systemic treatments were included in the study. For patients prospectively enrolled in our study, LiMAx® was carried out one day before RE (baseline) and 28 and 90 days after RE. Established liver function parameters were assessed at baseline, day 28, and day 90 after RE. The relationship between baseline LiMAx® and pre-and post-interventional liver function parameters, as well as the ability of LiMAx® to predict hepatic decompensation, were analyzed. Results: We observed a strong association between baseline LiMAx® and bilirubin, albumin, ALBI grade, and MELD score. Patients presenting with Child–Pugh score B 28 days after RE or with a deterioration in Child–Pugh score by at least one point had a significantly lower baseline LiMAx® compared to those with Child–Pugh score A or with stable Child–Pugh score. The ability of LiMAx® to predict hepatic decompensation after RE was determined using ROC curve analysis and was compared to MELD score and ALBI grade. LiMAx® achieved a substantial AUC of 0.8117, comparable to MELD score and ALBI grade. Conclusion: Patients with lower LiMAx® values at baseline have a significantly increased risk for hepatic decompensation after RE, despite being categorized as Child–Pugh A. Therefore, LiMAx® can be used as an additional tool to identify patients at high risk of post-interventional hepatic failure.
Collapse
|
34
|
Immunomodulation by Hemoadsorption—Changes in Hepatic Biotransformation Capacity in Sepsis and Septic Shock: A Prospective Study. Biomedicines 2022; 10:biomedicines10102340. [PMID: 36289602 PMCID: PMC9598581 DOI: 10.3390/biomedicines10102340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Sepsis is often associated with liver dysfunction, which is an indicator of poor outcomes. Specific diagnostic tools that detect hepatic dysfunction in its early stages are scarce. So far, the immune modulatory effects of hemoadsorption with CytoSorb® on liver function are unclear. Method: We assessed the hepatic function by using the dynamic LiMAx® test and biochemical parameters in 21 patients with sepsis or septic shock receiving CytoSorb® in a prospective, observational study. Points of measurement: T1: diagnosis of sepsis or septic shock; T2 and T3: 24 h and 48 h after the start of CytoSorb®; T4: 24 h after termination of CytoSorb®. Results: The hepatic biotransformation capacity measured by LiMAx® was severely impaired in up to 95 % of patients. Despite a rapid shock reversal under CytoSorb®, a significant improvement in LiMAx® values appeared from T3 to T4. This decline and recovery of liver function were not reflected by common parameters of hepatic metabolism that remained mostly within the normal range. Conclusions: Hepatic dysfunction can effectively and safely be diagnosed with LiMAx® in ventilated ICU patients under CytoSorb®. Various static liver parameters are of limited use since they do not adequately reflect hepatic dysfunction and impaired hepatic metabolism.
Collapse
|
35
|
Schleiger A, Kramer P, Sallmon H, Jentsch N, Pileckaite M, Danne F, Schafstedde M, Müller HP, Müller T, Tacke F, Jara M, Stockmann M, Berger F, Ovroutski S. Functional hepatic deterioration determined by 13C-methacetin breath test is associated with impaired hemodynamics and late Fontan failure in adults. Front Cardiovasc Med 2022; 9:952080. [PMID: 36158803 PMCID: PMC9489932 DOI: 10.3389/fcvm.2022.952080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Despite improved survival a substantial number of Fontan patients eventually develop late failure. Fontan-associated liver disease (FALD) is the most frequent end-organ dysfunction. Although impaired hemodynamics and Fontan failure correlate with FALD severity, no association between hepatic functional metabolic impairment and Fontan hemodynamics has been established. Hypothesis Metabolic liver function measured by liver maximum function capacity test (LiMAx®) correlates with Fontan hemodynamics and Fontan failure. Methods From 2020 to 2022, 58 adult Fontan patients [median age: 29.3 years, IQR (12.7), median follow-up time after Fontan operation: 23.2 years, IQR (8.7)] were analyzed in a cross-sectional study. Hemodynamic assessment included echocardiography, cardiopulmonary exercise testing and invasive hemodynamic evaluation. Fontan failure was defined based on commonly applied clinical criteria and our recently composed multimodal Fontan failure score. Results LiMAx® test revealed normal maximum liver function capacity in 40 patients (>315 μg/h*kg). In 18 patients a mild to moderate impairment was detected (140–314 μg/h*kg), no patient suffered from severe hepatic deterioration (≤ 139 μg/kg*h). Fontan failure was present in 15 patients. Metabolic liver function was significantly reduced in patients with increased pulmonary artery pressure (p = 0.041. r = −0.269) and ventricular end-diastolic pressure (p = 0.033, r = −0.325), respectively. In addition, maximum liver function capacity was significantly impaired in patients with late Fontan failure (289.0 ± 99.6 μg/kg*h vs. 384.5 ± 128.6 μg/kg*h, p = 0.007). Conclusion Maximum liver function capacity as determined by LiMAx® was significantly reduced in patients with late Fontan failure. In addition, elevated pulmonary artery pressure and end-diastolic ventricular pressure were associated with hepatic functional metabolic impairment.
Collapse
Affiliation(s)
- Anastasia Schleiger
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- *Correspondence: Anastasia Schleiger
| | - Peter Kramer
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Hannes Sallmon
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Niklas Jentsch
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Marta Pileckaite
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Friederike Danne
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Marie Schafstedde
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- Institute for Cardiovascular Computer-Assisted Medicine, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hans-Peter Müller
- Charité Centre for Internal Medicine and Dermatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Müller
- Department of Gastroenterology and Hepatology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Jara
- Department of General, Visceral and Vascular Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Stockmann
- Department of General, Visceral and Vascular Surgery, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
- Department of Pediatric Cardiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | - Stanislav Ovroutski
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
36
|
Böning G, Fehrenbach U, Auer TA, Neumann K, Jonczyk M, Pratschke J, Schöning W, Schmelzle M, Gebauer B. Liver Venous Deprivation (LVD) Versus Portal Vein Embolization (PVE) Alone Prior to Extended Hepatectomy: A Matched Pair Analysis. Cardiovasc Intervent Radiol 2022; 45:950-957. [PMID: 35314879 PMCID: PMC9226084 DOI: 10.1007/s00270-022-03107-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
BACKGROUND To investigate whether liver venous deprivation (LVD) as simultaneous, portal vein (PVE) and right hepatic vein embolization offers advantages in terms of hypertrophy induction before extended hepatectomy in non-cirrhotic liver. MATERIALS AND METHODS Between June 2018 and August 2019, 20 patients were recruited for a prospective, non-randomized study to investigate the efficacy of LVD. After screening of 134 patients treated using PVE alone from January 2015 to August 2019, 14 directly matched pairs regarding tumor entity (cholangiocarcinoma, CC and colorectal carcinoma, CRC) and hypertrophy time (defined as time from embolization to follow-up imaging) were identified. In both treatment groups, the same experienced reader (> 5 years experience) performed imaging-based measurement of the volumes of liver segments of the future liver remnant (FLR) prior to embolization and after the standard clinical hypertrophy interval (~ 30 days), before surgery. Percentage growth of segments was calculated and compared. RESULTS After matched follow-up periods (mean of 30.5 days), there were no statistically significant differences in relative hypertrophy of FLRs. Mean ± standard deviation relative hypertrophy rates for LVD/PVE were 59 ± 29.6%/54.1 ± 27.6% (p = 0.637) for segments II + III and 48.2 ± 22.2%/44.9 ± 28.9% (p = 0.719) for segments II-IV, respectively. CONCLUSIONS LVD had no significant advantages over the standard method (PVE alone) in terms of hypertrophy induction of the FLR before extended hepatectomy in this study population.
Collapse
Affiliation(s)
- Georg Böning
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany.
| | - Uli Fehrenbach
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Timo Alexander Auer
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Konrad Neumann
- Institute of Biometry and Clinical Epidemiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Jonczyk
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Straße 2, 10178, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Wenzel Schöning
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Moritz Schmelzle
- Department of Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Bernhard Gebauer
- Department of Radiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Augustenburger Platz 1, 13353, Berlin, Germany
| |
Collapse
|
37
|
Abstract
In recent years, many studies on population pharmacokinetics of linezolid have been conducted. This comprehensive review aimed to summarize population pharmacokinetic models of linezolid, by focusing on dosage optimization to maximize the probability of attaining a certain pharmacokinetic-pharmacodynamic parameter in special populations. We searched the PubMed and EMBASE databases for population pharmacokinetic analyses of linezolid using a parametric non-linear mixed-effect approach, including both observational and prospective trials. Of the 32 studies, 26 were performed in adults, four in children, and one in both adults and children. High between-subject variability was determined in the majority of the models, which was in line with the variability of linezolid concentrations previously detected in observational studies. Some studies found that patients with renal impairment, hepatic failure, advanced age, or low body weight had higher exposure and adverse reactions rates. In contrast, lower concentrations and therapeutic failure were associated with obese patients, young patients, and patients who had undergone renal replacement techniques. In critically ill patients, the inter-individual and intra-individual variability was even greater, suggesting that this population is at an even higher risk of underexposure and overexposure. Therapeutic drug monitoring may be warranted in a large proportion of patients given that the Monte Carlo simulations demonstrated that the one-size-fits-all labeled dosing of 600 mg every 12 h could lead to toxicity or therapeutic failure for high values of the minimum inhibitory concentration of the target pathogen. Further research on covariates, including renal function, hepatic function, and drug–drug interactions related to P-glycoprotein could help to explain variability and improve linezolid dosing regimens.
Collapse
|
38
|
Sucher E, Sucher R, Guice H, Schneeberger S, Brandacher G, Gockel I, Berg T, Seehofer D. Hyperspectral Evaluation of the Human Liver During Major Resection. ANNALS OF SURGERY OPEN 2022; 3:e169. [PMID: 37601606 PMCID: PMC10431272 DOI: 10.1097/as9.0000000000000169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 04/18/2022] [Indexed: 11/26/2022] Open
Abstract
Objective This study investigates the effects of PVE and vascular inflow control (VIC) on liver microperfusion and tissue oxygenation using hyperspectral imaging (HSI) technology. Background Mechanisms triggering future liver remnant (FLR) augmentation introduced by PVE have not been sufficiently studied in humans. Particularly, the arterial buffer response (ABR) of the liver might play a vital role. Methods Hyperspectral datacubes (TIVITA) acquired during 58 major liver resections were qualitatively and quantitatively analyzed for tissue oxygenation (StO2%), near-infrared (NIR) perfusion, organ-hemoglobin indices (OHI), and tissue-water indices (TWI). The primary study endpoint was measurement of hyperspectral differences in liver parenchyma subject to PVE and VIC before resection. Results HSI revealed parenchyma specific differences in StO2% with regard to the underlying disease (P < 0.001). Preoperative PVE (n = 23, 40%) lead to arterial hyperoxygenation and hyperperfusion of corresponding liver segments (StO2: 77.23% ± 11.93%, NIR: 0.46 ± 0.20[I]) when compared with the FLR (StO2: 66.13% ± 9.96%, NIR: 0.23 ± 0.12[I]; P < 0.001). In a case of insufficient PVE and the absence of FLR augmentation hyperspectral StO2 and NIR differences were absent. The hyperspectral assessment demonstrated increased liver tissue-oxygenation and perfusion in PVE-segments (n = 23 cases) and decreased total VIC in nonembolized FLR hemilivers (n = 35 cases; P < 0.001). Intraoperative HSI analysis of tumor tissue revealed marked tumor specific differences in StO2, NIR, OHI, and TWI (P < 0.001). Conclusions HSI allows intraoperative quantitative and qualitative assessment of microperfusion and StO2% of liver tissue. PVE lead to ABR-triggered tissue hyperoxygenation and cross-talk FLR augmentation. HSI furthermore facilitates intraoperative tumor tissue identification and enables image-guided liver surgery following VIC.
Collapse
Affiliation(s)
- Elisabeth Sucher
- From the Department of Oncology, Gastroenterology, Hepatology, Infectiology, and Pneumology, University Clinic Leipzig, Leipzig, Germany
| | - Robert Sucher
- Division of Hepatobiliary Surgery and Visceral Transplant Surgery, Department of Visceral, Transplant-, Thoracic- and Vascular Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Hanna Guice
- Division of Hepatobiliary Surgery and Visceral Transplant Surgery, Department of Visceral, Transplant-, Thoracic- and Vascular Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Stefan Schneeberger
- Department of Visceral-, Transplant- and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Gerald Brandacher
- Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation (VCA) Laboratory, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ines Gockel
- Division of Hepatobiliary Surgery and Visceral Transplant Surgery, Department of Visceral, Transplant-, Thoracic- and Vascular Surgery, University Clinic Leipzig, Leipzig, Germany
| | - Thomas Berg
- From the Department of Oncology, Gastroenterology, Hepatology, Infectiology, and Pneumology, University Clinic Leipzig, Leipzig, Germany
| | - Daniel Seehofer
- Division of Hepatobiliary Surgery and Visceral Transplant Surgery, Department of Visceral, Transplant-, Thoracic- and Vascular Surgery, University Clinic Leipzig, Leipzig, Germany
| |
Collapse
|
39
|
Bednarsch J, Czigany Z, Heij LR, Amygdalos I, Heise D, Bruners P, Ulmer TF, Neumann UP, Lang SA. The role of re-resection in recurrent hepatocellular carcinoma. Langenbecks Arch Surg 2022; 407:2381-2391. [PMID: 35599252 PMCID: PMC9468093 DOI: 10.1007/s00423-022-02545-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/04/2022] [Indexed: 01/27/2023]
Abstract
Abstract
Purpose
While liver resection is a well-established treatment for primary HCC, surgical treatment for recurrent HCC (rHCC) remains the topic of an ongoing debate. Thus, we investigated perioperative and long-term outcome in patients undergoing re-resection for rHCC in comparative analysis to patients with primary HCC treated by resection.
Methods
A monocentric cohort of 212 patients undergoing curative-intent liver resection for HCC between 2010 and 2020 in a large German hepatobiliary center were eligible for analysis. Patients with primary HCC (n = 189) were compared to individuals with rHCC (n = 23) regarding perioperative results by statistical group comparisons and oncological outcome using Kaplan–Meier analysis.
Results
Comparative analysis showed no statistical difference between the resection and re-resection group in terms of age (p = 0.204), gender (p = 0.180), ASA category (p = 0.346) as well as main preoperative tumor characteristics, liver function parameters, operative variables, and postoperative complications (p = 0.851). The perioperative morbidity (Clavien-Dindo ≥ 3a) and mortality were 21.7% (5/23) and 8.7% (2/23) in rHCC, while 25.4% (48/189) and 5.8% (11/189) in primary HCC, respectively (p = 0.851). The median overall survival (OS) and recurrence-free survival (RFS) in the resection group were 40 months and 26 months, while median OS and RFS were 41 months and 29 months in the re-resection group, respectively (p = 0.933; p = 0.607; log rank).
Conclusion
Re-resection is technically feasible and safe in patients with rHCC. Further, comparative analysis displayed similar oncological outcome in patients with primary and rHCC treated by liver resection. Re-resection should therefore be considered in European patients diagnosed with rHCC.
Collapse
|
40
|
D'Avola D, Granito A, Torre-Aláez MDL, Piscaglia F. The importance of liver functional reserve in the non-surgical treatment of hepatocellular carcinoma. J Hepatol 2022; 76:1185-1198. [PMID: 34793869 DOI: 10.1016/j.jhep.2021.11.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 02/08/2023]
Abstract
The aim of any oncological treatment is not just to eliminate the tumour, but to maximise patient survival and quality of life. Since the liver has a vital function, any radical treatment that severely compromises liver function will result in a shortening of life expectancy, rather than a prolongation. Furthermore, even non-severe liver damage may prevent the delivery of further effective therapies. This is particularly important in the case of hepatocellular carcinoma (HCC), as it is associated with underlying cirrhosis in most patients - cirrhosis itself is not only a potentially lethal disease and independent prognostic factor in HCC, but it also makes liver function fragile. Accordingly, some information about liver dysfunction is included in most staging systems for HCC and can be used to guide the selection of treatments that the functional liver reserve can tolerate. Unfortunately, the prediction of functional damage to the liver in the case of antitumor treatments is very challenging and still suboptimal in any given patient. Moreover, while the assessment of functional reserve can now be used to avoid postoperative liver failure in the surgical setting, its use has been less well clarified for non-surgical therapies, which is of particular relevance today, as several lines of effective non-surgical treatments, including systemic therapies, have become available. The present article will a) critically review the implications of the assessment of liver functional reserve in patients with HCC, b) illustrate the available tools to assess liver functional reserve and c) discuss the role of functional assessment for each type of non-surgical therapy for HCC.
Collapse
Affiliation(s)
- Delia D'Avola
- Liver Unit, Internal Medicine Department, Clinica Universidad de Navarra, Pamplona and Madrid, Spain; Centro de Investigación Bio Medica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Pamplona, Spain
| | - Alessandro Granito
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Manuel de la Torre-Aláez
- Liver Unit, Internal Medicine Department, Clinica Universidad de Navarra, Pamplona and Madrid, Spain
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Medical and Surgical Sciences, University of Bologna, Italy.
| |
Collapse
|
41
|
Río Bártulos C, Senk K, Schumacher M, Plath J, Kaiser N, Bade R, Woetzel J, Wiggermann P. Assessment of Liver Function With MRI: Where Do We Stand? Front Med (Lausanne) 2022; 9:839919. [PMID: 35463008 PMCID: PMC9018984 DOI: 10.3389/fmed.2022.839919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Liver disease and hepatocellular carcinoma (HCC) have become a global health burden. For this reason, the determination of liver function plays a central role in the monitoring of patients with chronic liver disease or HCC. Furthermore, assessment of liver function is important, e.g., before surgery to prevent liver failure after hepatectomy or to monitor the course of treatment. Liver function and disease severity are usually assessed clinically based on clinical symptoms, biopsy, and blood parameters. These are rather static tests that reflect the current state of the liver without considering changes in liver function. With the development of liver-specific contrast agents for MRI, noninvasive dynamic determination of liver function based on signal intensity or using T1 relaxometry has become possible. The advantage of this imaging modality is that it provides additional information about the vascular structure, anatomy, and heterogeneous distribution of liver function. In this review, we summarized and discussed the results published in recent years on this technique. Indeed, recent data show that the T1 reduction rate seems to be the most appropriate value for determining liver function by MRI. Furthermore, attention has been paid to the development of automated tools for image analysis in order to uncover the steps necessary to obtain a complete process flow from image segmentation to image registration to image analysis. In conclusion, the published data show that liver function values obtained from contrast-enhanced MRI images correlate significantly with the global liver function parameters, making it possible to obtain both functional and anatomic information with a single modality.
Collapse
Affiliation(s)
- Carolina Río Bártulos
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| | - Karin Senk
- Institut für Röntgendiagnostik, Universtitätsklinikum Regensburg, Regensburg, Germany
| | | | - Jan Plath
- MeVis Medical Solutions AG, Bremen, Germany
| | | | | | | | - Philipp Wiggermann
- Institut für Röntgendiagnostik und Nuklearmedizin, Städtisches Klinikum Braunschweig gGmbH, Braunschweig, Germany
| |
Collapse
|
42
|
Franken LC, Benzing C, Krenzien F, Schmelzle M, van Dieren S, Olthof PB, van Gulik TM, Pratschke J. Right-sided resection with standard or selective portal vein resection in patients with perihilar cholangiocarcinoma: a propensity score analysis. HPB (Oxford) 2022; 24:391-397. [PMID: 34330643 DOI: 10.1016/j.hpb.2021.06.429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 04/27/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Standard portal vein resection (PVR) has been proposed to improve oncological outcomes in patients with perihilar cholangiocarcinoma (PHC), however it potentially introduces an increased risk of morbidity. The policy in Amsterdam UMC(AMC) is to resect the portal vein bifurcation selectively when involved, while in Charité-Universitätsmedizin Berlin, standard PVR is performed with right trisectionectomy. The objective of this study was to analyze postoperative outcomes and survival after standard or selective PVR for PHC. METHODS A retrospective study was performed including PHC-patients undergoing right-sided resection in Amsterdam (2000-2018) and Berlin (2005-2015). Primary outcomes were 90-day mortality, severe morbidity (Clavien-Dindo≥3), and overall survival (OS). A propensity score comparison (1:1 ratio) was performed corrected for age/sex/ASA/jaundice/tumor diameter/N-stage/Bismuth-Corlette type-IV. RESULTS A total of 251 patients who underwent right-sided resection for PHC were evaluated: 87 in the selective (Amsterdam) and 164 in the standard PVR-group (Berlin). Major differences in baseline characteristics were observed, with higher ASA and AJCC-stage in the standard PVR-group (Berlin). Severe morbidity and 90-day mortality were comparable before matching (selective/Amsterdam:68% and 19%, standard/Berlin:61% and 17%,p = 0.284 and p = 0.746, respectively). After propensity score matching, both short term outcomes and OS were comparable (selective/Amsterdam (n = 45) 33 months (95%CI:20-45), standard/Berlin (n = 45) 31 months (95%CI:24-38,p = 0.747)). CONCLUSION In this combined cohort, standard PVR was not associated with increased severe morbidity or mortality. After propensity score matching, survival was comparable after selective (Amsterdam) and standard PVR (Berlin).
Collapse
Affiliation(s)
- Lotte C Franken
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Christian Benzing
- Department of Surgery, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin, Germany.
| | - Felix Krenzien
- Department of Surgery, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin, Germany
| | - Moritz Schmelzle
- Department of Surgery, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin, Germany
| | - Susan van Dieren
- Epidemiologist, Department of Surgery, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Pim B Olthof
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands; Department of Surgery, Erasmus MC, Rotterdam, the Netherlands
| | - Thomas M van Gulik
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, the Netherlands
| | - Johann Pratschke
- Department of Surgery, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Campus Virchow-Klinikum, Berlin, Germany
| |
Collapse
|
43
|
Sabrina V, Michael B, Jörg A, Peter B, Wolf B, Susanne B, Thomas B, Frank D, Matthias E, Markus F, Christian LF, Paul F, Andreas G, Eleni G, Martin G, Elke H, Thomas H, Ralf-Thorsten H, Wolf-Peter H, Peter H, Achim K, Gabi K, Jürgen K, David K, Frank L, Hauke L, Thomas L, Philipp L, Andreas M, Alexander M, Oliver M, Silvio N, Huu Phuc N, Johann O, Karl-Jürgen O, Philipp P, Kerstin P, Philippe P, Thorsten P, Mathias P, Ruben P, Jürgen P, Jutta R, Peter R, Johanna R, Ulrike R, Elke R, Barbara S, Peter S, Irene S, Andreas S, Dietrich VS, Daniel S, Marianne S, Alexander S, Andreas S, Nadine S, Christian S, Andrea T, Anne T, Jörg T, Ingo VT, Reina T, Arndt V, Thomas V, Hilke V, Frank W, Oliver W, Heiner W, Henning W, Dane W, Christian W, Marcus-Alexander W, Peter G, Nisar M. S3-Leitlinie: Diagnostik und Therapie des hepatozellulären Karzinoms. ZEITSCHRIFT FUR GASTROENTEROLOGIE 2022; 60:e56-e130. [PMID: 35042248 DOI: 10.1055/a-1589-7568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Voesch Sabrina
- Medizinische Klinik I, Universitätsklinikum Tübingen, Tübingen
| | - Bitzer Michael
- Medizinische Klinik I, Universitätsklinikum Tübingen, Tübingen
| | - Albert Jörg
- Abteilung für Gastroenterologie, Hepatologie und Endokrinologie, Stuttgart
| | | | - Bechstein Wolf
- Klinik für Allgemein-, Viszeral-, Transplantations- und Thoraxchirurgie, Universitätsklinikum Frankfurt, Frankfurt am Main
| | | | - Brunner Thomas
- Klinik für Strahlentherapie, Universitätsklinikum Magdeburg A. ö. R., Magdeburg
| | - Dombrowski Frank
- Institut für Pathologie, Universitätsmedizin Greifswald, Greifswald
| | | | - Follmann Markus
- Office des Leitlinienprogrammes Onkologie, c/o Deutsche Krebsgesellschaft e.V. Berlin
| | | | | | - Geier Andreas
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg
| | - Gkika Eleni
- Klinik für Strahlenheilkunde, Department für Radiologische Diagnostik und Therapie, Universitätsklinikum Freiburg, Freiburg
| | | | - Hammes Elke
- Lebertransplantierte Deutschland e. V., Ansbach
| | - Helmberger Thomas
- Institut für Radiologie, Neuroradiologie und minimal-invasive Therapie, München Klinik Bogenhausen, München
| | | | - Hofmann Wolf-Peter
- Gastroenterologie am Bayerischen Platz, medizinisches Versorgungszentrum, Berlin
| | | | | | - Knötgen Gabi
- Konferenz onkologischer Kranken- und Kinderkrankenpflege, Hamburg
| | - Körber Jürgen
- Klinik Nahetal, Fachklinik für onkologische Rehabilitation und Anschlussrehabilitation, (AHB), Bad Kreuznach
| | - Krug David
- Klinik für Strahlentherapie, Universitätsklinikum Schleswig-Holstein, Kiel
| | | | - Lang Hauke
- Klinik für Allgemein-, Viszeral und Transplantationschirurgie, Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz
| | - Langer Thomas
- Office des Leitlinienprogrammes Onkologie, c/o Deutsche Krebsgesellschaft e.V. Berlin
| | - Lenz Philipp
- Universitätsklinikum Münster, Zentrale Einrichtung Palliativmedizin, Münster
| | - Mahnken Andreas
- Klinik für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Gießen und Marburg GmbH, Marburg
| | - Meining Alexander
- Medizinische Klinik und Poliklinik II des Universitätsklinikums Würzburg, Würzburg
| | - Micke Oliver
- Klinik für Strahlentherapie und Radioonkologie, Franziskus Hospital Bielefeld, Bielefeld
| | - Nadalin Silvio
- Universitätsklinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Tübingen, Tübingen
| | | | | | - Oldhafer Karl-Jürgen
- Klinik für Leber-, Gallenwegs- und Pankreaschirurgie, Semmelweis Universität, Asklepios Campus Hamburg, Hamburg
| | - Paprottka Philipp
- Abteilung für interventionelle Radiologie, Klinikum rechts der Isar der Technischen Universität München, München
| | - Paradies Kerstin
- Konferenz onkologischer Kranken- und Kinderkrankenpflege, Hamburg
| | - Pereira Philippe
- Zentrum für Radiologie, Minimal-invasive Therapien und Nuklearmedizin, Klinikum am Gesundbrunnen, SLK-Kliniken Heilbronn GmbH, Heilbronn
| | - Persigehl Thorsten
- Institut für Diagnostische und Interventionelle Radiologie, Universitätsklinikum Köln, Köln
| | | | | | - Pohl Jürgen
- Interventionelles Endoskopiezentrum und Schwerpunkt Gastrointestinale Onkologie, Asklepios Klinik Altona, Hamburg
| | - Riemer Jutta
- Lebertransplantierte Deutschland e. V., Bretzfeld
| | - Reimer Peter
- Institut für diagnostische und interventionelle Radiologie, Städtisches Klinikum Karlsruhe gGmbH, Karlsruhe
| | - Ringwald Johanna
- Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Tübingen
| | | | - Roeb Elke
- Medizinische Klinik II, Universitätsklinikum Gießen und Marburg GmbH, Gießen
| | - Schellhaas Barbara
- Medizinische Klinik I, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen
| | - Schirmacher Peter
- Pathologisches Institut, Universitätsklinikum Heidelberg, Heidelberg
| | - Schmid Irene
- Zentrum Pädiatrische Hämatologie und Onkologie, Dr. von Haunersches Kinderspital, Klinikum der Universität München, München
| | | | | | - Seehofer Daniel
- Klinik und Poliklinik für Viszeral-, Transplantations-, Thorax- und Gefäßchirurgie, Universitätsklinikum Leipzig, Leipzig
| | - Sinn Marianne
- Medizinische Klinik II, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | | | - Stengel Andreas
- Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Tübingen
| | | | | | - Tannapfel Andrea
- Institut für Pathologie der Ruhr-Universität Bochum am Berufsgenossenschaftlichen Universitätsklinikum Bergmannsheil, Bochum
| | - Taubert Anne
- Kliniksozialdienst, Universitätsklinikum Heidelberg, Bochum
| | - Trojan Jörg
- Medizinische Klinik I, Universitätsklinikum Frankfurt, Frankfurt am Main
| | | | - Tholen Reina
- Deutscher Verband für Physiotherapie e. V., Köln
| | - Vogel Arndt
- Klinik für Gastroenterologie, Hepatologie, Endokrinologie der Medizinischen Hochschule Hannover, Hannover
| | - Vogl Thomas
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie, Frankfurt
| | - Vorwerk Hilke
- Klinik für Strahlentherapie, Universitätsklinikum Gießen und Marburg GmbH, Marburg
| | - Wacker Frank
- Institut für Diagnostische und Interventionelle Radiologie der Medizinischen Hochschule Hannover, Hannover
| | - Waidmann Oliver
- Medizinische Klinik I, Universitätsklinikum Frankfurt, Frankfurt am Main
| | - Wedemeyer Heiner
- Klinik für Gastroenterologie, Hepatologie und Endokrinologie Medizinische Hochschule Hannover, Hannover
| | - Wege Henning
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, Hamburg
| | - Wildner Dane
- Innere Medizin, Krankenhäuser Nürnberger Land GmbH, Lauf an der Pegnitz
| | | | | | - Galle Peter
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Mainz, Mainz
| | - Malek Nisar
- Medizinische Klinik I, Universitätsklinikum Tübingen, Tübingen
| |
Collapse
|
44
|
Schleiger A, Kramer P, Sallmon H, Jentsch N, Pileckaite M, Danne F, Schafstedde M, Müller HP, Müller T, Tacke F, Jara M, Stockmann M, Berger F, Ovroutski S. Morphologic Alterations Precede Functional Hepatic Impairment as Determined by 13C-Methacetin Liver Function Breath Test in Adult Fontan Patients. Front Cardiovasc Med 2022; 8:764009. [PMID: 35004881 PMCID: PMC8732997 DOI: 10.3389/fcvm.2021.764009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/06/2021] [Indexed: 12/20/2022] Open
Abstract
Objectives: Fontan-associated liver disease (FALD) is the most common end-organ dysfunction affecting up to 70–80% of the Fontan population. The clinical significance of FALD is incompletely understood and no unambiguous correlation between hepatic function and FALD severity has been established. In this study, we sought to evaluate maximal liver function capacity with liver maximum function capacity test (LiMAx®) in adult Fontan patients. Methods: Thirty-nine adult Fontan patients (median age: 29.4 years [IQR 23.4; 37.4], median follow-up after Fontan operation: 23.9 years [IQR 17.8;26.4]) were analyzed in a cross-sectional observational study using LiMAx® test (Humedics GmbH, Berlin, Germany), laboratory testing, transient elastography (TE) and hepatic ultrasound. The LiMAx® test is based on the metabolism of 13C-methacetin, which is administered intravenously and cleaved by the hepatic cytochrome P4501A2 to paracetamol and 13CO2, which is measured in exhaled air and correlates with maximal liver function capacity. Results: Maximal liver function capacity assessed by LiMAx® test was normal in 28 patients (>315 μg/h*kg) and mildly to moderately impaired in 11 patients (140–314 μg/h*kg), while no patient displayed severe hepatic impairment (<139 μg/kg*h). No correlation was found between maximal liver function capacity and hepatic stiffness by TE (r2 = −0.151; p = 0.388) or the presence of sonographic abnormalities associated with FALD (r2 = −0.204, p = 0.24). There was, however, an association between maximal liver function capacity and the laboratory parameters bilirubin (r2 = −0.333, p = 0.009) and γ-glutamyl transferase (r2 = −0.367; p = 0.021). No correlation was detected between maximal liver function capacity and the severity of FALD (r2 = −0.235; p = 0.152). Conclusion: To the best of our knowledge, this is the first study to evaluate maximal liver function capacity using LiMAx® test in Fontan patients, which is a useful complementary diagnostic instrument to assess chronic hepatic injury. Maximal liver function capacity was preserved in most of our adult Fontan patients despite morphologic evidence of FALD. Moreover, maximal liver function capacity does not correlate with the extent of FALD severity evaluated by sonography or laboratory analysis. Thus, the development and progression of FALD in Fontan patients is not a uniform process and diagnostics of chronic hepatic injury during follow-up should encompass various modalities.
Collapse
Affiliation(s)
- Anastasia Schleiger
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Peter Kramer
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Hannes Sallmon
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Niklas Jentsch
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Marta Pileckaite
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Friederike Danne
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Marie Schafstedde
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Institute for Cardiovascular Computer-Assisted Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Hans-Peter Müller
- Charité Centre for Internal Medicine and Dermatology, Berlin, Germany
| | - Tobias Müller
- Department of Gastroenterology and Hepatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank Tacke
- Department of Gastroenterology and Hepatology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maximilian Jara
- Department of General, Visceral and Vascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Stockmann
- Department of General, Visceral and Vascular Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Berger
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Department of Pediatric Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Centre for Cardiovascular Research (DZHK), Berlin, Germany
| | - Stanislav Ovroutski
- Department of Congenital Heart Disease/Pediatric Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| |
Collapse
|
45
|
Köller A, Grzegorzewski J, Tautenhahn HM, König M. Prediction of Survival After Partial Hepatectomy Using a Physiologically Based Pharmacokinetic Model of Indocyanine Green Liver Function Tests. Front Physiol 2021; 12:730418. [PMID: 34880771 PMCID: PMC8646028 DOI: 10.3389/fphys.2021.730418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022] Open
Abstract
The evaluation of hepatic function and functional capacity of the liver are essential tasks in hepatology as well as in hepatobiliary surgery. Indocyanine green (ICG) is a widely applied test compound that is used in clinical routine to evaluate hepatic function. Important questions for the functional evaluation with ICG in the context of hepatectomy are how liver disease such as cirrhosis alters ICG elimination, and if postoperative survival can be predicted from preoperative ICG measurements. Within this work a physiologically based pharmacokinetic (PBPK) model of ICG was developed and applied to the prediction of the effects of a liver resection under various degrees of cirrhosis. For the parametrization of the computational model and validation of model predictions a database of ICG pharmacokinetic data was established. The model was applied (i) to study the effect of liver cirrhosis and liver resection on ICG pharmacokinetics; and (ii) to evaluate the model-based prediction of postoperative ICG-R15 (retention ratio 15 min after administration) as a measure for postoperative outcome. Key results are the accurate prediction of changes in ICG pharmacokinetics caused by liver cirrhosis and postoperative changes of ICG-elimination after liver resection, as validated with a wide range of data sets. Based on the PBPK model, individual survival after liver resection could be classified, demonstrating its potential value as a clinical tool.
Collapse
Affiliation(s)
- Adrian Köller
- Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Jan Grzegorzewski
- Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany
| | - Hans-Michael Tautenhahn
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Matthias König
- Institute for Theoretical Biology, Institute of Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
46
|
A proof of concept study on real-time LiMAx CYP1A2 liver function assessment of donor grafts during normothermic machine perfusion. Sci Rep 2021; 11:23444. [PMID: 34873187 PMCID: PMC8648778 DOI: 10.1038/s41598-021-02641-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022] Open
Abstract
No single reliable parameter exists to assess liver graft function of extended criteria donors during ex-vivo normothermic machine perfusion (NMP). The liver maximum capacity (LiMAx) test is a clinically validated cytochromal breath test, measuring liver function based on 13CO2 production. As an innovative concept, we aimed to integrate the LiMAx breath test with NMP to assess organ function. Eleven human livers were perfused using NMP. After one hour of stabilization, LiMAx testing was performed. Injury markers (ALT, AST, miR-122, FMN, and Suzuki-score) and lactate clearance were measured and related to LiMAx values. LiMAx values ranged between 111 and 1838 µg/kg/h, and performing consecutive LiMAx tests during longer NMP was feasible. No correlation was found between LiMAx value and miR-122 and FMN levels in the perfusate. However, a significant inverse correlation was found between LiMAx value and histological injury (Suzuki-score, R = − 0.874, P < 0.001), AST (R = − 0.812, P = 0.004) and ALT (R = − 0.687, P = 0.028). Furthermore, a significant correlation was found with lactate clearance (R = 0.683, P = 0.043). We demonstrate, as proof of principle, that liver function during NMP can be quantified using the LiMAx test, illustrating a positive correlation with traditional injury markers. This new breath-test application separates livers with adequate cytochromal liver function from inadequate ones and may support decision-making in the safe utilization of extended criteria donor grafts.
Collapse
|
47
|
Del Basso C, Gaillard M, Lainas P, Zervaki S, Perlemuter G, Chagué P, Rocher L, Voican CS, Dagher I, Tranchart H. Current strategies to induce liver remnant hypertrophy before major liver resection. World J Hepatol 2021; 13:1629-1641. [PMID: 34904033 PMCID: PMC8637666 DOI: 10.4254/wjh.v13.i11.1629] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 06/08/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatic resection is the gold standard for patients affected by primary or metastatic liver tumors but is hampered by the risk of post-hepatectomy liver failure. Despite recent improvements, liver surgery still requires excellent clinical judgement in selecting patients for surgery and, above all, efficient pre-operative strategies to provide adequate future liver remnant. The aim of this article is to review the literature on the rational, the preliminary assessment, the advantages as well as the limits of each existing technique for preparing the liver for major hepatectomy.
Collapse
Affiliation(s)
- Celeste Del Basso
- Department of Minimally Invasive Digestive Surgery, Antoine Béclère Hospital, Clamart 92140, France
| | - Martin Gaillard
- Department of Minimally Invasive Digestive Surgery, Antoine Béclère Hospital, Clamart 92140, France
| | - Panagiotis Lainas
- Department of Minimally Invasive Digestive Surgery, Antoine Béclère Hospital, Clamart 92140, France
| | - Stella Zervaki
- Department of Minimally Invasive Digestive Surgery, Antoine Béclère Hospital, Clamart 92140, France
| | - Gabriel Perlemuter
- Department of Hepato-Gastroenterology and Nutrition, Antoine Béclère Hospital, Clamart 92140, France
| | - Pierre Chagué
- Department of Radiology, Antoine Béclère Hospital, Clamart 92140, France
| | - Laurence Rocher
- Department of Radiology, Antoine Béclère Hospital, Clamart 92140, France
| | - Cosmin Sebastian Voican
- Department of Hepato-Gastroenterology and Nutrition, Antoine Béclère Hospital, Clamart 92140, France
| | - Ibrahim Dagher
- Department of Minimally Invasive Digestive Surgery, Antoine Béclère Hospital, Clamart 92140, France
| | - Hadrien Tranchart
- Department of Minimally Invasive Digestive Surgery, Antoine Béclère Hospital, Clamart 92140, France
| |
Collapse
|
48
|
Christ B, Collatz M, Dahmen U, Herrmann KH, Höpfl S, König M, Lambers L, Marz M, Meyer D, Radde N, Reichenbach JR, Ricken T, Tautenhahn HM. Hepatectomy-Induced Alterations in Hepatic Perfusion and Function - Toward Multi-Scale Computational Modeling for a Better Prediction of Post-hepatectomy Liver Function. Front Physiol 2021; 12:733868. [PMID: 34867441 PMCID: PMC8637208 DOI: 10.3389/fphys.2021.733868] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/26/2021] [Indexed: 01/17/2023] Open
Abstract
Liver resection causes marked perfusion alterations in the liver remnant both on the organ scale (vascular anatomy) and on the microscale (sinusoidal blood flow on tissue level). These changes in perfusion affect hepatic functions via direct alterations in blood supply and drainage, followed by indirect changes of biomechanical tissue properties and cellular function. Changes in blood flow impose compression, tension and shear forces on the liver tissue. These forces are perceived by mechanosensors on parenchymal and non-parenchymal cells of the liver and regulate cell-cell and cell-matrix interactions as well as cellular signaling and metabolism. These interactions are key players in tissue growth and remodeling, a prerequisite to restore tissue function after PHx. Their dysregulation is associated with metabolic impairment of the liver eventually leading to liver failure, a serious post-hepatectomy complication with high morbidity and mortality. Though certain links are known, the overall functional change after liver surgery is not understood due to complex feedback loops, non-linearities, spatial heterogeneities and different time-scales of events. Computational modeling is a unique approach to gain a better understanding of complex biomedical systems. This approach allows (i) integration of heterogeneous data and knowledge on multiple scales into a consistent view of how perfusion is related to hepatic function; (ii) testing and generating hypotheses based on predictive models, which must be validated experimentally and clinically. In the long term, computational modeling will (iii) support surgical planning by predicting surgery-induced perfusion perturbations and their functional (metabolic) consequences; and thereby (iv) allow minimizing surgical risks for the individual patient. Here, we review the alterations of hepatic perfusion, biomechanical properties and function associated with hepatectomy. Specifically, we provide an overview over the clinical problem, preoperative diagnostics, functional imaging approaches, experimental approaches in animal models, mechanoperception in the liver and impact on cellular metabolism, omics approaches with a focus on transcriptomics, data integration and uncertainty analysis, and computational modeling on multiple scales. Finally, we provide a perspective on how multi-scale computational models, which couple perfusion changes to hepatic function, could become part of clinical workflows to predict and optimize patient outcome after complex liver surgery.
Collapse
Affiliation(s)
- Bruno Christ
- Cell Transplantation/Molecular Hepatology Lab, Department of Visceral, Transplant, Thoracic and Vascular Surgery, University of Leipzig Medical Center, Leipzig, Germany
| | - Maximilian Collatz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
- Optisch-Molekulare Diagnostik und Systemtechnologié, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus Jena, Jena, Germany
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Karl-Heinz Herrmann
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Sebastian Höpfl
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Matthias König
- Systems Medicine of the Liver Lab, Institute for Theoretical Biology, Humboldt-University Berlin, Berlin, Germany
| | - Lena Lambers
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Daria Meyer
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich Schiller University Jena, Jena, Germany
| | - Nicole Radde
- Faculty of Engineering Design, Production Engineering and Automotive Engineering, Institute for Systems Theory and Automatic Control, University of Stuttgart, Stuttgart, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany
| | - Tim Ricken
- Faculty of Aerospace Engineering and Geodesy, Institute of Mechanics, Structural Analysis and Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| |
Collapse
|
49
|
Ben Khaled N, Jacob S, Rössler D, Bösch F, De Toni EN, Werner J, Ricke J, Mayerle J, Seidensticker M, Schulz C, Fabritius MP. Current State of Multidisciplinary Treatment in Cholangiocarcinoma. Dig Dis 2021; 40:581-595. [PMID: 34695826 DOI: 10.1159/000520346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/19/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a highly aggressive malignancy, and its incidence seems to be increasing over the last years. Given the high rate of irresectability at the time of initial diagnosis, new treatment approaches are important to achieve better patient outcomes. Our review provides an overview of current multimodal therapy options across different specialties of gastroenterology/oncology, surgery, and interventional radiology. SUMMARY CCA is subdivided into clinically and molecularly distinct phenotypes. Surgical treatment currently is the only potentially curative therapy, but unfortunately, the majority of all patients are not eligible for resection at the time of initial diagnosis due to anatomic location, inadequate hepatic reserve, metastatic disease, or limiting comorbidities. However, multimodal treatment options are available to prolong survival, relieve symptoms, and maintain life quality. KEY MESSAGES The treatment of CCA is complex and requires close interdisciplinary collaboration and individualized treatment planning to ensure optimal patient care at specialized centers. Molecular profiling of patients and inclusion into clinical trials is highly recommended.
Collapse
Affiliation(s)
- Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Sven Jacob
- Department of General-, Visceral- and Transplantation-Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Daniel Rössler
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Florian Bösch
- Department of General-, Visceral- and Transplantation-Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Enrico N De Toni
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Jens Werner
- Department of General-, Visceral- and Transplantation-Surgery, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Schulz
- Department of Medicine II, University Hospital, LMU Munich, Munich, Germany
| | | |
Collapse
|
50
|
Wang Q, Wang A, Sparrelid E, Zhang J, Zhao Y, Ma K, Brismar TB. Predictive value of gadoxetic acid-enhanced MRI for posthepatectomy liver failure: a systematic review. Eur Radiol 2021; 32:1792-1803. [PMID: 34562137 PMCID: PMC8831250 DOI: 10.1007/s00330-021-08297-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 12/04/2022]
Abstract
Objectives Effective and non-invasive biomarkers to predict and avoid posthepatectomy liver failure (PHLF) are urgently needed. This systematic review aims to evaluate the efficacy of gadoxetic acid–enhanced MRI-derived parameters as an imaging biomarker in preoperative prediction of PHLF. Methods A systematic literature search was performed in the databases of PubMed/Medline, Web of Science, Embase, and Cochrane Library up to 11 December 2020. Studies evaluating the incidence of PHLF on patients who underwent hepatectomy with preoperative liver function assessment using gadoxetic acid–enhanced MRI were included. Data was extracted using pre-designed tables. The Quality In Prognostic Studies (QUIPS) tool was adopted to evaluate the risk of bias. Results A total of 15 studies were identified for qualitative synthesis and most studies were marked as low to moderate risk of bias in each domain of QUIPS. The most commonly used parameter was relative liver enhancement or its related parameters. The reported incidence of PHLF ranged from 3.9 to 40%. The predictive sensitivity and specificity of gadoxetic acid–enhanced MRI parameters varied from 75 to 100% and from 54 to 93% in ten reported studies. A majority of the studies revealed that the gadoxetic acid–enhanced MRI parameter was a predictor for PHLF. Conclusions Gadoxetic acid–enhanced MRI showed a high predictive capacity for PHLF and represents a promising imaging biomarker in prediction of PHLF. Multicenter, prospective trials with large sample size and reliable, unified liver function parameters are required to validate the efficacy of individual liver function parameters. Key Points • There is an obvious heterogeneity of the published studies, not only in variance of MRI liver function parameters but also in indication and extent of the liver resection. • Signal intensity (SI)–based parameters derived from gadoxetic acid–enhanced MRI are the commonly used method for PHLF prediction. • Gadoxetic acid–enhanced MRI-derived parameters showed high predictive efficacy for PHLF and can potentially serve as a predictor for the incidence of PHLF. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08297-8.
Collapse
Affiliation(s)
- Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Department of Radiology, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Anrong Wang
- Department of Hepatobiliary Surgery, People's Hospital of Dianjiang County, Chongqing, China
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jiaxing Zhang
- Department of Pharmacy, Guizhou Provincial People's Hospital, Guiyang, Guizhou Province, China
| | - Ying Zhao
- Experimental Cancer Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Clinical Research Center (KFC) and Center for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Torkel B Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden.
- Department of Radiology, Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.
| |
Collapse
|