1
|
Yang MH, Jung YY, Um J, Sethi G, Ahn KS. Brassinin alleviates cancer cachexia by suppressing diverse inflammatory mechanisms in mice. MedComm (Beijing) 2024; 5:e558. [PMID: 38807976 PMCID: PMC11130637 DOI: 10.1002/mco2.558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer cachexia is a multifactorial condition that contributes to the death of about 20% of cancer patients. It has the potential to cause weight loss, reduction in muscle mass, and loss of fat tissue, significantly lowering the quality of life. Currently, there are no approved drugs for cancer cachexia. Here, we have explored the possible impact of brassinin (BSN) on cancer cachexia under in vitro and in vivo settings. After differentiation, C2C12 and 3T3-L1 cells were incubated with colorectal carcinoma cells conditioned media or BSN. For preclinical studies, mice were injected with HT-29 cells followed by intraperitoneal administration of BSN, and muscle and adipose tissues were evaluated by Western blotting and hematoxylin and eosin staining. BSN effectively suppressed muscle atrophy by down-regulating the levels of Muscle RING-finger protein-1 and Atrogin-1, while also increasing the expression of myosin heavy chain in cachexia-induced-C2C12 myotubes. The induction of adipogenesis by BSN prevented adipocyte atrophy in cachexia-induced 3T3-L1 adipocytes. We also noted that BSN disrupted the interaction between COX-2 and signaling transducer and activator of transcription 3 (STAT3) promoter, leading to down-regulation of STAT3 activation. Moreover, it was found that BSN inhibited weight loss in mice and demonstrated anti-cachexic effects. Overall, our observations indicate that BSN can attenuate cancer cachexia through diverse mechanisms.
Collapse
Affiliation(s)
- Min Hee Yang
- Department of Science in Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Young Yun Jung
- Department of Science in Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Jae‐Young Um
- Department of Science in Korean MedicineKyung Hee UniversitySeoulSouth Korea
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR)Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Kwang Seok Ahn
- Department of Science in Korean MedicineKyung Hee UniversitySeoulSouth Korea
| |
Collapse
|
2
|
Burkart M, Schieber M, Basu S, Shah P, Venugopal P, Borgia JA, Gordon L, Karmali R. Evaluation of the impact of cachexia on clinical outcomes in aggressive lymphoma. Br J Haematol 2019; 186:45-53. [PMID: 30941741 DOI: 10.1111/bjh.15889] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/30/2019] [Indexed: 01/08/2023]
Abstract
Cancer cachexia is a state of involuntary weight loss and altered body composition triggered by an underlying malignancy. We sought to correlate measures of cachexia with clinical outcomes in aggressive lymphomas and to identify biological pathways involved in the cachexia phenotype for possible druggable targets. Radiographic measures of cachexia were collected in a retrospective cohort of 109 patients with aggressive B-cell lymphoma and followed for clinical outcome. We found males with sarcopenia had reduced progression-free survival (5·4 vs. 72·3 months, P < 0·0005) and overall survival (OS; 30·2 months vs. not reached, NR, P = 0·02); males with adipopenia also had decreased OS (21·6 months vs. NR, P = 0·04). A trend for increased OS was observed in female sarcopenics only (32·8 months vs. NR, P = 0·08). Additionally, we analysed a prospective cohort of 14 patients for differences in circulating molecular targets involved in various biological pathways. There was a significant correlation with cachexia for reduced serum levels of mediators within the glucose utilization [insulin -like growth factor (IGF)-binding protein 6, P = 0·04; IGF-1, P = 0·02], inflammation (lymphotoxin-like inducible protein that competes with glycoprotein D for herpesvirus entry on T cells; LIGHT, P = 0·005), and energy intake/expenditure (leptin, P = 0·004). We conclude that cachexia in patients with aggressive lymphomas has sex-specific prognostic utility and correlates with measurable changes in metabolism and immune function.
Collapse
Affiliation(s)
- Madelyn Burkart
- Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Michael Schieber
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Sanjib Basu
- Rush University Medical Center, Chicago, IL, USA
| | - Palmi Shah
- Department of Radiology, Rush University Medical Center, Chicago, IL, USA
| | - Parameswaran Venugopal
- Division of Hematology, Oncology and Cell Therapy, Rush University Medical Center, Chicago, IL, USA
| | - Jeffrey A Borgia
- Departments of Pathology and Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - Leo Gordon
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Reem Karmali
- Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
3
|
Dirican N, Dirican A, Sen O, Aynali A, Atalay S, Bircan HA, Oztürk O, Erdogan S, Cakir M, Akkaya A. Thiol/disulfide homeostasis: A prognostic biomarker for patients with advanced non-small cell lung cancer? Redox Rep 2016. [PMID: 26200761 DOI: 10.1179/1351000215y.0000000027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate oxidative stress and thiol/disulfide status with a novel automated homeostasis assay in advanced non-small cell lung cancer (NSCLC). METHODS Thirty-five patients with advanced NSCLC, who had been newly diagnosed and previously untreated, and 35 healthy subjects were chosen for the study. We measured plasma total thiol (-SH+-S-S-), native thiol (thiol) (-SH), and disulfide (-S-S-) levels in the patients with NSCLC and the healthy subjects. The thiol/disulfide (-SH/-S-S-) ratio was also calculated. RESULTS Statistically significant differences between the patient group and the control group were detected for the thiol/disulfide parameters. The mean native thiol, total thiol, and disulfide levels were significantly lower in the group with advanced stage NSCLC. The cut-off value was 313 and 13.8 for native thiol and disulfide, respectively. Median overall survival (OS) was significantly shorter in patients with low native thiol and disulfide levels according to the cut-off value (respectively, P = 0.001; P = 0.006). Native thiol, total thiol, and disulfide levels were correlated with Karnofsky performance status (KPS), OS, and age. Additionally, hierarchical regression analyses showed gender, KPS, lung metastases, and plasma native thiol levels were the determinants of OS in the final model. CONCLUSION These results suggest that in advanced stage NSCLC, the native thiol, total thiol, and disulfide levels decrease, while the native thiol/disulfide ratio does not change. Low levels of thiol/disulfide parameters are related to tumor aggressiveness and may predict a poor outcome for patients with NSCLC.
Collapse
Affiliation(s)
- Nigar Dirican
- a Department of Chest Diseases, Medical Faculty , Suleyman Demirel University , Isparta , Turkey
| | - Ahmet Dirican
- b Department of Medical Oncology , State Hospital , Isparta , Turkey
| | - Orhan Sen
- c Department of Biochemistry , Ankara Ataturk Training and Research Hospital , Turkey
| | - Ayse Aynali
- d Department of Clinical Microbiology , Suleyman Demirel University , Isparta , Turkey
| | - Sule Atalay
- a Department of Chest Diseases, Medical Faculty , Suleyman Demirel University , Isparta , Turkey
| | - Haci Ahmet Bircan
- a Department of Chest Diseases, Medical Faculty , Suleyman Demirel University , Isparta , Turkey
| | - Onder Oztürk
- a Department of Chest Diseases, Medical Faculty , Suleyman Demirel University , Isparta , Turkey
| | - Serpil Erdogan
- e Department of Biochemistry , Ankara Numune Training and Research Hospital , Turkey
| | - Munire Cakir
- a Department of Chest Diseases, Medical Faculty , Suleyman Demirel University , Isparta , Turkey
| | - Ahmet Akkaya
- a Department of Chest Diseases, Medical Faculty , Suleyman Demirel University , Isparta , Turkey
| |
Collapse
|
4
|
Assi M, Derbré F, Lefeuvre-Orfila L, Rébillard A. Antioxidant supplementation accelerates cachexia development by promoting tumor growth in C26 tumor-bearing mice. Free Radic Biol Med 2016; 91:204-14. [PMID: 26708754 DOI: 10.1016/j.freeradbiomed.2015.12.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/12/2022]
Abstract
More than 50% of patients with advanced stages of colon cancer suffer from progressive loss of skeletal muscle, called cachexia, resulting in reduced quality of life and shortened survival. It is becoming evident that reactive oxygen species (ROS) regulate pathways controlling skeletal muscle atrophy. Herein we tested the hypothesis that antioxidant supplementation could prevent skeletal muscle atrophy in a model of cachectic Colon 26 (C26) tumor-bearing mice. Seven-week-old BALB/c mice were subcutaneously inoculated with colon 26 (C26) cancer cells or PBS. Then C26-mice were daily gavaged during 22 days either with PBS (vehicle) or an antioxidant cocktail whose composition is close to that of commercial dietary antioxidant supplements (rich in catechins, quercetin and vitamin C). We found that antioxidants enhanced weight loss and caused premature death of mice. Antioxidants supplementation failed to prevent (i) the increase in plasma TNF-α levels and systemic oxidative damage, (ii) skeletal muscle atrophy and (iii) activation of the ubiquitin-proteasome system (MuRF-1, MAFbx and polyubiquitinated proteins). Accordingly, immunohistological staining for Ki-67 and the expression of cell cycle inhibitors demonstrated that tumor of supplemented mice developed faster with a concomitant decrease in oxidative damage. Previous studies have shown that the use of catechins and quercetin separately can improve the musculoskeletal function in cachectic animals. However, our results indicate that the combination of these antioxidants reduced survival and enhanced cachexia in C26-mice.
Collapse
Affiliation(s)
- Mohamad Assi
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, University of Rennes 2-ENS Rennes, Bruz, France
| | - Frédéric Derbré
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, University of Rennes 2-ENS Rennes, Bruz, France
| | - Luz Lefeuvre-Orfila
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, University of Rennes 2-ENS Rennes, Bruz, France
| | - Amélie Rébillard
- EA1274 Laboratory "Movement, Sport and Health Sciences" M2S, University of Rennes 2-ENS Rennes, Bruz, France.
| |
Collapse
|
5
|
Sukari A, Muqbil I, Mohammad RM, Philip PA, Azmi AS. F-BOX proteins in cancer cachexia and muscle wasting: Emerging regulators and therapeutic opportunities. Semin Cancer Biol 2016; 36:95-104. [PMID: 26804424 DOI: 10.1016/j.semcancer.2016.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/17/2016] [Accepted: 01/19/2016] [Indexed: 12/22/2022]
Abstract
Cancer cachexia is a debilitating metabolic syndrome accounting for fatigue, an impairment of normal activities, loss of muscle mass associated with body weight loss eventually leading to death in majority of patients with advanced disease. Cachexia patients undergoing skeletal muscle atrophy show consistent activation of the SCF ubiquitin ligase (F-BOX) family member Atrogin-1 (also known as MAFBx/FBXO32) alongside the activation of the muscle ring finger protein1 (MuRF1). Other lesser known F-BOX family members are also emerging as key players supporting muscle wasting pathways. Recent work highlights a spectrum of different cancer signaling mechanisms impacting F-BOX family members that feed forward muscle atrophy related genes during cachexia. These novel players provide unique opportunities to block cachexia induced skeletal muscle atrophy by therapeutically targeting the SCF protein ligases. Conversely, strategies that induce the production of proteins may be helpful to counter the effects of these F-BOX proteins. Through this review, we bring forward some novel targets that promote atrogin-1 signaling in cachexia and muscle wasting and highlight newer therapeutic opportunities that can help in the better management of patients with this devastating and fatal disorder.
Collapse
Affiliation(s)
- Ammar Sukari
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Irfana Muqbil
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA; iTRI Hamad Medical Corporation, Doha, Qatar
| | - Philip A Philip
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Karmanos Cancer Institute, Detroit, MI 48201, USA.
| |
Collapse
|
6
|
Macha MA, Krishn SR, Jahan R, Banerjee K, Batra SK, Jain M. Emerging potential of natural products for targeting mucins for therapy against inflammation and cancer. Cancer Treat Rev 2015; 41:277-88. [PMID: 25624117 DOI: 10.1016/j.ctrv.2015.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/31/2014] [Accepted: 01/07/2015] [Indexed: 02/07/2023]
Abstract
Deregulated mucin expression is a hallmark of several inflammatory and malignant pathologies. Emerging evidence suggests that, apart from biomarkers, these deregulated mucins are functional contributors to the pathogenesis in inflammation and cancer. Both overexpression and downregulation of mucins in various organ systems is associated with pathobiology of inflammation and cancer. Restoration of mucin homeostasis has become an important goal for therapy and management of such disorders has fueled the quest for selective mucomodulators. With improved understanding of mucin regulation and mechanistic insights into their pathobiological roles, there is optimism to find selective non-toxic agents capable of modulating mucin expression and function. Recently, natural compounds derived from dietary sources have drawn attention due to their anti-inflammatory and anti-oxidant properties and low toxicity. Considerable efforts have been directed towards evaluating dietary natural products as chemopreventive and therapeutic agents; identification, characterization and synthesis of their active compounds; and improving their delivery and bioavailability. We describe the current understanding of mucin regulation, rationale for targeting mucins with natural products and discuss some natural products that modulate mucin expression and functions. We further discuss the approaches and parameters that should guide future research to identify and evaluate selective natural mucomodulators for therapy.
Collapse
Affiliation(s)
- Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Shiv Ram Krishn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rahat Jahan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kasturi Banerjee
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
7
|
Tzika AA, Fontes-Oliveira CC, Shestov AA, Constantinou C, Psychogios N, Righi V, Mintzopoulos D, Busquets S, Lopez-Soriano FJ, Milot S, Lepine F, Mindrinos MN, Rahme LG, Argiles JM. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model. Int J Oncol 2013; 43:886-94. [PMID: 23817738 PMCID: PMC6903904 DOI: 10.3892/ijo.2013.1998] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 01/14/2013] [Indexed: 12/20/2022] Open
Abstract
Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel ‘fragmented mass isotopomer’ approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.
Collapse
Affiliation(s)
- A Aria Tzika
- NMR Surgical Laboratory, Department of Surgery, Massachusetts General Hospital and Shriners Burn Institute, Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Vaughan VC, Martin P, Lewandowski PA. Cancer cachexia: impact, mechanisms and emerging treatments. J Cachexia Sarcopenia Muscle 2013; 4:95-109. [PMID: 23097000 PMCID: PMC3684701 DOI: 10.1007/s13539-012-0087-1] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Many forms of cancer present with a complex metabolic profile characterised by loss of lean body mass known as cancer cachexia. The physical impact of cachexia contributes to decreased patient quality of life, treatment success and survival due to gross alterations in protein metabolism, increased oxidative stress and systemic inflammation. The psychological impact also contributes to decreased quality of life for both patients and their families. Combination therapies that target multiple pathways, such as eicosapentaenoic acid administered in combination with exercise, appetite stimulants, antioxidants or anti-inflammatories, have potential in the treatment of this complex syndrome and require further development.
Collapse
Affiliation(s)
- Vanessa C Vaughan
- School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, Victoria, 3216, Australia
| | | | | |
Collapse
|
9
|
Yazawa T, Shibata M, Gonda K, Machida T, Suzuki S, Kenjo A, Nakamura I, Tsuchiya T, Koyama Y, Sakurai K, Shimura T, Tomita R, Ohto H, Gotoh M, Takenoshita S. Increased IL-17 production correlates with immunosuppression involving myeloid-derived suppressor cells and nutritional impairment in patients with various gastrointestinal cancers. Mol Clin Oncol 2013; 1:675-679. [PMID: 24649227 PMCID: PMC3916208 DOI: 10.3892/mco.2013.134] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/23/2013] [Indexed: 12/30/2022] Open
Abstract
Although a causal relationship between inflammation and innate immunity of cancer is more widely accepted today, many of the precise cell mechanisms mediating this relationship have not been elucidated. Th17 cells, which produce the proinflammatory cytokine interleukin 17 (IL-17), have been recognized as one of the key factors in the regulation of inflammatory bowel disease and rheumatoid arthritis. This study demonstrated that, in patients with various types of gastrointestinal cancer, IL-17 production was correlated with myeloid-derived suppressor cell (MDSC) levels and with markers for nutritional impairment, immune suppression and chronic inflammation. IL-17 was significantly higher in patients with various types of gastrointestinal cancer compared to normal volunteers. In addition, IL-17 levels were significantly correlated with neutrophil counts and the neutrophil/lymphocyte ratio (NLR) and significantly inversely correlated with cell-mediated immune response indicators [lymphocyte phytohemagglutinin (PHA)-blastogenesis and IL-12 induction] and patient nutritional status (prealbumin levels). Circulating MDSC levels were significantly correlated with IL-17 production. These results suggest that, in human gastrointestinal cancers, chronic inflammation involving IL-17 may be an important mechanism contributing to disease progression through enhancement of immune suppression or cachexia. Controlling the activation of Th17 cells may prove to be a valuable strategy for the treatment of gastrointestinal cancer patients.
Collapse
Affiliation(s)
- Takashi Yazawa
- Departments of Organ Regulatory Surgery, Fukushima 960-1295
| | - Masahiko Shibata
- Departments of Organ Regulatory Surgery, Fukushima 960-1295; ; Tumor and Host Bioscience, Fukushima 960-1295
| | - Kenji Gonda
- Departments of Organ Regulatory Surgery, Fukushima 960-1295; ; Blood Transfusion and Transplantation Immunology, Fukushima 960-1295
| | | | - Satoshi Suzuki
- Departments of Organ Regulatory Surgery, Fukushima 960-1295
| | | | - Izumi Nakamura
- Departments of Organ Regulatory Surgery, Fukushima 960-1295
| | | | | | - Kenichi Sakurai
- Department of Surgery, Nihon University School of Medicine, Itabashi, Tokyo 173-8610
| | - Tatsuo Shimura
- Departments of Organ Regulatory Surgery, Fukushima 960-1295; ; Tumor and Host Bioscience, Fukushima 960-1295
| | - Ryouichi Tomita
- Department of Surgery, Nippon Dental University, Chiyoda, Tokyo 102-8158, Japan
| | - Hitoshi Ohto
- Blood Transfusion and Transplantation Immunology, Fukushima 960-1295
| | | | | |
Collapse
|
10
|
Abstract
The hypothalamus is one of the master regulators of various physiological processes, including energy balance and nutrient metabolism. These regulatory functions are mediated by discrete hypothalamic regions that integrate metabolic sensing with neuroendocrine and neural controls of systemic physiology. Neurons and nonneuronal cells in these hypothalamic regions act supportively to execute metabolic regulations. Under conditions of brain and hypothalamic inflammation, which may result from overnutrition-induced intracellular stresses or disease-associated systemic inflammatory factors, extracellular and intracellular environments of hypothalamic cells are disrupted, leading to central metabolic dysregulations and various diseases. Recent research has begun to elucidate the effects of hypothalamic inflammation in causing diverse components of metabolic syndrome leading to diabetes and cardiovascular disease. These new understandings have provocatively expanded previous knowledge on the cachectic roles of brain inflammatory response in diseases, such as infections and cancers. This review describes the molecular and cellular characteristics of hypothalamic inflammation in metabolic syndrome and related diseases as opposed to cachectic diseases, and also discusses concepts and potential applications of inhibiting central/hypothalamic inflammation to treat nutritional diseases.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA.
| | | |
Collapse
|
11
|
Cancer cachexia: traditional therapies and novel molecular mechanism-based approaches to treatment. Curr Treat Options Oncol 2011; 11:107-17. [PMID: 21128029 PMCID: PMC3016925 DOI: 10.1007/s11864-010-0127-z] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The complex syndrome of cancer cachexia (CC) that occurs in 50% to 80% cancer patients has been identified as an independent predictor of shorter survival and increased risk of treatment failure and toxicity, contributing to the mortality and morbidity in this population. CC is a pathological state including a symptom cluster of loss of muscle (skeletal and visceral) and fat, manifested in the cardinal feature of emaciation, weakness affecting functional status, impaired immune system, and metabolic dysfunction. The most prominent feature of CC is its non-responsiveness to traditional treatment approaches; randomized clinical trials with appetite stimulants, 5-HT3 antagonists, nutrient supplementation, and Cox-2 inhibitors all have failed to demonstrate success in reversing the metabolic abnormalities seen in CC. Interventions based on a clear understanding of the mechanism of CC, using validated markers relevant to the underlying metabolic abnormalities implicated in CC are much needed. Although the etiopathogenesis of CC is poorly understood, studies have proposed that NFkB is upregulated in CC, modulating immune and inflammatory responses induce the cellular breakdown of muscle, resulting in sarcopenia. Several recent laboratory studies have shown that n-3 fatty acid may attenuate protein degradation, potentially by preventing NFkB accumulation in the nucleus, preventing the degradation of muscle proteins. However, clinical trials to date have produced mixed results potentially attributed to timing of interventions (end stage) and utilizing outcome markers such as weight which is confounded by hydration, cytotoxic therapies, and serum cytokines. We propose that selective targeting of proteasome activity with a standardized dose of omega-3-acid ethyl esters, administered to cancer patients diagnosed with early stage CC, in addition to a standard intervention with nutritionally adequate diet and appetite stimulants, will alter metabolic abnormalities by downregulating NFkB, preventing the breakdown of myofibrillar proteins and resulting in increasing serum protein markers, lean body mass, and functional status.
Collapse
|
12
|
Combined approach to counteract experimental cancer cachexia: eicosapentaenoic acid and training exercise. J Cachexia Sarcopenia Muscle 2011; 2:95-104. [PMID: 21766055 PMCID: PMC3118004 DOI: 10.1007/s13539-011-0028-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/20/2011] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND: Cancer cachexia is a syndrome characterized by loss of skeletal muscle protein, depletion of lipid stores, anorexia, weakness, and perturbations of the hormonal homeostasis. Despite several therapeutic approaches described in the past, effective interventions countering cancer cachexia are still lacking. METHODS: The present work was aimed to verify the ability of eicosapentaenoic acid (EPA) to prevent the muscle depletion in Lewis lung carcinoma-bearing mice and to test the ability of endurance exercise training to increase the EPA effect. RESULTS: EPA alone did not prevent the muscle loss induced by tumor growth while the combination with exercise induced a partial rescue of muscle strength and mass. Moreover, the association of EPA and exercise reduced the dramatic PAX-7 accumulation and stimulated the increase of PCG-1 protein. CONCLUSIONS: Overall, the present data suggest that exercise is an effective tool that should be added for combined therapeutic approaches against cancer cachexia. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s13539-011-0028-4) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Romero FI, Martínez-Calatrava MJ, Sánchez-Pernaute O, Gualillo O, Largo R, Herrero-Beaumont G. Pharmacological modulation by celecoxib of cachexia associated with experimental arthritis and atherosclerosis in rabbits. Br J Pharmacol 2011; 161:1012-22. [PMID: 20633016 DOI: 10.1111/j.1476-5381.2010.00957.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Non-steroidal anti-inflammatory drugs improve inflammatory cachexia in several conditions. Thus, we have explored inhibition of cyclooxygenase-2 (COX-2) in an experimental model of rheumatoid cachexia in rabbits. EXPERIMENTAL APPROACH Chronic arthritis was induced in immunized rabbits by repeated intra-articular injections of ovalbumin. To increase the degree of systemic inflammation and also to induce atherosclerotic lesions, the animals were fed a hyperlipidaemic diet (2% cholesterol and 6% peanut oil) and were given an endothelial injury of the femoral artery. Rabbits were randomized to receive the COX-2 inhibitor celecoxib (10 mg·kg⁻¹ ·day⁻¹) or no treatment. After 4 weeks, sera, peripheral mononuclear cells and vessel specimens were collected. KEY RESULTS Inhibition of COX-2 by celecoxib modulated the systemic inflammatory response and increased total cholesterol and triglyceride levels. Celecoxib also minimized weight loss and prevented serum albumin fall. At a vascular level, celecoxib reduced COX-2 protein in the femoral arterial wall, but did not modify size or the macrophage infiltration of femoral lesions nor the percentage of rabbits with spontaneous aortic plaques. CONCLUSIONS AND IMPLICATIONS Our animal model induced a severe inflammatory cachexia, comparable to that of persistently active rheumatoid arthritis. The inhibition of COX-2 by celecoxib improves this state, suggesting that COX products play an important role in its development, without affecting the development or the progression of vascular lesions. Overall, these results suggest that celecoxib might be considered as a new therapeutic tool for the treatment of rheumatoid cachexia.
Collapse
Affiliation(s)
- F I Romero
- Joint and Bone Research Unit, Fundación Jiménez Díaz, Universidad Autónoma, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Penna F, Minero VG, Costamagna D, Bonelli G, Baccino FM, Costelli P. Anti-cytokine strategies for the treatment of cancer-related anorexia and cachexia. Expert Opin Biol Ther 2010; 10:1241-50. [DOI: 10.1517/14712598.2010.503773] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Mantovani G, Macciò A, Madeddu C, Serpe R, Antoni G, Massa E, Dessì M, Panzone F. Phase II nonrandomized study of the efficacy and safety of COX-2 inhibitor celecoxib on patients with cancer cachexia. J Mol Med (Berl) 2009; 88:85-92. [PMID: 19802504 DOI: 10.1007/s00109-009-0547-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 12/29/2022]
Abstract
Chronic inflammation is one of the main features of cancer cachexia. Experimental and clinical studies showed that cyclooxygenase-2 inhibitors, such as celecoxib, may be beneficial in counteracting major symptoms of this devastating syndrome. We carried out a prospective phase II clinical trial to test the safety and effectiveness of an intervention with the COX-2 inhibitor celecoxib (300 mg/day for 4 months) on key variables of cachexia (lean body mass, resting energy expenditure, serum levels of proinflammatory cytokines, and fatigue) in patients with advanced cancer at different sites. A sample of 24 patients was enrolled from January to December 2008 and all were deemed assessable. A significant increase of lean body mass and a significant decrease of TNF-alpha were observed. Moreover, an improvement of grip strength, quality of life, performance status, and Glasgow prognostic score was shown. There were no grade 3/4 toxicities. Patient compliance was very good; no patient had to reduce the celecoxib dosage nor interrupt treatment. Our results showed that the COX-2 selective inhibitor celecoxib is an effective single agent for the treatment of cancer cachexia. Although the treatment of cancer cachexia, a multifactorial syndrome, is more likely to yield success with a multitargeted approach; in the present study, we were able to show that a treatment, such as celecoxib, addressing a single target, albeit very important as chronic inflammation, could have positive effects. Therefore, phase III clinical trials are warranted to test the efficacy and safety of celecoxib.
Collapse
Affiliation(s)
- Giovanni Mantovani
- Department of Medical Oncology, University of Cagliari, Cagliari, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
|