1
|
Wetzlich B, Nyakundi BB, Yang J. Therapeutic applications and challenges in myostatin inhibition for enhanced skeletal muscle mass and functions. Mol Cell Biochem 2025; 480:1535-1553. [PMID: 39340593 PMCID: PMC11842502 DOI: 10.1007/s11010-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Myostatin, a potent negative regulator of skeletal muscle mass, has garnered significant attention as a therapeutic target for muscle dystrophies. Despite extensive research and promising preclinical results, clinical trials targeting myostatin inhibition in muscle dystrophies have failed to yield substantial improvements in muscle function or fitness in patients. This review details the mechanisms behind myostatin's function and the various inhibitors that have been tested preclinically and clinically. It also examines the challenges encountered in clinical translation, including issues with drug specificity, differences in serum myostatin concentrations between animal models and humans, and the necessity of neural input for functional improvements. Additionally, we explore promising avenues of research beyond muscle dystrophies, particularly in the treatment of metabolic syndromes and orthopedic disorders. Insights from these alternative applications suggest that myostatin inhibition may hold the potential for addressing a broader range of pathologies, providing new directions for therapeutic development.
Collapse
Affiliation(s)
- Brock Wetzlich
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Benard B Nyakundi
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
2
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
3
|
Cui Y, Yi Q, Sun W, Huang D, Zhang H, Duan L, Shang H, Wang D, Xiong J. Molecular basis and therapeutic potential of myostatin on bone formation and metabolism in orthopedic disease. Biofactors 2023; 49:21-31. [PMID: 32997846 DOI: 10.1002/biof.1675] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022]
Abstract
Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a key autocrine/paracrine inhibitor of skeletal muscle growth. Recently, researchers have postulated that myostatin is a negative regulator of bone formation and metabolism. Reportedly, myostatin is highly expressed in the fracture area, affecting the endochondral ossification process during the early stages of fracture healing. Furthermore, myostatin is highly expressed in the synovium of patients with rheumatoid arthritis (RA) and is an effective therapeutic target for interfering with osteoclast formation and joint destruction in RA. Thus, myostatin is a potent anti-osteogenic factor and a direct modulator of osteoclast differentiation. Evaluation of the molecular pathway revealed that myostatin can activate SMAD and mitogen-activated protein kinase signaling pathways, inhibiting the Wnt/β-catenin pathway to synergistically regulate muscle and bone growth and metabolism. In summary, inhibition of myostatin or the myostatin signaling pathway has therapeutic potential in the treatment of orthopedic diseases. This review focused on the effects of myostatin on bone formation and metabolism and discussed the potential therapeutic effects of inhibiting myostatin and its pathways in related orthopedic diseases.
Collapse
Affiliation(s)
- Yinxing Cui
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Qian Yi
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Weichao Sun
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Dixi Huang
- Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hui Zhang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
- University of South China, Hengyang, Hunan, China
| | - Li Duan
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Hongxi Shang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Daping Wang
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| | - Jianyi Xiong
- Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Department of Orthopedics, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University, Health Science Center), Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Kruszewski M, Aksenov MO. Association of Myostatin Gene Polymorphisms with Strength and Muscle Mass in Athletes: A Systematic Review and Meta-Analysis of the MSTN rs1805086 Mutation. Genes (Basel) 2022; 13:2055. [PMID: 36360291 PMCID: PMC9690375 DOI: 10.3390/genes13112055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 12/26/2023] Open
Abstract
Polymorphism (rs1805086), c.458A>G, p.Lys(K)153Arg(R), (K153R) of the myostatin gene (MSTN) has been associated with a skeletal muscle phenotype (hypertrophic response in muscles due to strength training). However, there are not enough reliable data to demonstrate whether MSTN rs1805086 K and R allelic variants are valid genetic factors that can affect the strength phenotype of athletes' skeletal muscles. The aim is to conduct a systematic review and meta-analysis of the association of MSTN rs1805086 polymorphism with the strength phenotype of athletes. This study analyzed 71 research articles on MSTN and performed a meta-analysis of MSTN K153R rs1805086 polymorphism in strength-oriented athletes and a control (non-athletes) group. It was found that athletes in the strength-oriented athlete group had a higher frequency of the R minor variant than that in the control group (OR = 2.02, P = 0.05). Thus, the obtained results convincingly demonstrate that there is an association between the studied polymorphism and strength phenotype of athletes; therefore, further studies on this association are scientifically warranted.
Collapse
Affiliation(s)
- Marek Kruszewski
- Department of Physical Education, Faculty of Individual Sports, Jozef Pilsudski University of Physical Education in Warsaw, 00-968 Warszawa, Poland
| | - Maksim Olegovich Aksenov
- Academic Department of Physical Education, Plekhanov Russian University of Economics, Moscow 117997, Russia
- Department of Physical Education Theory, Faculty of Physical Training, Sport and Tourism, Banzarov Buryat State University, Ulan-Ude 670000, Russia
| |
Collapse
|
5
|
The relationship between transforming growth factor β superfamily members (GDF11 and BMP4) and lumbar spine bone mineral density in postmenopausal Chinese women. Arch Gynecol Obstet 2021; 305:737-747. [PMID: 34417839 DOI: 10.1007/s00404-021-06183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The relationship between transforming growth factor β superfamily members (GDF11 and BMP4) and bone metabolism remains controversial. The aim of this study was to investigate the association between serum GDF11 and BMP4 levels and lumbar spine bone mineral density (LBMD) in a cohort of postmenopausal Chinese women. METHODS This was a non-prospective cross-sectional study of 350 postmenopausal women with a mean age of 63.13 ± 8.66 years who came from Shenyang, China. LBMD was measured using dual-energy X-ray absorptiometry. Serum GDF11 and BMP4 concentrations were detected using a sandwich enzyme immunoassay kit. Pearson's correlation analysis and regression analyses were carried out to investigate the relationships between LBMD and serum GDF11 and BMP4 levels. RESULTS A linear association between LBMD and serum LgGDF11 concentration was observed after adjusting for numerous confounders (P = 0.018). In addition, the osteoporosis (OP) was inversely related to LgGDF11 and the odds ratios for postmenopausal women with lumbar OP in LgGDF11 quartile group 2, group 3, and group 4 were 0.46 (95% CI 0.23-0.90, P < 0.05), 0.41 (95% CI 0.20-0.84, P < 0.05), and 0.30 (95% CI 0.14-0.63, P < 0.01), respectively (P = 0.001 for the trend), when compared to the highest quartile of LgGDF11 after adjustments for many confounding variables in this study. CONCLUSIONS This study showed that serum GDF11 levels were linearly related to LBMD, and it was also revealed that serum GDF11 levels were significantly associated with lumbar OP in postmenopausal women. However, serum BMP4 levels were not associated with LBMD and lumbar OP.
Collapse
|
6
|
Fennen M, Weinhage T, Kracke V, Intemann J, Varga G, Wehmeyer C, Foell D, Korb-Pap A, Pap T, Dankbar B. A myostatin-CCL20-CCR6 axis regulates Th17 cell recruitment to inflamed joints in experimental arthritis. Sci Rep 2021; 11:14145. [PMID: 34239010 PMCID: PMC8266846 DOI: 10.1038/s41598-021-93599-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/23/2021] [Indexed: 01/02/2023] Open
Abstract
The interactions of fibroblast-like synoviocyte (FLS)-derived pro-inflammatory cytokines/chemokines and immune cells support the recruitment and activation of inflammatory cells in RA. Here, we show for the first time that the classical myokine myostatin (GDF-8) is involved in the recruitment of Th17 cells to inflammatory sites thereby regulating joint inflammation in a mouse model of TNFalpha-mediated chronic arthritis. Mechanistically, myostatin-deficiency leads to decreased levels of the chemokine CCL20 which is associated with less infiltration of Th17 cells into the inflamed joints. In vitro, myostatin alone or in combination with IL-17A enhances the secretion of CCL20 by FLS whereas myostatin-deficiency reduces CCL20 secretion, associated with an altered transmigration of Th17 cells. Thus, the communication between activated FLS and Th17 cells through myostatin and IL-17A may likely contribute to a vicious cycle of inflammation, accounting for the persistence of joint inflammation in chronic arthritis. Blockade of the CCL20–CCR6 axis by inhibition of myostatin may, therefore, be a promising treatment option for chronic inflammatory diseases such as arthritis.
Collapse
Affiliation(s)
- Michelle Fennen
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Toni Weinhage
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - Vanessa Kracke
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Johanna Intemann
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - Corinna Wehmeyer
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Dirk Foell
- Department of Pediatric Rheumatology and Immunology, University Hospital Muenster, Muenster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany
| | - Berno Dankbar
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Albert-Schweitzer-Campus 1, Bldg. D3, 48149, Muenster, Germany.
| |
Collapse
|
7
|
Motherwell JM, Hendershot BD, Goldman SM, Dearth CL. Gait biomechanics: A clinically relevant outcome measure for preclinical research of musculoskeletal trauma. J Orthop Res 2021; 39:1139-1151. [PMID: 33458856 DOI: 10.1002/jor.24990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/01/2020] [Accepted: 01/11/2021] [Indexed: 02/04/2023]
Abstract
Traumatic injuries to the musculoskeletal system are the most prevalent of those suffered by United States Military Service members and accounts for two-thirds of initial hospital costs to the Department of Defense. These combat-related wounds often leave survivors with life-long disability and represent a significant impediment to the readiness of the fighting force. There are immense opportunities for the field of tissue engineering and regenerative medicine (TE/RM) to address these musculoskeletal injuries through regeneration of damaged tissues as a means to restore limb functionality and improve quality of life for affected individuals. Indeed, investigators have made promising advancements in the treatment for these injuries by utilizing small and large preclinical animal models to validate therapeutic efficacy of next-generation TE/RM-based technologies. Importantly, utilization of a comprehensive suite of functional outcome measures, particularly those designed to mimic data collected within the clinical setting, is critical for successful translation and implementation of these therapeutics. To that end, the objective of this review is to emphasize the clinical relevance and application of gait biomechanics as a functional outcome measure for preclinical research studies evaluating the efficacy of TE/RM therapies to treat traumatic musculoskeletal injuries. Specifically, common musculoskeletal injuries sustained by service members-including volumetric muscle loss, post-traumatic osteoarthritis, and composite tissue injuries-are examined as case examples to highlight the use of gait biomechanics as an outcome measure using small and large preclinical animal models.
Collapse
Affiliation(s)
- Jessica M Motherwell
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Brad D Hendershot
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA.,Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephen M Goldman
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Christopher L Dearth
- DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, Maryland, USA.,Department of Surgery, Uniformed Services University of the Health Sciences and Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| |
Collapse
|
8
|
Omosule CL, Phillips CL. Deciphering Myostatin's Regulatory, Metabolic, and Developmental Influence in Skeletal Diseases. Front Genet 2021; 12:662908. [PMID: 33854530 PMCID: PMC8039523 DOI: 10.3389/fgene.2021.662908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/05/2021] [Indexed: 01/08/2023] Open
Abstract
Current research findings in humans and other mammalian and non-mammalian species support the potent regulatory role of myostatin in the morphology and function of muscle as well as cellular differentiation and metabolism, with real-life implications in agricultural meat production and human disease. Myostatin null mice (mstn−/−) exhibit skeletal muscle fiber hyperplasia and hypertrophy whereas myostatin deficiency in larger mammals like sheep and pigs engender muscle fiber hyperplasia. Myostatin’s impact extends beyond muscles, with alterations in myostatin present in the pathophysiology of myocardial infarctions, inflammation, insulin resistance, diabetes, aging, cancer cachexia, and musculoskeletal disease. In this review, we explore myostatin’s role in skeletal integrity and bone cell biology either due to direct biochemical signaling or indirect mechanisms of mechanotransduction. In vitro, myostatin inhibits osteoblast differentiation and stimulates osteoclast activity in a dose-dependent manner. Mice deficient in myostatin also have decreased osteoclast numbers, increased cortical thickness, cortical tissue mineral density in the tibia, and increased vertebral bone mineral density. Further, we explore the implications of these biochemical and biomechanical influences of myostatin signaling in the pathophysiology of human disorders that involve musculoskeletal degeneration. The pharmacological inhibition of myostatin directly or via decoy receptors has revealed improvements in muscle and bone properties in mouse models of osteogenesis imperfecta, osteoporosis, osteoarthritis, Duchenne muscular dystrophy, and diabetes. However, recent disappointing clinical trial outcomes of induced myostatin inhibition in diseases with significant neuromuscular wasting and atrophy reiterate complexity and further need for exploration of the translational application of myostatin inhibition in humans.
Collapse
Affiliation(s)
- Catherine L Omosule
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Charlotte L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, United States.,Department of Child Health, University of Missouri, Columbia, MO, United States
| |
Collapse
|
9
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
10
|
Aguilera-Saez J, Lopez-Masramon B, Collado JM, Monte-Soldado A, Rivas-Nicolls D, Serracanta J, Barret JP. Severely damaged lower limb salvage in a critically ill burned patient. Lessons learned. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2020; 10:191-200. [PMID: 33224606 PMCID: PMC7675203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Lower limb salvage in severely injured burned patients with bone or tendon exposure may be a reconstructive challenge. In this cases, local or regional flaps and other more conservative therapies such as dermal substitutes and negative-pressure wound therapy are usually not available or are not good enough to solve the problem. In such situations, microsurgical reconstruction with distant flaps seems to be the best option, even though the particularities of the severe burn patient may decrease free flaps' success rate. We report the case of a patient with severe electrical injuries affecting 70% of the total body surface area who had full-thickness burns to the lower extremity with wide bone exposure and extensively drug-resistant Pseudomonas aeruginosa infection. We achieved limb salvation using rectus femoris muscle free flap plus lateral and medial gastrocnemius muscle flaps and soleus muscle flap, after two failed microsurgical coverture attempts and a long not useful periplus with conservative therapies such us negative-pressure wound therapy and dermal substitutes. After 3 years of follow-up, the patient can walk without aid, and he has recovered his social and employment situation prior to the accident.
Collapse
Affiliation(s)
- Jorge Aguilera-Saez
- Plastic Surgery Department and Burn Center, Vall d'Hebron Barcelona Hospital Campus Barcelona, Spain
| | - Bernat Lopez-Masramon
- Plastic Surgery Department and Burn Center, Vall d'Hebron Barcelona Hospital Campus Barcelona, Spain
| | - Jose M Collado
- Plastic Surgery Department and Burn Center, Vall d'Hebron Barcelona Hospital Campus Barcelona, Spain
| | - Alejandra Monte-Soldado
- Plastic Surgery Department and Burn Center, Vall d'Hebron Barcelona Hospital Campus Barcelona, Spain
| | - Danilo Rivas-Nicolls
- Plastic Surgery Department and Burn Center, Vall d'Hebron Barcelona Hospital Campus Barcelona, Spain
| | - Jordi Serracanta
- Plastic Surgery Department and Burn Center, Vall d'Hebron Barcelona Hospital Campus Barcelona, Spain
| | - Juan P Barret
- Plastic Surgery Department and Burn Center, Vall d'Hebron Barcelona Hospital Campus Barcelona, Spain
| |
Collapse
|
11
|
Kerschan-Schindl K, Tiefenböck TM, Föger-Samwald U, Payr S, Frenzel S, Marculescu R, Gleiss A, Sarahrudi K, Pietschmann P. Circulating Myostatin Levels Decrease Transiently after Implantation of a Hip Hemi-Arthroplasty. Gerontology 2020; 66:393-400. [PMID: 32454508 DOI: 10.1159/000507731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 04/03/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Muscle and bone metabolism are both important for the healing of fractures and the regeneration of injured muscle tissue. The aim of this investigation was to evaluate myostatin and other regulating factors in patients with hip fractures who underwent hemi-arthroplasty. METHODS Serum levels of myostatin (MSTN), follistatin (FSTN), dickkopf-1 (Dkk1), and periostin (PSTN) as well as markers of bone turnover were evaluated in patients with hip fractures before surgery and twice in the 2 weeks after surgery. These parameters were also evaluated in age- and gender-matched subjects without major musculoskeletal injury. RESULTS MSTN was transiently reduced; its opponent FSTN was transiently increased. Dkk1, the negative regulator of bone mass, and PSTN, a marker of subperiosteal bone formation, increased after surgery. With regard to markers of bone turnover, resorption was elevated during the entire period of observation whereas the early bone formation marker N-terminal propeptide of type I collagen was elevated 12 days after surgery. CONCLUSIONS Unexpectedly, MSTN, a negative regulator of muscle growth, was reduced after surgery compared with before surgery. As musculoskeletal markers are altered during bone healing, they do not reflect general bone metabolism after fracture or joint arthroplasty. This is important because many elderly patients receive treatment for osteoporosis.
Collapse
Affiliation(s)
- Katharina Kerschan-Schindl
- Department of Physical Medicine, Rehabilitation and Occupational Therapy, Medical University of Vienna, Vienna, Austria
| | - Thomas M Tiefenböck
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Ursula Föger-Samwald
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Stephan Payr
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Stephan Frenzel
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Andreas Gleiss
- Center of Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Vienna, Austria
| | - Kambiz Sarahrudi
- Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria, .,Landesklinikum Wiener Neustadt, Wiener Neustadt, Austria,
| | - Peter Pietschmann
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Zhang N, Chim YN, Wang J, Wong RMY, Chow SKH, Cheung WH. Impaired Fracture Healing in Sarco-Osteoporotic Mice Can Be Rescued by Vibration Treatment Through Myostatin Suppression. J Orthop Res 2020; 38:277-287. [PMID: 31535727 DOI: 10.1002/jor.24477] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/13/2019] [Indexed: 02/04/2023]
Abstract
Sarcopenia is highly prevalent in fragility fracture patients and is associated with delayed healing. In this study, we investigated the effect of low-magnitude high-frequency vibration (LMHFV) on osteoporotic fracture with sarcopenia and the potential role of myostatin. Osteoporotic fractures created in sarcopenic SAMP8, non-sarcopenic SAMR1 were randomized to control or LMHFV (SAMP8, SAMR1, SAMP8-V, or SAMR1-V) groups. Healing and myostatin expression were evaluated at 2, 4, and 6 weeks post-fracture. In vitro, conditioned-media were collected from myofibers isolated from aged and young SAMP8 or C2C12 myoblasts with or without LMHFV. Osteoblastic MC3T3-E1 under osteogenic differentiation were treated with plain or conditioned-medium (±myostatin propeptide). LMHFV significantly enhanced callus formation was in non-sarcopenic SAMR1 mice; but the enhancement effect was not significant in SAMP8 mice at week 2. Myostatin expressions in callus and biceps femoris of SAMP8 group were significantly higher all groups with significant negative correlation with callus size (R2 = 0.7256; p = 0.0004). Mechanical properties (week 4) and callus remodeling (week 6) were inferior in SAMP8 versus SAMR1 and were significantly enhanced by LMHFV. Alkaline Phosphatase (ALP) and Runx2 expression of MC3T3-E1 was lower in aged myofiber compared with young, but upregulated by LMHFV or myostatin inhibition; also confirmed with C2C12. LMHFV enhanced early callus formation, microarchitecture, callus remodeling and mechanical properties of fracture healing in both SAMP8 and SAMR1; however, more effective in non-sarcopenic SAMR1 mice. Impaired fracture healing in sarcopenic SAMP8 mice is attributed by elevated myostatin expression in callus and muscle, which correlated negatively with callus formation. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:277-287, 2020.
Collapse
Affiliation(s)
- Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Yu Ning Chim
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Jinyu Wang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Ronald Man Yeung Wong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China
| | - Simon K H Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System Research Base, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Wing-Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, 5/F Lui Che Woo Clinical Sciences Building, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong, People's Republic of China.,The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System Research Base, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
13
|
Abstract
Bone and skeletal muscle are integrated organs and their coupling has been considered mainly a mechanical one in which bone serves as attachment site to muscle while muscle applies load to bone and regulates bone metabolism. However, skeletal muscle can affect bone homeostasis also in a non-mechanical fashion, i.e., through its endocrine activity. Being recognized as an endocrine organ itself, skeletal muscle secretes a panel of cytokines and proteins named myokines, synthesized and secreted by myocytes in response to muscle contraction. Myokines exert an autocrine function in regulating muscle metabolism as well as a paracrine/endocrine regulatory function on distant organs and tissues, such as bone, adipose tissue, brain and liver. Physical activity is the primary physiological stimulus for bone anabolism (and/or catabolism) through the production and secretion of myokines, such as IL-6, irisin, IGF-1, FGF2, beside the direct effect of loading. Importantly, exercise-induced myokine can exert an anti-inflammatory action that is able to counteract not only acute inflammation due to an infection, but also a condition of chronic low-grade inflammation raised as consequence of physical inactivity, aging or metabolic disorders (i.e., obesity, type 2 diabetes mellitus). In this review article, we will discuss the effects that some of the most studied exercise-induced myokines exert on bone formation and bone resorption, as well as a brief overview of the anti-inflammatory effects of myokines during the onset pathological conditions characterized by the development a systemic low-grade inflammation, such as sarcopenia, obesity and aging.
Collapse
Affiliation(s)
- Marta Gomarasca
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry & Molecular Biology, Milan, Italy; Gdańsk University of Physical Education & Sport, Gdańsk, Pomorskie, Poland.
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Extracellular vesicles (EV), which include exosomes and microvesicles, are membrane-bound particles shed by most cell types and are important mediators of cell-cell communication by delivering their cargo of proteins, miRNA, and mRNA to target cells and altering their function. Here, we provide an overview of what is currently known about EV composition and function in bone and muscle cells and discuss their role in mediating crosstalk between these two tissues as well as their role in musculoskeletal aging. RECENT FINDINGS Recent studies have shown that muscle and bone cells produce EV, whose protein, mRNA, and miRNA cargo reflects the differentiated state of the parental cells. These EV have functional effects within their respective tissues, but evidence is accumulating that they are also shed into the circulation and can have effects on distant tissues. Bone- and muscle-derived EV can alter the differentiation and function of bone and muscle cells. Many of these effects are mediated via small microRNAs that regulate target genes in recipient cells. EV-mediated signaling in muscle and bone is an exciting and emerging field. While considerable progress has been made, much is still to be discovered about the mechanisms regulating EV composition, release, uptake, and function in muscle and bone. A key challenge is to understand more precisely how exosomes function in truly physiological settings.
Collapse
Affiliation(s)
- Weiping Qin
- National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY, 10468, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri Kansas City, 650 E. 25th Street, Kansas City, MO, 64108, USA.
| |
Collapse
|
15
|
A sensitive antibody-free 2D-LC–MS/MS assay for the quantitation of myostatin in the serum of different species. Bioanalysis 2019; 11:957-970. [DOI: 10.4155/bio-2018-0311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aim: Myostatin (MSTN) is an attractive therapeutic target for the treatment of muscle degeneration-related diseases and is being evaluated as a target engagement biomarker. Methods: A sensitive 2D-LC–MS/MS assay was developed to quantify MSTN in different animal species. Sample preparation involved SDS denaturation of serum proteins followed by tryptic digestion and peptide enrichment by SPE. Results: The assay was validated with LLOQ of 2.5 ng/ml in rat and monkey serum. The precision was within 13.7%, and the bias was within ±12.6% for all quality control samples in authentic matrices. Conclusion: This new assay was successfully applied to measure MSTN in mouse, rat, monkey and human serum. The total MSTN in rat and monkey serum was elevated following administration of an MSTN inhibitor.
Collapse
|
16
|
Kim JH, Kim JH, Sutikno LA, Lee SB, Jin DH, Hong YK, Kim YS, Jin HJ. Identification of the minimum region of flatfish myostatin propeptide (Pep45-65) for myostatin inhibition and its potential to enhance muscle growth and performance in animals. PLoS One 2019; 14:e0215298. [PMID: 30998775 PMCID: PMC6472743 DOI: 10.1371/journal.pone.0215298] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/30/2019] [Indexed: 12/31/2022] Open
Abstract
Myostatin (MSTN) negatively regulates skeletal muscle growth, and its activity is inhibited by the binding of MSTN propeptide (MSTNpro), the N-terminal domain of proMSTN that is proteolytically cleaved from the proMSTN. Partial sequences from the N-terminal side of MSTNpro have shown to be sufficient to inhibit MSTN activity. In this study, to determine the minimum size of flatfish MSTNpro for MSTN inhibition, various truncated forms of flatfish MSTNpro with N-terminal maltose binding protein (MBP) fusion were expressed in E. coli and purified. MSTNpro regions consisting of residues 45–68, -69, and -70 with MBP fusion suppressed MSTN activity with a potency comparable to that of full-sequence flatfish MSTNpro in a pGL3-(CAGA)12-luciferase reporter assay. Even though the MSTN-inhibitory potency was about 1,000-fold lower, the flatfish MSTNpro region containing residues 45–65 (MBP-Pro45-65) showed MSTN-inhibitory capacity but not the MBP-Pro45-64, indicating that the region 45–65 is the minimum domain required for MSTN binding and suppression of its activity. To examine the in vivo effect of MBP-fused, truncated flatfish MSTNpro, MBP-Pro45-70-His6 (20 mg/kg body wt) was subcutaneously injected 5 times for 14 days in mice. Body wt gain and bone mass were not affected by the administration. Grip strength and swimming time were significantly enhanced at 7 d after the administration. At 14 d, the effect on grip strength disappeared, and the extent of the effect on swimming time significantly diminished. The presence of antibody against MBP-Pro45-70-His6 was observed at both 7 and 14 d after the administration with the titer value at 14 d being much greater than that at 7 d, suggesting that antibodies against MBP-Pro45-70-His6 neutralized the MSTN-inhibitory effect of MBP-Pro45-70-His6. We, thus, examined the MSTN-inhibitory capacity and in vivo effect of flatfish MSTNpro region 45–65 peptide (Pep45-65-NH2), which was predicted to have no immunogenicity in silico analysis. Pep45-65-NH2 suppressed MSTN activity with a potency similar to that of MBP-Pro45-65 but did not suppress GDF11, or activin A. Pep45-65-NH2 blocked MSTN-induced Smad2 phosphorylation in HepG2 cells. The administration of Pep45-65 (20 mg/kg body wt, 5 times for 2 weeks) increased the body wt gain with a greater gain at 14 d than at 7 d and muscle wt. Grip strength and swimming time were also significantly enhanced by the administration. Antibody titer against Pep45-65 was not detected. In conclusion, current results indicate that MSTN-inhibitory proteins with heterologous fusion partner may not be effective in suppressing MSTN activity in vivo due to an immune response against the proteins. Current results also show that the region of flatfish MSTNpro consisting of 45–65 (Pep45-65) can suppress mouse MSTN activity and increase muscle mass and function without invoking an immune response, implying that Pep45-65 would be a potential agent to enhance skeletal muscle growth and function in animals or to treat muscle atrophy caused by various clinical conditions.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Jeong Han Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | | | - Sang Beum Lee
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Deuk-Hee Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namgu, Busan, Korea
| | - Yong Soo Kim
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail: (YK); (HJ)
| | - Hyung-Joo Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
- * E-mail: (YK); (HJ)
| |
Collapse
|
17
|
Wu Y, Qu J, Li H, Yuan H, Guo Q, Ouyang Z, Lu Q. Relationship between serum level of growth differentiation factors 8, 11 and bone mineral density in girls with anorexia nervosa. Clin Endocrinol (Oxf) 2019; 90:88-93. [PMID: 30281844 DOI: 10.1111/cen.13871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/30/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adolescents with anorexia nervosa (AN) have low body mass and low bone mineral density (BMD). Growth differentiation factor 8 (Myostatin, GDF8) and its homologue growth differentiation factor 11 (GDF11), members of the TGF-β super-family, play an important role in muscle regeneration and bone metabolism in healthy individuals. However, their association with BMD in AN is unknown. The present study was undertaken to investigate the relationship between GDF8, GDF11 and BMD in adolescent girls with AN. METHODS Serum GDF8, GDF11 and BMD were determined in 25 girls (12-16 years old) with AN and 31 healthy girls (12-16 years old). RESULTS Growth differentiation factor 8 levels were lower in AN subjects. On the contrary, GDF11 levels were higher in AN subjects than controls. There was no relationship between GDF8 and BMD. A significant negative correlation between GDF11 and BMD was found. In multiple linear stepwise regression analysis, BMI, 25-hydroxyvitamin D, GDF11, or lean mass, but not fat mass and GDF8, were independent predictors of BMD in the AN and control groups separately. CONCLUSIONS Growth differentiation factor 11 was independent predictor of BMD in girls with AN. It suggested that GDF11 exerts a negative effect on bone mass.
Collapse
Affiliation(s)
- Yali Wu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
- Department of Science and Education, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Jian Qu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haiyan Yuan
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qi Guo
- Endocrinology Research Center, The Xiangya Hospital of Central South University, Changsha, China
| | - Zhanbo Ouyang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
18
|
Abstract
Tendons connect muscle to bone and play an integral role in bone and joint alignment and loading. Tendons act as pulleys that provide anchorage of muscle forces for joint motion and stability, as well as for fracture reduction and realignment. Patients that experience complex fractures also have concomitant soft tissue injuries, such as tendon damage or rupture. Tendon injuries that occur at the time of bone fracture have long-term ramifications on musculoskeletal health, yet these injuries are often disregarded in clinical treatment and diagnosis for patients with bone fractures as well as in basic science approaches for understanding bone repair processes. Delayed assessment of soft tissue injuries during evaluation of trauma can lead to chronic pain, dysfunction, and delayed bone healing even following successful fracture repair, highlighting the importance of identifying and treating damaged tendons early. Treatment strategies for bone repair, such as mechanical stabilization and biological therapeutics, can impact tendon healing and function. Because poor tendon healing following complex fracture can significantly impact the function of tendon during bone fracture healing, a need exists to understand the healing process of complex fractures more broadly, beyond the healing of bone. In this review, we explored the mechanical and biological interaction of bone and tendon in the context of complex fracture, as well as the relevance and potential ramifications of tendon damage following bone fracture, which has particular impact on patients that experience complex fractures, such as from combat, automobile accidents, and other trauma.
Collapse
Affiliation(s)
- Elahe Ganji
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
- Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716
| | - Megan L. Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
19
|
Wu LF, Zhu DC, Wang BH, Lu YH, He P, Zhang YH, Gao HQ, Zhu XW, Xia W, Zhu H, Mo XB, Lu X, Zhang L, Zhang YH, Deng FY, Lei SF. Relative abundance of mature myostatin rather than total myostatin is negatively associated with bone mineral density in Chinese. J Cell Mol Med 2017; 22:1329-1336. [PMID: 29247983 PMCID: PMC5783859 DOI: 10.1111/jcmm.13438] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 09/28/2017] [Indexed: 01/26/2023] Open
Abstract
Myostatin is mainly secreted by skeletal muscle and negatively regulates skeletal muscle growth. However, the roles of myostatin on bone metabolism are still largely unknown. Here, we recruited two large populations containing 6308 elderly Chinese and conducted comprehensive statistical analyses to evaluate the associations among lean body mass (LBM), plasma myostatin, and bone mineral density (BMD). Our data revealed that total myostatin in plasma was mainly determined by LBM. The relative abundance of mature myostatin (mature/total) was significantly lower in high versus low BMD subjects. Moreover, the relative abundance of mature myostatin was positively correlated with bone resorption marker. Finally, we carried out in vitro experiments and found that myostatin has inhibitory effects on the proliferation and differentiation of human osteoprogenitor cells. Taken together, our results have demonstrated that the relative abundance of mature myostatin in plasma is negatively associated with BMD, and the underlying functional mechanism for the association is most likely through inhibiting osteoblastogenesis and promoting osteoclastogenesis.
Collapse
Affiliation(s)
- Long-Fei Wu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Dong-Cheng Zhu
- Department of Orthopedics, Sihong People's Hospital, Suqian, Jiangsu, China
| | - Bing-Hua Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yi-Hua Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Pei He
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yun-Hong Zhang
- Disease Prevention and Control Center of Suzhou high Tech Zone, Suzhou, Jiangsu, China
| | - Hong-Qin Gao
- Shishan Community Health Service Center, Suzhou High Tech Zone, Suzhou, Jiangsu, China
| | - Xiao-Wei Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Wei Xia
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Hong Zhu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xing-Bo Mo
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Xin Lu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Yong-Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Fei-Yan Deng
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| | - Shu-Feng Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, Jiangsu, China.,Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
20
|
Hoffmann C, Weigert C. Skeletal Muscle as an Endocrine Organ: The Role of Myokines in Exercise Adaptations. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a029793. [PMID: 28389517 DOI: 10.1101/cshperspect.a029793] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exercise stimulates the release of proteins with autocrine, paracrine, or endocrine functions produced in skeletal muscle, termed myokines. Based on the current state of knowledge, the major physiological function of myokines is to protect the functionality and to enhance the exercise capacity of skeletal muscle. Myokines control adaptive processes in skeletal muscle by acting as paracrine regulators of fuel oxidation, hypertrophy, angiogenesis, inflammatory processes, and regulation of the extracellular matrix. Endocrine functions attributed to myokines are involved in body weight regulation, low-grade inflammation, insulin sensitivity, suppression of tumor growth, and improvement of cognitive function. Muscle-derived regulatory RNAs and metabolites, as well as the design of modified myokines, are promising novel directions for treatment of chronic diseases.
Collapse
Affiliation(s)
- Christoph Hoffmann
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Cora Weigert
- Division of Pathobiochemistry and Clinical Chemistry, Department of Internal Medicine IV, University Hospital Tübingen, 72076 Tübingen, Germany.,Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München at the University of Tübingen, 72076 Tübingen, Germany.,German Center for Diabetes Research (DZD), 85764 München-Neuherberg, Germany
| |
Collapse
|
21
|
Walton KL, Johnson KE, Harrison CA. Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Front Pharmacol 2017; 8:461. [PMID: 28769795 PMCID: PMC5509761 DOI: 10.3389/fphar.2017.00461] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/27/2017] [Indexed: 01/18/2023] Open
Abstract
Fibrosis occurs when there is an imbalance in extracellular matrix (ECM) deposition and degradation. Excessive ECM deposition results in scarring and thickening of the affected tissue, and interferes with tissue and organ homeostasis – mimicking an exaggerated “wound healing” response. Many transforming growth factor-β (TGF-β) ligands are potent drivers of ECM deposition, and additionally, have a natural affinity for the ECM, creating a concentrated pool of pro-fibrotic factors at the site of injury. Consequently, TGF-β ligands are upregulated in many human fibrotic conditions and, as such, are attractive targets for fibrosis therapy. Here, we will discuss the contribution of TGF-β proteins in the pathogenesis of fibrosis, and promising anti-fibrotic approaches that target TGF-β ligands.
Collapse
Affiliation(s)
- Kelly L Walton
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Katharine E Johnson
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| | - Craig A Harrison
- Growth Factor Therapeutics Laboratory, Department of Physiology, Monash University, ClaytonVIC, Australia
| |
Collapse
|
22
|
Zhang N, Chow SKH, Leung KS, Lee HH, Cheung WH. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8). Exp Gerontol 2017; 97:1-8. [PMID: 28711604 DOI: 10.1016/j.exger.2017.07.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/26/2017] [Accepted: 07/11/2017] [Indexed: 12/14/2022]
Abstract
Sarcopenia and osteoporotic fracture are common aging-related musculoskeletal problems. Recent evidences report that osteoporotic fracture patients showed high prevalence of sarcopenia; however, current clinical practice basically does not consider sarcopenia in the treatment or rehabilitation of osteoporotic fracture. There is almost no report studying the relationship of the co-existing of sarcopenia and osteoporotic fracture healing. In this study, we validated aged senescence accelerated mouse prone 8 (SAMP8) and senescence accelerated mouse resistant 1 (SAMR1) as animal models of senile osteoporosis with/without sarcopenia. Bone mineral density (BMD) at the 5th lumbar and muscle testing of the two animal strains were measured to confirm the status of osteoporosis and sarcopenia, respectively. Closed fracture was created on the right femur of 8-month-old animals. Radiographs were taken weekly post-fracture. MicroCT and histology of the fractured femur were performed at week 2, 4 and 6 post-fracture, while mechanical test of both femora at week 4 and 6 post-fracture. Results showed that the callus of SAMR1 was significantly larger at week 2 but smaller at week 6 post-fracture than SAMP8. Mechanical properties were significantly better at week 4 post-fracture in SAMR1 than SAMP8, indicating osteoporotic fracture healing was delayed in sarcopenic SAMP8. This study validated an animal model of co-existing sarcopenia and osteoporotic fracture, where a delayed fracture healing might be resulted in the presence of sarcopenia.
Collapse
Affiliation(s)
- Ning Zhang
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Simon Kwoon Ho Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Kwok Sui Leung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho Hin Lee
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Wing Hoi Cheung
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; The CUHK-ACC Space Medicine Centre on Health Maintenance of Musculoskeletal System, The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
23
|
Hurtgen BJ, Henderson BEP, Ward CL, Goldman SM, Garg K, McKinley TO, Greising SM, Wenke JC, Corona BT. Impairment of early fracture healing by skeletal muscle trauma is restored by FK506. BMC Musculoskelet Disord 2017; 18:253. [PMID: 28606129 PMCID: PMC5469075 DOI: 10.1186/s12891-017-1617-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 06/02/2017] [Indexed: 12/21/2022] Open
Abstract
Background Heightened local inflammation due to muscle trauma or disease is associated with impaired bone regeneration. Methods We hypothesized that FK506, an FDA approved immunomodulatory compound with neurotrophic and osteogenic effects, will rescue the early phase of fracture healing which is impaired by concomitant muscle trauma in male (~4 months old) Lewis rats. FK506 (1 mg/kg; i.p.) or saline was administered systemically for 14 days after an endogenously healing tibia osteotomy was created and fixed with an intermedullary pin, and the overlying tibialis anterior (TA) muscle was either left uninjured or incurred volumetric muscle loss injury (6 mm full thickness biopsy from middle third of the muscle). Results The salient observations of this study were that 1) concomitant TA muscle trauma impaired recovery of tibia mechanical properties 28 days post-injury, 2) FK506 administration rescued the recovery of tibia mechanical properties in the presence of concomitant TA muscle trauma but did not augment mechanical recovery of an isolated osteotomy (no muscle trauma), 3) T lymphocytes and macrophage presence within the traumatized musculature were heightened by trauma and attenuated by FK506 3 days post-injury, and 4) T lymphocyte but not macrophage presence within the fracture callus were attenuated by FK506 at 14 days post-injury. FK506 did not improve TA muscle isometric torque production Conclusion Collectively, these findings support the administration of FK506 to ameliorate healing of fractures with severe muscle trauma comorbidity. The results suggest one potential mechanism of action is a reduction in local T lymphocytes within the injured musculoskeletal tissue, though other mechanisms to include direct osteogenic effects of FK506 require further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12891-017-1617-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brady J Hurtgen
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Beth E P Henderson
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Catherine L Ward
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Stephen M Goldman
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Koyal Garg
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Todd O McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sarah M Greising
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Joseph C Wenke
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA
| | - Benjamin T Corona
- Extremity Trauma and Regenerative Medicine Task Area, US Army Institute of Surgical Research, 3698 Chambers Pass, BHT1, Fort Sam Houston, TX, 78234, USA.
| |
Collapse
|
24
|
Chen PR, Lee K. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development. J Anim Sci 2017; 94:3125-3134. [PMID: 27695802 DOI: 10.2527/jas.2016-0532] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.
Collapse
|
25
|
Guo W, Pencina KM, O'Connell K, Montano M, Peng L, Westmoreland S, Glowacki J, Bhasin S. Administration of an activin receptor IIB ligand trap protects male juvenile rhesus macaques from simian immunodeficiency virus-associated bone loss. Bone 2017; 97:209-215. [PMID: 28132908 PMCID: PMC5985824 DOI: 10.1016/j.bone.2017.01.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 01/07/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
Abstract
UNLABELLED HIV-infected individuals are at an increased risk of osteoporosis despite effective viral suppression. Observations that myostatin null mice have increased bone mass led us to hypothesize that simian immunodeficiency virus (SIV)-associated bone loss may be attenuated by blocking myostatin/TGFβ signaling. In this proof-of-concept study, pair-housed juvenile male rhesus macaques were inoculated with SIVmac239. Four weeks later, animals were treated with vehicle or Fc-conjugated soluble activin receptor IIB (ActR2B·Fc, iv. 10mg∗kg-1∗week-1) - an antagonist of myostatin and related members of TGFβ superfamily. Limb and trunk bone mineral content (BMC) and density (BMD) using dual-energy X-Ray absorptiometry, circulating markers of bone growth and turnover, and serum testosterone levels were measured at baseline and during the 12-week intervention period. The increase in BMC was significantly greater in the ActRIIB.Fc-treated group (+8g) than in the placebo group (-4g) (p<0.05). BMD also increased significantly more in the ActRIIB.Fc-treated macaques (+0.03g/cm2) than in the placebo-treated animals (+0g/cm2) (p<0.005). Serum osteocalcin was about two-fold higher in the ActRIIB.Fc-treated group than in the placebo group (p<0.05), but serum C-terminal telopeptide and testosterone levels did not differ significantly between groups. The expression levels of TNFalpha (p<0.05), GADD45 (p<0.005), and sclerostin (p<0.038) in the bone-marrow were significantly lower in the ActRIIB.Fc-treated group than in the placebo group. CONCLUSION The administration of ActRIIB.FC in SIV-infected juvenile macaques significantly increases BMC and BMD in association with reduced expression levels of markers of bone marrow inflammation.
Collapse
Affiliation(s)
- Wen Guo
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States.
| | - Karol M Pencina
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Karyn O'Connell
- Department of Comparative Pathology, New England Primate Research Center, One Pine Hill Drive, PO Box 9102, Southborough, MA 01772-9102, United States
| | - Monty Montano
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Liming Peng
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Susan Westmoreland
- Department of Comparative Pathology, New England Primate Research Center, One Pine Hill Drive, PO Box 9102, Southborough, MA 01772-9102, United States
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| | - Shalender Bhasin
- Research Program in Men's Health: Aging and Metabolism, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, United States
| |
Collapse
|
26
|
BAYARSAIKHAN O, KAWAI N, MORI H, KINOUCHI N, NIKAWA T, TANAKA E. Co-Administration of Myostatin-Targeting siRNA and ActRIIB-Fc Fusion Protein Increases Masseter Muscle Mass and Fiber Size. J Nutr Sci Vitaminol (Tokyo) 2017; 63:244-248. [DOI: 10.3177/jnsv.63.244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Od BAYARSAIKHAN
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Nobuhiko KAWAI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Hiroyo MORI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Nao KINOUCHI
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takeshi NIKAWA
- Department of Nutritional Physiology, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Eiji TANAKA
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
27
|
Lu Q, Tu ML, Li CJ, Zhang L, Jiang TJ, Liu T, Luo XH. GDF11 Inhibits Bone Formation by Activating Smad2/3 in Bone Marrow Mesenchymal Stem Cells. Calcif Tissue Int 2016; 99:500-509. [PMID: 27395058 DOI: 10.1007/s00223-016-0173-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/30/2016] [Indexed: 11/27/2022]
Abstract
Growth differentiation factor 11 (GDF11) is a member of the transforming growth factor-β superfamily. Recent studies confirmed that GDF11 plays an important role in regulating the regeneration of brain, skeletal muscle, and heart during aging; however, its role in bone metabolism remains unclear. Thus, the aim of this study was to determine the effects of GDF11 on bone metabolism, including bone formation and bone resorption, both in vitro and in vivo. Our results showed that GDF11 inhibited osteoblastic differentiation of bone marrow mesenchymal stem cells in vitro. Mechanistically, GDF11 repressed Runx2 expression by inducing SMAD2/3 phosphorylation during osteoblast differentiation. Moreover, intraperitoneal injection of GDF11 inhibited bone formation and accelerated age-related bone loss in mice. Our results also showed that GDF11 had no effect on osteoclast differentiation or bone resorption both in vitro and in vivo. These results provide a further rationale for the therapeutic targeting of GDF11 for the treatment of age-related osteoporosis.
Collapse
Affiliation(s)
- Qiong Lu
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Man-Li Tu
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- Department of Orthopaedics Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Chang-Jun Li
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Li Zhang
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Tie-Jian Jiang
- Department of Endocrinology, The Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Tang Liu
- Department of Orthopaedics Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Xiang-Hang Luo
- Department of Metabolism & Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
28
|
Jin M, Song S, Guo L, Jiang T, Lin ZY. Increased serum GDF11 concentration is associated with a high prevalence of osteoporosis in elderly native Chinese women. Clin Exp Pharmacol Physiol 2016; 43:1145-1147. [PMID: 27557752 DOI: 10.1111/1440-1681.12651] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/25/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Miaomiao Jin
- Department of Orthopedics; The Xiangya Hospital of Central South University; Changsha Hunan China
- Department of Endocrinology; The Heji Affiliated Hospital of Changzhi Medical College; Changsha Hunan China
| | - Shumin Song
- Department of Endocrinology; The Xiangya Hospital of Central South University; Changsha Hunan China
| | - Lijuan Guo
- Department of Endocrinology; The Xiangya Hospital of Central South University; Changsha Hunan China
| | - Tiejian Jiang
- Department of Endocrinology; The Xiangya Hospital of Central South University; Changsha Hunan China
| | - Zhang-Yuan Lin
- Department of Orthopedics; The Xiangya Hospital of Central South University; Changsha Hunan China
| |
Collapse
|
29
|
Chen Y, Guo Q, Zhang M, Song S, Quan T, Zhao T, Li H, Guo L, Jiang T, Wang G. Relationship of serum GDF11 levels with bone mineral density and bone turnover markers in postmenopausal Chinese women. Bone Res 2016; 4:16012. [PMID: 27408764 PMCID: PMC4923943 DOI: 10.1038/boneres.2016.12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/28/2016] [Accepted: 04/22/2016] [Indexed: 11/09/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) is an important circulating factor that regulates aging. However, the role of GDF11 in bone metabolism remains unclear. The present study was undertaken to investigate the relationship between serum GDF11 level, bone mass, and bone turnover markers in postmenopausal Chinese women. Serum GDF11 level, bone turnover biochemical markers, and bone mineral density (BMD) were determined in 169 postmenopausal Chinese women (47-78 years old). GDF11 serum levels increased with aging. There were negative correlations between GDF11 and BMD at the various skeletal sites. After adjusting for age and body mass index (BMI), the correlations remained statistically significant. In the multiple linear stepwise regression analysis, age or years since menopause, BMI, GDF11, and estradiol were independent predictors of BMD. A significant negative correlation between GDF11 and bone alkaline phosphatase (BAP) was identified and remained significant after adjusting for age and BMI. No significant correlation was noted between cross-linked N-telopeptides of type I collagen (NTX) and GDF11. In conclusion, GDF11 is an independent negative predictor of BMD and correlates with a biomarker of bone formation, BAP, in postmenopausal Chinese women. GDF11 potentially exerts a negative effect on bone mass by regulating bone formation.
Collapse
Affiliation(s)
- Yusi Chen
- Institute of Endocrinology and Metabolism, The Second Xiangya Hospital of Central South University , Changsha, China
| | - Qi Guo
- Hunan University of Medicine , Huaihua, China
| | - Min Zhang
- Hunan University of Medicine , Huaihua, China
| | - Shumin Song
- Department of Endocrinology, The Xiangya Hospital of Central South University , Changsha, China
| | | | | | | | - Lijuan Guo
- Department of Endocrinology, The Xiangya Hospital of Central South University , Changsha, China
| | - Tiejian Jiang
- Department of Endocrinology, The Xiangya Hospital of Central South University , Changsha, China
| | | |
Collapse
|
30
|
Postsurgical Acute Phase Reaction is Associated with Decreased Levels of Circulating Myostatin. Inflammation 2016; 38:1727-30. [PMID: 25749570 DOI: 10.1007/s10753-015-0149-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Muscle strength is of importance for postsurgical rehabilitation. Myostatin is a growth factor that regulates the size of muscles and could thus influence muscle mass and function in the postsurgical period. The aim of the present study was to study the changes in myostatin levels during the postsurgical inflammatory period. Myostatin was analysed in serum samples from two elective surgery groups, orthopaedic surgery (n = 24) and coronary bypass patients (n = 21). The samples were collected prior to surgery and 4 and 30 days after surgery. In the orthopaedic group, the median myostatin levels decreased from 3582 ng/L prior to surgery to 774 ng/L at day 4 (p < 0.001) and to 2016 ng/L at day 30 (p < 0.001). Median CRP increased from 2.35 mg/L preoperatively to 117 mg/L at day 4 and decreased to 5.5 mg/L at day 30 in the same group. The coronary bypass group showed a similar pattern with a decrease in myostatin from 4212 ng/L to 2574 ng/L at day 4 (p < 0.001) and to 2808 ng/L at day 30 (p = 0.002). Median CRP increased from 1.80 mg/L preoperatively to 136 mg/L at day 4 and returned to 6.12 mg/L at day 30 in the coronary bypass group. There was a significant decrease in myostatin concentrations both in the early and late postsurgical period. The lowest myostatin concentration time point coincided with the highest CRP concentration time point.
Collapse
|
31
|
Oestreich AK, Carleton SM, Yao X, Gentry BA, Raw CE, Brown M, Pfeiffer FM, Wang Y, Phillips CL. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice. Osteoporos Int 2016; 27:161-70. [PMID: 26179666 PMCID: PMC8018583 DOI: 10.1007/s00198-015-3226-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 06/30/2015] [Indexed: 01/30/2023]
Abstract
UNLABELLED Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. INTRODUCTION Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. METHODS To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. RESULTS +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. CONCLUSIONS Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.
Collapse
Affiliation(s)
- A K Oestreich
- Department of Biological Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - S M Carleton
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - X Yao
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - B A Gentry
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, 65211, USA
| | - C E Raw
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA
| | - M Brown
- Department of Biomedical Sciences and Physical Therapy Program, University of Missouri, Columbia, MO, 65211, USA
| | - F M Pfeiffer
- Department of Orthopaedic Surgery and Bioengineering, University of Missouri, Columbia, MO, 65211, USA
| | - Y Wang
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - C L Phillips
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, USA.
- Department of Child Health, University of Missouri, 117 Schweitzer Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
32
|
Abstract
Chronic kidney disease (CKD) is associated with a decline in muscle mass, strength, and function, collectively called "sarcopenia." Sarcopenia is associated with hospitalizations and mortality in CKD and is therefore important to understand and characterize. While the focus of skeletal health in CKD has traditionally focused on bone and mineral aberrations, it is now recognized that sarcopenia must also play a role in poor musculoskeletal health in this population. In this paper, we present an overview of skeletal muscle changes in CKD, including defects in skeletal muscle catabolism and anabolism in uremic tissue. There are many gaps in knowledge in this field that should be the focus for future research to unravel pathogenesis and therapies for musculoskeletal health in CKD.
Collapse
Affiliation(s)
- Keith G. Avin
- Indiana University School of Health and Rehabilitation Sciences, Indianapolis, IN 46202, USA
| | - Ranjani N. Moorthi
- Division of Nephrology, Department of Medicine, Indiana University School of Medicine, 950 W. Walnut St, R2-202, Indianapolis, IN 46202, USA
| |
Collapse
|
33
|
Abstract
Atrophy occurs in specific muscles with inactivity (for example, during plaster cast immobilization) or denervation (for example, in patients with spinal cord injuries). Muscle wasting occurs systemically in older people (a condition known as sarcopenia); as a physiological response to fasting or malnutrition; and in many diseases, including chronic obstructive pulmonary disorder, cancer-associated cachexia, diabetes, renal failure, cardiac failure, Cushing syndrome, sepsis, burns and trauma. The rapid loss of muscle mass and strength primarily results from excessive protein breakdown, which is often accompanied by reduced protein synthesis. This loss of muscle function can lead to reduced quality of life, increased morbidity and mortality. Exercise is the only accepted approach to prevent or slow atrophy. However, several promising therapeutic agents are in development, and major advances in our understanding of the cellular mechanisms that regulate the protein balance in muscle include the identification of several cytokines, particularly myostatin, and a common transcriptional programme that promotes muscle wasting. Here, we discuss these new insights and the rationally designed therapies that are emerging to combat muscle wasting.
Collapse
|
34
|
Davis K, Griffin K, Chu TM, Wenke J, Corona B, McKinley T, Kacena M. Muscle-bone interactions during fracture healing. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2015; 15:1-9. [PMID: 25730647 PMCID: PMC4433554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 12/08/2014] [Indexed: 11/06/2022]
Abstract
Although it is generally accepted that the rate and strength of fracture healing is intimately linked to the integrity of surrounding soft tissues, the contribution of muscle has largely been viewed as a vascular supply for oxygen and nutrient exchange. However, more is becoming known about the cellular and paracrine contributions of muscle to the fracture healing process. Research has shown that muscle is capable of supplying osteoprogenitor cells in cases where the periosteum is insufficient, and the muscular osteoprogenitors possess similar osteogenic potential to those derived from the periosteum. Muscle's secrotome includes proteins capable of inhibiting or enhancing osteogenesis and myogenesis following musculoskeletal injury and can be garnered for therapeutic use in patients with traumatic musculoskeletal injuries. In this review, we will highlight the current knowledge on muscle-bone interaction in the context of fracture healing as well as concisely present the current models to study such interactions.
Collapse
Affiliation(s)
- K.M. Davis
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - K.S. Griffin
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - T-M.G. Chu
- Department of Restorative Dentistry, Indiana University School of Dentistry, Indianapolis, IN
| | - J.C. Wenke
- Extremity Trauma & Regenerative Medicine Task Area, United States Army Institute of Surgical Research, San Antonio, TX
| | - B.T. Corona
- Extremity Trauma & Regenerative Medicine Task Area, United States Army Institute of Surgical Research, San Antonio, TX
| | - T.O. McKinley
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - M.A. Kacena
- Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
35
|
Patel AK, Shah RK, Parikh IK, Joshi CG. Goat activin receptor type IIB knockdown by artificial microRNAs in vitro. Appl Biochem Biotechnol 2014; 174:424-36. [PMID: 25080379 DOI: 10.1007/s12010-014-1071-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 07/21/2014] [Indexed: 10/25/2022]
Abstract
Activin receptor type IIB (ACVR2B) has been known to negatively regulate the muscle growth through mediating the action of transforming growth factor beta superfamily ligands. Recently, the artificial microRNAs (amiRNAs) which are processed by endogenous miRNA processing machinery have been proposed as promising approach for efficient gene knockdown. We evaluated amiRNAs targeting goat ACVR2B in HEK293T and goat myoblasts cells. The amiRNAs were designed based on the miR-155 backbone and cloned in 5'- and 3'-UTR of GFP reporter gene under the CMV promoter. Although both 5'- and 3'-UTR-amiRNAs vectors showed efficient synthesis of GFP transcripts, amiRNAs in 5'-UTR drastically affected GFP protein synthesis in transfected goat myoblast cells. Among the four amiRNAs targeting ACVR2B derived from either 5'- or 3'-UTR, ami318 showed highest silencing efficiency against exogenously co-expressed ACVR2B in both 293T and goat myoblast cells whereas ami204 showed highest silencing efficiency against endogenous ACVR2B in goat myoblasts cells. The 3'-UTR-derived amiRNA exerted higher knockdown efficiency against endogenous ACVR2B at transcript level whereas 5'-UTR-derived amiRNAs exerted higher knockdown efficiency at protein level. The expression of ACVR2B showed positive correlation with the expression of MYOD (r = 0.744; p = 0.009) and MYOG (r = 0.959; p = 0.000) in the amiRNA-transfected myoblasts. Although both 5'- and 3'-UTR-amiRNA vectors led to substantial induction of interferon response, the magnitude of the response was found to be higher with the 3'-UTR-amiRNA vectors.
Collapse
Affiliation(s)
- Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, 388001, Gujarat, India
| | | | | | | |
Collapse
|
36
|
Cianferotti L, Brandi ML. Muscle-bone interactions: basic and clinical aspects. Endocrine 2014; 45:165-77. [PMID: 23990248 DOI: 10.1007/s12020-013-0026-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/25/2013] [Indexed: 12/19/2022]
Abstract
Muscle and bone are anatomically and functionally closely connected. The traditional concept that skeletal muscles serve to load bone and transform skeletal segments into a system of levers has been further refined into the mechanostat theory, according to which striated muscle is essential for bone development and maintenance, modelling and remodelling. Besides biomechanical function, skeletal muscle and bone are endocrine organs able to secrete factors capable of modulating biological function within their microenvironment, in nearby tissues or in distant organs. The endocrine properties of muscle and bone may serve to sense and transduce biomechanical signals such as loading, unloading or exercise, or systemic hormonal stimuli into biochemical signals. Nonetheless, given the close anatomical relationship between skeletal muscle and bone, paracrine interactions particularly at the periosteal interface can be hypothesized. These mechanisms can assume particular importance during bone and muscle healing after musculoskeletal injury. Basic studies in vitro and in rodents have helped to dissect the multiple influences of skeletal muscle on bone and/or expression of inside-organ metabolism and have served to explain clinical observations linking muscle-to-bone quality. Recent evidences pinpoint that also bone tissue is able to modulate directly or indirectly skeletal muscle metabolism, thus empowering the crosstalk hypothesis to be further tested in humans in vivo.
Collapse
Affiliation(s)
- Luisella Cianferotti
- Unit of Bone and Mineral Metabolism, Department of Surgery and Translational Medicine, Section of Endocrinology and Metabolism, School of Human Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | | |
Collapse
|
37
|
Li R, Liu DH, Cao CN, Wang SQ, Dang RH, Lan XY, Chen H, Zhang T, Liu WJ, Lei CZ. Single nucleotide polymorphisms of myostatin gene in Chinese domestic horses. Gene 2013; 538:150-4. [PMID: 24368331 DOI: 10.1016/j.gene.2013.12.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 11/13/2013] [Accepted: 12/11/2013] [Indexed: 11/25/2022]
Abstract
The myostatin gene (MSTN) is a genetic determinant of skeletal muscle growth. Single nucleotide polymorphisms (SNP) in MSTN are of importance due to their strong associations with horse racing performances. In this study, we screened the SNPs in MSTN gene in 514 horses from 15 Chinese horse breeds. Six SNPs (g.26T>C, g.156T>C, g.587A>G, g.598C>T, g.1485C>T, g.2115A>G) in MSTN gene were detected by sequencing and genotyped using PCR-RFLP method. The g.587A>G and g.598C>T residing in the 5'UTR region were novel SNPs identified by this study. The g.2115A>G which have previously been associated with racing performances were present in Chinese horse breeds, providing valuable genetic information for evaluating the potential racing performances in Chinese domestic breeds. The six SNPs together defined thirteen haplotypes, demonstrating abundant haplotype diversities in Chinese horses. Most of the haplotypes were shared among different breeds with no haplotype restricted to a specific region or a single horse breed. AMOVA analysis indicated that most of the genetic variance was attributable to differences among individuals without any significant contribution by the four geographical groups. This study will provide fundamental and instrumental genetic information for evaluating the potential racing performances of Chinese horse breeds.
Collapse
Affiliation(s)
- Ran Li
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong-Hua Liu
- Institute of Hexi Ecology and Oasis Agriculture, Hexi University, Zhangye, Gansu 734000, China
| | - Chun-Na Cao
- Animal Husbandry and Veterinary Bureau of Yining, Yili, Xinjiang 835100, China
| | - Shao-Qiang Wang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rui-Hua Dang
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xian-Yong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hong Chen
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Zhang
- Shaanxi University of Technology, Hanzhong, Shaanxi 723001, China
| | - Wu-Jun Liu
- Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China
| | - Chu-Zhao Lei
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
38
|
Beaupre LA, Binder EF, Cameron ID, Jones CA, Orwig D, Sherrington C, Magaziner J. Maximising functional recovery following hip fracture in frail seniors. Best Pract Res Clin Rheumatol 2013; 27:771-88. [PMID: 24836335 PMCID: PMC4610717 DOI: 10.1016/j.berh.2014.01.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review discusses factors affecting recovery following hip fracture in frail older people as well as interventions associated with improved functional recovery. Prefracture function, cognitive status, co-morbidities, depression, nutrition and social support impact recovery and may interact to affect post-fracture outcome. There is mounting evidence that exercise is beneficial following hip fracture with higher-intensity/duration programmes showing more promising outcomes. Pharmacologic management for osteoporosis has benefits in preventing further fractures, and interest is growing in pharmacologic treatments for post-fracture loss of muscle mass and strength. A growing body of evidence suggests that sub-populations - those with cognitive impairment, residing in nursing homes or males - also benefit from rehabilitation after hip fracture. Optimal post-fracture care may entail the use of multiple interventions; however, more work is needed to determine optimal exercise components, duration and intensity as well as exploring the impact of multimodal interventions that combine exercise, pharmacology, nutrition and other interventions.
Collapse
Affiliation(s)
- Lauren A Beaupre
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, 2-50 Corbett Hall, University of Alberta, Edmonton, AB T6G 2G4, Canada.
| | - Ellen F Binder
- Division of Geriatrics and Nutritional Science, Washington University School of Medicine, MO 4488 Forest Park Blvd, Suite 201, St. Louis, MO 63108, USA.
| | - Ian D Cameron
- Rehabilitation Studies Unit, Faculty of Medicine, University of Sydney, PO Box 6, Ryde, NSW 1680, Australia.
| | - C Allyson Jones
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, 2-50 Corbett Hall, University of Alberta, Edmonton, AB T6G 2G4, Canada.
| | - Denise Orwig
- Division of Gerontology, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Suite 200, 660 West Redwood Street, Baltimore, MD 21030, USA.
| | - Cathie Sherrington
- The George Institute for Global Health, Sydney Medical School, University of Sydney, NSW 2006, Australia.
| | - Jay Magaziner
- Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Suite 200, 660 West Redwood Street, Baltimore, MD 21030, USA.
| |
Collapse
|
39
|
Myostatin/activin pathway antagonism: Molecular basis and therapeutic potential. Int J Biochem Cell Biol 2013; 45:2333-47. [DOI: 10.1016/j.biocel.2013.05.019] [Citation(s) in RCA: 198] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 11/21/2022]
|
40
|
Bonewald LF, Kiel DP, Clemens TL, Esser K, Orwoll ES, O'Keefe RJ, Fielding RA. Forum on bone and skeletal muscle interactions: summary of the proceedings of an ASBMR workshop. J Bone Miner Res 2013; 28:1857-65. [PMID: 23671010 PMCID: PMC3749267 DOI: 10.1002/jbmr.1980] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/15/2013] [Accepted: 04/03/2013] [Indexed: 12/15/2022]
Abstract
Annual costs are enormous for musculoskeletal diseases such as osteoporosis and sarcopenia and for bone and muscle injuries, costing billions annually in health care. Although it is clear that muscle and bone development, growth, and function are connected, and that muscle loads bone, little is known regarding cellular and molecular interactions between these two tissues. A conference supported by the National Institutes of Health (NIH) and the American Society for Bone and Mineral Research (ASBMR) was held in July 2012 to address the enormous burden of musculoskeletal disease. National and international experts in either bone or muscle presented their findings and their novel hypotheses regarding muscle-bone interactions to stimulate the exchange of ideas between these two fields. The immediate goal of the conference was to identify critical research themes that would lead to collaborative research interactions and grant applications focusing on interactions between muscle and bone. The ultimate goal of the meeting was to generate a better understanding of how these two tissues integrate and crosstalk in both health and disease to stimulate new therapeutic strategies to enhance and maintain musculoskeletal health.
Collapse
Affiliation(s)
- Lynda F Bonewald
- Department of Oral and Craniofacial Science, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Szláma G, Trexler M, Patthy L. Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2. FEBS J 2013; 280:3822-39. [PMID: 23829672 PMCID: PMC3906830 DOI: 10.1111/febs.12377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 01/18/2023]
Abstract
Myostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases. Here, we show that, in reporter assays, latent myostatin preparations have significant myostatin activity, as the noncovalent complex dissociates at an appreciable rate, and both mature and semilatent myostatin (a complex in which the dimeric growth factor domain interacts with only one molecule of myostatin propeptide) bind to myostatin receptor. The interaction of myostatin receptor with semilatent myostatin is efficiently blocked by WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 or growth and differentiation factor-associated serum protein 2 (WFIKKN1), a large extracellular multidomain protein that binds both mature myostatin and myostatin propeptide [Kondás et al. (2008) J Biol Chem283, 23677–23684]. Interestingly, the paralogous protein WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 or growth and differentiation factor-associated serum protein 1 (WFIKKN2) was less efficient than WFIKKN1 as an antagonist of the interactions of myostatin receptor with semilatent myostatin. Our studies have shown that this difference is attributable to the fact that only WFIKKN1 has affinity for the propeptide domain, and this interaction increases its potency in suppressing the receptor-binding activity of semilatent myostatin. As the interaction of WFIKKN1 with various forms of myostatin permits tighter control of myostatin activity until myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases, WFIKKN1 may have greater potential as an antimyostatic agent than WFIKKN2.
Collapse
Affiliation(s)
- György Szláma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|
42
|
Arounleut P, Bialek P, Liang LF, Upadhyay S, Fulzele S, Johnson M, Elsalanty M, Isales CM, Hamrick MW. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength. Exp Gerontol 2013; 48:898-904. [PMID: 23832079 DOI: 10.1016/j.exger.2013.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/10/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
Loss of muscle and bone mass with age are significant contributors to falls and fractures among the elderly. Myostatin deficiency is associated with increased muscle mass in mice, dogs, cows, sheep and humans, and mice lacking myostatin have been observed to show increased bone density in the limb, spine, and jaw. Transgenic overexpression of myostatin propeptide, which binds to and inhibits the active myostatin ligand, also increases muscle mass and bone density in mice. We therefore sought to test the hypothesis that in vivo inhibition of myostatin using an injectable myostatin propeptide (GDF8 propeptide-Fc) would increase both muscle mass and bone density in aged (24 mo) mice. Male mice were injected weekly (20 mg/kg body weight) with recombinant myostatin propeptide-Fc (PRO) or vehicle (VEH; saline) for four weeks. There was no difference in body weight between the two groups at the end of the treatment period, but PRO treatment significantly increased mass of the tibialis anterior muscle (+ 7%) and increased muscle fiber diameter of the extensor digitorum longus (+ 16%) and soleus (+ 6%) muscles compared to VEH treatment. Bone volume relative to total volume (BV/TV) of the femur calculated by microCT did not differ significantly between PRO- and VEH-treated mice, and ultimate force (Fu), stiffness (S), toughness (U) measured from three-point bending tests also did not differ significantly between groups. Histomorphometric assays also revealed no differences in bone formation or resorption in response to PRO treatment. These data suggest that while developmental perturbation of myostatin signaling through either gene knockout or transgenic inhibition may alter both muscle and bone mass in mice, pharmacological inhibition of myostatin in aged mice has a more pronounced effect on skeletal muscle than on bone.
Collapse
|
43
|
Harsløf T, Frost M, Nielsen TL, Husted LB, Nyegaard M, Brixen K, Børglum AD, Mosekilde L, Andersen M, Rejnmark L, Langdahl BL. Polymorphisms of muscle genes are associated with bone mass and incident osteoporotic fractures in Caucasians. Calcif Tissue Int 2013; 92:467-76. [PMID: 23370486 DOI: 10.1007/s00223-013-9702-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/06/2013] [Indexed: 01/30/2023]
Abstract
The interaction between muscle and bone is complex. The aim of this study was to investigate if variations in the muscle genes myostatin (MSTN), its receptor (ACVR2B), myogenin (MYOG), and myoD1 (MYOD1) were associated with fracture risk, bone mineral density (BMD), bone mineral content (BMC), and lean body mass. We analyzed two independent cohorts: the Danish Osteoporosis Prevention Study (DOPS), comprising 2,016 perimenopausal women treated with hormone therapy or not and followed for 10 years, and the Odense Androgen Study (OAS), a cross-sectional, population-based study on 783 men aged 20-29 years. Nine tag SNPs in the four genes were investigated. In the DOPS, individuals homozygous for the variant allele of the MSTN SNP rs7570532 had an increased risk of any osteoporotic fracture, with an HR of 1.82 (95 % CI 1.15-2.90, p = 0.01), and of nonvertebral osteoporotic fracture, with an HR of 2.02 (95 % CI 1.20-3.41, p = 0.01). The same allele was associated with increased bone loss (BMC) at the total hip of 4.1 versus 0.5 % in individuals either heterozygous or homozygous for the common allele (p = 0.006), a reduced 10-year growth in bone area at the total hip of 0.4 versus 2.2 and 2.3 % in individuals heterozygous or homozygous for the common allele, respectively (p = 0.01), and a nonsignificantly increased 10-year loss of total-hip BMD of 4.4 versus 2.7 and 2.9 % in individuals heterozygous or homozygous for the common allele, respectively (p = 0.08). This study is the first to demonstrate an association between a variant in MSTN and fracture risk and bone loss. Further studies are needed to confirm the findings.
Collapse
Affiliation(s)
- T Harsløf
- Department of Endocrinology and Internal Medicine, THG, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Willett NJ, Li MTA, Uhrig BA, Boerckel JD, Huebsch N, Lundgren TL, Warren GL, Guldberg RE. Attenuated human bone morphogenetic protein-2-mediated bone regeneration in a rat model of composite bone and muscle injury. Tissue Eng Part C Methods 2013; 19:316-25. [PMID: 22992043 PMCID: PMC3583252 DOI: 10.1089/ten.tec.2012.0290] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/10/2012] [Indexed: 01/06/2023] Open
Abstract
Extremity injuries involving large bone defects with concomitant severe muscle damage are a significant clinical challenge often requiring multiple treatment procedures and possible amputation. Even if limb salvage is achieved, patients are typically left with severe short- and long-term disabilities. Current preclinical animal models do not adequately mimic the severity, complexity, and loss of limb function characteristic of these composite injuries. The objectives of this study were to establish a composite injury model that combines a critically sized segmental bone defect with an adjacent volumetric muscle loss injury, and then use this model to quantitatively assess human bone morphogenetic protein-2 (rhBMP-2)-mediated tissue regeneration and restoration of limb function. Surgeries were performed on rats in three experimental groups: muscle injury (8-mm-diameter full-thickness defect in the quadriceps), bone injury (8-mm nonhealing defect in the femur), or composite injury combining the bone and muscle defects. Bone defects were treated with 2 μg of rhBMP-2 delivered in the pregelled alginate injected into a cylindrical perforated nanofiber mesh. Bone regeneration was quantitatively assessed using microcomputed tomography, and limb function was assessed using gait analysis and muscle strength measurements. At 12 weeks postsurgery, treated bone defects without volumetric muscle loss were consistently bridged. In contrast, the volume and mechanical strength of regenerated bone were attenuated by 45% and 58%, respectively, in the identically treated composite injury group. At the same time point, normalized muscle strength was reduced by 51% in the composite injury group compared to either single injury group. At 2 weeks, the gait function was impaired in all injury groups compared to baseline with the composite injury group displaying the greatest functional deficit. We conclude that sustained delivery of rhBMP-2 at a dose sufficient to induce bridging of large segmental bone defects failed to promote regeneration when challenged with concomitant muscle injury. This model provides a platform with which to assess bone and muscle interactions during repair and to rigorously test the efficacy of tissue engineering approaches to promote healing in multiple tissues. Such interventions may minimize complications and the number of surgical procedures in limb salvage operations, ultimately improving the clinical outcome.
Collapse
Affiliation(s)
- Nick J Willett
- George W. Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30307, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Andres-Mateos E, Mejias R, Soleimani A, Lin BM, Burks TN, Marx R, Lin B, Zellars RC, Zhang Y, Huso DL, Marr TG, Leinwand LA, Merriman DK, Cohn RD. Impaired skeletal muscle regeneration in the absence of fibrosis during hibernation in 13-lined ground squirrels. PLoS One 2012; 7:e48884. [PMID: 23155423 PMCID: PMC3498346 DOI: 10.1371/journal.pone.0048884] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 10/02/2012] [Indexed: 02/06/2023] Open
Abstract
Skeletal muscle atrophy can occur as a consequence of immobilization and/or starvation in the majority of vertebrates studied. In contrast, hibernating mammals are protected against the loss of muscle mass despite long periods of inactivity and lack of food intake. Resident muscle-specific stem cells (satellite cells) are known to be activated by muscle injury and their activation contributes to the regeneration of muscle, but whether satellite cells play a role in hibernation is unknown. In the hibernating 13-lined ground squirrel we show that muscles ablated of satellite cells were still protected against atrophy, demonstrating that satellite cells are not involved in the maintenance of skeletal muscle during hibernation. Additionally, hibernating skeletal muscle showed extremely slow regeneration in response to injury, due to repression of satellite cell activation and myoblast differentiation caused by a fine-tuned interplay of p21, myostatin, MAPK, and Wnt signaling pathways. Interestingly, despite long periods of inflammation and lack of efficient regeneration, injured skeletal muscle from hibernating animals did not develop fibrosis and was capable of complete recovery when animals emerged naturally from hibernation. We propose that hibernating squirrels represent a new model system that permits evaluation of impaired skeletal muscle remodeling in the absence of formation of tissue fibrosis.
Collapse
Affiliation(s)
- Eva Andres-Mateos
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Rebeca Mejias
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Arshia Soleimani
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Brian M. Lin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tyesha N. Burks
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ruth Marx
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Benjamin Lin
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Richard C. Zellars
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Yonggang Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - David L. Huso
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tom G. Marr
- Hiberna Corporation, Boulder, Colorado, United States of America
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Dana K. Merriman
- Department of Biology and Microbiology, University of Wisconsin, Oshkosh, Wisconsin, United States of America
| | - Ronald D. Cohn
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
46
|
Chan JKK, Harry L, Williams G, Nanchahal J. Soft-tissue reconstruction of open fractures of the lower limb: muscle versus fasciocutaneous flaps. Plast Reconstr Surg 2012; 130:284e-295e. [PMID: 22842425 PMCID: PMC3408595 DOI: 10.1097/prs.0b013e3182589e63] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Early vascularized soft-tissue closure has long been recognized to be essential in achieving eventual infection-free union. The question of whether muscle or fasciocutaneous tissue is superior in terms of promoting fracture healing remains unresolved. In this article, the authors review the experimental and clinical evidence for the different tissue types and advocate that the biological role of flaps should be included as a key consideration during flap selection.
Collapse
Affiliation(s)
- James K-K Chan
- London, United Kingdom From the Kennedy Institute of Rheumatology, University of Oxford
| | | | | | | |
Collapse
|
47
|
Hamrick MW. The skeletal muscle secretome: an emerging player in muscle-bone crosstalk. BONEKEY REPORTS 2012; 1:60. [PMID: 23951457 DOI: 10.1038/bonekey.2012.60] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/06/2012] [Indexed: 01/17/2023]
Abstract
In vitro and in vivo studies provide evidence that a variety of growth factors and cytokines are actively secreted by muscle tissue. Muscle can therefore function as an endocrine and paracrine organ. These peptides characterize the muscle secretome, and many muscle-derived factors such as insulin-like growth factor-1, basic fibroblast growth factor, interleukin-15, myostatin and secreted protein acidic and rich in cysteine (osteonectin) are also known to have significant effects on bone metabolism. The factors secreted by muscle may vary according to muscle activity, in that muscle contraction, muscle atrophy or traumatic muscle injury can alter the type and relative abundance of particular factors released from muscle cells. The molecular and cellular pathways by which muscle-derived factors affect different types of bone cells (for example, osteoblasts, osteoclasts and osteocytes) are, however, poorly understood. Nevertheless, these findings further underscore the complex nature of muscle-bone interactions, and highlight the importance of integrating muscle biology and physiology into our understanding of bone growth, development and aging.
Collapse
Affiliation(s)
- Mark W Hamrick
- Department of Cellular Biology and Anatomy, Institute of Molecular Medicine and Genetics, Georgia Health Sciences University , Augusta, GA, USA
| |
Collapse
|
48
|
Elkasrawy M, Immel D, Wen X, Liu X, Liang LF, Hamrick MW. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing. J Histochem Cytochem 2012; 60:22-30. [PMID: 22205678 DOI: 10.1369/0022155411425389] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a "pool" of intense myostatin staining was observed among injured skeletal muscle fibers 12-24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury.
Collapse
Affiliation(s)
- Moataz Elkasrawy
- School of Dental Medicine, University of Colorado Denver, Denver, Colorado, USA
| | | | | | | | | | | |
Collapse
|
49
|
Jo CH, Kim S, Park JS, Kim GH. Effects of dietary salt restriction on puromycin aminonucleoside nephrosis: preliminary data. Electrolyte Blood Press 2011; 9:55-62. [PMID: 22438857 PMCID: PMC3302907 DOI: 10.5049/ebp.2011.9.2.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/21/2011] [Indexed: 01/13/2023] Open
Abstract
Proteinuria is a major promoter that induces tubulointerstitial injury in glomerulopathy. Dietary salt restriction may reduce proteinuria, although the mechanism is not clear. We investigated the effects of dietary salt restriction on rat kidneys in an animal model of glomerular proteinuria. Male Sprague-Dawley rats were used and divided into 3 groups: vehicle-treated normal-salt controls, puromycin aminonucleoside (PA)-treated normal-salt rats, and PA-treated low-salt rats. PA was given at a dose of 150 mg/kg BW at time 0, followed by 50 mg/kg BW on days 28, 35, and 42. Sodium-deficient rodent diet with and without additional NaCl (0.5%) were provided for normal-salt rats and low-salt rats, respectively. On day 63, kidneys were harvested for histopathologic examination and immunohistochemistry. PA treatment produced overt proteinuria and renal damage. Dietary salt restriction insignificantly reduced proteinuria in PA-treated rats, and PA-treated low-salt rats had lower urine output and lower creatinine clearance than vehicle-treated normal-salt controls. When tubulointerstitial injury was semiquantitatively evaluated, it had a positive correlation with proteinuria. The tubulointerstitial injury score was significantly increased by PA treatment and relieved by low-salt diet. ED1-positive infiltrating cells and immunostaining for interstitial collagen III were significantly increased by PA treatment. These changes appeared to be less common in PA-treated low-salt rats, although the differences in PA-treated normal-salt versus low-salt rats did not reach statistical significance. Our results suggest that renal histopathology in PA nephrosis may potentially be improved by dietary salt restriction. Non-hemodynamic mechanisms induced by low-sodium diet might contribute to renoprotection.
Collapse
Affiliation(s)
- Chor Ho Jo
- Institute of Biomedical Sciences, Hanyang University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
50
|
Elkasrawy M, Fulzele S, Bowser M, Wenger K, Hamrick M. Myostatin (GDF-8) inhibits chondrogenesis and chondrocyte proliferation in vitro by suppressing Sox-9 expression. Growth Factors 2011; 29:253-62. [PMID: 21756198 PMCID: PMC3738019 DOI: 10.3109/08977194.2011.599324] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Here, we investigate a possible direct role for myostatin in chondrogenesis. First, we examined the effects of myostatin on the proliferation of bone marrow stromal cells (BMSCs) and epiphyseal growth plate (EGP) chondrocytes (EGPCs) isolated from myostatin-deficient mice. Results show that myostatin deficiency is associated with a significant (P < 0.001) increase in proliferation of both BMSCs (+25%) and EGPCs (+35%) compared with wild-type cells. Next, we examined the effects of myostatin treatment on chondrogenic differentiation of BMSCs. These experiments show that myostatin treatment starting at either 0 or 48 h induces a significant decrease in collagen type II protein synthesis by 31% (P < 0.001) and 25% (P < 0.05), respectively. Real-time PCR reveals significant (P < 0.01) down regulation of Sox9 mRNA expression with 10 and 100 ng/ml treatments. Together, these findings suggest that myostatin has direct effects on chondrogenesis, and may, therefore, represent a potential therapeutic target for improving bone repair.
Collapse
Affiliation(s)
- Moataz Elkasrawy
- Department of Cellular Biology & Anatomy, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
| | - Sadanand Fulzele
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
| | - Matthew Bowser
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
| | - Karl Wenger
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
| | - Mark Hamrick
- Department of Cellular Biology & Anatomy, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
- Department of Orthopaedic Surgery, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
- Institute of Molecular Medicine and Genetics, Georgia Health Sciences University, Medical College of Georgia Augusta, GA USA
- Address all correspondence to: Mark W. Hamrick, Ph.D. Department of Cellular Biology & Anatomy Georgia Health Sciences University Medical College of Georgia Cb1116 Laney Walker Blvd. Augusta, GA 30912 USA PH: 706-721-1958 FAX: 706-721-6120
| |
Collapse
|