1
|
Wu M, Mi J, Qu GX, Zhang S, Jian Y, Gao C, Cai Q, Liu J, Jiang J, Huang H. Role of Hedgehog Signaling Pathways in Multipotent Mesenchymal Stem Cells Differentiation. Cell Transplant 2024; 33:9636897241244943. [PMID: 38695366 PMCID: PMC11067683 DOI: 10.1177/09636897241244943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Junwei Mi
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Guo-xin Qu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shu Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Yi Jian
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Qingli Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jing Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
2
|
Batchinsky AI, Roberts TR, Antebi B, Necsoiu C, Choi JH, Herzig M, Cap AP, McDaniel JS, Rathbone CR, Chung KK, Cancio LC. Intravenous Autologous Bone Marrow-derived Mesenchymal Stromal Cells Delay Acute Respiratory Distress Syndrome in Swine. Am J Respir Crit Care Med 2023; 208:1283-1292. [PMID: 37797214 DOI: 10.1164/rccm.202305-0865oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023] Open
Abstract
Rationale: Early post injury mitigation strategies in ARDS are in short supply. Treatments with allogeneic stromal cells are administered after ARDS develops, require specialized expertise and equipment, and to date have shown limited benefit. Objectives: Assess the efficacy of immediate post injury intravenous administration of autologous or allogeneic bone marrow-derived mesenchymal stromal cells (MSCs) for the treatment of acute respiratory distress syndrome (ARDS) due to smoke inhalation and burns. Methods: Yorkshire swine (n = 32, 44.3 ± 0.5 kg) underwent intravenous anesthesia, placement of lines, severe smoke inhalation, and 40% total body surface area flame burns, followed by 72 hours of around-the-clock ICU care. Mechanical ventilation, fluids, pressors, bronchoscopic cast removal, daily lung computed tomography scans, and arterial blood assays were performed. After injury and 24 and 48 hours later, animals were randomized to receive autologous concentrated bone marrow aspirate (n = 10; 3 × 106 white blood cells and a mean of 56.6 × 106 platelets per dose), allogeneic MSCs (n = 10; 6.1 × 106 MSCs per dose) harvested from healthy donor swine, or no treatment in injured control animals (n = 12). Measurements and Main Results: The intravenous administration of MSCs after injury and at 24 and 48 hours delayed the onset of ARDS in swine treated with autologous MSCs (48 ± 10 h) versus control animals (14 ± 2 h) (P = 0.004), reduced ARDS severity at 24 (P < 0.001) and 48 (P = 0.003) hours, and demonstrated visibly diminished consolidation on computed tomography (not significant). Mortality at 72 hours was 1 in 10 (10%) in the autologous group, 5 in 10 (50%) in the allogeneic group, and 6 in 12 (50%) in injured control animals (not significant). Both autologous and allogeneic MSCs suppressed systemic concentrations of TNF-α (tumor necrosis factor-α). Conclusions: The intravenous administration of three doses of freshly processed autologous bone marrow-derived MSCs delays ARDS development and reduces its severity in swine. Bedside retrieval and administration of autologous MSCs in swine is feasible and may be a viable injury mitigation strategy for ARDS.
Collapse
Affiliation(s)
- Andriy I Batchinsky
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Teryn R Roberts
- Autonomous Reanimation and Evacuation Research Program, The Geneva Foundation, San Antonio, Texas
| | - Ben Antebi
- Maryland Stem Cell Research Fund, Columbia, Maryland
| | - Corina Necsoiu
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Fort Sam Houston, Texas
| | - Jae H Choi
- 59th Medical Wing, Joint Base San Antonio Lackland Air Force Base, San Antonio, Texas
| | - Maryanne Herzig
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Fort Sam Houston, Texas
| | - Andrew P Cap
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Fort Sam Houston, Texas
| | - Jennifer S McDaniel
- 59th Medical Wing, Joint Base San Antonio Lackland Air Force Base, San Antonio, Texas
| | | | | | - Leopoldo C Cancio
- U.S. Army Institute of Surgical Research, Joint Base San Antonio Fort Sam Houston, Fort Sam Houston, Texas
| |
Collapse
|
3
|
Human Umbilical Cord Mesenchymal Stem Cells Attenuate Severe Burn-Induced Multiple Organ Injury via Potentiating IGF-1 and BCL-2/BAX Pathway. Stem Cells Int 2022; 2022:5474289. [PMID: 36591374 PMCID: PMC9803581 DOI: 10.1155/2022/5474289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Background Early multiple organ injuries induced by severe burn predict a high mortality. Mesenchymal stem cells (MSCs) are able to repair and reconstruct the injured tissues and organs induced by trauma and diseases. However, potential protective effect and mechanism of MSCs on multiorgan injury induced by severe burn at early stage remain to be not clarified. Therefore, this study was to explore the effect and mechanism of human umbilical cord-derived MSCs (hUCMSCs) against severe burn-induced early organ injuries in rats. Methods Adult male Wistar rats were randomly divided into sham, burn, and burn+hUCMSCsgroups. GFP-labeled hUCMSCs or PBS was intravenous injected into respective groups. Migration and distribution patterns of GFP-labeled hUCMSCs were observed by inverted fluorescence microscope. The structures and cell apoptosis of the heart, kidney, and liver were measured by immunohistochemistry. Biochemical parameters in serum were assayed by standard Roche-Hitachi methodology. Western blotting was performed on these organs of rats in the three groups to explore the underlying mechanisms. Results At 24 hours after hUCMSCs transplantation, we found that GFP-labeled hUCMSCs mainly localized in the blood vessel of the heart, kidney, and liver and a very few cells migrated into tissues of these organs. Compared with the sham group, structure damages and cell apoptosis of these organs were induced by severe burn, and systematic administrations of hUCMSCs significantly improved the damaged structures, cell apoptosis rates, and biochemical parameters of these organs. Furthermore, IGF-1 (insulin-like growth factor 1) level in burn+hUCMSCs group was significantly higher than that in the sham and burn groups. Meanwhile, severe burn induced BCL-2/BAX significantly decreased compared to the sham group, and it was markedly increased by hUCMSCs administration. Conclusion The hUCMSCs transplantation can attenuate severe burn-induced early organ injuries and protect multiorgan functions by encouraging migration of hUCMSCs with blood circulation and increasing protective cytokine IGF-1 level and regulating BCL-2/BAX pathway of these vital organs. Furthermore, these data might provide the theoretical foundation for further clinical applications of hUCMSCs in burn areas.
Collapse
|
4
|
Cao C, Zhang L, Liu F, Shen J. Therapeutic Benefits of Mesenchymal Stem Cells in Acute Respiratory Distress Syndrome: Potential Mechanisms and Challenges. J Inflamm Res 2022; 15:5235-5246. [PMID: 36120184 PMCID: PMC9473549 DOI: 10.2147/jir.s372046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) presents as a form of acute respiratory failure resulting from non-cardiogenic pulmonary edema due to excessive alveolocapillary permeability, which may be pulmonary or systemic in origin. In the last 3 years, the coronavirus disease 2019 pandemic has resulted in an increase in ARDS cases and highlighted the challenges associated with this syndrome, as well as the unacceptably high mortality rates and lack of effective treatments. Currently, clinical treatment remains primarily supportive, including mechanical ventilation and drug-based therapy. Mesenchymal stem cell (MSC) therapies are emerging as a promising intervention in patients with ARDS and have promising therapeutic effects and safety. The therapeutic mechanisms include modifying the immune response and assisting with tissue repair. This review provides an overview of the general properties of MSCs and outlines their role in mitigating lung injury and promoting tissue repair in ARDS. Finally, we summarize the current challenges in the study of translational MSC research and identify avenues by which the discipline may progress in the coming years.
Collapse
Affiliation(s)
- Chao Cao
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| | - Lin Zhang
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Fuli Liu
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, People's Republic of China.,Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Sang L, Guo X, Shi J, Hou S, Fan H, Lv Q. Characteristics and Developments in Mesenchymal Stem Cell Therapy for COVID-19: An Update. Stem Cells Int 2021; 2021:5593584. [PMID: 34211556 PMCID: PMC8205583 DOI: 10.1155/2021/5593584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) has so far resulted in over a hundred million people being infected. COVID-19 poses a threat to human health around the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been confirmed as the pathogenic virus of COVID-19. SARS-CoV-2 belongs to the β-coronavirus family of viruses and is mainly transmitted through the respiratory tract. It has been proven that SARS-CoV-2 mainly targets angiotensin-converting enzyme II (ACE2) receptors on the surface of various cells in humans. The main clinical symptoms of COVID-19 include fever, cough, and severe acute respiratory distress syndrome (ARDS). Current evidence suggests that the damage caused by the virus may be closely related to the induction of cytokine storms in COVID-19. No specific drugs or measures have yet to be shown to cure COVID-19 completely. Cell-based approaches, primarily mesenchymal stem cells (MSCs), have been identified to have anti-inflammatory and immune functions in COVID-19. Clinical studies about using MSCs and its derivatives-exosomes for COVID-19 treatment-are under investigation. Here, we review the current progress of the biological characteristics, clinical manifestations, and cell-based treatment development for COVID-19. Providing up-to-date information on COVID-19 and potential MSC therapies will help highlight routes to prevent and treat the disease.
Collapse
Affiliation(s)
- Lu Sang
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Xiaoqin Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Jie Shi
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Shike Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Haojun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, China
| |
Collapse
|
6
|
Liu G, Di Z, Hao C, Wang W, Pei T, Zheng L, Long H, Wang H, Liao W, Wang W, Zhang C, Li X, Mi Y, Yan F, Liu Y. Effects of different concentrations of mesenchymal stem cells treatment on LPS-induced acute respiratory distress syndrome rat model. Exp Lung Res 2021; 47:226-238. [PMID: 33749474 DOI: 10.1080/01902148.2021.1897191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE This study was prospectively designed to investigate the effects of different concentrations of mesenchymal stem cells treatment on respiratory mechanics, oxygenation, hemodynamics and inflammatory response in LPS-induced acute respiratory distress syndrome (ARDS) rat model. Methods: One hundred and twenty six LPS-induced ARDS model rats (weighted 200-220 g) were randomly divided into three groups: 1) Control group (N = 42); 2) low-dose hUC-MSC treatment group (MSC group 1, 1x107 cell/kg, N = 42); 3) high-dose hUC-MSC treatment group (MSC group 2, 2x107 cell/kg, N = 42), sham operation group as healthy group (N = 15). The rats were observed closely for 24 hours after hUC-MSC treatment, and the survival rate was calculated. At 24 hours, all rats were tested for hemodynamics, blood gas analysis, heart, lung, liver and kidney functions, inflammatory factors detection in blood samples and broncho-alveolar lavage fluid (BALF). The lung tissue of the rats was collected for HE staining analysis. Results: After LPS injection, ARDS was obvious in all LPS-infused rat groups, consistent with severe acute lung injury and high death rate. However, compared with the control group, a single intravenous injection hUC-MSC at dose of 1 × 107 cells/kg (low dose group) and 2 × 107 cells/kg (high dose group) reduced the mortality of rats with LPS-induced ARDS, as well as improving the lung function, increased the arterial oxygen pressure, improved the heart function, and reduced the levels of inflammatory factors including IL-1β, IL-6, and TNF-α. In addition, the high dose MSC group showed better lung injury therapeutic effects than the low dose MSC group. Data from this study demonstrated that injection of hUC-MSC had a significant therapeutic effect in treating the rat model of LPS-induced ARDS and multiple organ function injury.
Collapse
Affiliation(s)
- Guangyang Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Zhiquan Di
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Chunhua Hao
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Weiting Wang
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Tianxian Pei
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Libo Zheng
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Haomiao Long
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Hao Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | | | - Wen Wang
- Baylx, Inc, Irvine, California, USA
| | - Chenliang Zhang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Xin Li
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Yi Mi
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| | - Fengying Yan
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing Yi-Chuang Institute of Bio-Industry, Beijing, China
| |
Collapse
|
7
|
Dauletova M, Hafsan H, Mahhengam N, Zekiy AO, Ahmadi M, Siahmansouri H. Mesenchymal stem cell alongside exosomes as a novel cell-based therapy for COVID-19: A review study. Clin Immunol 2021; 226:108712. [PMID: 33684527 PMCID: PMC7935675 DOI: 10.1016/j.clim.2021.108712] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 02/07/2023]
Abstract
In the past year, an emerging disease called Coronavirus disease 2019 (COVID-19), caused by Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been discovered in Wuhan, China, which has become a worrying pandemic and has challenged the world health system and economy. SARS-CoV-2 enters the host cell through a specific receptor (Angiotensin-converting enzyme 2) expressed on epithelial cells of various tissues. The virus, by inducing cell apoptosis and production of pro-inflammatory cytokines, generates as cytokine storm, which is the major cause of mortality in the patients. This type of response, along with responses by other immune cell, such as alveolar macrophages and neutrophils causes extensive damage to infected tissue. Newly, a novel cell-based therapy by Mesenchymal stem cell (MSC) as well as by their exosomes has been developed for treatment of COVID-19 that yielded promising outcomes. In this review study, we discuss the characteristics and benefits of MSCs therapy as well as MSC-secreted exosome therapy in treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Meruyert Dauletova
- Department of Propaedeutics and Internal Medicine, Akhmet Yassawi Internationl Kazakh-Turkish University, Turkistan, Kazakhstan
| | - Hafsan Hafsan
- Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Alauddin Makassar, South Sulawesi, Indonesia
| | - Negah Mahhengam
- Faculty of General Medicine, Belarusian State Medical University, Minsk, Belarus
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Homayoon Siahmansouri
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Jamalkhah M, Asaadi Y, Azangou-Khyavy M, Khanali J, Soleimani M, Kiani J, Arefian E. MSC-derived exosomes carrying a cocktail of exogenous interfering RNAs an unprecedented therapy in era of COVID-19 outbreak. J Transl Med 2021; 19:164. [PMID: 33888147 PMCID: PMC8061879 DOI: 10.1186/s12967-021-02840-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/16/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The onset of the SARS-CoV-2 pandemic has resulted in ever-increasing casualties worldwide, and after 15 months, standard therapeutic regimens are yet to be discovered. MAIN BODY Due to the regenerative and immunomodulatory function of MSCs, they can serve as a suitable therapeutic option in alleviating major COVID-19 complications like acute respiratory distress syndrome. However, the superior properties of their cognate exosomes as a cell-free product make them preferable in the clinic. Herein, we discuss the current clinical status of these novel therapeutic strategies in COVID-19 treatment. We then delve into the potential of interfering RNAs incorporation as COVID-19 gene therapy and introduce targets involved in SARS-CoV-2 pathogenesis. Further, we present miRNAs and siRNAs candidates with promising results in targeting the mentioned targets. CONCLUSION Finally, we present a therapeutic platform of mesenchymal stem cell-derived exosomes equipped with exogenous iRNAs, that can be employed as a novel therapeutic modality in COVID-19 management aiming to prevent further viral spread within the lung, hinder the virus life cycle and pathogenesis such as immune suppression, and ultimately, enhance the antiviral immune response.
Collapse
Affiliation(s)
- Monire Jamalkhah
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Yasaman Asaadi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | | | - Javad Khanali
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Kiani
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
9
|
Lu J, Xie ZY, Zhu DH, Li LJ. Human menstrual blood-derived stem cells as immunoregulatory therapy in COVID-19: A case report and review of the literature. World J Clin Cases 2021; 9:1705-1713. [PMID: 33728315 PMCID: PMC7942055 DOI: 10.12998/wjcc.v9.i7.1705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) caused by novel coronavirus 2019 in December 2019 has spread all around the globe and has caused a pandemic. There is still no current effective guidance on the clinical management of COVID-19. Mesenchymal stem cell therapy has been shown to be one of the therapeutic approaches to alleviate pneumonia and symptoms through their immunomo-dulatory effect in COVID-19 patients.
CASE SUMMARY We describe the first confirmed case of COVID-19 in Hangzhou to explore the role of human menstrual blood-derived stem cells (MenSCs) in the treatment of COVID-19. Moreover, we review the immunomodulation effect including non-specific and specific immune functions of MenSCs for the therapy of COVID-19.
CONCLUSION MenSCs can be helpful to find a promising therapeutic approach for COVID-19.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Zhong-Yang Xie
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Dan-Hua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| | - Lan-Juan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
10
|
Que Y, Hu C, Wan K, Hu P, Wang R, Luo J, Li T, Ping R, Hu Q, Sun Y, Wu X, Tu L, Du Y, Chang C, Xu G. Cytokine release syndrome in COVID-19: a major mechanism of morbidity and mortality. Int Rev Immunol 2021; 41:217-230. [PMID: 33616462 PMCID: PMC7919105 DOI: 10.1080/08830185.2021.1884248] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 12/19/2022]
Abstract
The coronavirus disease 2019 (COVID-19) triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) erupted in Hubei Province of China in December 2019 and has become a pandemic. Severe COVID-19 patients who suffer from acute respiratory distress syndrome (ARDS) and multi-organ dysfunction have high mortality. Several studies have shown that this is closely related to the cytokine release syndrome (CRS), often loosely referred to as cytokine storm. IL-6 is one of the key factors and its level is positively correlated with the severity of the disease. The molecular mechanisms for CRS in COVID-19 are related to the effects of the S-protein and N-protein of the virus and its ability to trigger NF-κB activation by disabling the inhibitory component IκB. This leads to activation of immune cells and the secretion of proinflammatory cytokines such as IL-6 and TNF-α. Other mechanisms related to IL-6 include its interaction with GM-CSF and interferon responses. The pivotal role of IL-6 makes it a target for therapeutic agents and studies on tocilizumab are already ongoing. Other possible targets of treating CRS in COVID-19 include IL-1β and TNF-α. Recently, reports of a CRS like illness called multisystem inflammatory syndrome in children (MIS-C) in children have surfaced, with a variable presentation which in some cases resembles Kawasaki disease. It is likely that the immunological derangement and cytokine release occurring in COVID-19 cases is variable, or on a spectrum, that can potentially be governed by genetic factors. Currently, there are no approved biological modulators for the treatment of COVID-19, but the urgency of the pandemic has led to numerous clinical trials worldwide. Ultimately, there is great promise that an anti-inflammatory modulator targeting a cytokine storm effect may prove to be very beneficial in reducing morbidity and mortality in COVID-19 patients.
Collapse
Affiliation(s)
- Yifan Que
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Chao Hu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Kun Wan
- Medical Supplies Center, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Peng Hu
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Runsheng Wang
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jiang Luo
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Tianzhi Li
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Rongyu Ping
- Department of Neurology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Qinyong Hu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xudong Wu
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Lei Tu
- Division of Gastroenterology, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yingzhen Du
- Department of Respiratory Medicine, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Christopher Chang
- Division of Pediatric Immunology, Allergy and Rheumatology, Joe DiMaggio Children’s Hospital, Hollywood, Florida, USA
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, California, USA
| | - Guogang Xu
- The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
11
|
Shi J, Zhao YC, Niu ZF, Fan HJ, Hou SK, Guo XQ, Sang L, Lv Q. Mesenchymal stem cell-derived small extracellular vesicles in the treatment of human diseases: Progress and prospect. World J Stem Cells 2021; 13:49-63. [PMID: 33584979 PMCID: PMC7859991 DOI: 10.4252/wjsc.v13.i1.49] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are self-renewing, multipotent cells that could differentiate into multiple tissues. MSC-based therapy has become an attractive and promising strategy for treating human diseases through immune regulation and tissue repair. However, accumulating data have indicated that MSC-based therapeutic effects are mainly attributed to the properties of the MSC-sourced secretome, especially small extracellular vesicles (sEVs). sEVs are signaling vehicles in intercellular communication in normal or pathological conditions. sEVs contain natural contents, such as proteins, mRNA, and microRNAs, and transfer these functional contents to adjacent cells or distant cells through the circulatory system. MSC-sEVs have drawn much attention as attractive agents for treating multiple diseases. The properties of MSC-sEVs include stability in circulation, good biocompatibility, and low toxicity and immunogenicity. Moreover, emerging evidence has shown that MSC-sEVs have equal or even better treatment efficacies than MSCs in many kinds of disease. This review summarizes the current research efforts on the use of MSC-sEVs in the treatment of human diseases and the existing challenges in their application from lab to clinical practice that need to be considered.
Collapse
Affiliation(s)
- Jie Shi
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yu-Chen Zhao
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Zhi-Fang Niu
- General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Hao-Jun Fan
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Shi-Ke Hou
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Xiao-Qin Guo
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Lu Sang
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Qi Lv
- Institute of Disaster Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomaterials and Regenrative Medicine, Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
12
|
Oroojalian F, Haghbin A, Baradaran B, Hemmat N, Shahbazi MA, Baghi HB, Mokhtarzadeh A, Hamblin MR. Novel insights into the treatment of SARS-CoV-2 infection: An overview of current clinical trials. Int J Biol Macromol 2020; 165:18-43. [PMID: 32991900 PMCID: PMC7521454 DOI: 10.1016/j.ijbiomac.2020.09.204] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
The emergence of the global pandemic caused by the novel SARS-CoV-2 virus has motivated scientists to find a definitive treatment or a vaccine against it in the shortest possible time. Current efforts towards this goal remain fruitless without a full understanding of the behavior of the virus and its adaptor proteins. This review provides an overview of the biological properties, functional mechanisms, and molecular components of SARS-CoV-2, along with investigational therapeutic and preventive approaches for this virus. Since the proteolytic cleavage of the S protein is critical for virus penetration into cells, a set of drugs, such as chloroquine, hydroxychloroquine, camostat mesylate have been tested in clinical trials to suppress this event. In addition to angiotensin-converting enzyme 2, the role of CD147 in the viral entrance has also been proposed. Mepolizumab has shown to be effective in blocking the virus's cellular entrance. Antiviral drugs, such as remdesivir, ritonavir, oseltamivir, darunavir, lopinavir, zanamivir, peramivir, and oseltamivir, have also been tested as treatments for COVID-19. Regarding preventive vaccines, the whole virus, vectors, nucleic acids, and structural subunits have been suggested for vaccine development. Mesenchymal stem cells and natural killer cells could also be used against SARS-CoV-2. All the above-mentioned strategies, as well as the role of nanomedicine for the diagnosis and treatment of SARS-CoV-2 infection, have been discussed in this review.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Haghbin
- Department of Pediatrics, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran; Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
13
|
Al-Khawaga S, Abdelalim EM. Potential application of mesenchymal stem cells and their exosomes in lung injury: an emerging therapeutic option for COVID-19 patients. Stem Cell Res Ther 2020; 11:437. [PMID: 33059757 PMCID: PMC7558244 DOI: 10.1186/s13287-020-01963-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
The COVID-19 pandemic has negatively impacted the global public health and the international economy; therefore, there is an urgent need for an effective therapy to treat COVID-19 patients. Mesenchymal stem cells (MSCs) have been proposed as an emerging therapeutic option for the SARS-CoV-2 infection. Recently, numerous clinical trials have been registered to examine the safety and efficacy of different types of MSCs and their exosomes for treating COVID-19 patients, with less published data on the mechanism of action. Although there is no approved effective therapy for COVID-19 as of yet, MSC therapies showed an improvement in the treatment of some COVID-19 patients. MSC’s therapeutic effect is displayed in their ability to reduce the cytokine storm, enhance alveolar fluid clearance, and promote epithelial and endothelial recovery; however, the safest and most effective route of MSC delivery remains unclear. The use of poorly characterized MSC products remains one of the most significant drawbacks of MSC-based therapy, which could theoretically promote the risk for thromboembolism. Optimizing the clinical-grade production of MSCs and establishing a consensus on registered clinical trials based on cell-product characterization and mode of delivery would aid in laying the foundation for a safe and effective therapy in COVID-19. In this review, we shed light on the mechanistic view of MSC therapeutic role based on preclinical and clinical studies on acute lung injury and ARDS; therefore, offering a unique correlation and applicability in COVID-19 patients. We further highlight the challenges and opportunities in the use of MSC-based therapy.
Collapse
Affiliation(s)
- Sara Al-Khawaga
- Dermatology Department, Hamad Medical Corporation, Doha, Qatar.,Weill Cornell Medicine-Qatar, Qatar Foundation, Doha, Qatar
| | - Essam M Abdelalim
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar. .,College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
14
|
Qin H, Zhao A. Mesenchymal stem cell therapy for acute respiratory distress syndrome: from basic to clinics. Protein Cell 2020; 11:707-722. [PMID: 32519302 PMCID: PMC7282699 DOI: 10.1007/s13238-020-00738-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
The 2019 novel coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has occurred in China and around the world. SARS-CoV-2-infected patients with severe pneumonia rapidly develop acute respiratory distress syndrome (ARDS) and die of multiple organ failure. Despite advances in supportive care approaches, ARDS is still associated with high mortality and morbidity. Mesenchymal stem cell (MSC)-based therapy may be an potential alternative strategy for treating ARDS by targeting the various pathophysiological events of ARDS. By releasing a variety of paracrine factors and extracellular vesicles, MSC can exert anti-inflammatory, anti-apoptotic, anti-microbial, and pro-angiogenic effects, promote bacterial and alveolar fluid clearance, disrupt the pulmonary endothelial and epithelial cell damage, eventually avoiding the lung and distal organ injuries to rescue patients with ARDS. An increasing number of experimental animal studies and early clinical studies verify the safety and efficacy of MSC therapy in ARDS. Since low cell engraftment and survival in lung limit MSC therapeutic potentials, several strategies have been developed to enhance their engraftment in the lung and their intrinsic, therapeutic properties. Here, we provide a comprehensive review of the mechanisms and optimization of MSC therapy in ARDS and highlighted the potentials and possible barriers of MSC therapy for COVID-19 patients with ARDS.
Collapse
Affiliation(s)
- Hua Qin
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China.
| | - Andong Zhao
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100853, China
- Tianjin Medical University, Tianjin, 300070, China
| |
Collapse
|
15
|
Brave H, MacLoughlin R. State of the Art Review of Cell Therapy in the Treatment of Lung Disease, and the Potential for Aerosol Delivery. Int J Mol Sci 2020; 21:E6435. [PMID: 32899381 PMCID: PMC7503246 DOI: 10.3390/ijms21176435] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory and pulmonary diseases are among the leading causes of death globally. Despite tremendous advancements, there are no effective pharmacological therapies capable of curing diseases such as COPD (chronic obstructive pulmonary disease), ARDS (acute respiratory distress syndrome), and COVID-19. Novel and innovative therapies such as advanced therapy medicinal products (ATMPs) are still in early development. However, they have exhibited significant potential preclinically and clinically. There are several longitudinal studies published, primarily focusing on the use of cell therapies for respiratory diseases due to their anti-inflammatory and reparative properties, thereby hinting that they have the capability of reducing mortality and improving the quality of life for patients. The primary objective of this paper is to set out a state of the art review on the use of aerosolized MSCs and their potential to treat these incurable diseases. This review will examine selected respiratory and pulmonary diseases, present an overview of the therapeutic potential of cell therapy and finally provide insight into potential routes of administration, with a focus on aerosol-mediated ATMP delivery.
Collapse
Affiliation(s)
- Hosanna Brave
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Ronan MacLoughlin
- Department of Chemistry, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- Aerogen Ltd. Galway Business Park, H91 HE94 Galway, Ireland
| |
Collapse
|
16
|
Xiao K, Hou F, Huang X, Li B, Qian ZR, Xie L. Mesenchymal stem cells: current clinical progress in ARDS and COVID-19. Stem Cell Res Ther 2020; 11:305. [PMID: 32698898 PMCID: PMC7373844 DOI: 10.1186/s13287-020-01804-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 01/14/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) develops rapidly and has a high mortality rate. Survivors usually have low quality of life. Current clinical management strategies are respiratory support and restricted fluid input, and there is no suggested pharmacological treatment. Mesenchymal stromal cells (MSCs) have been reported to be promising treatments for lung diseases. MSCs have been shown to have a number of protective effects in some animal models of ARDS by releasing soluble, biologically active factors. In this review, we will focus on clinical progress in the use of MSCs as a cell therapy for ARDS, which may have clinical implications during the coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Kun Xiao
- Department of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Fei Hou
- Department of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
| | - Xiuyu Huang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong China
| | - Binbin Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong China
| | - Zhi Rong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong China
| | - Lixin Xie
- Department of Pulmonary and Critical Care Medicine, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
17
|
Ji HL, Liu C, Zhao RZ. Stem cell therapy for COVID-19 and other respiratory diseases: Global trends of clinical trials. World J Stem Cells 2020; 12:471-480. [PMID: 32742564 PMCID: PMC7360994 DOI: 10.4252/wjsc.v12.i6.471] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/17/2020] [Accepted: 05/22/2020] [Indexed: 02/06/2023] Open
Abstract
Respiratory diseases, including coronavirus disease 2019 and chronic obstructive pulmonary disease (COPD), are leading causes of global fatality. There are no effective and curative treatments, but supportive care only. Cell therapy is a promising therapeutic strategy for refractory and unmanageable pulmonary illnesses, as proved by accumulating preclinical studies. Stem cells consist of totipotent, pluripotent, multipotent, and unipotent cells with the potential to differentiate into cell types requested for repair. Mesenchymal stromal cells, endothelial progenitor cells, peripheral blood stem cells, and lung progenitor cells have been applied to clinical trials. To date, the safety and feasibility of stem cell and extracellular vesicles administration have been confirmed by numerous phase I/II trials in patients with COPD, acute respiratory distress syndrome, bronchial dysplasia, idiopathic pulmonary fibrosis, pulmonary artery hypertension, and silicosis. Five routes and a series of doses have been tested for tolerance and advantages of different regimes. In this review, we systematically summarize the global trends for the cell therapy of common airway and lung diseases registered for clinical trials. The future directions for both new clinical trials and preclinical studies are discussed.
Collapse
Affiliation(s)
- Hong-Long Ji
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
- Texas Lung Injury Institute, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
| | - Cong Liu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518000, Guangdong Province, China
| | - Run-Zhen Zhao
- Department of Cellular and Molecular Biology, University of Texas Health Science Centre at Tyler, Tyler, TX 75708, United States
| |
Collapse
|
18
|
Jiang ZF, Zhang L, Shen J. MicroRNA: Potential biomarker and target of therapy in acute lung injury. Hum Exp Toxicol 2020; 39:1429-1442. [PMID: 32495695 DOI: 10.1177/0960327120926254] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs stretching over 18-22 nucleotides and considered to be modifiers of many respiratory diseases. They are highly evolutionary conserved and have been implicated in several biological processes, including cell proliferation, apoptosis, differentiation, among others. Acute lung injury (ALI) is a fatal disease commonly caused by direct or indirect injury factors and has a high mortality rate in intensive care unit. Changes in expression of several types of miRNAs have been reported in patients with ALI. Some miRNAs suppress cellular injury and accelerate the recovery of ALI by targeting specific molecules and decreasing excessive immune response. For this reason, miRNAs are proposed as potential biomarkers for ALI and as therapeutic targets for this disease. This review summarizes current evidence supporting the role of miRNAs in ALI.
Collapse
Affiliation(s)
- Z-F Jiang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - L Zhang
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - J Shen
- Center of Emergency & Intensive Care Unit, Medical Center of Chemical Injury, Jinshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med 2020; 18:203. [PMID: 32423449 PMCID: PMC7232924 DOI: 10.1186/s12967-020-02380-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic. Coronavirus disease 2019 (COVID-19) is typically associated with fever and respiratory symptoms. It often progresses to severe respiratory distress and multi-organ failure which carry a high mortality rate. Older patients or those with medical comorbidities are at greater risk for severe disease. Inflammation, pulmonary edema and an over-reactive immune response can lead to hypoxia, respiratory distress and lung damage. Mesenchymal stromal/stem cells (MSCs) possess potent and broad-ranging immunomodulatory activities. Multiple in vivo studies in animal models and ex vivo human lung models have demonstrated the MSC's impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. Additionally, MSCs produce molecules that are antimicrobial and reduce pain. Upon administration by the intravenous route, the cells travel directly to the lungs where the majority are sequestered, a great benefit for the treatment of pulmonary disease. The in vivo safety of local and intravenous administration of MSCs has been demonstrated in multiple human clinical trials, including studies of acute respiratory distress syndrome (ARDS). Recently, the application of MSCs in the context of ongoing COVID-19 disease and other viral respiratory illnesses has demonstrated reduced patient mortality and, in some cases, improved long-term pulmonary function. Adipose-derived stem cells (ASC), an abundant type of MSC, are proposed as a therapeutic option for the treatment of COVID-19 in order to reduce morbidity and mortality. Additionally, when proven to be safe and effective, ASC treatments may reduce the demand on critical hospital resources. The ongoing COVID-19 outbreak has resulted in significant healthcare and socioeconomic burdens across the globe. There is a desperate need for safe and effective treatments. Cellular based therapies hold great promise for the treatment of COVID-19. This literature summary reviews the scientific rationale and need for clinical studies of adipose-derived stem cells and other types of mesenchymal stem cells in the treatment of patients who suffer with COVID-19.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Martin A. Schreiber
- Department of Surgery, Oregon Health and Science University, Portland, OR USA
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center, Beijing, 100039 China
| | | | - Boris R. Minev
- Calidi Biotherapeutics, Inc., San Diego, CA USA
- Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, San Diego, CA USA
| |
Collapse
|
20
|
Overexpression of transcription factor EB regulates mitochondrial autophagy to protect lipopolysaccharide-induced acute lung injury. Chin Med J (Engl) 2019; 132:1298-1304. [PMID: 30946071 PMCID: PMC6629347 DOI: 10.1097/cm9.0000000000000243] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) is characterized by an acute inflammatory process, and oxidative stress in the lung tissue leads to a lack of effective therapeutics. This study aimed to identify whether the overexpression of transcription factor EB (TFEB) regulates mitophagy to protect against lipopolysaccharide (LPS)-induced ALI. METHODS We detected the expression of inflammatory factors, cytochrome c (Cyt.c) and nicotinamide adenine dinucleotide phosphate (NADPH), and autophagy-related proteins and observed the changes in lung histopathology induced by ALI in rats and the changes in the cell ultrastructure of primary alveolar type II epithelial cells induced by changing the expression of TFEB in the context of ALI. RESULTS The overexpression of TFEB could reduce the expression of proinflammatory factors, such as IL-1 and IL-6, and increase the expression of anti-inflammatory factors, such as IL-10, both in vitro and in vivo. In addition, the overexpression of TFEB could reduce the Cyt.c and NADPH levels both in vivo and in vitro. The overexpression of TFEB could upregulate the expression of autophagy-related proteins, such as lysosomal-associated membrane protein 1 (LAMP1), microtubule-associated protein light chain 3B (LC3B), and Beclin both in vivo and in vitro, and promote mitochondrial autophagy. The overexpression of TFEB significantly improved the histopathologic changes induced by LPS-induced ALI in rats. However, low TFEB expression produced the opposite results. CONCLUSION TFEB overexpression can decrease inflammation and mitochondrial damage in the lung tissue and alveolar epithelial cells through regulating mitochondrial autophagy to protect against LPS-induced ALI. Therefore, TFEB is likely a potential therapeutic target in LPS-induced ALI.
Collapse
|
21
|
Kabat M, Bobkov I, Kumar S, Grumet M. Trends in mesenchymal stem cell clinical trials 2004-2018: Is efficacy optimal in a narrow dose range? Stem Cells Transl Med 2019; 9:17-27. [PMID: 31804767 PMCID: PMC6954709 DOI: 10.1002/sctm.19-0202] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 08/26/2019] [Indexed: 12/19/2022] Open
Abstract
The number of clinical trials using mesenchymal stem cells (MSCs) has increased since 2008, but this trend slowed in the past several years and dropped precipitously in 2018. Previous reports have analyzed MSC clinical trials by disease, phase, cell source, country of origin, and trial initiation date, all of which can be downloaded directly from http://clinicaltrials.gov. We have extended analyses to a larger group of 914 MSC trials reported through 2018. To search for potential factors that may influence the design of new trials, we extracted data on routes of administration and dosing from individual http://clinicaltrials.gov records as this information cannot be downloaded directly from the database. Intravenous (IV) injection is the most common, least invasive and most reproducible method, accounting for 43% of all trials. The median dose for IV delivery is 100 million MSCs/patient/dose. Analysis of all trials using IV injection that reported positive outcomes indicated minimal effective doses (MEDs) ranging from 70 to 190 million MSCs/patient/dose in 14/16 trials with the other two trials administering much higher doses of at least 900 million cells. Dose‐response data showing differential efficacy for improved outcomes were reported in only four trials, which indicated a narrower MED range of 100‐150 million MSCs/patient with lower and higher IV doses being less effective. The results suggest that it may be critical to determine MEDs in early trials before proceeding with large clinical trials.
Collapse
Affiliation(s)
- Maciej Kabat
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Ivan Bobkov
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey
| | - Suneel Kumar
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey
| | - Martin Grumet
- W. M. Keck Center for Collaborative Neuroscience, Rutgers Stem Cell Research Center, Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
22
|
Cryopreserved mesenchymal stem cells regain functional potency following a 24-h acclimation period. J Transl Med 2019; 17:297. [PMID: 31464641 PMCID: PMC6716839 DOI: 10.1186/s12967-019-2038-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 08/18/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are attractive cell-therapy candidates. Despite their popularity and promise, there is no uniform method of preparation of MSCs. Typically, cells are cryopreserved in liquid nitrogen, thawed, and subsequently administered to a patient with little to no information on their function post-thaw. We hypothesized that a short acclimation period post-thaw will facilitate the recovery of MSC's functional potency. METHODS Human bone-marrow-derived MSCs were divided into 3 groups: FC (fresh cells; from existing culture); TT (thawed + time; acclimated for 24 h post-thaw); and FT (freshly thawed; thawed and immediately used). The 3 groups were analyzed for their cellular and functional potency. RESULTS Phenotypic analysis demonstrated a decrease in CD44 and CD105 surface markers in FT MSCs, with no change in the other two groups. All MSCs were able to differentiate down the osteogenic and chondrogenic lineages. In FT cells, metabolic activity and apoptosis was significantly increased with concomitant decrease in cell proliferation; clonogenic capacity; and key regenerative genes. Following 24-h acclimation, apoptosis was significantly reduced in TT cells with a concomitant upregulation in angiogenic and anti-inflammatory genes. While all MSCs significantly arrested T-cell proliferation, the TT MSCs were significantly more potent. Similarly, although all MSCs maintained their anti-inflammatory properties, IFN-γ secretion was significantly diminished in FT cells. CONCLUSIONS These data demonstrate that FT MSCs maintain their multipotent differentiation capacity, immunomodulatory function, and anti-inflammatory properties; yet, various aspects of cell characteristics and function are deleteriously affected by cryopreservation. Importantly, a 24-h acclimation period 'reactivates' thawed cells to recover their diminished stem-cell function.
Collapse
|
23
|
Choi JH, Necsoiu C, Wendorff D, Jordan B, Dixon A, Roberts TR, Beely BM, Cancio LC, Batchinsky AI. Effects of adjunct treatments on end-organ damage and histological injury severity in acute respiratory distress syndrome and multiorgan failure caused by smoke inhalation injury and burns. Burns 2019; 45:1765-1774. [PMID: 31378621 DOI: 10.1016/j.burns.2019.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND We investigated effects of mesenchymal stem cells (MSC) or low-flow extracorporeal life support (ECLS) as adjunctive treatments for acute respiratory distress syndrome (ARDS) due to inhalation injury and burns. We hypothesized that these interventions decrease histological end-organ damage. METHODS Anesthetized female swine underwent smoke inhalation injury and 40% TBSA burns, then critical care for 72h. The following groups were studied: CTR (no injury, n = 4), ICTR (injured untreated, n = 10), Allo (injured treated with allogenic MSC, n = 10), Auto (injured treated with autologous MSC, n = 10), Hemo (injured and treated with the Hemolung low flow ECLS system, n = 9), and Nova (injured and treated with the NovaLung low flow ECLS system, n = 8). Histology scores from lung, kidneys, liver, and jejunum were calculated. Data are presented as means±SEM. RESULTS Survival at 72h was 100% in CTR; 40% in ICTR; 50% in Allo; 90% in Auto; 33% in Hemo; 63% in Nova. ARDS developed in 0/10 CTR; 10/10 ICTR; 8/9 Hemo; 5/8 Nova; 9/10 Allo; 6/10 Auto. Diffuse alveolar damage (DAD) was present in all injured groups. MSC groups had significantly lower DAD scores than ICTR animals (Allo 26.6 ± 3.4 and Auto 18.9 ± 1.5 vs. ICTR 46.8 ± 2.1, p < 0.001). MSC groups also had lower DAD scores than ECLS animals (Allo vs. Nova, p < 0.05, Allo vs. Hemo p < 0.001, Auto vs. Nova p < 0.001, Auto vs. Hemo, p < 0.001). Kidney injury ICTR (p < 0.05) and Hemo (p < 0.01) were higher than in CTR. By logistic regression, a PaO2-to-FiO2 ratio (PFR) < 300 was a function of the DAD score: logit (PFR < 300) = 0.84 + 0.072*DAD Score, odds ratio 1.074 (1.007, 1.147, p < 0.05) with a ROC AUC of 0.76, p < 0.001. CONCLUSION Treatment with Auto MSC followed by Allo and then Nova were most effective in mitigating ARDS and MOF severity in this model. Further studies will elucidate the role of combination therapies of MSC and ECLS as comprehensive treatments for ARDS and MOF.
Collapse
Affiliation(s)
- Jae Hyek Choi
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Corina Necsoiu
- United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Daniel Wendorff
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Bryan Jordan
- United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Alexander Dixon
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Teryn R Roberts
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States; Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Brendan M Beely
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States
| | - Andriy I Batchinsky
- The Geneva Foundation, Tacoma WA, United States; United States Army Institute of Surgical Research, JBSA-Ft. Sam Houston, TX, United States; Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
24
|
Xu AL, Rodriguez LA, Walker KP, Mohammadipoor A, Kamucheka RM, Cancio LC, Batchinsky AI, Antebi B. Mesenchymal Stem Cells Reconditioned in Their Own Serum Exhibit Augmented Therapeutic Properties in the Setting of Acute Respiratory Distress Syndrome. Stem Cells Transl Med 2019; 8:1092-1106. [PMID: 31219247 PMCID: PMC6766690 DOI: 10.1002/sctm.18-0236] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 04/03/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising form of therapy for acute respiratory distress syndrome (ARDS). The objective of this study was twofold: (a) to characterize cytokine expression in serum from ARDS subjects receiving MSCs and (b) to determine MSC function following “preconditioning” with ARDS serum. In phase I, serum from three cohorts of animals (uninjured [no ARDS, n = 4], injured untreated [n = 5], and injured treated with approximately 6 million per kilogram MSCs [n = 7]) was analyzed for expression of inflammatory mediators. In phase II, the functional properties of bone marrow porcine MSCs were assessed following “preconditioning” with serum from the three cohorts. In phase III, the findings from the previous phases were validated using human bone marrow MSCs (hBM‐MSCs) and lipopolysaccharide (LPS). Serum from injured treated animals had significantly lower levels of interferon‐γ and significantly higher levels of interleukin (IL)‐1 receptor antagonist (IL‐1RA) and IL‐6. Similarly, upon exposure to the injured treated serum ex vivo, the MSCs secreted higher levels of IL‐1RA and IL‐10, dampened the secretion of proinflammatory cytokines, exhibited upregulation of toll‐like receptor 4 (TLR‐4) and vascular endothelial growth factor (VEGF) genes, and triggered a strong immunomodulatory response via prostaglandin E2 (PGE2). hBM‐MSCs demonstrated a similar augmented therapeutic function following reconditioning in a LPS milieu. Administration of MSCs modulated the inflammatory milieu following ARDS. Exposure to ARDS serum ex vivo paralleled the trends seen in vivo, which appear to be mediated, in part, through TLR‐4 and VEGF and PGE2. Reconditioning MSCs in their own serum potentiates their immunotherapeutic function, a technique that can be used in clinical applications. stem cells translational medicine2019;8:1092–1106
Collapse
Affiliation(s)
- Amy L Xu
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Department of Human Biology, Stanford University, Stanford, California, USA
| | - Luis A Rodriguez
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Kerfoot P Walker
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Arezoo Mohammadipoor
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Robin M Kamucheka
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA
| | - Leopoldo C Cancio
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA
| | - Andriy I Batchinsky
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,The Geneva Foundation, Tacoma, Washington, USA
| | - Ben Antebi
- Department of Expeditionary Critical Care, U.S. Army Institute of Surgical Research, San Antonio, Texas, USA.,Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
25
|
Rodriguez LA, Mohammadipoor A, Alvarado L, Kamucheka RM, Asher AM, Cancio LC, Antebi B. Preconditioning in an Inflammatory Milieu Augments the Immunotherapeutic Function of Mesenchymal Stromal Cells. Cells 2019; 8:cells8050462. [PMID: 31096722 PMCID: PMC6562603 DOI: 10.3390/cells8050462] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Multipotent mesenchymal stromal cells (MSCs) have emerged as potent therapeutic agents for multiple indications. However, recent evidence indicates that MSC function is compromised in the physiological post-injury milieu. In this study, bone marrow (BM)- and adipose-derived (AD)-MSCs were preconditioned in hypoxia with or without inflammatory mediators to potentiate their immunotherapeutic function in preparation for in vivo delivery. Human MSCs were cultured for 48 hours in either normoxia (21% O2) or hypoxia (2% O2) with or without the addition of Cytomix, thus creating 4 groups: 1) normoxia (21%); 2) Cytomix-normoxia (+21%); 3) hypoxia (2%); and 4) Cytomix-hypoxia (+2%). The 4 MSC groups were subjected to comprehensive evaluation of their characteristics and function. Preconditioning did not alter common MSC surface markers; nonetheless, Cytomix treatment triggered an increase in tissue factor (TF) expression. Moreover, the BM-MSCs and AD-MSCs from the +2% group were not able to differentiate to chondrocytes and osteoblasts, respectively. Following Cytomix preconditioning, the metabolism of MSCs was significantly increased while viability was decreased in AD-MSCs, but not in BM-MSCs. MSCs from both tissues showed a significant upregulation of key anti-inflammatory genes, increased secretion of IL-1 receptor antagonist (RA), and enhanced suppression of T-cell proliferation following the Cytomix treatment. Similarly, following a lipopolysaccharide challenge, the Cytomix-treated MSCs suppressed TNF-α secretion, while promoting the production of IL-10 and IL-1RA. These preconditioning approaches facilitate the production of MSCs with robust anti-inflammatory properties. AD-MSCs preconditioned with Cytomix under normoxia appear to be the most promising therapeutic candidates; however, safety concerns, such as thrombogenic disposition of cells due to TF expression, should be carefully considered prior to clinical translation.
Collapse
Affiliation(s)
- Luis A Rodriguez
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.
| | - Arezoo Mohammadipoor
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA.
| | - Lucero Alvarado
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA.
- University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | - Robin M Kamucheka
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.
| | - Amber M Asher
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA.
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.
| | - Ben Antebi
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.
- University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
26
|
Antebi B, Walker KP, Mohammadipoor A, Rodriguez LA, Moore RK, Cancio LC, Batchinsky AI. Bench-to-bedside optimization of mesenchymal stem cell isolation, processing, and expansion for in vivo administration. Regen Med 2019; 14:279-293. [PMID: 31070521 DOI: 10.2217/rme-2018-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: In this study, we aimed at identifying the optimal conditions for isolation, processing and expansion of mesenchymal stem cells (MSCs). Methods: Porcine bone marrow was obtained from either small- or large-volume bone marrow aspirate (BMA). Next, three BMA processing methods were compared. Finally, the best condition was selected from various culture parameters, including basal media, supplementation and seeding density. Results: Our results demonstrate that a small-volume BMA and direct plating yields significantly higher concentration of MSCs. Basal media supplementation with 10% platelet lysate and seeding density of 1000 cells/cm2 can generate large numbers of multipotent MSCs with augmented function and low population doublings. Conclusion: This work provides guidance for preparation of robust MSCs for future clinical trials.
Collapse
Affiliation(s)
- Ben Antebi
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| | - Kerfoot P Walker
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.,Oak Ridge Institute for Science & Education, Oak Ridge, TN 37831-0117, USA
| | - Arezoo Mohammadipoor
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.,Oak Ridge Institute for Science & Education, Oak Ridge, TN 37831-0117, USA
| | - Luis A Rodriguez
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| | - Robbie K Moore
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA
| | - Andriy I Batchinsky
- United States Army Institute of Surgical Research, San Antonio, TX 78234, USA.,The Geneva Foundation, Tacoma, WA 98402, USA
| |
Collapse
|
27
|
Derwall M, Martin L, Rossaint R. The acute respiratory distress syndrome: pathophysiology, current clinical practice, and emerging therapies. Expert Rev Respir Med 2018; 12:1021-1029. [PMID: 30431366 DOI: 10.1080/17476348.2018.1548280] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION More than fifty years after the first description of acute respiratory distress syndrome (ARDS) by Ashbaugh and colleagues, no specific treatment of the underlying pathophysiological processes is available. The current therapeutic regime is comprised of supportive measures such as lung protective ventilation, restrictive fluid management, paralyzing drugs, and prone positioning. Although vast improvements have been made in ARDS-treatment during the last five decades, mortality among patients with severe ARDS remains at an unacceptable rate of 45%. Areas covered: This article reviews the evolution of the currently used definition, established pathophysiological mechanism, highlights the current best clinical practice to treat ARDS, gives a brief outlook on cutting edge trends in ARDS research and closes with an expert opinion on the subject. Expert commentary: Individualizing the provided measures to specific genotypes is the key challenge in ARDS research today. The ongoing digital revolution will help to individualize ARDS-treatment and will therefore presumably improve survival and quality of life.
Collapse
Affiliation(s)
- Matthias Derwall
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| | - Lukas Martin
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| | - Rolf Rossaint
- a Klinik für Anästhesiologie , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany.,b Klinik für Operative Intensivmedizin und Intermediate Care , Uniklinik RWTH Aachen, Medizinische Fakultät RWTH Aachen , Aachen , Germany
| |
Collapse
|
28
|
Mohammadipoor A, Antebi B, Batchinsky AI, Cancio LC. Therapeutic potential of products derived from mesenchymal stem/stromal cells in pulmonary disease. Respir Res 2018; 19:218. [PMID: 30413158 PMCID: PMC6234778 DOI: 10.1186/s12931-018-0921-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/23/2018] [Indexed: 12/15/2022] Open
Abstract
Multipotent mesenchymal stem/stromal cells (MSCs) possess robust self-renewal characteristics and the ability to differentiate into tissue-specific cells. Their therapeutic potential appears promising as evident from their efficacy in several animal models of pulmonary disorders as well as early-phase clinical trials of acute respiratory distress syndrome (ARDS) and chronic obstructive pulmonary disease (COPD). Such therapeutic efficacy might be attributed to MSC-derived products (the "secretome"), namely conditioned media (CM) and extracellular vesicles (EVs), which have been shown to play pivotal roles in the regenerative function of MSCs. Importantly, the EVs secreted by MSCs can transfer a variety of bioactive factors to modulate the function of recipient cells via various mechanisms, including ligand-receptor interactions, direct membrane fusion, endocytosis, or phagocytosis.Herein, we review the current state-of-the-science of MSC-derived CM and EVs as potential therapeutic agents in lung diseases. We suggest that the MSC-derived secretome might be an appropriate therapeutic agent for treating aggressive pulmonary disorders because of biological and logistical advantages over live cell therapy. Nonetheless, further studies are warranted to elucidate the safety and efficacy of these components in combating pulmonary diseases.
Collapse
Affiliation(s)
- Arezoo Mohammadipoor
- Multi-Organ Support Technology (MOST) Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA. .,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Ben Antebi
- Multi-Organ Support Technology (MOST) Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| | - Andriy I Batchinsky
- Multi-Organ Support Technology (MOST) Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA.,The Geneva Foundation, Tacoma, WA, USA
| | - Leopoldo C Cancio
- Multi-Organ Support Technology (MOST) Task Area, US Army Institute of Surgical Research, Fort Sam Houston, TX, USA
| |
Collapse
|
29
|
Antebi B, Rodriguez LA, Walker KP, Asher AM, Kamucheka RM, Alvarado L, Mohammadipoor A, Cancio LC. Short-term physiological hypoxia potentiates the therapeutic function of mesenchymal stem cells. Stem Cell Res Ther 2018; 9:265. [PMID: 30305185 PMCID: PMC6180371 DOI: 10.1186/s13287-018-1007-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/20/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Background In the bone marrow, MSCs reside in a hypoxic milieu (1–5% O2) that is thought to preserve their multipotent state. Typically, in vitro expansion of MSCs is performed under normoxia (~ 21% O2), a process that has been shown to impair their function. Here, we evaluated the characteristics and function of MSCs cultured under hypoxia and hypothesized that, when compared to normoxia, dedicated hypoxia will augment the functional characteristics of MSCs. Methods Human and porcine bone marrow MSCs were obtained from fresh mononuclear cells. The first study evaluated MSC function following both long-term (10 days) and short-term (48 h) hypoxia (1% O2) culture. In our second study, we evaluated the functional characteristics of MSC cultured under short-term 2% and 5% hypoxia. MSCs were evaluated for their metabolic activity, proliferation, viability, clonogenicity, gene expression, and secretory capacity. Results In long-term culture, common MSC surface marker expression (CD44 and CD105) dropped under hypoxia. Additionally, in long-term culture, MSCs proliferated significantly slower and provided lower yields under hypoxia. Conversely, in short-term culture, MSCs proliferated significantly faster under hypoxia. In both long-term and short-term cultures, MSC metabolic activity was significantly higher under hypoxia. Furthermore, MSCs cultured under hypoxia had upregulated expression of VEGF with concomitant downregulation of HMGB1 and the apoptotic genes BCL-2 and CASP3. Finally, in both hypoxia cultures, the pro-inflammatory cytokine, IL-8, was suppressed, while levels of the anti-inflammatories, IL-1ra and GM-CSF, were elevated in short-term hypoxia only. Conclusions In this study, we demonstrate that hypoxia augments the therapeutic characteristics of both porcine and human MSCs. Yet, short-term 2% hypoxia offers the greatest benefit overall, exemplified by the increase in proliferation, self-renewing capacity, and modulation of key genes and the inflammatory milieu as compared to normoxia. These data are important for generating robust MSCs with augmented function for clinical applications.
Collapse
Affiliation(s)
- Ben Antebi
- United States Army Institute of Surgical Research, San Antonio, TX, USA.
| | - Luis A Rodriguez
- United States Army Institute of Surgical Research, San Antonio, TX, USA
| | - Kerfoot P Walker
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Amber M Asher
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Robin M Kamucheka
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lucero Alvarado
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Arezoo Mohammadipoor
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, San Antonio, TX, USA
| |
Collapse
|
30
|
Antebi B, Walker KP, Mohammadipoor A, Rodriguez LA, Montgomery RK, Batchinsky AI, Cancio LC. The effect of acute respiratory distress syndrome on bone marrow-derived mesenchymal stem cells. Stem Cell Res Ther 2018; 9:251. [PMID: 30257702 PMCID: PMC6158906 DOI: 10.1186/s13287-018-0981-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 01/14/2023] Open
Abstract
Background It is known that, following a physiological insult, bone marrow-derived mesenchymal stem cells (MSCs) mobilize and home to the site of injury. However, the effect of injury on the function of endogenous MSCs is unknown. In this study, MSCs harvested from the bone marrow of swine with or without acute respiratory distress syndrome (ARDS) were assessed for their characteristics and therapeutic function. Methods MSCs were harvested from three groups of anesthetized and mechanically ventilated swine (n = 3 in each group): 1) no ARDS (‘Uninjured’ group); 2) ARDS induced via smoke inhalation and 40% burn and treated with inhaled epinephrine (‘Injured Treated’ group); and 3) ARDS without treatment (‘Injured Untreated’ group). Cellular evaluation of the three groups included: flow cytometry for MSC markers; colony forming unit-fibroblast (CFU-F) assay; proliferative and metabolic capacity; gene expression using quantitative real-time polymerase chain reaction (qRT-PCR); and a lipopolysaccharide (LPS) challenge, with or without coculture with mononuclear cells (MNCs), for evaluation of their protein secretion profile using Multiplex. Statistical analysis was performed using one- or two-way analysis of variance (ANOVA) with a Tukey’s post-test; a p-value less than 0.05 was considered statistically significant. Results Cells from all groups exhibited nearly 100% expression of MSC surface markers and retained their multidifferentiation capacity. However, the MSCs from the ‘Injured Untreated’ group generated a significantly higher number of colonies compared with the other two groups (p < 0.0001), indicative of increased clonogenic capacity following ARDS. Following an LPS challenge, the MSCs from the ‘Injured Untreated’ group exhibited a significant reduction in their proliferative capacity (p = 0.0002), significant downregulation in the expression of high-mobility group box 1 (HMGB1; p < 0.001), Toll-like receptor (TLR)-4 (p < 0.01), and vascular endothelial growth factor (VEGF; p < 0.05) genes, and significantly diminished secretory capacity for the inflammatory mediators interleukin (IL)-6 (p < 0.0001), IL-8 (p < 0.05), and tumor necrosis factor (TNF)-α (p < 0.05) compared with the ‘Uninjured’ group. Conclusions The results suggest that, following ARDS, there is an increase in the clonogenic capacity of MSCs to increase the available stem cell pool in vivo. However, MSCs harvested from subjects with ARDS seem to exhibit a diminished capacity to proliferate, express regenerative signals, and secrete pro/anti-inflammatory mediators.
Collapse
Affiliation(s)
- Ben Antebi
- United States Army Institute of Surgical Research, San Antonio, TX, USA.
| | - Kerfoot P Walker
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Arezoo Mohammadipoor
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Luis A Rodriguez
- United States Army Institute of Surgical Research, San Antonio, TX, USA
| | | | - Andriy I Batchinsky
- United States Army Institute of Surgical Research, San Antonio, TX, USA.,The Geneva Foundation, Tacoma, WA, USA
| | - Leopoldo C Cancio
- United States Army Institute of Surgical Research, San Antonio, TX, USA
| |
Collapse
|