1
|
Baran Z, Çetinkaya M, Baran Y. Mesenchymal Stem Cells in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 39470980 DOI: 10.1007/5584_2024_824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
The mesenchymal stem/stromal cells (MSCs) are multipotent cells that were initially discovered in the bone marrow in the late 1960s but have so far been discovered in almost all tissues of the body. The multipotent property of MSCs enables them to differentiate into various cell types and lineages, such as adipocytes, chondrocytes, and osteocytes. The immunomodulation capacity and tumor-targeting features of MSCs made their use crucial for cell-based therapies in cancer treatment, yet limited advancement could be observed in translational medicine prospects due to the need for more information regarding the controversial roles of MSCs in crosstalk tumors. In this review, we discuss the therapeutic potential of MSCs, the controversial roles played by MSCs in cancer progression, and the anticancer therapeutic strategies that are in association with MSCs. Finally, the clinical trials designed for the direct use of MSCs for cancer therapy or for their use in decreasing the side effects of other cancer therapies are also mentioned in this review to evaluate the current status of MSC-based cancer therapies.
Collapse
Affiliation(s)
- Züleyha Baran
- Laboratory of Molecular Pharmacology, Department of Pharmacology, Anadolu University, Eskişehir, Turkey
| | - Melisa Çetinkaya
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey
| | - Yusuf Baran
- Laboratory of Cancer Genetics, Department of Molecular Biology and Genetics, İzmir Institute of Technology, İzmir, Turkey.
| |
Collapse
|
2
|
Mahadiuzzaman ASM, Dain Md Opo FA, Alkarim S. Stem cell-based targeted therapy in pancreatic cancer: Current approaches and future prospects. Tissue Cell 2024; 89:102449. [PMID: 38924893 DOI: 10.1016/j.tice.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/22/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Despite recent improvements in oncology, diagnosis, and therapy, pancreatic cancer remains extremely difficult to cure due to its aggressive growth pattern with early invasion and distant metastases, chemoresistance, and a lack of effective screening modalities for early detection. Here, novel therapeutic approaches for treating pancreatic cancer are urgently needed. Recently, stem cells have drawn a lot of interest as a possible treatment for pancreatic cancer due to their ability to locate tumors. Though research over the last few decades has revealed some very exciting and promising new treatment approaches, the clinical success of these stem-cell based anti-cancer medicines has been quite limited. The most effective stem cell-mediated therapeutic options will only be available with a deeper understanding of the intricate molecular biology underlying pancreatic cancer and the subsequent identification of cancer stem cells as a novel target that promotes the growth of the cancer and resistance to chemotherapy. This review will highlight the stem cell based anti-cancer therapy targeting pancreatic cancer stem cells and different molecular signaling pathways. A particular focus will be on the therapeutic potential of naïve Stem cells, anti-cancer drug loaded stem cells, genetically engineered stem cells and exosomal miRNA released by stem cells in pancreatic cancer treatment. Similarly, the role of nanotechnology in stem cell based anticancer therapy will be further discussed to better implementation of these cell-based cancer therapy.
Collapse
Affiliation(s)
- A S M Mahadiuzzaman
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - F A Dain Md Opo
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saleh Alkarim
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Embryonic and Cancer Stem Cell Research Group, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Tang J, Chen Y, Wang C, Xia Y, Yu T, Tang M, Meng K, Yin L, Yang Y, Shen L, Xing H, Mao X. The role of mesenchymal stem cells in cancer and prospects for their use in cancer therapeutics. MedComm (Beijing) 2024; 5:e663. [PMID: 39070181 PMCID: PMC11283587 DOI: 10.1002/mco2.663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are recruited by malignant tumor cells to the tumor microenvironment (TME) and play a crucial role in the initiation and progression of malignant tumors. This role encompasses immune evasion, promotion of angiogenesis, stimulation of cancer cell proliferation, correlation with cancer stem cells, multilineage differentiation within the TME, and development of treatment resistance. Simultaneously, extensive research is exploring the homing effect of MSCs and MSC-derived extracellular vesicles (MSCs-EVs) in tumors, aiming to design them as carriers for antitumor substances. These substances are targeted to deliver antitumor drugs to enhance drug efficacy while reducing drug toxicity. This paper provides a review of the supportive role of MSCs in tumor progression and the associated molecular mechanisms. Additionally, we summarize the latest therapeutic strategies involving engineered MSCs and MSCs-EVs in cancer treatment, including their utilization as carriers for gene therapeutic agents, chemotherapeutics, and oncolytic viruses. We also discuss the distribution and clearance of MSCs and MSCs-EVs upon entry into the body to elucidate the potential of targeted therapies based on MSCs and MSCs-EVs in cancer treatment, along with the challenges they face.
Collapse
Affiliation(s)
- Jian Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Yu Chen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Medical Affairs, Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Chunhua Wang
- Department of Clinical LaboratoryXiangyang No. 1 People's HospitalHubei University of MedicineXiangyangHubei ProvinceChina
| | - Ying Xia
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Tingyu Yu
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Mengjun Tang
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Kun Meng
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Lijuan Yin
- State Key Laboratory of Food Nutrition and SafetyKey Laboratory of Industrial MicrobiologyMinistry of EducationTianjin Key Laboratory of Industry MicrobiologyNational and Local United Engineering Lab of Metabolic Control Fermentation TechnologyChina International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal ChemistryCollege of BiotechnologyTianjin University of Science & TechnologyTianjinChina
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and ImmunityNational Clinical Research Center for Infectious DiseaseState Key Discipline of Infectious DiseaseShenzhen Third People's HospitalSecond Hospital Affiliated to Southern University of Science and TechnologyShenzhenChina
| | - Liang Shen
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
| | - Hui Xing
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| | - Xiaogang Mao
- Central LaboratoryXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyangChina
- Department of Obstetrics and GynecologyXiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and SciencesXiangyangChina
| |
Collapse
|
4
|
Mei R, Wan Z, Yang C, Shen X, Wang R, Zhang H, Yang R, Li J, Song Y, Su H. Advances and clinical challenges of mesenchymal stem cell therapy. Front Immunol 2024; 15:1421854. [PMID: 39100671 PMCID: PMC11294097 DOI: 10.3389/fimmu.2024.1421854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
In recent years, cell therapy has provided desirable properties for promising new drugs. Mesenchymal stem cells are promising candidates for developing genetic engineering and drug delivery strategies due to their inherent properties, including immune regulation, homing ability and tumor tropism. The therapeutic potential of mesenchymal stem cells is being investigated for cancer therapy, inflammatory and fibrotic diseases, among others. Mesenchymal stem cells are attractive cellular carriers for synthetic nanoparticles for drug delivery due to their inherent homing ability. In this review, we comprehensively discuss the various genetic and non-genetic strategies of mesenchymal stem cells and their derivatives in drug delivery, tumor therapy, immune regulation, tissue regeneration and other fields. In addition, we discuss the current limitations of stem cell therapy and the challenges in clinical translation, aiming to identify important development areas and potential future directions.
Collapse
Affiliation(s)
- Ruiyan Mei
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Zhuo Wan
- Department of Hematology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Cheng Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Xiangjing Shen
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Ronglin Wang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haihua Zhang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Rui Yang
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Junqiang Li
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yang Song
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Haichuan Su
- Department of Oncology, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
5
|
Taheri M, Tehrani HA, Dehghani S, Alibolandi M, Arefian E, Ramezani M. Nanotechnology and bioengineering approaches to improve the potency of mesenchymal stem cell as an off-the-shelf versatile tumor delivery vehicle. Med Res Rev 2024; 44:1596-1661. [PMID: 38299924 DOI: 10.1002/med.22023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 11/28/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
Targeting actionable mutations in oncogene-driven cancers and the evolution of immuno-oncology are the two prominent revolutions that have influenced cancer treatment paradigms and caused the emergence of precision oncology. However, intertumoral and intratumoral heterogeneity are the main challenges in both fields of precision cancer treatment. In other words, finding a universal marker or pathway in patients suffering from a particular type of cancer is challenging. Therefore, targeting a single hallmark or pathway with a single targeted therapeutic will not be efficient for fighting against tumor heterogeneity. Mesenchymal stem cells (MSCs) possess favorable characteristics for cellular therapy, including their hypoimmune nature, inherent tumor-tropism property, straightforward isolation, and multilineage differentiation potential. MSCs can be loaded with various chemotherapeutics and oncolytic viruses. The combination of these intrinsic features with the possibility of genetic manipulation makes them a versatile tumor delivery vehicle that can be used for in vivo selective tumor delivery of various chemotherapeutic and biological therapeutics. MSCs can be used as biofactory for the local production of chemical or biological anticancer agents at the tumor site. MSC-mediated immunotherapy could facilitate the sustained release of immunotherapeutic agents specifically at the tumor site, and allow for the achievement of therapeutic concentrations without the need for repetitive systemic administration of high therapeutic doses. Despite the enthusiasm evoked by preclinical studies that used MSC in various cancer therapy approaches, the translation of MSCs into clinical applications has faced serious challenges. This manuscript, with a critical viewpoint, reviewed the preclinical and clinical studies that have evaluated MSCs as a selective tumor delivery tool in various cancer therapy approaches, including gene therapy, immunotherapy, and chemotherapy. Then, the novel nanotechnology and bioengineering approaches that can improve the potency of MSC for tumor targeting and overcoming challenges related to their low localization at the tumor sites are discussed.
Collapse
Affiliation(s)
- Mojtaba Taheri
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Abdul Tehrani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sadegh Dehghani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Gil-Chinchilla JI, Zapata AG, Moraleda JM, García-Bernal D. Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects. Biomolecules 2024; 14:734. [PMID: 39062449 PMCID: PMC11275142 DOI: 10.3390/biom14070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in advanced therapies due to their therapeutic potential in the regulation of tissue repair and homeostasis, and immune modulation. However, their use in cancer therapy is controversial: they can inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting angiogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment. To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as effective therapeutics in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
| | - Agustín G. Zapata
- Department of Cell Biology, Complutense University, 28040 Madrid, Spain;
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
7
|
Ataei A, Azizi M, Hajisadeghi S, Madani M, Khorami M, Hassantash S, Saeidpour Masouleh S, Barati G. The Therapeutic Effects of Mesenchymal Stem Cells and their Secretome on Oral Squamous Cell Carcinoma. Curr Mol Med 2024; 24:1195-1207. [PMID: 37366360 DOI: 10.2174/1566524023666230627151809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Oral cancers are prevalent in the human population, particularly in unindustrialized countries. In 90 % of oral cancers, the tumors arise from squamous cells, which is called oral squamous cell carcinoma (OSCC). Despite new treatment strategies, the morbidity and mortality rates are still high. Current treatment options including surgery, chemotherapy, and radiotherapy are not effective in the treatment of the tumor. Cell therapy with mesenchymal stem cells (MSCs) is considered one of the leading strategies in cancer treatment. However, the field of MSC therapy in OSCC is immature and ongoing studies are being conducted in experimental and pre-clinical studies. Here, we reviewed these studies to figure out whether the use of MSCs could be worthwhile in OSCC therapy or not. Both native and engineered MSCs as well as their secretome have been used in the treatment of OSCC. It seems that genetically modified MSCs or their secretome could inhibit the tumorigenesis of OSCC. However, further pre-clinical studies are required to come to a conclusion.
Collapse
Affiliation(s)
- Atefe Ataei
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Majid Azizi
- Department of Periodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Samira Hajisadeghi
- Department of Oral and Maxillofacial Medicine, School of Dentistry, Qom University of Medical Sciences, Qom, Iran
| | - Mojan Madani
- Orthodontics Department, Dental Faculty, Arak UNDUniversity of Medical Sciences, Arak, Iran
| | - Mozhgan Khorami
- Faculty of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Hassantash
- Faculty of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghasem Barati
- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Stem Cell Technology Research Center, Tehran, Iran
| |
Collapse
|
8
|
Shams F, Pourjabbar B, Hashemi N, Farahmandian N, Golchin A, Nuoroozi G, Rahimpour A. Current progress in engineered and nano-engineered mesenchymal stem cells for cancer: From mechanisms to therapy. Biomed Pharmacother 2023; 167:115505. [PMID: 37716113 DOI: 10.1016/j.biopha.2023.115505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), as self-renewing multipotent stromal cells, have been considered promising agents for cancer treatment. A large number of studies have demonstrated the valuable properties of MSC-based treatment, such as low immunogenicity and intrinsic tumor-trophic migratory properties. To enhance the potency of MSCs for therapeutic purposes, equipping MSCs with targeted delivery functions using genetic engineering is highly beneficial. Genetically engineered MSCs can express tumor suppressor agents such as pro-apoptotic, anti-proliferative, anti-angiogenic factors and act as ideal delivery vehicles. MSCs can also be loaded with nanoparticle drugs for increased efficacy and externally moderated targeting. Moreover, exosomes secreted by MSCs have important physiological properties, so they can contribute to intercellular communication and transfer cargo into targeted tumor cells. The precise role of genetically modified MSCs in tumor environments is still up for debate, but the beginning of clinical trials has been confirmed by promising results from preclinical investigations of MSC-based gene therapy for a wide range of malignancies. This review highlights the advanced techniques of engineering/nano-engineering and MSC-derived exosomes in tumor-targeted therapy.
Collapse
Affiliation(s)
- Forough Shams
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1968917313 Tehran, Iran
| | - Navid Farahmandian
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Cellular & Molecular Research Center, Cellular & Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia 57157993313, Iran; Department of Clinical Biochemistry & Applied Cell Sciences, School of Medicine, Urmia University of Medical Sciences, Urmia 57157993313, Islamic Republic of Iran
| | - Ghader Nuoroozi
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Kitzberger C, Shehzad K, Morath V, Spellerberg R, Ranke J, Steiger K, Kälin RE, Multhoff G, Eiber M, Schilling F, Glass R, Weber WA, Wagner E, Nelson PJ, Spitzweg C. Interleukin-6-controlled, mesenchymal stem cell-based sodium/iodide symporter gene therapy improves survival of glioblastoma-bearing mice. Mol Ther Oncolytics 2023; 30:238-253. [PMID: 37701849 PMCID: PMC10493263 DOI: 10.1016/j.omto.2023.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/11/2023] [Indexed: 09/14/2023] Open
Abstract
New treatment strategies are urgently needed for glioblastoma (GBM)-a tumor resistant to standard-of-care treatment with a high risk of recurrence and extremely poor prognosis. Based on their intrinsic tumor tropism, adoptively applied mesenchymal stem cells (MSCs) can be harnessed to deliver the theranostic sodium/iodide symporter (NIS) deep into the tumor microenvironment. Interleukin-6 (IL-6) is a multifunctional, highly expressed cytokine in the GBM microenvironment including recruited MSCs. MSCs engineered to drive NIS expression in response to IL-6 promoter activation offer the possibility of a new tumor-targeted gene therapy approach of GBM. Therefore, MSCs were stably transfected with an NIS-expressing plasmid controlled by the human IL-6 promoter (IL-6-NIS-MSCs) and systemically applied in mice carrying orthotopic GBM. Enhanced radiotracer uptake by 18F-Tetrafluoroborate-PET/magnetic resonance imaging (MRI) was detected in tumors after IL-6-NIS-MSC application as compared with mice that received wild-type MSCs. Ex vivo analysis of tumors and non-target organs showed tumor-specific NIS protein expression. Subsequent 131I therapy after IL-6-NIS-MSC application resulted in significantly delayed tumor growth assessed by MRI and improved median survival up to 60% of GBM-bearing mice as compared with controls. In conclusion, the application of MSC-mediated NIS gene therapy focusing on IL-6 biology-induced NIS transgene expression represents a promising approach for GBM treatment.
Collapse
Affiliation(s)
- Carolin Kitzberger
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Khuram Shehzad
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Volker Morath
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rebekka Spellerberg
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Julius Ranke
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Gabriele Multhoff
- Center for Translational Cancer Research (TranslaTUM), School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Radiation Immuno-Oncology Group, Munich, Germany
- Department of Radiation Oncology, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Matthias Eiber
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Schilling
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- Walter Brendel Center of Experimental Medicine, Faculty of Medicine, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang A. Weber
- Department of Nuclear Medicine, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Centre for System-Based Drug Research and Centre for Nanoscience, LMU Munich, Munich, Germany
| | - Peter J. Nelson
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Giuli L, Santopaolo F, Pallozzi M, Pellegrino A, Coppola G, Gasbarrini A, Ponziani FR. Cellular therapies in liver and pancreatic diseases. Dig Liver Dis 2023; 55:563-579. [PMID: 36543708 DOI: 10.1016/j.dld.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/21/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
Over the past two decades, developments in regenerative medicine in gastroenterology have been greatly enhanced by the application of stem cells, which can self-replicate and differentiate into any somatic cell. The discovery of induced pluripotent stem cells has opened remarkable perspectives on tissue regeneration, including their use as a bridge to transplantation or as supportive therapy in patients with organ failure. The improvements in DNA manipulation and gene editing strategies have also allowed to clarify the physiopathology and to correct the phenotype of several monogenic diseases, both in vivo and in vitro. Further progress has been made with the development of three-dimensional cultures, known as organoids, which have demonstrated morphological and functional complexity comparable to that of a miniature organ. Hence, owing to its protean applications and potential benefits, cell and organoid transplantation has become a hot topic for the management of gastrointestinal diseases. In this review, we describe current knowledge on cell therapies in hepatology and pancreatology, providing insight into their future applications in regenerative medicine.
Collapse
Affiliation(s)
- Lucia Giuli
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesco Santopaolo
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Maria Pallozzi
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Pellegrino
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Gaetano Coppola
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Francesca Romana Ponziani
- Internal Medicine and Gastroenterology, Hepatology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
11
|
The Role of Mesenchymal Stem Cells and Exosomes in Tumor Development and Targeted Antitumor Therapies. Stem Cells Int 2023; 2023:7059289. [PMID: 36824409 PMCID: PMC9943627 DOI: 10.1155/2023/7059289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Mesenchymal stem cells (MSCs) can be isolated from various tissues in adults and differentiated into cells of the osteoblasts, adipocytes, chondrocytes, and myocytes. Recruitments of MSCs towards tumors have a crucial contribution to tumor development. However, the role of MSCs in the tumor microenvironment is uncertain. In addition, due to its tropism to the tumor and low immunogenic properties, more and more pieces of evidence indicate that MSCs may be an ideal carrier for antitumor biologics such as cytokines, chemotherapeutic agents, and oncolytic viruses. Here, we review the existing knowledge on the anti- and protumorigenic effect of MSCs and their extracellular vesicles and exosomes, the role of MSCs, and their extracellular vesicles and exosomes as antitumor vectors.
Collapse
|
12
|
Nie Y, Liu C, Liu Q, Zhu X. CXCL10 is a prognostic marker for pancreatic adenocarcinoma and tumor microenvironment remodeling. BMC Cancer 2023; 23:150. [PMID: 36782176 PMCID: PMC9926744 DOI: 10.1186/s12885-023-10615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND The tumor microenvironment (TME) plays a crucial role in the progression of pancreatic adenocarcinoma (PAAD). However, challenges remain regarding the role played by TME associated genes in the prognosis of PAAD. METHODS The scores of tumor infiltrating immune cells (TICs), the immune and stroma scores of 182 PAAD patients in the Cancer Genome Atlas (TCGA) database were determined using CIBERSORT and ESTIMATE calculations. The final genes were identified by protein-protein interaction (PPI) networks and univariate Cox regression of differentially expressed genes. Finally, the correlation between gene expression and TCGA and clinical characteristics of patients in local hospital database was discussed. Gene set enrichment analysis (GSEA), the association between CXCL10 expression and TICs components were conducted. RESULTS In TCGA database and local hospital data, CXCL10 expression was correlated with the survival rate and TNM classification of patients with PAAD. Immune-related activities were enriched in the CXCL10 high expression group, while metabolic pathways were enriched in the CXCL10 low expression group. The expression of CXCL10 correlated with the proportion of TICs. CXCL10 expression was correlated with the proportion of TICs. CONCLUSION CXCL10 is a potential prognostic marker for PAAD and provide additional insights into the treatment of PAAD based on TME transformation. However, more independent experimentation with the CXCL10 is need.
Collapse
Affiliation(s)
- Yuan Nie
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Yongwaizhengjie Road, 330006 Donghu District Nanchang, Jiangxi China
| | - Chao Liu
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Yongwaizhengjie Road, 330006 Donghu District Nanchang, Jiangxi China
| | - Qi Liu
- grid.412604.50000 0004 1758 4073Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Yongwaizhengjie Road, 330006 Donghu District Nanchang, Jiangxi China
| | - Xuan Zhu
- Department of Gastroenterology, Jiangxi Clinical Research Center for Gastroenterology, The First Affiliated Hospital of Nanchang University, Yongwaizhengjie Road, 330006, Donghu District Nanchang, Jiangxi, China.
| |
Collapse
|
13
|
Ma Z, Hua J, Liu J, Zhang B, Wang W, Yu X, Xu J. Mesenchymal Stromal Cell-Based Targeted Therapy Pancreatic Cancer: Progress and Challenges. Int J Mol Sci 2023; 24:ijms24043559. [PMID: 36834969 PMCID: PMC9966548 DOI: 10.3390/ijms24043559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy with high mortality rates and poor prognoses. Despite rapid progress in the diagnosis and treatment of pancreatic cancer, the efficacy of current therapeutic strategies remains limited. Hence, better alternative therapeutic options for treating pancreatic cancer need to be urgently explored. Mesenchymal stromal cells (MSCs) have recently received much attention as a potential therapy for pancreatic cancer owing to their tumor-homing properties. However, the specific antitumor effect of MSCs is still controversial. To this end, we aimed to focus on the potential anti-cancer treatment prospects of the MSC-based approach and summarize current challenges in the clinical application of MSCs to treat pancreatic cancer.
Collapse
Affiliation(s)
- Zhilong Ma
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.); Tel.: +86-021-64175590 (X.Y.); +86-021-64031446 (J.X.)
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong’An Road, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, No. 270 Dong’An Road, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
- Correspondence: (X.Y.); (J.X.); Tel.: +86-021-64175590 (X.Y.); +86-021-64031446 (J.X.)
| |
Collapse
|
14
|
Xiang Z, Hua M, Hao Z, Biao H, Zhu C, Zhai G, Wu J. The Roles of Mesenchymal Stem Cells in Gastrointestinal Cancers. Front Immunol 2022; 13:844001. [PMID: 35281017 PMCID: PMC8907448 DOI: 10.3389/fimmu.2022.844001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 12/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) were reported to have strong immunomodulatory ability, and inhibit the proliferation of T cells and their immune response through cell-to-cell interactions and the generation of cytokines. With high differentiation potential and self-renewal ability, MSCs are considered to function in alleviating inflammatory responses, promoting tissue regeneration and inhibiting tissue fibrosis formation. As the most common malignancies, gastrointestinal (GI) cancers have high incidence and mortality. The accurate diagnosis, exact prognosis and treatment of GI cancers have always been a hot topic. Therefore, the potential applications of MSCs in terms of GI cancers are receiving more and more attention. Recently, there is increasing evidence that MSCs may serve as a key point in the growth, metastasis, inhibition, treatment and prognosis of GI cancers. In this review, we summarized the roles of MSCs in GI cancers, mainly focusing on esophageal cancer (EC), gastric cancer (GC), liver cancer (LC), colorectal cancer (CRC) and pancreatic cancer. Besides, we proposed MSCs as potential targets and treatment strategies for the effective treatment of GI cancers, which may provide better guidance for the clinical treatment of GI cancers.
Collapse
Affiliation(s)
- Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Menglu Hua
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhou Hao
- Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huang Biao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chaojie Zhu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Guanghua Zhai
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jian Wu
- Department of Clinical Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| |
Collapse
|
15
|
Szewc M, Radzikowska-Bűchner E, Wdowiak P, Kozak J, Kuszta P, Niezabitowska E, Matysiak J, Kubiński K, Masłyk M. MSCs as Tumor-Specific Vectors for the Delivery of Anticancer Agents-A Potential Therapeutic Strategy in Cancer Diseases: Perspectives for Quinazoline Derivatives. Int J Mol Sci 2022; 23:2745. [PMID: 35269887 PMCID: PMC8911180 DOI: 10.3390/ijms23052745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered to be a powerful tool in the treatment of various diseases. Scientists are particularly interested in the possibility of using MSCs in cancer therapy. The research carried out so far has shown that MSCs possess both potential pro-oncogenic and anti-oncogenic properties. It has been confirmed that MSCs can regulate tumor cell growth through a paracrine mechanism, and molecules secreted by MSCs can promote or block a variety of signaling pathways. These findings may be crucial in the development of new MSC-based cell therapeutic strategies. The abilities of MSCs such as tumor tropism, deep migration and immune evasion have evoked considerable interest in their use as tumor-specific vectors for small-molecule anticancer agents. Studies have shown that MSCs can be successfully loaded with chemotherapeutic drugs such as gemcitabine and paclitaxel, and can release them at the site of primary and metastatic neoplasms. The inhibitory effect of MSCs loaded with anti-cancer agents on the proliferation of cancer cells has also been observed. However, not all known chemotherapeutic agents can be used in this approach, mainly due to their cytotoxicity towards MSCs and insufficient loading and release capacity. Quinazoline derivatives appear to be an attractive choice for this therapeutic solution due to their biological and pharmacological properties. There are several quinazolines that have been approved for clinical use as anticancer drugs by the US Food and Drug Administration (FDA). It gives hope that the synthesis of new quinazoline derivatives and the development of methods of their application may contribute to the establishment of highly effective therapies for oncological patients. However, a deeper understanding of interactions between MSCs and tumor cells, and the exploration of the possibilities of using quinazoline derivatives in MSC-based therapy is necessary to achieve this goal. The aim of this review is to discuss the prospects for using MSC-based cell therapy in cancer treatment and the potential use of quinazolines in this procedure.
Collapse
Affiliation(s)
- Monika Szewc
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Elżbieta Radzikowska-Bűchner
- Department of Plastic, Reconstructive and Maxillary Surgery, Central Clinical Hospital MSWiA, 02-507 Warsaw, Poland;
| | - Paulina Wdowiak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Piotr Kuszta
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland; (P.W.); (J.K.); (P.K.)
| | - Ewa Niezabitowska
- Department of Urology and Urological Oncology, Multidisciplinary Hospital in Lublin, 20-400 Lublin, Poland;
| | - Joanna Matysiak
- Department of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Konrad Kubiński
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| | - Maciej Masłyk
- Department of Molecular Biology, The John Paul II Catholic University of Lublin, 20-708 Lublin, Poland;
| |
Collapse
|
16
|
Vicinanza C, Lombardi E, Da Ros F, Marangon M, Durante C, Mazzucato M, Agostini F. Modified mesenchymal stem cells in cancer therapy: A smart weapon requiring upgrades for wider clinical applications. World J Stem Cells 2022; 14:54-75. [PMID: 35126828 PMCID: PMC8788179 DOI: 10.4252/wjsc.v14.i1.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 08/06/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem stromal cells (MSC) are characterized by the intriguing capacity to home toward cancer cells after systemic administration. Thus, MSC can be harnessed as targeted delivery vehicles of cytotoxic agents against tumors. In cancer patients, MSC based advanced cellular therapies were shown to be safe but their clinical efficacy was limited. Indeed, the amount of systemically infused MSC actually homing to human cancer masses is insufficient to reduce tumor growth. Moreover, induction of an unequivocal anticancer cytotoxic phenotype in expanded MSC is necessary to achieve significant therapeutic efficacy. Ex vivo cell modifications are, thus, required to improve anti-cancer properties of MSC. MSC based cellular therapy products must be handled in compliance with good manufacturing practice (GMP) guidelines. In the present review we include MSC-improving manipulation approaches that, even though actually tested at preclinical level, could be compatible with GMP guidelines. In particular, we describe possible approaches to improve MSC homing on cancer, including genetic engineering, membrane modification and cytokine priming. Similarly, we discuss appropriate modalities aimed at inducing a marked cytotoxic phenotype in expanded MSC by direct chemotherapeutic drug loading or by genetic methods. In conclusion, we suggest that, to configure MSC as a powerful weapon against cancer, combinations of clinical grade compatible modification protocols that are currently selected, should be introduced in the final product. Highly standardized cancer clinical trials are required to test the efficacy of ameliorated MSC based cell therapies.
Collapse
Affiliation(s)
- Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Francesco Da Ros
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Miriam Marangon
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| | - Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano, IRCCS, Aviano 33081, Italy
| |
Collapse
|
17
|
Kakabadze MZ, Paresishvili T, Mardaleishvili K, Vadachkoria Z, Kipshidze N, Jangavadze M, Karalashvili L, Ghambashidze K, Chakhunashvili D, Kakabadze Z. Local drug delivery system for the treatment of tongue squamous cell carcinoma in rats. Oncol Lett 2021; 23:13. [PMID: 34820012 PMCID: PMC8607325 DOI: 10.3892/ol.2021.13131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
The present study describes a local drug delivery system with two functions, which can suppress tumor growth and accelerate wound healing. Thе system consists of a two-layer multicomponent fibrin-based gel (MCPFTG). The internal layer of MCPFTG, which is in direct contact with the wound surface, contains cisplatin placed on a CultiSpher-S collagen microcarrier. The external layer of MCPFTG consists of a CultiSpher-S microcarrier with lyophilized bone marrow stem cells (BMSCs). The efficacy of MCPFTG was evaluated in a rat model of squamous cell carcinoma of the tongue created with 4-nitroquinoline 1-oxide. The results of the study showed that, within 20–25 days, a non-healing wound of the tongue was formed in animals that underwent only 85% resection of squamous cell carcinoma, while rapid progression of the residual tumor was concomitantly observed. Immunohistochemical methods revealed high expression of cyclin D1 and low expression of E-cadherin in these animals. Additionally, high expression of p63 and Ki-67 was noted. In 80% of animals with squamous cell carcinoma of the tongue that were treated with MCPFTG after 85% tumor resection, a noticeable suppression of tumor growth was evident throughout 150 days, and tumor recurrence was not detected. Immunohistochemistry revealed low or moderate expression of cyclin D1, and high expression of E-cadherin throughout the whole observation period. The MCPFTG-based local drug delivery system was shown to be effective in suppressing tumor growth and preventing recurrence. MCPFTG decreased the toxicity of cisplatin and enhanced its antitumor activity. In addition, lyophilized paracrine BMSC factors present in MCPFTG accelerated wound healing after tumor removal. Thus, the present study suggests novel opportunities for the development of a multifunctional drug delivery system for the treatment of squamous cell carcinoma.
Collapse
Affiliation(s)
- Mariam Z Kakabadze
- Department of Clinical Anatomy and Operative Surgery, Iv. Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
| | - Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | | | - Zurab Vadachkoria
- Department of Child and Adolescent Maxillo-facial Surgery and Surgical Stomatology, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Nicholas Kipshidze
- Department of Interventional Cardiology, Cardiovascular Research Foundation, New York, NY 10019, USA
| | - Mikheil Jangavadze
- Department of Clinical Anatomy and Operative Surgery, Iv. Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
| | - Lia Karalashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Ketevan Ghambashidze
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - David Chakhunashvili
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| | - Zurab Kakabadze
- Department of Clinical Anatomy, Tbilisi State Medical University, 0186 Tbilisi, Georgia
| |
Collapse
|
18
|
Ghaffari S, Kazerooni H, Salehi-Najafabadi A. An overview of the recent findings of cell-based therapies for the treatment and management of COVID-19. Int Immunopharmacol 2021; 101:108226. [PMID: 34634685 PMCID: PMC8492917 DOI: 10.1016/j.intimp.2021.108226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global pandemic taking the lives of millions. The virus itself not only invades and destroys the angiotensin-converting enzyme 2 (ACE2)-expressing cells of the lungs, kidneys, liver, etc. but also elicits a hyperinflammatory immune response, further damaging the tissue leading to acute respiratory distress syndrome (ARDS) and death. Although vaccines, as a prime example of active immunotherapy, have clearly disrupted the transmission of virus and reduced mortality, hospitalization, and burden of disease, other avenues of immunotherapy are also being explored. One such approach would be to adoptively transfer modified/unmodified immune cells to the critically ill. Here, we compiled and summarized the immunopathogenesis of SARS-CoV-2 and the recent preclinical and clinical data on the potential of cell-based therapies in the fight against COVID-19.
Collapse
Affiliation(s)
- Sasan Ghaffari
- Department of Science and Technology, Supreme National Defense University, Tehran, Iran; Department of Hematology, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran; Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran
| | - Hanif Kazerooni
- Department of Science and Technology, Supreme National Defense University, Tehran, Iran.
| | - Amir Salehi-Najafabadi
- Research Center for New Technologies in Life Science Engineering, University of Tehran, Tehran, Iran; Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
19
|
Ferrara B, Pignatelli C, Cossutta M, Citro A, Courty J, Piemonti L. The Extracellular Matrix in Pancreatic Cancer: Description of a Complex Network and Promising Therapeutic Options. Cancers (Basel) 2021; 13:cancers13174442. [PMID: 34503252 PMCID: PMC8430646 DOI: 10.3390/cancers13174442] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
The stroma is a relevant player in driving and supporting the progression of pancreatic ductal adenocarcinoma (PDAC), and a large body of evidence highlights its role in hindering the efficacy of current therapies. In fact, the dense extracellular matrix (ECM) characterizing this tumor acts as a natural physical barrier, impairing drug penetration. Consequently, all of the approaches combining stroma-targeting and anticancer therapy constitute an appealing option for improving drug penetration. Several strategies have been adopted in order to target the PDAC stroma, such as the depletion of ECM components and the targeting of cancer-associated fibroblasts (CAFs), which are responsible for the increased matrix deposition in cancer. Additionally, the leaky and collapsing blood vessels characterizing the tumor might be normalized, thus restoring blood perfusion and allowing drug penetration. Even though many stroma-targeting strategies have reported disappointing results in clinical trials, the ECM offers a wide range of potential therapeutic targets that are now being investigated. The dense ECM might be bypassed by implementing nanoparticle-based systems or by using mesenchymal stem cells as drug carriers. The present review aims to provide an overview of the principal mechanisms involved in the ECM remodeling and of new promising therapeutic strategies for PDAC.
Collapse
Affiliation(s)
- Benedetta Ferrara
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Cataldo Pignatelli
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - Mélissande Cossutta
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Antonio Citro
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
| | - José Courty
- INSERM U955, Immunorégulation et Biothérapie, Institut Mondor de Recherche Biomédicale (IMRB), Université Paris-Est Créteil, 94010 Créteil, France; (M.C.); (J.C.)
- AP-HP, Centre d’Investigation Clinique Biothérapie, Groupe Hospitalo-Universitaire Chenevier Mondor, 94010 Créteil, France
| | - Lorenzo Piemonti
- Diabetes Research Institute (HSR-DRI), San Raffaele Scientific Institute, via Olgettina 60, 20132 Milan, Italy; (B.F.); (C.P.); (A.C.)
- Correspondence:
| |
Collapse
|
20
|
Abdelgawad M, Bakry NS, Farghali AA, Abdel-Latif A, Lotfy A. Mesenchymal stem cell-based therapy and exosomes in COVID-19: current trends and prospects. Stem Cell Res Ther 2021; 12:469. [PMID: 34419143 PMCID: PMC8379570 DOI: 10.1186/s13287-021-02542-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
Novel coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2. The virus causes an exaggerated immune response, resulting in a cytokine storm and acute respiratory distress syndrome, the leading cause of COVID-19-related mortality and morbidity. So far, no therapies have succeeded in circumventing the exacerbated immune response or cytokine storm associated with COVID-19. Mesenchymal stem cells (MSCs), through their immunomodulatory and regenerative activities, mostly mediated by their paracrine effect and extracellular vesicle production, have therapeutic potential in many autoimmune, inflammatory, and degenerative diseases. In this paper, we review clinical studies on the use of MSCs for COVID-19 treatment, including the salutary effects of MSCs on the pathophysiology of COVID-19 and the immunomodulation of the cytokine storm. Ongoing clinical trial designs, cell sources, dose and administration, and populations are summarized, and the paracrine mode of benefit is discussed. We also offer suggestions for optimizing MSC-based therapies, including genetic engineering, strategies for cell surface modification, nanotechnology applications, and combination therapies.
Collapse
Affiliation(s)
- Mai Abdelgawad
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Nourhan Saied Bakry
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt
| | - Ahmed Abdel-Latif
- Gill Heart Institute and Division of Cardiovascular Medicine, University of Kentucky and the Lexington VA Medical Center, Lexington, KY, USA. .,College of Medicine, University of Kentucky, Lexington, KY, 40506-0046, USA.
| | - Ahmed Lotfy
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni Suef, 62511, Egypt.
| |
Collapse
|
21
|
Hassanzadeh A, Altajer AH, Rahman HS, Saleh MM, Bokov DO, Abdelbasset WK, Marofi F, Zamani M, Yaghoubi Y, Yazdanifar M, Pathak Y, Chartrand MS, Jarahian M. Mesenchymal Stem/Stromal Cell-Based Delivery: A Rapidly Evolving Strategy for Cancer Therapy. Front Cell Dev Biol 2021; 9:686453. [PMID: 34322483 PMCID: PMC8311597 DOI: 10.3389/fcell.2021.686453] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem/stromal cell (MSC)-based therapy has become an attractive and advanced scientific research area in the context of cancer therapy. This interest is closely linked to the MSC-marked tropism for tumors, suggesting them as a rational and effective vehicle for drug delivery for both hematological and solid malignancies. Nonetheless, the therapeutic application of the MSCs in human tumors is still controversial because of the induction of several signaling pathways largely contributing to tumor progression and metastasis. In spite of some evidence supporting that MSCs may sustain cancer pathogenesis, increasing proofs have indicated the suppressive influences of MSCs on tumor cells. During the last years, a myriad of preclinical and some clinical studies have been carried out or are ongoing to address the safety and efficacy of the MSC-based delivery of therapeutic agents in diverse types of malignancies. A large number of studies have focused on the MSC application as delivery vehicles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), chemotherapeutic drug such as gemcitabine (GCB), paclitaxel (PTX), and doxorubicin (DOX), prodrugs such as 5-fluorocytosine (5-FC) and ganciclovir (GCV), and immune cell-activating cytokines along with oncolytic virus. In the current review, we evaluate the latest findings rendering the potential of MSCs to be employed as potent gene/drug delivery vehicle for inducing tumor regression with a special focus on the in vivo reports performed during the last two decades.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaymaniyah, Iraq
| | - Marwan Mahmood Saleh
- Department of Biophysics, College of Applied Sciences, University of Anbar, Ramadi, Iraq
| | - Dmitry O. Bokov
- Sechenov First Moscow State Medical University, Moscow, Russia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Faroogh Marofi
- Immunology Research Center (IRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yoda Yaghoubi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Yashwant Pathak
- Professor and Associate Dean for Faculty Affairs, Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Adjunct Professor, Faculty of Pharmacy, Airlangga University, Surabaya, Indonesia
| | | | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
22
|
Shi S, Li F, Wu L, Zhang L, Liu L. Feasibility of Bone Marrow Mesenchymal Stem Cell-Mediated Synthetic Radiosensitive Promoter-Combined Sodium Iodide Symporter for Radiogenetic Ovarian Cancer Therapy. Hum Gene Ther 2021; 32:828-838. [PMID: 33339472 DOI: 10.1089/hum.2020.214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer is the most lethal gynecological cancer, most patients relapse within 12-24 months, and eventually die, especially platinum-resistant patients. Gene therapy has been one of the most potential methods for tumor treatment. Bone marrow mesenchymal stem cells (BMSCs) have been used for systemic delivery of therapeutic genes to solid tumors. Sodium iodide symporter (NIS) is an intrinsic membrane glycoprotein and can concentrate 131I, which is important for radionuclide therapy and nuclear medicine imaging in recent years. However, the rapid iodine efflux has become a bottleneck for NIS-mediated radionuclide gene therapy. Our previous studies found that the early growth response-1 (Egr1) promoter containing CC(A/T)6GG (CArG) elements had an 131I radiation-positive feedback effect on the NIS gene. Other research showed the synthesized Egr1 promoter containing four CArG elements, E4, was nearly three times as sensitive as the Egr1 promoter. In our study, BMSC-E4-NIS was engineered to express NIS under the control of E4 promoter using lentivirial vectors. After BMSC-E4-NIS implantation, no tumors were seen in BALB/c nude mice and BMSC-E4-NIS did not promote the growth of SKOV3 tumor. BMSCs migrated toward ovarian cancer samples in chemotaxis assays and to ovarian tumors in mice. Using micro-single-photon emission computed tomography/computed tomography (SPECT/CT) imaging, we found that E4 promoter produced a notable increase in 125I uptake after 131I irradiation, the radionuclide uptake is almost three and six times more than Egr1 and cytomegalovirus (CMV) promoters. These studies confirmed the feasibility of using BMSCs as carriers for lentivirus-mediated E4-NIS gene therapy for ovarian cancer. Further research on BMSC-E4-NIS gene therapy for ovarian cancer in vivo will also be carried on, and if successful, this might provide a new adjuvant therapeutical option for platinum-resistant ovarian cancer patients and provide a new method for dynamic evaluation of curative effect.
Collapse
Affiliation(s)
- Shuo Shi
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Fei Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liangcai Wu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Liwei Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lei Liu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| |
Collapse
|
23
|
Tarar A, Alyami EM, Peng CA. Mesenchymal stem cells anchored with thymidine phosphorylase for doxifluridine-mediated cancer therapy. RSC Adv 2021; 11:1394-1403. [PMID: 35424143 PMCID: PMC8693507 DOI: 10.1039/d0ra10263f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022] Open
Abstract
Many tumors express thymidine phosphorylase (TYMP) with various levels, however due to tumor heterogeneity, the amount of TYMP is usually not enough to convert prodrug doxifluridine (5'-DFUR) to toxic drug 5-fluorouracil (5-FU). Since human mesenchymal stem cells (hMSCs) have unique features of tumor-tropism and low immunogenicity, the purpose of this study is to use mesenchymal stem cells as carriers to deliver TYMP to cancer cells and then trigger their death by administrating doxifluridine. First, the TYMP gene sequence and core streptavidin (core SA) were constructed into pET-30a(+) plasmid. After bacterial transformation and colony screening, TYMP-SA fusion protein was expressed by IPTG induction and purified by immobilized metal affinity chromatography and characterized by SDS-PAGE and western blot with a clear band at 75 kDa. The characterized TYMP-SA was further anchored on the cell membrane of biotinylated hMSCs via biotin-streptavidin binding. hMSCs anchored with TYMP-SA were then co-cultured with adenocarcinoma A549 cells (with different ratios) and treated with 100 μM prodrug doxifluridine over the course of four days. Our results showed that a 2 : 1 ratio led to the eradication of A549 cells at the end of the experiment with less than 5% confluency, in comparison with the 1 : 1 and 1 : 2 ratios which still had about 13% and 20% confluency respectively. In conclusion, harnessing hMSCs as cell carriers for the delivery of TYMP enzyme to cancer cells could lead to significant cell death post-treatment of the prodrug doxifluridine.
Collapse
Affiliation(s)
- Ammar Tarar
- Department of Chemical & Biological Engineering, University of Idaho Engineering Physics Building 421, 875 Perimeter Drive Moscow ID 83844-0904 USA +1-208-885-7461
| | - Esmael M Alyami
- Department of Chemical & Biological Engineering, University of Idaho Engineering Physics Building 421, 875 Perimeter Drive Moscow ID 83844-0904 USA +1-208-885-7461
| | - Ching-An Peng
- Department of Chemical & Biological Engineering, University of Idaho Engineering Physics Building 421, 875 Perimeter Drive Moscow ID 83844-0904 USA +1-208-885-7461
| |
Collapse
|
24
|
Mesenchymal stem/stromal cells: Developmental origin, tumorigenesis and translational cancer therapeutics. Transl Oncol 2020; 14:100948. [PMID: 33190044 PMCID: PMC7672320 DOI: 10.1016/j.tranon.2020.100948] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
While a large and growing body of research has demonstrated that mesenchymal stem/stromal cells (MSCs) play a dual role in tumor growth and inhibition, studies exploring the capability of MSCs to contribute to tumorigenesis are rare. MSCs are key players during tumorigenesis and cancer development, evident in their faculty to increase cancer stem cells (CSCs) population, to generate the precursors of certain forms of cancer (e.g. sarcoma), and to induce epithelial-mesenchymal transition to create the CSC-like state. Indeed, the origin and localization of the native MSCs in their original tissues are not known. MSCs are identified in the primary tumor sites and the fetal and extraembryonic tissues. Acknowledging the developmental origin of MSCs and tissue-resident native MSCs is essential for better understanding of MSC contributions to the cellular origin of cancer. This review stresses that the plasticity of MSCs can therefore instigate further risk in select therapeutic strategies for some patients with certain forms of cancer. Towards this end, to explore the safe and effective MSC-based anti-cancer therapies requires a strong understanding of the cellular and molecular mechanisms of MSC action, ultimately guiding new strategies for delivering treatment. While clinical trial efforts using MSC products are currently underway, this review also provides new insights on the underlying mechanisms of MSCs to tumorigenesis and focuses on the approaches to develop MSC-based anti-cancer therapeutic applications.
Collapse
|
25
|
A highly efficient non-viral process for programming mesenchymal stem cells for gene directed enzyme prodrug cancer therapy. Sci Rep 2020; 10:14257. [PMID: 32868813 PMCID: PMC7458920 DOI: 10.1038/s41598-020-71224-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stem cells (MSCs) driven gene-directed enzyme prodrug therapy has emerged as a potential strategy for cancer treatment. The tumour-nesting properties of MSCs enable these vehicles to target tumours and metastases with effective therapies. A crucial step in engineering MSCs is the delivery of genetic material with low toxicity and high efficiency. Due to the low efficiency of current transfection methods, viral vectors are used widely to modify MSCs in preclinical and clinical studies. We show, for the first time, the high transfection efficiency (> 80%) of human adipose tissue derived-MSCs (AT-MSCs) using a cost-effective and off-the-shelf Polyethylenimine, in the presence of histone deacetylase 6 inhibitor and fusogenic lipids. Notably, the phenotypes of MSCs remained unchanged post-modification. AT-MSCs engineered with a fused transgene, yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) displayed potent cytotoxic effects against breast, glioma, gastric cancer cells in vitro. The efficiency of eliminating gastric cell lines were effective even when using 7-day post-transfected AT-MSCs, indicative of the sustained expression and function of the therapeutic gene. In addition, significant inhibition of temozolomide resistant glioma tumour growth in vivo was observed with a single dose of therapeutic MSC. This study demonstrated an efficient non-viral modification process for MSC-based prodrug therapy.
Collapse
|
26
|
Kenarkoohi A, Bamdad T, Soleimani M, Soleimanjahi H, Fallah A, Falahi S. HSV-TK Expressing Mesenchymal Stem Cells Exert Inhibitory Effect on Cervical Cancer Model. INTERNATIONAL JOURNAL OF MOLECULAR AND CELLULAR MEDICINE 2020; 9:146-154. [PMID: 32934952 PMCID: PMC7489112 DOI: 10.22088/ijmcm.bums.9.2.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 06/23/2020] [Indexed: 02/06/2023]
Abstract
A growing area of research is focused on cancer therapy, and new therapeutic approaches are welcomed. Mesenchymal stem cell (MSC)-based gene therapy is a promising strategy in oncology. Intrinsic tropism and migration to tumor microenvironment with off lights are attractive features of this type of cell carrier. In this way, suicide genes have also found a good platform for better performance and have shown a stronger anti-tumor mechanism by riding on mesenchymal cells. In this study, we investigated the anti-tumor activity of intratumoral injected MSCs transduced with a lentivector expressing the HSV/TK in a mouse cervical cancer model. Following the injection of MSCs transduced with lentivector carrying TK, MSCs alone or PBS into the mice tumor, ganciclovir was administered intraperitoneally during 14 days, and tumor size, survival time, natural killer (NK) cells and cytotoxic T lymphocyte (CTL) activities were assessed. We demonstrated that combination of suicide therapy and cell therapy leading m,to successful tumor inhibition. Significant reduction in tumor size was detected in test group in comparison with controls. Also, potent antitumor NK and CTL activity was seen in treatment group in comparison with controls. Our data demonstrated that the mesenchymal cells expressing TK had inhibitory effect on cervical cancer model.
Collapse
Affiliation(s)
- Azra Kenarkoohi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Taravat Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hoorieh Soleimanjahi
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
27
|
Obayashi M, Shibasaki Y, Koakutsu T, Hayashi Y, Shoji T, Hirayama K, Yamazaki M, Takayanagi Y, Shibata H, Nakamura M, Maruo H. Pancreatic undifferentiated carcinoma with osteoclast-like giant cells curatively resected after pembrolizumab therapy for lung metastases: a case report. BMC Gastroenterol 2020; 20:220. [PMID: 32652936 PMCID: PMC7353752 DOI: 10.1186/s12876-020-01362-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/02/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Therapy targeting programmed death-1 or programmed death-1 ligand-1 (PD-1/PD-L1) has been developed for various solid malignant tumors, such as melanoma and non-small-cell lung cancer (NSCLC), but this approach has little effect in the treatment of pancreatic cancer. Pancreatic undifferentiated carcinoma with osteoclast-like giant cells (UCOGC) is a rare pancreatic malignancy having unique morphology and is considered a variant of pancreatic ductal adenocarcinoma (PDAC). Although UCOGC has been reported to have better prognosis than conventional PDAC, the optimal treatment for UCOGC with distant metastases has not been determined. CASE PRESENTATION A 66-year-old man was initially diagnosed with NSCLC with multiple intrapulmonary metastases and abdominal lymph node metastasis in the tail of the pancreas, and bronchial biopsy and diagnostic imaging were performed. Pathologic examination of the lung showed poorly differentiated adenocarcinoma cells expressing epithelial marker and PD-L1. Therefore, pembrolizumab monotherapy for NSCLC was given. The pulmonary lesions shrank markedly and were in complete remission after 8 months of anti-PD-1 therapy, though no therapeutic effect was observed in the pancreatic site. Distal pancreatectomy was then performed, and histopathological examination showed that the tumor was UCOGC originating from the pancreas. The histologic findings of the resected specimen mimicked those of the lung biopsy specimen, leading to the final assessment that the lung tumors were metastatic foci that migrated from the UCOGC, and only the metastatic lesions benefited from pembrolizumab therapy. CONCLUSION Immune checkpoint inhibitors have limited therapeutic effects on primary lesions of pancreatic cancer, but they may exert antitumor effects on pulmonary metastases of UCOGC.
Collapse
Affiliation(s)
- Miku Obayashi
- Department of Surgery, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Yasushi Shibasaki
- Department of Surgery, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Toru Koakutsu
- Department of Surgery, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Yoshiro Hayashi
- Department of Surgery, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Tsuyoshi Shoji
- Department of Surgery, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Kazuhisa Hirayama
- Department of Surgery, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Masanori Yamazaki
- Department of Surgery, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Yasuhiro Takayanagi
- Department of Gastroenterology, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Hiroshi Shibata
- Department of Respiratory Medicine, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Masato Nakamura
- Department of Pathology, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan
| | - Hirotoshi Maruo
- Department of Surgery, Shizuoka City Shimizu Hospital, 1231 Miyakami, Shimizu-ku, Shizuoka, 424-8636, Japan.
| |
Collapse
|
28
|
Interaction of cancer cells with mesenchymal stem cells: implications in metastatic progression. J Indian Inst Sci 2020. [DOI: 10.1007/s41745-020-00182-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Mundry CS, Eberle KC, Singh PK, Hollingsworth MA, Mehla K. Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochim Biophys Acta Rev Cancer 2020; 1874:188387. [PMID: 32579889 DOI: 10.1016/j.bbcan.2020.188387] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Late detection, compromised immune system, and chemotherapy resistance underlie the poor patient prognosis for pancreatic ductal adenocarcinoma (PDAC) patients, making it the 3rd leading cause of cancer-related deaths in the United States. Cooperation between the tumor cells and the immune system leads to the immune escape and eventual establishment of the tumor. For more than 20 years, sincere efforts have been made to intercept the tumor-immune crosstalk and identify the probable therapeutic targets for breaking self-tolerance toward tumor antigens. However, the success of these studies depends on detailed examination and understanding of tumor-immune cell interactions, not only in the primary tumor but also at distant systemic niches. Innate and adaptive arms of the immune system sculpt tumor immunogenicity, where they not only aid in providing an amenable environment for their survival but also act as a driver for tumor relapse at primary or distant organ sites. This review article highlights the key events associated with tumor-immune communication and associated immunosuppression at both local and systemic microenvironments in PDAC. Furthermore, we discuss the approaches and benefits of targeting both local and systemic immunosuppression for PDAC patients. The present articles integrate data from clinical and genetic mouse model studies to provide a widespread consensus on the role of local and systemic immunosuppression in undermining the anti-tumor immune responses against PDAC.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Marrow/drug effects
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cancer Vaccines/administration & dosage
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Chemotherapy, Adjuvant/methods
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Disease Models, Animal
- Disease-Free Survival
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Irinotecan/pharmacology
- Irinotecan/therapeutic use
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Lymph Node Excision
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymph Nodes/surgery
- Mice
- Mice, Transgenic
- Neoadjuvant Therapy/methods
- Oxaliplatin/pharmacology
- Oxaliplatin/therapeutic use
- Pancreas/immunology
- Pancreas/pathology
- Pancreas/surgery
- Pancreatectomy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Spleen/immunology
- Spleen/pathology
- Spleen/surgery
- Splenectomy
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transplantation, Autologous/methods
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- United States/epidemiology
Collapse
Affiliation(s)
- Clara S Mundry
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kirsten C Eberle
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kamiya Mehla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| |
Collapse
|
30
|
LI A, ZHANG T, GAO J. [Progress on utilizing mesenchymal stem cells as cellular delivery system for targeting delivery of as drug/gene for anti-tumor therapy]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:20-34. [PMID: 32621413 PMCID: PMC8800717 DOI: 10.3785/j.issn.1008-9292.2020.02.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Mesenchymal stem cells (MSCs) have the inherent tumor-homing ability with the attraction of multiple chemokines released by tumor tissues or tumor microenvironments, which can be utilized as promising cellular carriers for targeted delivery of anti-tumor drugs and genes. In most circumstances, large amount of systemicly administrated MSCs will be firstly trapped by lungs, following with re-distribution and homing to tumor tissues after lung clearance. Several approaches like enhanced interactions between chemokines and receptors on MSCs or reducing the retention of MSCs by changes of administration methods are firstly reviewed for improving the homing of MSCs towards tumor tissues. Additionally, the potentials and gains of utilizing MSCs to carry several chemotherapeutics, such as doxorubicin, paclitaxel and gemcitabine are summarized, showing the advantages of overcoming the short half-life and poor tumor targeting of these chemotherapeutics. Moreover, the applications of MSCs to protect and deliver therapeutic genes to tumor sites for selectively tumor cells eliminating or promoting immune system are highlighted. In addition, the potentials of using MSCs for tumor-targeting delivery of diagnostic and therapeutic agents are addressed. We believed that the continuous improvement and optimization of this stem cells-based cellular delivery system will provide a novel delivery strategy and option for tumor treatment.
Collapse
|
31
|
Genetically engineered mesenchymal stem cells: targeted delivery of immunomodulatory agents for tumor eradication. Cancer Gene Ther 2020; 27:854-868. [PMID: 32418986 DOI: 10.1038/s41417-020-0179-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
Cancer immunotherapy emerged as a novel therapeutic option that employs enhanced or amended native immune system to create a robust response against malignant cells. The systemic therapies with immune-stimulating cytokines have resulted in substantial dose-limiting toxicities. Targeted cytokine immunotherapy is being explored to overcome the heterogeneity of malignant cells and tumor cell defense with a remarkable reduction of systemic side effects. Cell-based strategies, such as dendritic cells (DCs), fibroblasts or mesenchymal stem cells (MSCs) seek to minimize the numerous toxic side effects of systemic administration of cytokines for extended periods of time. The usual toxicities comprised of a vascular leak, hypotension, and respiratory insufficiency. Natural and strong tropism of MSCs toward malignant cells made them an ideal systemic delivery vehicle to direct the proposed therapeutic genes to the vicinity of a tumor where their expression could evoke an immune reaction against the tumor. Compared with other methods, the delivery of cytokines via engineered MSCs is safer and renders a more practical, and promising strategy. Large numbers of genes code for cytokines have been utilized to reengineer MSCs as therapeutic cells. This review highlights the recent findings on the cytokine gene therapy for human malignancies by focusing on MSCs application in cancer immunotherapy.
Collapse
|
32
|
Li JN, Li W, Cao LQ, Liu N, Zhang K. Efficacy of mesenchymal stem cells in the treatment of gastrointestinal malignancies. World J Gastrointest Oncol 2020; 12:365-382. [PMID: 32368316 PMCID: PMC7191336 DOI: 10.4251/wjgo.v12.i4.365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/03/2020] [Accepted: 03/26/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs), which are a kind of stem cell, possess an immune privileged nature, tumour homing features, and multi-lineage differentiation ability. MSCs have been studied in many fields, such as tissue engineering, nervous system diseases, and cancer treatment. In recent years, an increasing number of researchers have focused on the effects of MSCs on various kinds of tumours. However, the concrete anticancer efficacy of MSCs is still controversial. Gastrointestinal (GI) malignancies are the major causes of cancer-related death worldwide. The interactions of MSCs and GI cancer cells in specific conditions have attracted increasing attention. In this review, we introduce the characteristics of MSCs and analyse the effects of MSCs on GI malignancies, including gastric cancer, hepatoma, pancreatic cancer, and colorectal cancer. In addition, we also provide our perspectives on why MSCs may play different roles in GI malignancies and further research directions to increase the treatment efficacy of MSCs on GI malignancies.
Collapse
Affiliation(s)
- Jian-Nan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Wei Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Lan-Qing Cao
- Department of Pathology, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Ning Liu
- Department of Central Laboratory, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun 130041, Jilin Province, China
| |
Collapse
|
33
|
Tutter M, Schug C, Schmohl KA, Urnauer S, Schwenk N, Petrini M, Lokerse WJM, Zach C, Ziegler S, Bartenstein P, Weber WA, Wagner E, Lindner LH, Nelson PJ, Spitzweg C. Effective control of tumor growth through spatial and temporal control of theranostic sodium iodide symporter ( NIS) gene expression using a heat-inducible gene promoter in engineered mesenchymal stem cells. Am J Cancer Res 2020; 10:4490-4506. [PMID: 32292510 PMCID: PMC7150485 DOI: 10.7150/thno.41489] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose: The tumor homing characteristics of mesenchymal stem cells (MSCs) make them attractive vehicles for the tumor-specific delivery of therapeutic agents, such as the sodium iodide symporter (NIS). NIS is a theranostic protein that allows non-invasive monitoring of the in vivo biodistribution of functional NIS expression by radioiodine imaging as well as the therapeutic application of 131I. To gain local and temporal control of transgene expression, and thereby improve tumor selectivity, we engineered MSCs to express the NIS gene under control of a heat-inducible HSP70B promoter (HSP70B-NIS-MSCs). Experimental Design: NIS induction in heat-treated HSP70B-NIS-MSCs was verified by 125I uptake assay, RT-PCR, Western blot and immunofluorescence staining. HSP70B-NIS-MSCs were then injected i.v. into mice carrying subcutaneous hepatocellular carcinoma HuH7 xenografts, and hyperthermia (1 h at 41°C) was locally applied to the tumor. 0 - 72 h later radioiodine uptake was assessed by 123I-scintigraphy. The most effective uptake regime was then selected for 131I therapy. Results: The HSP70B promoter showed low basal activity in vitro and was significantly induced in response to heat. In vivo, the highest tumoral iodine accumulation was seen 12 h after application of hyperthermia. HSP70B-NIS-MSC-mediated 131I therapy combined with hyperthermia resulted in a significantly reduced tumor growth with prolonged survival as compared to control groups. Conclusions: The heat-inducible HSP70B promoter allows hyperthermia-induced spatial and temporal control of MSC-mediated theranostic NIS gene radiotherapy with efficient tumor-selective and temperature-dependent accumulation of radioiodine in heat-treated tumors.
Collapse
|
34
|
Therapeutic Mesenchymal Stromal Cells for Immunotherapy and for Gene and Drug Delivery. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 16:204-224. [PMID: 32071924 PMCID: PMC7012781 DOI: 10.1016/j.omtm.2020.01.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.
Collapse
|
35
|
Potentials of "stem cell-therapy" in pancreatic cancer: An update. Pancreatology 2019; 19:1034-1042. [PMID: 31668563 DOI: 10.1016/j.pan.2019.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/22/2019] [Accepted: 09/28/2019] [Indexed: 02/07/2023]
Abstract
In recent times, cell-therapies like T-activated cells, dendritic cells and natural killer cells have shown increasing promise in treating cancers as evidenced by both animal and human studies in the literature. In addition, stem cells are also being considered as potent anti-cancer agents since they act through multi-pronged approaches (chemokines, cytokines, paracrine action). In this review, we have attempted to discuss the inferences of studies that have used different sub-types of stem cells namely mesenchymal stem cells (MSCs), hematopoietic stem cells (HSCs) and neural stem cells (NSCs) in in-vitro/in-vivo mice and/or human studies as a treatment modality for pancreatic cancer. Pancreatic cancers are diagnosed in late/metastatic stages hence limiting its progress to partial/disease-free status. Recent literature supports evidences of stem cell therapy in pancreatic cancer with promising results; yet their impact remains inconclusive due to limited studies in human subjects. With reference to the treatment options for pancreatic cancer, the most studied sub-type of stem cells was HSCs as evident from the available clinical trials. The suggested mechanism of the HSC-transplantation is presumably via the graft-versus-tumor effect that elicits an anti-tumor immune response activated by the T-cell repertoires. On the other hand, the property of MSCs like tropism, migration to tumor site and activation of host immune cells by its secretome, appear to be able to regulate pancreatic tumor microenvironment. Further, drug delivery potential could be mediated via engineered MSCs to enhance the bioavailability of drug/prodrug at tumor site. Conclusively, stem cells have shown great potentials as next-generation therapeutic options.
Collapse
|
36
|
Schmohl KA, Müller AM, Nelson PJ, Spitzweg C. Thyroid Hormone Effects on Mesenchymal Stem Cell Biology in the Tumour Microenvironment. Exp Clin Endocrinol Diabetes 2019; 128:462-468. [PMID: 31648351 DOI: 10.1055/a-1022-9874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Non-classical thyroid hormone signalling via cell surface receptor integrin αvβ3, expressed on most cancer cells and proliferating endothelial cells, has been shown to drive tumour cell proliferation and survival, as well as angiogenesis. Tumours develop within a complex microenvironment that is composed of many different cell types, including mesenchymal stem cells. These multipotent progenitor cells actively home to growing tumours where they differentiate into cancer-associated fibroblast-like cells and blood vessel-stabilising pericytes and thus support the tumour's fibrovascular network. Integrin αvβ3 expression on mesenchymal stem cells makes them susceptible to thyroid hormone stimulation. Indeed, our studies demonstrated - for the first time - that thyroid hormones stimulate the differentiation of mesenchymal stem cells towards a carcinoma-associated fibroblast-/pericyte-like and hypoxia-responsive, pro-angiogenic phenotype, characterised by the secretion of numerous paracrine pro-angiogenic factors, in addition to driving their migration, invasion, and recruitment to the tumour microenvironment in an experimental hepatocellular carcinoma model. The deaminated thyroid hormone metabolite tetrac, a specific inhibitor of thyroid hormone action at the integrin site, reverses these effects. The modulation of mesenchymal stem cell signalling and recruitment by thyroid hormones via integrin αvβ3 adds a further layer to the multifaceted effects of thyroid hormones on tumour progression, with important implications for the management of cancer patients and suggests a novel mechanism for the anti-tumour activity of tetrac.
Collapse
Affiliation(s)
| | - Andrea Maria Müller
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Peter Jon Nelson
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, LMU Munich, Munich, Germany
| |
Collapse
|
37
|
Yin X, Yang S, Zhang M, Yue Y. The role and prospect of JMJD3 in stem cells and cancer. Biomed Pharmacother 2019; 118:109384. [PMID: 31545292 DOI: 10.1016/j.biopha.2019.109384] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/22/2019] [Indexed: 12/11/2022] Open
Abstract
Currently, stem cells are reported to be involved in tumor formation, drug resistance and recurrence. Inhibiting the proliferation of tumor cells, promoting their senescence and apoptosis has been the most important anti-tumor therapy. Epigenetics is involved in the regulation of gene expression and is closely related to cancer and stem cells. It mainly includes DNA methylation, histone modification, and chromatin remodeling. Histone methylation and demethylation play an important role in histone modification. Histone 3 lysine 27 trimethylation (H3K27me3) induces transcriptional inhibition and plays an important role in gene expression. Jumonji domain-containing protein-3 (JMJD3), one of the demethyases of histone H3K27me3, has been reported to be associated with the prognosis of many cancers and stem cells differentiation. Inhibition of JMJD3 can reduce proliferation and promote apoptosis in tumor cells, as well as suppress differentiation in stem cells. GSK-J4 is an inhibitor of demethylase JMJD3 and UTX, which has been shown to possess anti-cancer and inhibition of embryonic stem cells differentiation effects. In this review, we examine how JMJD3 regulates cellular fates of stem cells and cancer cells and references were identified through searches of PubMed, Medline, Web of Science.
Collapse
Affiliation(s)
- Xiaojiao Yin
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Siyu Yang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Mingyue Zhang
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China
| | - Ying Yue
- Department of Gynecological Oncology, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
38
|
Yang J, Lv K, Sun J, Guan J. Anti-tumor effects of engineered mesenchymal stem cells in colon cancer model. Cancer Manag Res 2019; 11:8443-8450. [PMID: 31571999 PMCID: PMC6755954 DOI: 10.2147/cmar.s209880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Background Cell-based gene therapy is considered as a promising strategy for the treatment of human malignancy. In many different types of cancer, mesenchymal stem cells (MSCs) are observed as valuable and potential anti-cancer agents. However, the exact mechanisms of MSCs involved in tumor microenvironment are not well understood. Aim Our aims are to elucidate the MSCs-mediated tumor microenvironment. Materials and methods In this study, colon cancer model was established by injecting the HT29 cells into the subcutaneous of right axilla of nude mice. We applied the human placenta-derived MSCs (hP-MSCs) armed with a double fusion gene containing the herpes simplex virus truncated thymidine kinase and firefly luciferase for treatment of colon cancer on days 10, 15, and 20 after HT29 cells injection. Molecular imaging methods were used for real-time imaging tumor progression and tracking transplanted hP-MSCs by bioluminescence imaging. Furthermore, proliferation and apoptosis-related proteins levels in colon cancer tissues were examined by immunofluorescence and Western blotting. Results Our results demonstrated that the administration of engineered hP-MSCs significantly inhibited the tumors and this effect was enhanced by ganciclovir application. Further analysis demonstrated the anti-tumor effect of engineered hP-MSCs in vivo depended on inhibiting tumor proliferation and inducing tumor apoptosis. Conclusion Collectively, this work showed that engineered hP-MSCs could inhibit colon cancer progression and metastasis by inducing tumor cell death and suppressing proliferation.
Collapse
Affiliation(s)
- Jianying Yang
- Department of Emergency, Anhui No. 2 Provincial People's Hospital, Hefei, People's Republic of China
| | - Kui Lv
- Department of Emergency, Anhui No. 2 Provincial People's Hospital, Hefei, People's Republic of China
| | - Junfeng Sun
- Department of Emergency, Anhui No. 2 Provincial People's Hospital, Hefei, People's Republic of China
| | - Jianguo Guan
- Department of Emergency, Anhui No. 2 Provincial People's Hospital, Hefei, People's Republic of China
| |
Collapse
|
39
|
Chan TS, Shaked Y, Tsai KK. Targeting the Interplay Between Cancer Fibroblasts, Mesenchymal Stem Cells, and Cancer Stem Cells in Desmoplastic Cancers. Front Oncol 2019; 9:688. [PMID: 31417869 PMCID: PMC6684765 DOI: 10.3389/fonc.2019.00688] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/12/2019] [Indexed: 12/27/2022] Open
Abstract
Malignant tumors are highly heterogeneous and likely contain a subset of cancer cells termed cancer stem cells (CSCs). CSCs exist in a dynamic equilibrium with their microenvironments and the CSC phenotype is tightly regulated by both cell-intrinsic and cell-extrinsic factors including those derived from their surrounding cells or stroma. Many human solid tumors like breast, lung, colorectal and pancreatic cancers are characterized by a pronounced stromal reaction termed “the desmoplastic response.” Carcinoma-associated fibroblasts (CAFs) derived either from resident fibroblasts or tumor-infiltrating mesenchymal stem cells (MSCs) are a major component of the stroma in desmoplastic cancers. Recent studies identified subpopulations of CAFs proficient in secreting a plethora of factors to foster CSCs, tumor growth, and invasion. In addition, cytotoxic therapy can lead to the enrichment of functionally perturbed CAFs, which are endowed with additional capabilities to enhance cancer stemness, leading to treatment resistance and tumor aggressiveness. When recruited into the tumor stroma, bone-marrow-derived MSCs can promote cancer stemness by secreting a specific set of paracrine factors or converting into pro-stemness CAFs. Thus, blockade of the crosstalk of pro-stemness CAFs and MSCs with CSCs may provide a new avenue to improving the therapeutic outcome of desmoplastic tumors. This up-to-date, in-depth and balanced review describes the recent progress in understanding the pro-stemness roles of CAFs and tumor-infiltrating MSCs and the associated paracrine signaling processes. We emphasize the effects of systemic chemotherapy on the CAF/MSC–CSC interplay. We summarize various promising and novel approaches in mitigating the stimulatory effect of CAFs or MSCs on CSCs that have shown efficacies in preclinical models of desmoplastic tumors and highlight the unique advantages of CAF- or MSC-targeted therapies. We also discuss potential challenges in the clinical development of CSC- or MSC-targeted therapies and propose CAF-related biomarkers that can guide the next-generation clinical studies.
Collapse
Affiliation(s)
- Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.,Technion Integrated Cancer Center, Technion - Israel Institute of Technology, Haifa, Israel
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Taipei, Taiwan
| |
Collapse
|
40
|
Timaner M, Tsai KK, Shaked Y. The multifaceted role of mesenchymal stem cells in cancer. Semin Cancer Biol 2019; 60:225-237. [PMID: 31212021 DOI: 10.1016/j.semcancer.2019.06.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells derived from the mesoderm that give rise to several mesenchymal lineages, including osteoblasts, adipocytes, chondrocytes and myocytes. Their potent ability to home to tumors coupled with their differentiation potential and immunosuppressive function positions MSCs as key regulators of tumor fate. Here we review the existing knowledge on the involvement of MSCs in multiple tumor-promoting processes, including angiogenesis, epithelial-mesenchymal transition, metastasis, immunosuppression and therapy resistance. We also discuss the clinical potential of MSC-based therapy for cancer.
Collapse
Affiliation(s)
- Michael Timaner
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, and Division of Gastroenterology, Wan Fang Hospital, and Graduate Institutes of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei Taiwan; National Institute of Cancer Research, National Health Research Institutes, Taiwan
| | - Yuval Shaked
- Technion-Integerated Cancer Center, Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
41
|
Tsai KK, Chan TS, Shaked Y. Next Viable Routes to Targeting Pancreatic Cancer Stemness: Learning from Clinical Setbacks. J Clin Med 2019; 8:jcm8050702. [PMID: 31108941 PMCID: PMC6571629 DOI: 10.3390/jcm8050702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating and highly aggressive malignancy. Existing therapeutic strategies only provide a small survival benefit in patients with PDAC. Laboratory and clinical research have identified various populations of stem-cell-like cancer cells or cancer stem cells (CSCs) as the driving force of PDAC progression, treatment-resistance, and metastasis. Whilst a number of therapeutics aiming at inhibiting or killing CSCs have been developed over the past decade, a series of notable clinical trial setbacks have led to their deprioritization from the pipelines, triggering efforts to refine the current CSC model and exploit alternative therapeutic strategies. This review describes the current and the evolving models of pancreatic CSCs (panCSCs) and the potential factors that hamper the clinical development of panCSC-targeted therapies, emphasizing the heterogeneity, the plasticity, and the non-binary pattern of cancer stemness, as well as the desmoplastic stroma impeding drug penetration. We summarized novel and promising therapeutic strategies implicated by the works of our groups and others' that may overcome these hurdles and have shown efficacies in preclinical models of PDAC, emphasizing the unique advantages of targeting the stroma-engendered panCSC-niches and metronomic chemotherapy. Finally, we proposed feasible clinical trial strategies and biomarkers that can guide the next-generation clinical trials.
Collapse
Affiliation(s)
- Kelvin K Tsai
- Laboratory of Advanced Molecular Therapeutics, Division of Gastroenterology, Department of Internal Medicine, Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- National Institute of Cancer Research, National Health Research Institutes, Miaoli 35053, Taiwan.
| | - Tze-Sian Chan
- Laboratory of Advanced Molecular Therapeutics, Division of Gastroenterology, Department of Internal Medicine, Integrative Therapy Center for Gastroenterologic Cancers, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan.
- Graduate Institute of Clinical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
| | - Yuval Shaked
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion Integrated Cancer Center, Technion-Israel Institute of Technology, Haifa 3525433, Israel.
| |
Collapse
|
42
|
von Einem JC, Guenther C, Volk HD, Grütz G, Hirsch D, Salat C, Stoetzer O, Nelson PJ, Michl M, Modest DP, Holch JW, Angele M, Bruns C, Niess H, Heinemann V. Treatment of advanced gastrointestinal cancer with genetically modified autologous mesenchymal stem cells: Results from the phase 1/2 TREAT-ME-1 trial. Int J Cancer 2019; 145:1538-1546. [PMID: 30801698 DOI: 10.1002/ijc.32230] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
TREAT-ME-1, a Phase 1/2 open-label multicenter, first-in-human, first-in-class trial, evaluated the safety, tolerability and efficacy of treatment with genetically modified autologous mesenchymal stromal cells (MSC), MSC_ apceth_101, in combination with ganciclovir in patients with advanced gastrointestinal adenocarcinoma. Immunological and inflammatory markers were also assessed. All patients (3 in Phase 1; 7 in Phase 2) received three treatment cycles of MSC_apceth_101 at one dose level on Day 0, 7, and 14 followed by ganciclovir administration according to the manufacturer's instructions for 48─72 h after MSC_apceth_101 injection. Ten patients were treated with a total dose of 3.0 x 106 cells/kg MSC_apceth_101. 36 adverse events and six serious adverse events were reported. Five patients achieved stable disease (change in target lesions of -2 to +28%). For all patients, the median time to progression was 1.8 months (95% CI: 0.5, 3.9 months). Median overall survival could not be estimated as 8/10 patients were still alive at the end of the study (1 year) and therefore censored. Post-study observation of patients showed a median overall survival of 15.6 months (ranging from 2.2─27.0 months). Treatment with MSC_apceth_101 and ganciclovir did not induce a consistent increase or decrease in levels of any of the tumor markers analyzed. No clear trends in the immunological markers assessed were observed. MSC_apceth_101 in combination with ganciclovir was safe and tolerable in patients with advanced gastrointestinal adenocarcinoma, with preliminary signs of efficacy in terms of clinical stabilization of disease.
Collapse
Affiliation(s)
- Jobst Christian von Einem
- Department of Medical Oncology and Comprehensive Cancer Center, University Hospital Grosshadern, LMU, Munich, Germany
| | | | - Hans-Dieter Volk
- Institute for Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | - Gerald Grütz
- Institute for Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin, Berlin, Germany
| | | | - Christoph Salat
- Medizinisches Zentrum für Haematologie und Onkologie Muenchen MVZ GmbH, Munich, Germany
| | - Oliver Stoetzer
- Medizinisches Zentrum für Haematologie und Onkologie Muenchen MVZ GmbH, Munich, Germany
| | - Peter J Nelson
- Department of Medicine IV, University Hospital of Munich, LMU, Munich, Germany
| | - Marlies Michl
- Department of Medical Oncology and Comprehensive Cancer Center, University Hospital Grosshadern, LMU, Munich, Germany
| | - Dominik P Modest
- Department of Medical Oncology and Comprehensive Cancer Center, University Hospital Grosshadern, LMU, Munich, Germany
| | - Julian W Holch
- Department of Medical Oncology and Comprehensive Cancer Center, University Hospital Grosshadern, LMU, Munich, Germany
| | - Martin Angele
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christiane Bruns
- General, Visceral and Cancer Surgery, University Hospital of Cologne, Cologne, Germany
| | - Hanno Niess
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Volker Heinemann
- Department of Medical Oncology and Comprehensive Cancer Center, University Hospital Grosshadern, LMU, Munich, Germany
| |
Collapse
|
43
|
Päth G, Perakakis N, Mantzoros CS, Seufert J. Stem cells in the treatment of diabetes mellitus - Focus on mesenchymal stem cells. Metabolism 2019; 90:1-15. [PMID: 30342065 DOI: 10.1016/j.metabol.2018.10.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/25/2018] [Accepted: 10/14/2018] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus type 1 and type 2 have become a global epidemic with dramatically increasing incidences. Poorly controlled diabetes is associated with severe life-threatening complications. Beside traditional treatment with insulin and oral anti-diabetic drugs, clinicians try to improve patient's care by cell therapies using embryonic stem cells (ESC), induced pluripotent stem cells (iPSC) and adult mesenchymal stem cells (MSC). ESC display a virtually unlimited plasticity, including the differentiation into insulin producing β-cells, but they raise ethical concerns and bear, like iPSC, the risk of tumours. IPSC may further inherit somatic mutations and remaining somatic transcriptional memory upon incomplete re-programming, but allow the generation of patient/disease-specific cell lines. MSC avoid such issues but have not been successfully differentiated into β-cells. Instead, MSC and their pericyte phenotypes outside the bone marrow have been recognized to secrete numerous immunomodulatory and tissue regenerative factors. On this account, the term 'medicinal signaling cells' has been proposed to define the new conception of a 'drug store' for injured tissues and to stay with the MSC nomenclature. This review presents the biological background and the resulting clinical potential and limitations of ESC, iPSC and MSC, and summarizes the current status quo of cell therapeutic concepts and trials.
Collapse
Affiliation(s)
- Günter Päth
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| |
Collapse
|
44
|
Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. J Control Release 2018; 294:102-113. [PMID: 30553849 DOI: 10.1016/j.jconrel.2018.12.019] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/13/2022]
Abstract
Owing to the diversity and ease of preparation of nanomaterials, the rational nanocarriers with a rational design have become increasingly popular in medical researches. Although nanoparticle-based drug delivery exhibits great potential, there are some challenges facing like rapid plasma clearance, triggering or aggravation of immune response, etc. Herein, cell-based targeted drug delivery systems have drawn more and more attention owing to low immunogenicity and intrinsic mutation rate, and innate ability to allow targeted delivery. Mesenchymal stem cells (MSCs) have been used in gene and drug delivery. The use of MSCs is a promising approach for the development of gene transfer systems and drug loading strategies because of their intrinsic properties, including homing ability and tumor tropism. By combining the inherent cell properties and merits of synthetic nanoparticles (NPs), cell membrane coated NPs emerge as the time requires. Overall, we provide a comprehensive overview of the utility of MSCs in drug and gene delivery as well as MSC membrane coated nanoparticles for therapy and drug delivery, aiming to figure out the significant room for development and highlight the potential future directions.
Collapse
|
45
|
Polylysine-modified polyethylenimine polymer can generate genetically engineered mesenchymal stem cells for combinational suicidal gene therapy in glioblastoma. Acta Biomater 2018; 80:144-153. [PMID: 30223091 DOI: 10.1016/j.actbio.2018.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/07/2018] [Accepted: 09/13/2018] [Indexed: 01/14/2023]
Abstract
Glioblastoma remains the most resistant malignant brain tumor owing to the lack of an efficient delivery system for therapeutic genes or drugs, especially in outgrowing tumor islands. Cell-based delivery systems such as mesenchymal stem cells (MSCs) are a potential candidate in this regard. Conventionally, MSCs have been genetically modified for cancer therapy by using viral vectors that can illicit oncogenicity and limit their use in clinical trials. In this study, we have used nonviral agents such as the polylysine-modified polyethylenimine (PEI-PLL) copolymer to generate genetically engineered MSCs with suicidal genes, namely, HSV-TK and TRAIL. Our results demonstrated that an intratumoral injection of polymer-double-transfected MSCs along with prodrug ganciclovir injections can induce a significant synergistic therapeutic response both in vitro and in vivo compared to single plasmid transfections or untransfected MSCs. The proliferation marker Ki67 and the angiogenesis marker VEGF were also significantly reduced in treatment groups, whereas the TUNEL assay demonstrated that apoptosis is significantly increased after treatment. Our findings suggest that the PEI-PLL copolymer can successfully modify MSCs with therapeutic genes and can produce a pronounced impact during glioblastoma therapy. This study proposes a potential nonviral approach to develop a cell-based therapy for the treatment of glioma. STATEMENT OF SIGNIFICANCE: In this study, we have used a polylysine-modified polyethylenimine polymer (PEI-PLL) copolymer, a non viral transfection agent, for gene delivery in mesenchymal stem cells. These PEI-PLL-transfected mesenchymal stem cells with HSV-TK and TRAIL genes have the potential to treat glioma both in vitro and in vivo. This combinational therapy through PEI-PLL-transfected mesenchymal stem cells can provide cost-effective, low immunogenic, and tumor-targeted delivery of suicideal genes (HSV-TK and TRAIL) for promising glioblastoma treatment.
Collapse
|
46
|
Schug C, Gupta A, Urnauer S, Steiger K, Cheung PFY, Neander C, Savvatakis K, Schmohl KA, Trajkovic-Arsic M, Schwenk N, Schwaiger M, Nelson PJ, Siveke JT, Spitzweg C. A Novel Approach for Image-Guided 131I Therapy of Pancreatic Ductal Adenocarcinoma Using Mesenchymal Stem Cell-Mediated NIS Gene Delivery. Mol Cancer Res 2018; 17:310-320. [PMID: 30224540 DOI: 10.1158/1541-7786.mcr-18-0185] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/28/2018] [Accepted: 08/22/2018] [Indexed: 11/16/2022]
Abstract
The sodium iodide symporter (SLC5A5/NIS) as theranostic gene would allow for non-invasive imaging of functional NIS expression and therapeutic radioiodine application. Genetically engineered mesenchymal stem cells (MSC), based on their tumor-homing abilities, show great promise as tumor-selective NIS gene delivery vehicles for non-thyroidal tumors. As a next step towards clinical application, tumor specificity and efficacy of MSCs were investigated in an advanced genetically engineered mouse model of pancreatic ductal adenocarcinoma (PDAC). Syngeneic murine MSCs were stably transfected with a NIS-expressing plasmid driven by the CMV-promoter (NIS-MSC). In vivo 123I-scintigraphy and 124I-PET revealed significant perchlorate-sensitive NIS-mediated radioiodide accumulation in PDAC after systemic injection of NIS-MSCs. Active MSC recruitment into the tumor stroma was confirmed using NIS immunohistochemistry (IHC). A therapeutic strategy, consisting of three cycles of systemic MSC-mediated NIS delivery, followed by 131I application, resulted in a significant delay and reduction in tumor growth as compared to controls. Furthermore, IHC analysis of α-SMA and Ki67 revealed differences in the amount and behavior of activated fibroblasts in tumors of mice injected with NIS-MSCs as compared with saline-treated mice. Taken together, MSCs as NIS gene delivery vehicles in this advanced endogenous PDAC mouse model demonstrated high stromal targeting of NIS by selective recruitment of NIS-MSCs after systemic application resulting in an impressive 131I therapeutic effect. IMPLICATIONS: These data expand the prospect of MSC-mediated radioiodine imaging-guided therapy of pancreatic cancer using the sodium iodide symporter as a theranostic gene in a clinical setting.
Collapse
Affiliation(s)
- Christina Schug
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Aayush Gupta
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Phyllis Fung-Yi Cheung
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian Neander
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantinos Savvatakis
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marija Trajkovic-Arsic
- Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie Schwenk
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Jens T Siveke
- Department of Internal Medicine II, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.,Division of Solid Tumor Translational Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), partner site Essen and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christine Spitzweg
- Department of Internal Medicine IV, University Hospital of Munich, Ludwig-Maximilians-University Munich, Munich, Germany.
| |
Collapse
|
47
|
Marofi F, Vahedi G, hasanzadeh A, Salarinasab S, Arzhanga P, Khademi B, Farshdousti Hagh M. Mesenchymal stem cells as the game‐changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 2018; 234:1268-1288. [DOI: 10.1002/jcp.27152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Faroogh Marofi
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Vahedi
- Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| | - Ali hasanzadeh
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahareh Khademi
- Department of Medical Genetic Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
48
|
Krueger TEG, Thorek DLJ, Denmeade SR, Isaacs JT, Brennen WN. Concise Review: Mesenchymal Stem Cell-Based Drug Delivery: The Good, the Bad, the Ugly, and the Promise. Stem Cells Transl Med 2018; 7:651-663. [PMID: 30070053 PMCID: PMC6127224 DOI: 10.1002/sctm.18-0024] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
The development of mesenchymal stem cells (MSCs) as cell‐based drug delivery vectors for numerous clinical indications, including cancer, has significant promise. However, a considerable challenge for effective translation of these approaches is the limited tumor tropism and broad biodistribution observed using conventional MSCs, which raises concerns for toxicity to nontarget peripheral tissues (i.e., the bad). Consequently, there are a variety of synthetic engineering platforms in active development to improve tumor‐selective targeting via increased homing efficiency and/or specificity of drug activation, some of which are already being evaluated clinically (i.e., the good). Unfortunately, the lack of robust quantification and widespread adoption of standardized methodologies with high sensitivity and resolution has made accurate comparisons across studies difficult, which has significantly impeded progress (i.e., the ugly). Herein, we provide a concise review of active and passive MSC homing mechanisms and biodistribution postinfusion; in addition to in vivo cell tracking methodologies and strategies to enhance tumor targeting with a focus on MSC‐based drug delivery strategies for cancer therapy. Stem Cells Translational Medicine2018;1–13
Collapse
Affiliation(s)
- Timothy E G Krueger
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Daniel L J Thorek
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA
| | - Samuel R Denmeade
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - John T Isaacs
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA.,Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - W Nathaniel Brennen
- Department of Oncology at the Sidney Kimmel Comprehensive Cancer Center (SKCCC) at Johns Hopkins, Baltimore, Maryland, USA
| |
Collapse
|
49
|
Schug C, Sievert W, Urnauer S, Müller AM, Schmohl KA, Wechselberger A, Schwenk N, Lauber K, Schwaiger M, Multhoff G, Wagner E, Nelson PJ, Spitzweg C. External Beam Radiation Therapy Enhances Mesenchymal Stem Cell-Mediated Sodium-Iodide Symporter Gene Delivery. Hum Gene Ther 2018; 29:1287-1300. [PMID: 29724129 DOI: 10.1089/hum.2018.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The tumor-homing properties of mesenchymal stem cells (MSC) have led to their development as delivery vehicles for the targeted delivery of therapeutic genes such as the sodium-iodide symporter (NIS) to solid tumors. External beam radiation therapy may represent an ideal setting for the application of engineered MSC-based gene therapy, as tumor irradiation may enhance MSC recruitment into irradiated tumors through the increased production of select factors linked to MSC migration. In the present study, the irradiation of human liver cancer cells (HuH7; 1-10 Gy) showed a strong dose-dependent increase in steady-state mRNA levels of CXCL8, CXCL12, FGF2, PDGFB, TGFB1, THBS1, and VEGF (0-48 h), which was verified for most factors at the protein level (after 48 h). Radiation effects on directed MSC migration were tested in vitro using a live cell tracking migration assay and supernatants from control and irradiated HuH7 cells. A robust increase in mean forward migration index, mean center of mass, and mean directionality of MSCs toward supernatants was seen from irradiated as compared to non-irradiated tumor cells. Transferability of this effect to other tumor sources was demonstrated using the human breast adenocarcinoma cell line (MDA-MB-231), which showed a similar behavior to radiation as seen with HuH7 cells in quantitative polymerase chain reaction and migration assay. To evaluate this in a more physiologic in vivo setting, subcutaneously growing HuH7 xenograft tumors were irradiated with 0, 2, or 5 Gy followed by CMV-NIS-MSC application 24 h later. Tumoral iodide uptake was monitored using 123I-scintigraphy. The results showed increased tumor-specific dose-dependent accumulation of radioiodide in irradiated tumors. The results demonstrate that external beam radiation therapy enhances the migratory capacity of MSCs and may thus increase the therapeutic efficacy of MSC-mediated NIS radionuclide therapy.
Collapse
Affiliation(s)
- Christina Schug
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Wolfgang Sievert
- 2 Department of Radiation Oncology, Technische Universitaet Muenchen , Munich, Germany
| | - Sarah Urnauer
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Andrea M Müller
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Kathrin A Schmohl
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Alexandra Wechselberger
- 3 Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Nathalie Schwenk
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Kirsten Lauber
- 4 Department of Radiation Oncology, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Markus Schwaiger
- 5 Department of Nuclear Medicine, Klinikum rechts der Isar, Technische Universitaet Muenchen , Munich, Germany
| | - Gabriele Multhoff
- 2 Department of Radiation Oncology, Technische Universitaet Muenchen , Munich, Germany
| | - Ernst Wagner
- 6 Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, LMU Munich, Munich, Germany
| | - Peter J Nelson
- 3 Clinical Biochemistry Group, Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| | - Christine Spitzweg
- 1 Department of Internal Medicine IV, University Hospital of Munich , LMU Munich, Munich, Germany
| |
Collapse
|
50
|
Müller AM, Schmohl KA, Knoop K, Schug C, Urnauer S, Hagenhoff A, Clevert DA, Ingrisch M, Niess H, Carlsen J, Zach C, Wagner E, Bartenstein P, Nelson PJ, Spitzweg C. Hypoxia-targeted 131I therapy of hepatocellular cancer after systemic mesenchymal stem cell-mediated sodium iodide symporter gene delivery. Oncotarget 2018; 7:54795-54810. [PMID: 27458162 PMCID: PMC5342382 DOI: 10.18632/oncotarget.10758] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 07/10/2016] [Indexed: 12/18/2022] Open
Abstract
Adoptively transferred mesenchymal stem cells (MSCs) home to solid tumors. Biologic features within the tumor environment can be used to selectively activate transgenes in engineered MSCs after tumor invasion. One of the characteristic features of solid tumors is hypoxia. We evaluated a hypoxia-based imaging and therapy strategy to target expression of the sodium iodide symporter (NIS) gene to experimental hepatocellular carcinoma (HCC) delivered by MSCs. MSCs engineered to express transgenes driven by a hypoxia-responsive promoter showed robust transgene induction under hypoxia as demonstrated by mCherry expression in tumor cell spheroid models, or radioiodide uptake using NIS. Subcutaneous and orthotopic HCC xenograft mouse models revealed significant levels of perchlorate-sensitive NIS-mediated tumoral radioiodide accumulation by tumor-recruited MSCs using 123I-scintigraphy or 124I-positron emission tomography. Functional NIS expression was further confirmed by ex vivo123I-biodistribution analysis. Administration of a therapeutic dose of 131I in mice treated with NIS-transfected MSCs resulted in delayed tumor growth and reduced tumor perfusion, as shown by contrast-enhanced sonography, and significantly prolonged survival of mice bearing orthotopic HCC tumors. Interestingly, radioiodide uptake into subcutaneous tumors was not sufficient to induce therapeutic effects. Our results demonstrate the potential of using tumor hypoxia-based approaches to drive radioiodide therapy in non-thyroidal tumors.
Collapse
Affiliation(s)
- Andrea M Müller
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kathrin A Schmohl
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Kerstin Knoop
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christina Schug
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sarah Urnauer
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Anna Hagenhoff
- Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Dirk-André Clevert
- Department of Clinical Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Michael Ingrisch
- Department of Clinical Radiology, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hanno Niess
- Department of General, Visceral, Transplantation, Vascular and Thoracic Surgery, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Janette Carlsen
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christian Zach
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ernst Wagner
- Department of Pharmacy, Center of Drug Research, Pharmaceutical Biotechnology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Peter J Nelson
- Clinical Biochemistry Group, Medizinische Klinik und Poliklinik IV, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| | - Christine Spitzweg
- Department of Internal Medicine II, University Hospital of Munich, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|