1
|
Alqarni AA, Aldhahir AM, Siraj RA, Alasimi AH, Alqahtani JS, Alwafi H, Almeshari MA, Alobaidi NY, Majrshi MS, Alghamdi SM, Alyami MM. Current practice of using the airway pressure release ventilation mode in acute respiratory distress syndrome patients among respiratory therapists in Saudi Arabia. SAGE Open Med 2025; 13:20503121241312941. [PMID: 39839159 PMCID: PMC11748082 DOI: 10.1177/20503121241312941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/23/2024] [Indexed: 01/23/2025] Open
Abstract
Background There is a limited data examining the practice of using the airway pressure release ventilation mode for patients with acute respiratory distress syndrome among respiratory therapists. Objectives To evaluate the current practice and barriers when using airway pressure release ventilation mode in the management of patients with acute respiratory distress syndrome. Methods A cross-sectional online survey was disseminated between November 2022 and April 2023 to respiratory therapists in Saudi Arabia. Descriptive statistics were used to analyze the respondents' characteristics. Results Overall, 802 respiratory therapists (male: 59.60%) completed the survey. Five hundred nineteen (64.71%) did not receive training on airway pressure release ventilation mode. Moreover, 325 (40.52%) and 391 (48.75%) did not know if airway pressure release ventilation was used at their hospitals and if the mode was managed via protocol with acute respiratory distress syndrome patients. Of the participants, 276 (34.41%) reported that plateau pressure should be used as a target when setting P-high initially, while 427 (53.24%) believed that the initial P-low should be equal to 0 cmH2O. Moreover, 468 (58.36%) believed that the initial T-high should be between 4 and 6 s, while 548 (68.33%) believed the initial T-low should be a set time (between 0.4 and 0.8) seconds. The most appropriate intervention to improve ventilation and oxygenation was to increase the P-high, which was reported by 370 (46.14%) and 326 (40.65%) respiratory therapists, respectively. Inadequate training was the most common barrier (678, 84.54%) to airway pressure release ventilation implementation. Conclusion Airway pressure release ventilation management varies between respiratory therapists which may be due to inadequate training and the absence of protocols.
Collapse
Affiliation(s)
- Abdullah A Alqarni
- Department of Respiratory Therapy, Faculty of Medical Rehabilitation Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Respiratory Therapy Unit, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Abdulelah M Aldhahir
- Respiratory Therapy Program, Department of Nursing, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Health Research Center, Jazan University, Jazan, Saudi Arabia
| | - Rayan A Siraj
- Department of Respiratory Care, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Ahmed H Alasimi
- Department of Respiratory Therapy, Georgia State University, Atlanta, GA, USA
| | - Jaber S Alqahtani
- Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Mohammed A Almeshari
- Rehabilitation Health Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nowaf Y Alobaidi
- Respiratory Therapy Department, King Saud Bin Abdulaziz University for Health Sciences, Alahsa, Saudi Arabia
- King Abdullah International Medical Research Centre, Alahsa, Saudi Arabia
| | - Mansour S Majrshi
- National Heart and Lung Institute, Imperial College London, London, UK
- Respiratory Medicine, Royal Brompton Hospital, London, UK
| | - Saeed M Alghamdi
- Clinical Technology Department, Respiratory Care Program, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammed M Alyami
- Respiratory Therapy Department, Batterjee Medical College, Khamis Mushait, Saudi Arabia
| |
Collapse
|
2
|
Ramcharran H, Wetmore G, Cooper S, Herrmann J, Fonseca da Cruz A, Kaczka DW, Satalin J, Blair S, Andrews PL, Habashi NM, Nieman GF, Kollisch-Singule M. Effects of Lung Injury and Abdominal Insufflation on Respiratory Mechanics and Lung Volume During Time-Controlled Adaptive Ventilation. Respir Care 2024; 69:1432-1443. [PMID: 38408775 PMCID: PMC11549635 DOI: 10.4187/respcare.11745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUD Lung volume measurements are important for monitoring functional aeration and recruitment and may help guide adjustments in ventilator settings. The expiratory phase of airway pressure release ventilation (APRV) may provide physiologic information about lung volume based on the expiratory flow-time slope, angle, and time to approach a no-flow state (expiratory time [TE]). We hypothesized that expiratory flow would correlate with estimated lung volume (ELV) as measured using a modified nitrogen washout/washin technique in a large-animal lung injury model. METHODS Eight pigs (35.2 ± 1.0 kg) were mechanically ventilated using an Engström Carescape R860 on the APRV mode. All settings were held constant except the expiratory duration, which was adjusted based on the expiratory flow curve. Abdominal pressure was increased to 15 mm Hg in normal and injured lungs to replicate a combination of pulmonary and extrapulmonary lung injury. ELV was estimated using the Carescape FRC INview tool. The expiratory flow-time slope and TE were measured from the expiratory flow profile. RESULTS Lung elastance increased with induced lung injury from 29.3 ± 7.3 cm H2O/L to 39.9 ± 15.1cm H2O/L, and chest wall elastance increased with increasing intra-abdominal pressures (IAPs) from 15.3 ± 4.1 cm H2O/L to 25.7 ± 10.0 cm H2O/L in the normal lung and 15.8 ± 6.0 cm H2O/L to 33.0 ± 6.2 cm H2O/L in the injured lung (P = .39). ELV decreased from 1.90 ± 0.83 L in the injured lung to 0.67 ± 0.10 L by increasing IAP to 15 mm Hg. This had a significant correlation with a TE decrease from 2.3 ± 0.8 s to 1.0 ± 0.1 s in the injured group with increasing insufflation pressures (ρ = 0.95) and with the expiratory flow-time slope, which increased from 0.29 ± 0.06 L/s2 to 0.63 ± 0.05 L/s2 (ρ = 0.78). CONCLUSIONS Changes in ELV over time, and the TE and flow-time slope, could be used to demonstrate evolving lung injury during APRV. Using the slope to infer changes in functional lung volume represents a unique, reproducible, real-time, bedside technique that does not interrupt ventilation and may be used for clinical interpretation.
Collapse
Affiliation(s)
- Harry Ramcharran
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Gregory Wetmore
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Scott Cooper
- Department of Internal Medicine, Morehouse School of Medicine, Atlanta, Georgia
| | - Jacob Herrmann
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | | | - David W Kaczka
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa; Department of Anesthesia, University of Iowa, Iowa City, Iowa; and Department of Radiology, University of Iowa, Iowa City, Iowa
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | - Penny L Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, New York
| | | |
Collapse
|
3
|
Bates JHT, Kaczka DW, Kollisch-Singule M, Nieman GF, Gaver DP. Atelectrauma can be avoided if expiration is sufficiently brief: evidence from inverse modeling and oscillometry during airway pressure release ventilation. Crit Care 2024; 28:329. [PMID: 39380082 PMCID: PMC11462759 DOI: 10.1186/s13054-024-05112-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Airway pressure release ventilation (APRV) has been shown to be protective against atelectrauma if expirations are brief. We hypothesize that this is protective because epithelial surfaces are not given enough time to come together and adhere during expiration, thereby avoiding their highly damaging forced separation during inspiration. METHODS We investigated this hypothesis in a porcine model of ARDS induced by Tween lavage. Animals were ventilated with APRV in 4 groups based on whether inspiratory pressure was 28 or 40 cmH2O, and whether expiration was terminated when end-expiratory flow reached either 75% (a shorter expiration) or 25% (a longer expiration) of its initial peak value. A mathematical model of respiratory system mechanics that included a volume-dependent elastance term characterized by the parameter E 2 was fit to airway pressure-flow data obtained each hour for 6 h post-Tween injury during both expiration and inspiration. We also measured respiratory system impedance between 5 and 19 Hz continuously through inspiration at the same time points from which we derived a time-course for respiratory system resistance ( R rs ). RESULTS E 2 during both expiration and inspiration was significantly different between the two longer expiration versus the two shorter expiration groups (ANOVA, p < 0.001). We found that E 2 was most depressed during inspiration in the higher-pressure group receiving the longer expiration, suggesting that E 2 reflects a balance between strain stiffening of the lung parenchyma and ongoing recruitment as lung volume increases. We also found in this group that R rs increased progressively during the first 0.5 s of inspiration and then began to decrease again as inspiration continued, which we interpret as corresponding to the point when continuing derecruitment was reversed by progressive lung inflation. CONCLUSIONS These findings support the hypothesis that sufficiently short expiratory durations protect against atelectrauma because they do not give derecruitment enough time to manifest. This suggests a means for the personalized adjustment of mechanical ventilation.
Collapse
Affiliation(s)
- Jason H T Bates
- Department of Medicine, University of Vermont, University of Vermont Larner College of Medicine, 149 Beaumont Avenue, Burlington, VT, 05405, USA.
| | - David W Kaczka
- Departments of Anesthesia, Biomedical Engineering, and Radiology, University of Iowa, Iowa City, IA, 52242, USA
| | | | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical Center, Syracuse, NY, 13210, USA
| | - Donald P Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
4
|
Zhou Y, Cheng J, Zhu S, Dong M, Lv Y, Jing X, Kang Y. Early pathophysiology-driven airway pressure release ventilation versus low tidal volume ventilation strategy for patients with moderate-severe ARDS: study protocol for a randomized, multicenter, controlled trial. BMC Pulm Med 2024; 24:252. [PMID: 38783268 PMCID: PMC11112826 DOI: 10.1186/s12890-024-03065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Conventional Mechanical ventilation modes used for individuals suffering from acute respiratory distress syndrome have the potential to exacerbate lung injury through regional alveolar overinflation and/or repetitive alveolar collapse with shearing, known as atelectrauma. Animal studies have demonstrated that airway pressure release ventilation (APRV) offers distinct advantages over conventional mechanical ventilation modes. However, the methodologies for implementing APRV vary widely, and the findings from clinical studies remain controversial. This study (APRVplus trial), aims to assess the impact of an early pathophysiology-driven APRV ventilation approach compared to a low tidal volume ventilation (LTV) strategy on the prognosis of patients with moderate to severe ARDS. METHODS The APRVplus trial is a prospective, multicenter, randomized clinical trial, building upon our prior single-center study, to enroll 840 patients from at least 35 hospitals in China. This investigation plans to compare the early pathophysiology-driven APRV ventilation approach with the control intervention of LTV lung-protective ventilation. The primary outcome measure will be all-cause mortality at 28 days after randomization in the intensive care units (ICU). Secondary outcome measures will include assessments of oxygenation, and physiology parameters at baseline, as well as on days 1, 2, and 3. Additionally, clinical outcomes such as ventilator-free days at 28 days, duration of ICU and hospital stay, ICU and hospital mortality, and the occurrence of adverse events will be evaluated. TRIAL ETHICS AND DISSEMINATION The research project has obtained approval from the Ethics Committee of West China Hospital of Sichuan University (2019-337). Informed consent is required. The results will be submitted for publication in a peer-reviewed journal and presented at one or more scientific conferences. TRIAL REGISTRATION The study was registered at Clinical Trials.gov (NCT03549910) on June 8, 2018.
Collapse
Affiliation(s)
- Yongfang Zhou
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China.
| | - Jiangli Cheng
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Shuo Zhu
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Meiling Dong
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Yinxia Lv
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Xiaorong Jing
- Department of Respiratory Care, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China
| | - Yan Kang
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Guoxue Alley 37#, Wuhou District, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
5
|
Al-Khalisy H, Nieman GF, Kollisch-Singule M, Andrews P, Camporota L, Shiber J, Manougian T, Satalin J, Blair S, Ghosh A, Herrmann J, Kaczka DW, Gaver DP, Bates JHT, Habashi NM. Time-Controlled Adaptive Ventilation (TCAV): a personalized strategy for lung protection. Respir Res 2024; 25:37. [PMID: 38238778 PMCID: PMC10797864 DOI: 10.1186/s12931-023-02615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/25/2023] [Indexed: 01/22/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) alters the dynamics of lung inflation during mechanical ventilation. Repetitive alveolar collapse and expansion (RACE) predisposes the lung to ventilator-induced lung injury (VILI). Two broad approaches are currently used to minimize VILI: (1) low tidal volume (LVT) with low-moderate positive end-expiratory pressure (PEEP); and (2) open lung approach (OLA). The LVT approach attempts to protect already open lung tissue from overdistension, while simultaneously resting collapsed tissue by excluding it from the cycle of mechanical ventilation. By contrast, the OLA attempts to reinflate potentially recruitable lung, usually over a period of seconds to minutes using higher PEEP used to prevent progressive loss of end-expiratory lung volume (EELV) and RACE. However, even with these protective strategies, clinical studies have shown that ARDS-related mortality remains unacceptably high with a scarcity of effective interventions over the last two decades. One of the main limitations these varied interventions demonstrate to benefit is the observed clinical and pathologic heterogeneity in ARDS. We have developed an alternative ventilation strategy known as the Time Controlled Adaptive Ventilation (TCAV) method of applying the Airway Pressure Release Ventilation (APRV) mode, which takes advantage of the heterogeneous time- and pressure-dependent collapse and reopening of lung units. The TCAV method is a closed-loop system where the expiratory duration personalizes VT and EELV. Personalization of TCAV is informed and tuned with changes in respiratory system compliance (CRS) measured by the slope of the expiratory flow curve during passive exhalation. Two potentially beneficial features of TCAV are: (i) the expiratory duration is personalized to a given patient's lung physiology, which promotes alveolar stabilization by halting the progressive collapse of alveoli, thereby minimizing the time for the reopened lung to collapse again in the next expiration, and (ii) an extended inspiratory phase at a fixed inflation pressure after alveolar stabilization gradually reopens a small amount of tissue with each breath. Subsequently, densely collapsed regions are slowly ratcheted open over a period of hours, or even days. Thus, TCAV has the potential to minimize VILI, reducing ARDS-related morbidity and mortality.
Collapse
Affiliation(s)
| | - Gary F Nieman
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | - Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Luigi Camporota
- Health Centre for Human and Applied Physiological Sciences, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, USA
| | | | - Joshua Satalin
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | - Auyon Ghosh
- SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA
| | | | | | | | | | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD, USA
| |
Collapse
|
6
|
Nieman GF, Kaczka DW, Andrews PL, Ghosh A, Al-Khalisy H, Camporota L, Satalin J, Herrmann J, Habashi NM. First Stabilize and then Gradually Recruit: A Paradigm Shift in Protective Mechanical Ventilation for Acute Lung Injury. J Clin Med 2023; 12:4633. [PMID: 37510748 PMCID: PMC10380509 DOI: 10.3390/jcm12144633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/30/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is associated with a heterogeneous pattern of injury throughout the lung parenchyma that alters regional alveolar opening and collapse time constants. Such heterogeneity leads to atelectasis and repetitive alveolar collapse and expansion (RACE). The net effect is a progressive loss of lung volume with secondary ventilator-induced lung injury (VILI). Previous concepts of ARDS pathophysiology envisioned a two-compartment system: a small amount of normally aerated lung tissue in the non-dependent regions (termed "baby lung"); and a collapsed and edematous tissue in dependent regions. Based on such compartmentalization, two protective ventilation strategies have been developed: (1) a "protective lung approach" (PLA), designed to reduce overdistension in the remaining aerated compartment using a low tidal volume; and (2) an "open lung approach" (OLA), which first attempts to open the collapsed lung tissue over a short time frame (seconds or minutes) with an initial recruitment maneuver, and then stabilize newly recruited tissue using titrated positive end-expiratory pressure (PEEP). A more recent understanding of ARDS pathophysiology identifies regional alveolar instability and collapse (i.e., hidden micro-atelectasis) in both lung compartments as a primary VILI mechanism. Based on this understanding, we propose an alternative strategy to ventilating the injured lung, which we term a "stabilize lung approach" (SLA). The SLA is designed to immediately stabilize the lung and reduce RACE while gradually reopening collapsed tissue over hours or days. At the core of SLA is time-controlled adaptive ventilation (TCAV), a method to adjust the parameters of the airway pressure release ventilation (APRV) modality. Since the acutely injured lung at any given airway pressure requires more time for alveolar recruitment and less time for alveolar collapse, SLA adjusts inspiratory and expiratory durations and inflation pressure levels. The TCAV method SLA reverses the open first and stabilize second OLA method by: (i) immediately stabilizing lung tissue using a very brief exhalation time (≤0.5 s), so that alveoli simply do not have sufficient time to collapse. The exhalation duration is personalized and adaptive to individual respiratory mechanical properties (i.e., elastic recoil); and (ii) gradually recruiting collapsed lung tissue using an inflate and brake ratchet combined with an extended inspiratory duration (4-6 s) method. Translational animal studies, clinical statistical analysis, and case reports support the use of TCAV as an efficacious lung protective strategy.
Collapse
Affiliation(s)
- Gary F. Nieman
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - David W. Kaczka
- Departments of Anesthesia, Radiology and Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Penny L. Andrews
- Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Auyon Ghosh
- Department of Medicine, Upstate Medical University, Syracuse, NY 13210, USA
| | - Hassan Al-Khalisy
- Brody School of Medicine, Department of Internal Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, King’s Partners, St Thomas’ Hospital, London SE1 7EH, UK
| | - Joshua Satalin
- Department of Surgery, Upstate Medical University, Syracuse, NY 13210, USA;
| | - Jacob Herrmann
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242, USA
| | - Nader M. Habashi
- Department of Medicine, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD 21201, USA
| |
Collapse
|
7
|
Nieman G, Kollisch-Singule M, Ramcharran H, Satalin J, Blair S, Gatto LA, Andrews P, Ghosh A, Kaczka DW, Gaver D, Bates J, Habashi NM. Unshrinking the baby lung to calm the VILI vortex. Crit Care 2022; 26:242. [PMID: 35934707 PMCID: PMC9357329 DOI: 10.1186/s13054-022-04105-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
A hallmark of ARDS is progressive shrinking of the ‘baby lung,’ now referred to as the ventilator-induced lung injury (VILI) ‘vortex.’ Reducing the risk of the VILI vortex is the goal of current ventilation strategies; unfortunately, this goal has not been achieved nor has mortality been reduced. However, the temporal aspects of a mechanical breath have not been considered. A brief expiration prevents alveolar collapse, and an extended inspiration can recruit the atelectatic lung over hours. Time-controlled adaptive ventilation (TCAV) is a novel ventilator approach to achieve these goals, since it considers many of the temporal aspects of dynamic lung mechanics.
Collapse
Affiliation(s)
- Gary Nieman
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Michaela Kollisch-Singule
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Harry Ramcharran
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA.
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - Penny Andrews
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| | - Auyon Ghosh
- Department of Surgery, SUNY Upstate Medical Center, SUNY Upstate, 750 East Adams St., Syracuse, NY, 13210, USA
| | - David W Kaczka
- Departments of Anesthesia, Biomedical Engineering, and Radiology, University of Iowa, Iowa City, IA, USA
| | - Donald Gaver
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Jason Bates
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | - Nader M Habashi
- Department of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
8
|
Andrews P, Shiber J, Madden M, Nieman GF, Camporota L, Habashi NM. Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal. Front Physiol 2022; 13:928562. [PMID: 35957991 PMCID: PMC9358044 DOI: 10.3389/fphys.2022.928562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.
Collapse
Affiliation(s)
- Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, United States
| | - Maria Madden
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, United Kingdom
| | - Nader M. Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Cheng J, Yang J, Ma A, Dong M, Yang J, Wang P, Xue Y, Zhou Y, Kang Y. The Effects of Airway Pressure Release Ventilation on Pulmonary Permeability in Severe Acute Respiratory Distress Syndrome Pig Models. Front Physiol 2022; 13:927507. [PMID: 35936889 PMCID: PMC9354663 DOI: 10.3389/fphys.2022.927507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: The aim of the study was to compare the effects of APRV and LTV ventilation on pulmonary permeability in severe ARDS.Methods: Mini Bama adult pigs were randomized into the APRV group (n = 5) and LTV group (n = 5). A severe ARDS animal model was induced by the whole lung saline lavage. Pigs were ventilated and monitored continuously for 48 h.Results: Compared with the LTV group, CStat was significantly better (p < 0.05), and the PaO2/FiO2 ratio showed a trend to be higher throughout the period of the experiment in the APRV group. The extravascular lung water index and pulmonary vascular permeability index showed a trend to be lower in the APRV group. APRV also significantly mitigates lung histopathologic injury determined by the lung histopathological injury score (p < 0.05) and gross pathological changes of lung tissues. The protein contents of occludin (p < 0.05), claudin-5 (p < 0.05), E-cadherin (p < 0.05), and VE-cadherin (p < 0.05) in the middle lobe of the right lung were higher in the APRV group than in the LTV group; among them, the contents of occludin (p < 0.05) and E-cadherin (p < 0.05) of the whole lung were higher in the APRV group. Transmission electron microscopy showed that alveolar–capillary barrier damage was more severe in the middle lobe of lungs in the LTV group.Conclusion: In comparison with LTV, APRV could preserve the alveolar–capillary barrier architecture, mitigate lung histopathologic injury, increase the expression of cell junction protein, improve respiratory system compliance, and showed a trend to reduce extravascular lung water and improve oxygenation. These findings indicated that APRV might lead to more profound beneficial effects on the integrity of the alveolar–capillary barrier architecture and on the expression of biomarkers related to pulmonary permeability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yan Kang
- *Correspondence: Yongfang Zhou, ; Yan Kang,
| |
Collapse
|
10
|
A Ventilator Mode Cannot Set Itself, Nor Can It Be Solely Responsible for Outcomes. Crit Care Med 2022; 50:695-699. [PMID: 35311779 DOI: 10.1097/ccm.0000000000005403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Cheng J, Ma A, Dong M, Zhou Y, Wang B, Xue Y, Wang P, Yang J, Kang Y. Does airway pressure release ventilation offer new hope for treating acute respiratory distress syndrome? JOURNAL OF INTENSIVE MEDICINE 2022; 2:241-248. [PMID: 36785647 PMCID: PMC8958099 DOI: 10.1016/j.jointm.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 01/01/2023]
Abstract
Mechanical ventilation (MV) is an essential life support method for patients with acute respiratory distress syndrome (ARDS), which is one of the most common critical illnesses with high mortality in the intensive care unit (ICU). A lung-protective ventilation strategy based on low tidal volume (LTV) has been recommended since a few years; however, as this did not result in a significant decrease of ARDS-related mortality, a more optimal ventilation mode was required. Airway pressure release ventilation (APRV) is an old method defined as a continuous positive airway pressure (CPAP) with a brief intermittent release phase based on the open lung concept; it also perfectly fits the ARDS treatment principle. Despite this, APRV has not been widely used in the past, rather only as a rescue measure for ARDS patients who are difficult to oxygenate. Over recent years, with an increased understanding of the pathophysiology of ARDS, APRV has been reproposed to improve patient prognosis. Nevertheless, this mode is still not routinely used in ARDS patients given its vague definition and complexity. Consequently, in this paper, we summarize the studies that used APRV in ARDS, including adults, children, and animals, to illustrate the settings of parameters, effectiveness in the population, safety (especially in children), incidence, and mechanism of ventilator-induced lung injury (VILI) and effects on extrapulmonary organs. Finally, we found that APRV is likely associated with improvement in ARDS outcomes, and does not increase injury to the lungs and other organs, thereby indicating that personalized APRV settings may be the new hope for ARDS treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Yang
- Corresponding authors: Yan Kang and Jing Yang, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| | - Yan Kang
- Corresponding authors: Yan Kang and Jing Yang, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
12
|
Zhuang S, Wu H, Lin H, Yan N, Zhang F, Wang W. Efficacy analysis of the lung recruitment maneuver in correcting pulmonary atelectasis in neurological intensive care unit-a retrospective study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:315. [PMID: 35433997 PMCID: PMC9011305 DOI: 10.21037/atm-22-554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/15/2022] [Indexed: 12/16/2022]
Abstract
Background Atelectasis after supratentorial craniotomy is common. It can lead to the decrease of arterial partial pressure of oxygen (PaO2) in patients with neurosurgical intensive care units (NICU), and the recovery of neurological function is more and more difficult. However, due to the particularity of maintaining the stability of intracranial pressure (ICP), there are few reports on effective ways to alleviate atelectasis and improve oxygenation in patients with NICU effectively. Methods A retrospective analysis was conducted to analyze the clinical data of patients with atelectasis who received lung recruitment maneuver in the NICU. This study collected data on 33 patients. Of these, 17 patients had traumatic brain injury and 16 patients had spontaneous intracranial hemorrhage. PaO2, oxygenation index (OI), tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, plateau pressure, respiratory rate, minute ventilation and chest computed tomography (CT) or portable chest X-ray images were compared before and after recruitment. As for safety evaluation indicators, we reviewed the invasive arterial blood pressure, heart rate, heart rhythm, and subcutaneous emphysema in all patients. Before and after lung recruitment, the data were compared using the paired t-test and the Wilcoxon test. Results Compared with tidal volume 8.1 [6.85-10.05] mL/kg, minute ventilation volume (9.3±1.3 L/min), respiratory system compliance 60 [39-80] mL/cmH2O, respiratory rate 17 [16-21.5] breaths/min, PEEP 4 [4-6] cmH2O, plateau pressure 19 [17-23] cmH2O, PaO2 (104.2±33.17 mmHg) and OI (250.6±87.65 mmHg) before lung recruitment, tidal volume 9 [8.05-10.65] mL/kg, minute ventilation (9.7±1.1 L/min), respiratory system compliance 69 [50-82.5] mL/cmH2O, respiratory rate 17 [14-18.5] breaths/min, PEEP 4 [4-5] cmH2O, plateau pressure 18 [16-19.5] cmH2O, PaO2 (127.3±34.95 mmHg) and OI (306.9±96.52 mmHg) of patients were significantly improved after recruitment after recruitment (all P<0.05). In all patients, chest CT showed a decrease in atelectasis area and bilateral pulmonary exudates in 25 patients after lung recruitment maneuver. X-ray after recruitment in 2 patients showed increased lung tissue transparency and decreased ground-glass shadowing, while improvements were not obvious in 6 patients. Conclusions For patients diagnosed with atelectasis in the NICU, lung recruitment maneuver can improve atelectasis, increase PaO2, and improve oxygenation.
Collapse
Affiliation(s)
- Shunfu Zhuang
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Hong Wu
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Hong Lin
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Ning Yan
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Feifei Zhang
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Weiwei Wang
- Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| |
Collapse
|
13
|
Beretta E, Romanò F, Sancini G, Grotberg JB, Nieman GF, Miserocchi G. Pulmonary Interstitial Matrix and Lung Fluid Balance From Normal to the Acutely Injured Lung. Front Physiol 2021; 12:781874. [PMID: 34987415 PMCID: PMC8720972 DOI: 10.3389/fphys.2021.781874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/02/2021] [Indexed: 01/17/2023] Open
Abstract
This review analyses the mechanisms by which lung fluid balance is strictly controlled in the air-blood barrier (ABB). Relatively large trans-endothelial and trans-epithelial Starling pressure gradients result in a minimal flow across the ABB thanks to low microvascular permeability aided by the macromolecular structure of the interstitial matrix. These edema safety factors are lost when the integrity of the interstitial matrix is damaged. The result is that small Starling pressure gradients, acting on a progressively expanding alveolar barrier with high permeability, generate a high transvascular flow that causes alveolar flooding in minutes. We modeled the trans-endothelial and trans-epithelial Starling pressure gradients under control conditions, as well as under increasing alveolar pressure (Palv) conditions of up to 25 cmH2O. We referred to the wet-to-dry weight (W/D) ratio, a specific index of lung water balance, to be correlated with the functional state of the interstitial structure. W/D averages ∼5 in control and might increase by up to ∼9 in severe edema, corresponding to ∼70% loss in the integrity of the native matrix. Factors buffering edemagenic conditions include: (i) an interstitial capacity for fluid accumulation located in the thick portion of ABB, (ii) the increase in interstitial pressure due to water binding by hyaluronan (the "safety factor" opposing the filtration gradient), and (iii) increased lymphatic flow. Inflammatory factors causing lung tissue damage include those of bacterial/viral and those of sterile nature. Production of reactive oxygen species (ROS) during hypoxia or hyperoxia, or excessive parenchymal stress/strain [lung overdistension caused by patient self-induced lung injury (P-SILI)] can all cause excessive inflammation. We discuss the heterogeneity of intrapulmonary distribution of W/D ratios. A W/D ∼6.5 has been identified as being critical for the transition to severe edema formation. Increasing Palv for W/D > 6.5, both trans-endothelial and trans-epithelial gradients favor filtration leading to alveolar flooding. Neither CT scan nor ultrasound can identify this initial level of lung fluid balance perturbation. A suggestion is put forward to identify a non-invasive tool to detect the earliest stages of perturbation of lung fluid balance before the condition becomes life-threatening.
Collapse
Affiliation(s)
- Egidio Beretta
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Francesco Romanò
- Univ. Lille, CNRS, ONERA, Arts et Métiers, Centrale Lille, FRE 2017-LMFL-Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet, Lille, France
| | - Giulio Sancini
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Gary F. Nieman
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Giuseppe Miserocchi
- Department of Medicine and Surgery, School of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| |
Collapse
|
14
|
Miller AG, Bartle RM, Feldman A, Mallory P, Reyes E, Scott B, Rotta AT. A narrative review of advanced ventilator modes in the pediatric intensive care unit. Transl Pediatr 2021; 10:2700-2719. [PMID: 34765495 PMCID: PMC8578787 DOI: 10.21037/tp-20-332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 01/29/2023] Open
Abstract
Respiratory failure is a common reason for pediatric intensive care unit admission. The vast majority of children requiring mechanical ventilation can be supported with conventional mechanical ventilation (CMV) but certain cases with refractory hypoxemia or hypercapnia may require more advanced modes of ventilation. This paper discusses what we have learned about the use of advanced ventilator modes [e.g., high-frequency oscillatory ventilation (HFOV), high-frequency percussive ventilation (HFPV), high-frequency jet ventilation (HFJV) airway pressure release ventilation (APRV), and neurally adjusted ventilatory assist (NAVA)] from clinical, animal, and bench studies. The evidence supporting advanced ventilator modes is weak and consists of largely of single center case series, although a few RCTs have been performed. Animal and bench models illustrate the complexities of different modes and the challenges of applying these clinically. Some modes are proprietary to certain ventilators, are expensive, or may only be available at well-resourced centers. Future efforts should include large, multicenter observational, interventional, or adaptive design trials of different rescue modes (e.g., PROSpect trial), evaluate their use during ECMO, and should incorporate assessments through volumetric capnography, electric impedance tomography, and transpulmonary pressure measurements, along with precise reporting of ventilator parameters and physiologic variables.
Collapse
Affiliation(s)
- Andrew G Miller
- Duke University Medical Center, Durham, NC, USA.,Respiratory Care Services, Duke University Medical Center, Durham, NC, USA
| | - Renee M Bartle
- Duke University Medical Center, Durham, NC, USA.,Respiratory Care Services, Duke University Medical Center, Durham, NC, USA
| | - Alexandra Feldman
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Palen Mallory
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Edith Reyes
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Briana Scott
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| | - Alexandre T Rotta
- Duke University Medical Center, Durham, NC, USA.,Division of Pediatric Critical Care Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
15
|
Ge H, Lin L, Xu Y, Xu P, Duan K, Pan Q, Ying K. Airway Pressure Release Ventilation Mode Improves Circulatory and Respiratory Function in Patients After Cardiopulmonary Bypass, a Randomized Trial. Front Physiol 2021; 12:684927. [PMID: 34149459 PMCID: PMC8209333 DOI: 10.3389/fphys.2021.684927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/10/2021] [Indexed: 11/17/2022] Open
Abstract
Importance Postoperative pulmonary complications and cardiovascular complications are major causes of morbidity, mortality, and resource utilization in cardiac surgery patients. Objectives To investigate the effects of airway pressure release ventilation (APRV) on respiration and hemodynamics in post cardiac surgery patients. Main Outcomes and Measures A single-center randomized control trial was performed. In total, 138 patients undergoing cardiopulmonary bypass were prospectively screened. Ultimately 39 patients met the inclusion criteria and were randomized into two groups: 19 patients were managed with pressure control ventilation (PCV) and 20 patients were managed with APRV. Respiratory mechanics after 4 h, hemodynamics within the first day, and Chest radiograph score (CRS) and blood gasses within the first three days were recorded and compared. Results A higher cardiac index (3.1 ± 0.7 vs. 2.8 ± 0.8 L⋅min–1⋅m2; p < 0.05), and shock volume index (35.4 ± 9.2 vs. 33.1 ± 9.7 ml m–2; p < 0.05) were also observed in the APRV group after 4 h as well as within the first day (p < 0.05). Compared to the PCV group, the PaO2/FiO2 was significantly higher after 4 h in patients of APRV group (340 ± 97 vs. 301 ± 82, p < 0.05) and within the first three days (p < 0.05) in the APRV group. CRS revealed less overall lung injury in the APRV group (p < 0.001). The duration of mechanical ventilation and ICU length of stay were not significantly (p = 0.248 and 0.424, respectively). Conclusions and Relevance Compared to PCV, APRV may be associated with increased cardiac output improved oxygenation, and decreased lung injury in postoperative cardiac surgery patients.
Collapse
Affiliation(s)
- Huiqing Ge
- Department of Respiratory Care, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ling Lin
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ying Xu
- Department of Respiratory Care, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Peifeng Xu
- Department of Respiratory Care, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kailiang Duan
- Department of Respiratory Care, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Pan
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Kejing Ying
- Department of Respiratory and Critical Care, Regional Medical Center for National Institute of Respiratory Diseases, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Habashi NM, Camporota L, Gatto LA, Nieman G. Functional pathophysiology of SARS-CoV-2-induced acute lung injury and clinical implications. J Appl Physiol (1985) 2021; 130:877-891. [PMID: 33444117 PMCID: PMC7984238 DOI: 10.1152/japplphysiol.00742.2020] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 02/08/2023] Open
Abstract
The worldwide pandemic caused by the SARS-CoV-2 virus has resulted in over 84,407,000 cases, with over 1,800,000 deaths when this paper was submitted, with comorbidities such as gender, race, age, body mass, diabetes, and hypertension greatly exacerbating mortality. This review will analyze the rapidly increasing knowledge of COVID-19-induced lung pathophysiology. Although controversial, the acute respiratory distress syndrome (ARDS) associated with COVID-19 (CARDS) seems to present as two distinct phenotypes: type L and type H. The "L" refers to low elastance, ventilation/perfusion ratio, lung weight, and recruitability, and the "H" refers to high pulmonary elastance, shunt, edema, and recruitability. However, the LUNG-SAFE (Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure) and ESICM (European Society of Intensive Care Medicine) Trials Groups have shown that ∼13% of the mechanically ventilated non-COVID-19 ARDS patients have the type-L phenotype. Other studies have shown that CARDS and ARDS respiratory mechanics overlap and that standard ventilation strategies apply to these patients. The mechanisms causing alterations in pulmonary perfusion could be caused by some combination of 1) renin-angiotensin system dysregulation, 2) thrombosis caused by loss of endothelial barrier, 3) endothelial dysfunction causing loss of hypoxic pulmonary vasoconstriction perfusion control, and 4) hyperperfusion of collapsed lung tissue that has been directly measured and supported by a computational model. A flowchart has been constructed highlighting the need for personalized and adaptive ventilation strategies, such as the time-controlled adaptive ventilation method, to set and adjust the airway pressure release ventilation mode, which recently was shown to be effective at improving oxygenation and reducing inspiratory fraction of oxygen, vasopressors, and sedation in patients with COVID-19.
Collapse
Affiliation(s)
- Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, Maryland
| | - Luigi Camporota
- Department of Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Louis A Gatto
- Department of Surgery, Upstate Medical University, Syracuse, New York
| | - Gary Nieman
- Department of Surgery, Upstate Medical University, Syracuse, New York
| |
Collapse
|
17
|
Management of primary blast lung injury: a comparison of airway pressure release versus low tidal volume ventilation. Intensive Care Med Exp 2020; 8:26. [PMID: 32577915 PMCID: PMC7309205 DOI: 10.1186/s40635-020-00314-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/04/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Primary blast lung injury (PBLI) presents as a syndrome of respiratory distress and haemoptysis resulting from explosive shock wave exposure and is a frequent cause of mortality and morbidity in both military conflicts and terrorist attacks. The optimal mode of mechanical ventilation for managing PBLI is not currently known, and clinical trials in humans are impossible due to the sporadic and violent nature of the disease. METHODS A high-fidelity multi-organ computational simulator of PBLI pathophysiology was configured to replicate data from 14 PBLI casualties from the conflict in Afghanistan. Adaptive and responsive ventilatory protocols implementing low tidal volume (LTV) ventilation and airway pressure release ventilation (APRV) were applied to each simulated patient for 24 h, allowing direct quantitative comparison of their effects on gas exchange, ventilatory parameters, haemodynamics, extravascular lung water and indices of ventilator-induced lung injury. RESULTS The simulated patients responded well to both ventilation strategies. Post 24-h investigation period, the APRV arm had similar PF ratios (137 mmHg vs 157 mmHg), lower sub-injury threshold levels of mechanical power (11.9 J/min vs 20.7 J/min) and lower levels of extravascular lung water (501 ml vs 600 ml) compared to conventional LTV. Driving pressure was higher in the APRV group (11.9 cmH2O vs 8.6 cmH2O), but still significantly less than levels associated with increased mortality. CONCLUSIONS Appropriate use of APRV may offer casualties with PBLI important mortality-related benefits and should be considered for management of this challenging patient group.
Collapse
|
18
|
Xu J, Zhao H, Zhang X, Feng Y. Accumulative occlusion time correlates with postoperative pulmonary complications in patients undergoing pelvic and sacrum tumor resection assisted by abdominal aortic balloon occlusion: a retrospective cohort study. BMC Musculoskelet Disord 2020; 21:309. [PMID: 32416723 PMCID: PMC7231417 DOI: 10.1186/s12891-020-03343-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Background Postoperative pulmonary complications (PPCs) seems to be high in patients undergoing pelvic and sacrum tumor resection assisted by abdominal aortic balloon occlusion. We hypothesized that the accumulative occlusion time (AOT) of the abdominal aortic balloon may be predictive of PPCs. The objective of the study was to identify the influence of AOT on PPCs. Methods Retrospectively analyzed perioperative factors of 584 patients who underwent pelvic and sacrum tumor resection assisted by abdominal aortic balloon occlusion in our hospital from January 1, 2016 to December 31, 2018. PPCs including suspected pulmonary infection, atelectasis, pulmonary edema, pleural effusion, respiratory failure were clinically diagnosed. Perioperative parameters among patients with and without PPCs were compared. A receiver operating characteristic (ROC) analysis was conducted to evaluate the discriminative power of AOT with regard to PPCs. A multivariate logistic-regression model was finally established to identify independent risk factors for PPCs. Results The incidence of PPCs was 15.6% (91 patients). The median AOT in PPCs group was significantly higher than that in non-PPCs group (P < 0.001). The hospital stay was significantly prolonged in PPCs group (P < 0.001). The ROC analysis showed an AOT of 119 min as the threshold value at which the joint sensitivity (88.60%) and specificity (31.87%) was maximal. Finally, AOT ≥ 119 min (P = 0.046; odds ratio (OR) = 2.074), age (P < 0.001; OR = 1.032), ASA grade III (P = 0.015; OR = 3.264), and estimated blood loss (P = 0.022; OR = 1.235) were independent risk factors of PPCs by multivariate logistic regression analysis. Conclusion The incidence of PPCs in patients undergoing the pelvic and sacrum tumor surgery assisted by abdominal aortic balloon occlusion was 15.6%. AOT ≥ 119 min was an independent predictor for PPCs. Surgeons should strive to minimize the AOT within 2 h.
Collapse
Affiliation(s)
- Junjun Xu
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 10044, China
| | - Huiying Zhao
- Department of Critical Care Medicine, Peking University People's Hospital, No. 11 Xizhimen South Street, Beijing, China
| | - Xiaodan Zhang
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 10044, China
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, No. 11 Xizhimen South Street, Xicheng District, Beijing, 10044, China.
| |
Collapse
|
19
|
Nieman GF, Al-Khalisy H, Kollisch-Singule M, Satalin J, Blair S, Trikha G, Andrews P, Madden M, Gatto LA, Habashi NM. A Physiologically Informed Strategy to Effectively Open, Stabilize, and Protect the Acutely Injured Lung. Front Physiol 2020; 11:227. [PMID: 32265734 PMCID: PMC7096584 DOI: 10.3389/fphys.2020.00227] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by “casting open” the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hassan Al-Khalisy
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | | | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Girish Trikha
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria Madden
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Biological Sciences, SUNY Cortland, Cortland, NY, United States
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
20
|
Fredericks AS, Bunker MP, Gliga LA, Ebeling CG, Ringqvist JR, Heravi H, Manley J, Valladares J, Romito BT. Airway Pressure Release Ventilation: A Review of the Evidence, Theoretical Benefits, and Alternative Titration Strategies. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2020; 14:1179548420903297. [PMID: 32076372 PMCID: PMC7003159 DOI: 10.1177/1179548420903297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 01/08/2020] [Indexed: 11/15/2022]
Abstract
Objective: To review the theoretical benefits of airway pressure release ventilation (APRV), summarize the evidence for its use in clinical practice, and discuss different titration strategies. Data Source: Published randomized controlled trials in humans, observational human studies, animal studies, review articles, ventilator textbooks, and editorials. Data Summary: Airway pressure release ventilation optimizes alveolar recruitment, reduces airway pressures, allows for spontaneous breathing, and offers many hemodynamic benefits. Despite these physiologic advantages, there are inconsistent data to support the use of APRV over other modes of ventilation. There is considerable heterogeneity in the application of APRV among providers and a shortage of information describing initiation and titration strategies. To date, no direct comparison studies of APRV strategies have been performed. This review describes 2 common management approaches that bedside providers can use to optimally tailor APRV to their patients. Conclusion: Airway pressure release ventilation remains a form of mechanical ventilation primarily used for refractory hypoxemia. It offers unique physiological advantages over other ventilatory modes, and providers must be familiar with different titration methods. Given its inconsistent outcome data and heterogeneous use in practice, future trials should directly compare APRV strategies to determine the optimal management approach.
Collapse
Affiliation(s)
- Andrew S Fredericks
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew P Bunker
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Louise A Gliga
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Callie G Ebeling
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jenny Rb Ringqvist
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hooman Heravi
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James Manley
- Department of Respiratory Care, Parkland Memorial Hospital, Dallas, TX, USA.,The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Valladares
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bryan T Romito
- Department of Anesthesiology and Pain Management, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Mallory P, Cheifetz I. A comprehensive review of the use and understanding of airway pressure release ventilation. Expert Rev Respir Med 2020; 14:307-315. [PMID: 31869259 DOI: 10.1080/17476348.2020.1708719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Airway pressure release ventilation (APRV) is a mode of ventilation typically utilized as a rescue or alternative mode for patients with acute respiratory distress syndrome (ARDS) and hypoxemia that is refractory to conventional mechanical ventilation. APRV's indication and efficacy continue to remain unclear given lack of consensus amongst practitioners, inconsistent methodology for its use, and scarcity of convincing evidence.Areas covered: This review discusses the history of APRV, how APRV works, rationales for its use, and its theoretical advantages and disadvantages. This is followed by a review of current available literature examining APRV's use in the intensive care unit, with further focus on its use in the pediatric intensive care unit.Expert opinion: APRV is a ventilation mode with theoretical risks and benefits. Appropriate study of APRV's clinical efficacy is difficult given a heterogeneous patient population and widely variable use of APRV between centers. Despite a paucity of definitive evidence in support of either mode, it is possible that the use of APRV will begin to outpace the use of high-frequency oscillatory ventilation (HFOV) for the management of refractory hypoxemia as more attention is paid to benefits of spontaneous breathing and minimizing sedation. Furthermore, APRV's role during ECMO deserves further investigation.
Collapse
Affiliation(s)
- Palen Mallory
- Division of Pediatric Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ira Cheifetz
- Division of Pediatric Critical Care Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
22
|
Sun X, Liu Y, Li N, You D, Zhao Y. The safety and efficacy of airway pressure release ventilation in acute respiratory distress syndrome patients: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e18586. [PMID: 31895807 PMCID: PMC6946469 DOI: 10.1097/md.0000000000018586] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The acute respiratory distress syndrome (ARDS) is a critical illness with high mortality and a worse prognosis. Mechanical ventilation (MV) is currently considered to be one of the most effective methods of treating ARDS. In this meta-analysis, we discussed the efficacy of airway pressure release ventilation (APRV) in treating ARDS. METHODS Following the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA), Ovid Medline, Embase, and PubMed were systematically searched with the keywords of "ARDS" and "APRV". The studies containing the treatment of APRV in ARDS were included. According to the MV protocol used in the studies, the comparison was undertaken between the APRV group vs low tidal volume (LTV) group and synchronized intermittent mandatory ventilation (SIMV) group. The relative risk (RR) and the standard mean difference with 95% confidence intervals (CI) were used for the comparison between groups. RESULTS Fourteen studies with 2096 patients were included in the meta-analysis. The average increasing rate of PaO2/FiO2 was 75.4% in the APRV group vs 44.1% in the non-APRV group. No significant differences were found in mortality and duration of ICU stay between APRV vs LTV (P = .073 and P = .404) and APRV vs SIMV (P = .370 and P = .894). CONCLUSION The APRV protocol would have a higher increase in the PaO2/FiO2 ratio, which was a safe protocol with a compatible effect comparing to LTV and SIMV.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou
| | - Yuqi Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou
| | - Neng Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian Province
| | - Deyuan You
- Department of Critical Care Medicine, The Second Affiliated Hospital, Fujian Medical University, Quanzhou
| | - Yanping Zhao
- Department of Critical Care Medicine, Chinese Medicine Hospital Changji Autonomous Prefecture, Changji, Xinjiang Uygur Autonomous Region, PR China
| |
Collapse
|
23
|
Lalgudi Ganesan S, Jayashree M, Chandra Singhi S, Bansal A. Airway Pressure Release Ventilation in Pediatric Acute Respiratory Distress Syndrome. A Randomized Controlled Trial. Am J Respir Crit Care Med 2019; 198:1199-1207. [PMID: 29641221 DOI: 10.1164/rccm.201705-0989oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Although case series describe benefits of airway pressure release ventilation (APRV), this mode of ventilation has not been evaluated against the conventional low-tidal volume ventilation (LoTV) in children with acute respiratory distress syndrome (ARDS). OBJECTIVES To compare the effect of APRV and conventional LoTV on ventilator-free days in children with ARDS. METHODS This open-label, parallel-design randomized controlled trial was conducted in a 15-bed ICU. Children aged 1 month to 12 years satisfying the modified Berlin definition were included. We excluded children with air leaks, increased intracranial pressure, poor spontaneous breathing efforts, chronic lung disease, and beyond 24 hours of ARDS diagnosis or 72 hours of ventilation. Children were randomized using unstratified, variable-sized block technique. A priori interim analysis was planned at 50% enrollment. All enrolled children were followed up until 180 days after enrollment or death, whichever was earlier. MEASUREMENTS AND MAIN RESULTS The trial was terminated after 50% enrollment (52 children) when analysis revealed higher mortality in the intervention arm. Ventilator-free days were statistically similar in both arms (P = 0.23). The 28-day all-cause mortality was 53.8% in APRV as compared with 26.9% among control subjects (risk ratio, 2.0; 95% confidence interval, 0.97-4.1; Fisher exact P = 0.089). The multivariate-adjusted risk ratio of death for APRV compared with LoTV was 2.02 (95% confidence interval, 0.99-4.12; P = 0.05). Higher mean airway pressures, greater spontaneous breathing, and early improvement in oxygenation were seen in the intervention arm. CONCLUSIONS APRV, as a primary ventilation strategy in children with ARDS, was associated with a trend toward higher mortality compared with the conventional LoTV. Limitations should be considered while interpreting these results. Clinical trial registered with www.clinicaltrials.gov (NCT02167698) and Clinical Trials Registry of India (CTRI/2014/06/004677).
Collapse
Affiliation(s)
- Saptharishi Lalgudi Ganesan
- 1 Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Muralidharan Jayashree
- 1 Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Sunit Chandra Singhi
- 1 Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and.,2 Division of Pediatrics, Medanta, The Medicity, Gurugram, National Capital Region, India
| | - Arun Bansal
- 1 Division of Pediatric Critical Care, Department of Pediatrics, Advanced Pediatrics Center, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and
| |
Collapse
|
24
|
Kollisch-Singule M, Andrews P, Satalin J, Gatto LA, Nieman GF, Habashi NM. The time-controlled adaptive ventilation protocol: mechanistic approach to reducing ventilator-induced lung injury. Eur Respir Rev 2019; 28:28/152/180126. [PMID: 30996041 DOI: 10.1183/16000617.0126-2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 02/16/2019] [Indexed: 11/05/2022] Open
Abstract
Airway pressure release ventilation (APRV) is a ventilator mode that has previously been considered a rescue mode, but has gained acceptance as a primary mode of ventilation. In clinical series and experimental animal models of extrapulmonary acute respiratory distress syndrome (ARDS), the early application of APRV was able to prevent the development of ARDS. Recent experimental evidence has suggested mechanisms by which APRV, using the time-controlled adaptive ventilation (TCAV) protocol, may reduce lung injury, including: 1) an improvement in alveolar recruitment and homogeneity; 2) reduction in alveolar and alveolar duct micro-strain and stress-risers; 3) reduction in alveolar tidal volumes; and 4) recruitment of the chest wall by combating increased intra-abdominal pressure. This review examines these studies and discusses our current understanding of the pleiotropic mechanisms by which TCAV protects the lung. APRV set according to the TCAV protocol has been misunderstood and this review serves to highlight the various protective physiological and mechanical effects it has on the lung, so that its clinical application may be broadened.
Collapse
Affiliation(s)
| | - Penny Andrews
- Dept of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Satalin
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Louis A Gatto
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA.,Dept of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Gary F Nieman
- Dept of Surgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Nader M Habashi
- Dept of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Satalin J, Habashi NM, Nieman GF. Never give the lung the opportunity to collapse. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2018. [DOI: 10.1016/j.tacc.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Preemptive Mechanical Ventilation Based on Dynamic Physiology in the Alveolar Microenvironment: Novel Considerations of Time-Dependent Properties of the Respiratory System. J Trauma Acute Care Surg 2018; 85:1081-1091. [PMID: 30124627 DOI: 10.1097/ta.0000000000002050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the current treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword; if set properly, it can significantly reduce ARDS associated mortality but if set improperly it can have unintended consequences causing a secondary ventilator induced lung injury (VILI). The hallmark of ARDS pathology is a heterogeneous lung injury, which predisposes the lung to a secondary VILI. The current standard of care approach is to wait until ARDS is well established and then apply a low tidal volume (LVt) strategy to avoid over-distending the remaining normal lung. However, even with the use of LVt strategy, the mortality of ARDS remains unacceptably high at ~40%. In this review, we analyze the lung pathophysiology associated with ARDS that renders the lung highly vulnerable to a secondary VILI. The current standard of care LVt strategy is critiqued as well as new strategies used in combination with LVt to protect the lung. Using the current understanding of alveolar mechanics (i.e. the dynamic change in alveolar size and shape with tidal ventilation) we provide a rationale for why the current protective ventilation strategies have not further reduced ARDS mortality. New strategies of protective ventilation based on dynamic physiology in the micro-environment (i.e. alveoli and alveolar ducts) are discussed. Current evidence suggests that alveolar inflation and deflation is viscoelastic in nature, with a fast and slow phase in both alveolar recruitment and collapse. Using this knowledge, a ventilation strategy with a prolonged time at inspiration would recruit alveoli and a brief release time at expiration would prevent alveolar collapse, converting heterogeneous to homogeneous lung inflation significantly reducing ARDS incidence and mortality.
Collapse
|
27
|
Nieman GF, Andrews P, Satalin J, Wilcox K, Kollisch-Singule M, Madden M, Aiash H, Blair SJ, Gatto LA, Habashi NM. Acute lung injury: how to stabilize a broken lung. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2018; 22:136. [PMID: 29793554 PMCID: PMC5968707 DOI: 10.1186/s13054-018-2051-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The pathophysiology of acute respiratory distress syndrome (ARDS) results in heterogeneous lung collapse, edema-flooded airways and unstable alveoli. These pathologic alterations in alveolar mechanics (i.e. dynamic change in alveolar size and shape with each breath) predispose the lung to secondary ventilator-induced lung injury (VILI). It is our viewpoint that the acutely injured lung can be recruited and stabilized with a mechanical breath until it heals, much like casting a broken bone until it mends. If the lung can be "casted" with a mechanical breath, VILI could be prevented and ARDS incidence significantly reduced.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Penny Andrews
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Kailyn Wilcox
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Michaela Kollisch-Singule
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Maria Madden
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| | - Hani Aiash
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Sarah J Blair
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.,Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nader M Habashi
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA
| |
Collapse
|
28
|
Kollisch-Singule MC, Jain SV, Andrews PL, Satalin J, Gatto LA, Villar J, De Backer D, Gattinoni L, Nieman GF, Habashi NM. Looking beyond macroventilatory parameters and rethinking ventilator-induced lung injury. J Appl Physiol (1985) 2017; 124:1214-1218. [PMID: 29146685 DOI: 10.1152/japplphysiol.00412.2017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
| | - Sumeet V Jain
- Department of Surgery, SUNY Upstate Medical University , Syracuse, New York
| | - Penny L Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine , Baltimore, Maryland
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University , Syracuse, New York
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University , Syracuse, New York.,Department of Biological Sciences, SUNY Cortland, Cortland, New York
| | - Jesús Villar
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III , Madrid , Spain.,Research Unit, Hospital Universitario Dr. Negrin , Las Palmas de Gran Canaria , Spain
| | - Daniel De Backer
- Department of Intensive Care, CHIREC Hospitals, Université Libre de Bruxelles , Brussels , Belgium
| | - Luciano Gattinoni
- Department of Anesthesia and Intensive Care, Georg-August-Universität, Göttingen , Germany
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University , Syracuse, New York
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine , Baltimore, Maryland
| |
Collapse
|
29
|
Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med 2017; 43:1648-1659. [PMID: 28936695 PMCID: PMC5633625 DOI: 10.1007/s00134-017-4912-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/12/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE Experimental animal models of acute respiratory distress syndrome (ARDS) have shown that the updated airway pressure release ventilation (APRV) methodologies may significantly improve oxygenation, maximize lung recruitment, and attenuate lung injury, without circulatory depression. This led us to hypothesize that early application of APRV in patients with ARDS would allow pulmonary function to recover faster and would reduce the duration of mechanical ventilation as compared with low tidal volume lung protective ventilation (LTV). METHODS A total of 138 patients with ARDS who received mechanical ventilation for <48 h between May 2015 to October 2016 while in the critical care medicine unit (ICU) of the West China Hospital of Sichuan University were enrolled in the study. Patients were randomly assigned to receive APRV (n = 71) or LTV (n = 67). The settings for APRV were: high airway pressure (Phigh) set at the last plateau airway pressure (Pplat), not to exceed 30 cmH2O) and low airway pressure ( Plow) set at 5 cmH2O; the release phase (Tlow) setting adjusted to terminate the peak expiratory flow rate to ≥ 50%; release frequency of 10-14 cycles/min. The settings for LTV were: target tidal volume of 6 mL/kg of predicted body weight; Pplat not exceeding 30 cmH2O; positive end-expiratory pressure (PEEP) guided by the PEEP-FiO2 table according to the ARDSnet protocol. The primary outcome was the number of days without mechanical ventilation from enrollment to day 28. The secondary endpoints included oxygenation, Pplat, respiratory system compliance, and patient outcomes. RESULTS Compared with the LTV group, patients in the APRV group had a higher median number of ventilator-free days {19 [interquartile range (IQR) 8-22] vs. 2 (IQR 0-15); P < 0.001}. This finding was independent of the coexisting differences in chronic disease. The APRV group had a shorter stay in the ICU (P = 0.003). The ICU mortality rate was 19.7% in the APRV group versus 34.3% in the LTV group (P = 0.053) and was associated with better oxygenation and respiratory system compliance, lower Pplat, and less sedation requirement during the first week following enrollment (P < 0.05, repeated-measures analysis of variance). CONCLUSIONS Compared with LTV, early application of APRV in patients with ARDS improved oxygenation and respiratory system compliance, decreased Pplat and reduced the duration of both mechanical ventilation and ICU stay.
Collapse
|
30
|
Miller AC, Ferrada PA, Kadri SS, Nataraj-Bhandari K, Vahedian-Azimi A, Quraishi SA. High-Frequency Ventilation Modalities as Salvage Therapy for Smoke Inhalation-Associated Acute Lung Injury: A Systematic Review. J Intensive Care Med 2017. [PMID: 28651475 DOI: 10.1177/0885066617714770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Smoke inhalation-associated acute lung injury (SI-ALI) is a major cause of morbidity and mortality in victims of fire tragedies. To date, there are no evidence-based guidelines on ventilation strategies in acute respiratory distress syndrome (ARDS) after smoke inhalation. We reviewed the existing literature for clinical studies of salvage mechanical ventilation (MV) strategies in patients with SI-ALI, focusing on mortality and pneumonia as outcomes. METHODS A systematic search was designed in accordance with preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Risk of bias assessment was performed using the Newcastle-Ottawa Quality Assessment Scale (NOS; 0 to 9 stars), with a score ≥7 being the threshold for inclusion in the meta-analysis. A systematic search strategy was used to search 10 databases. Clinical studies were included in which patients: (1) experienced smoke inhalation, (2) treated with MV, and (3) described a concurrent or historical control group. RESULTS A total of 226 potentially relevant studies were identified, of which 7 studies on high-frequency percussive ventilation (HFPV) met inclusion criteria. No studies met inclusion for meta-analysis (NOS ≥ 7). In studies comparing HFPV to conventional mechanical ventilation (CMV), mortality and pneumonia incidence improved in 3 studies and remained unchanged in 3 others. No change in ventilator days or ICU length of stay was observed; however, oxygenation and work of breathing improved with HFPV. CONCLUSIONS Mechanical ventilation in patients with SI-ALI has not been well studied. High-frequency percussive ventilation may decrease in-hospital mortality and pneumonia incidence when compared to CMV. The absence of "good" quality evidence precluded meta-analysis. Based upon low-quality evidence, there was a very weak recommendation that HFPV use may be associated with lower mortality and pneumonia rates in patients with SI-ALI. Given SI-ALI's unique underlying pathophysiology, and its potential implications on therapy, randomized controlled studies are required to ensure that patients receive the safest and most effective care. TRIAL REGISTRATION The study was registered with PROSPERO International prospective register of systematic reviews (#47015).
Collapse
Affiliation(s)
- Andrew C Miller
- 1 Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA.,2 Department of Emergency Medicine, West Virginia University, Morgantown, WV, USA
| | - Paula A Ferrada
- 3 Division of Trauma and Critical Care, Department of Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Sameer S Kadri
- 1 Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | | | - Amir Vahedian-Azimi
- 4 Trauma Research Center, Nursing Faculty, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadeq A Quraishi
- 5 Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.,6 Department of Anaesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
31
|
Nieman GF, Satalin J, Kollisch-Singule M, Andrews P, Aiash H, Habashi NM, Gatto LA. Physiology in Medicine: Understanding dynamic alveolar physiology to minimize ventilator-induced lung injury. J Appl Physiol (1985) 2017; 122:1516-1522. [PMID: 28385915 PMCID: PMC7203565 DOI: 10.1152/japplphysiol.00123.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/16/2017] [Accepted: 04/03/2017] [Indexed: 02/01/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the main treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword: if set improperly, it can exacerbate the tissue damage caused by ARDS; this is known as ventilator-induced lung injury (VILI). To minimize VILI, we must understand the pathophysiologic mechanisms of tissue damage at the alveolar level. In this Physiology in Medicine paper, the dynamic physiology of alveolar inflation and deflation during mechanical ventilation will be reviewed. In addition, the pathophysiologic mechanisms of VILI will be reviewed, and this knowledge will be used to suggest an optimal mechanical breath profile (MBP: all airway pressures, volumes, flows, rates, and the duration that they are applied at both inspiration and expiration) necessary to minimize VILI. Our review suggests that the current protective ventilation strategy, known as the "open lung strategy," would be the optimal lung-protective approach. However, the viscoelastic behavior of dynamic alveolar inflation and deflation has not yet been incorporated into protective mechanical ventilation strategies. Using our knowledge of dynamic alveolar mechanics (i.e., the dynamic change in alveolar and alveolar duct size and shape during tidal ventilation) to modify the MBP so as to minimize VILI will reduce the morbidity and mortality associated with ARDS.
Collapse
Affiliation(s)
- Gary F Nieman
- State University of New York Upstate Medical University, Syracuse, New York
| | - Josh Satalin
- State University of New York Upstate Medical University, Syracuse, New York;
| | | | - Penny Andrews
- R Adams Cowley Shock Trauma Center, Baltimore, Maryland
| | - Hani Aiash
- State University of New York Upstate Medical University, Syracuse, New York
- Suez Canal University, Ismailia, Egypt; and
| | | | - Louis A Gatto
- State University of New York Upstate Medical University, Syracuse, New York
- State University of New York Cortland, Cortland, New York
| |
Collapse
|
32
|
The role of high airway pressure and dynamic strain on ventilator-induced lung injury in a heterogeneous acute lung injury model. Intensive Care Med Exp 2017; 5:25. [PMID: 28497420 PMCID: PMC5427060 DOI: 10.1186/s40635-017-0138-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/26/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome causes a heterogeneous lung injury with normal and acutely injured lung tissue in the same lung. Improperly adjusted mechanical ventilation can exacerbate ARDS causing a secondary ventilator-induced lung injury (VILI). We hypothesized that a peak airway pressure of 40 cmH2O (static strain) alone would not cause additional injury in either the normal or acutely injured lung tissue unless combined with high tidal volume (dynamic strain). METHODS Pigs were anesthetized, and heterogeneous acute lung injury (ALI) was created by Tween instillation via a bronchoscope to both diaphragmatic lung lobes. Tissue in all other lobes was normal. Airway pressure release ventilation was used to precisely regulate time and pressure at both inspiration and expiration. Animals were separated into two groups: (1) over-distension + high dynamic strain (OD + HDS, n = 6) and (2) over-distension + low dynamic strain (OD + LDS, n = 6). OD was caused by setting the inspiratory pressure at 40 cmH2O and dynamic strain was modified by changing the expiratory duration, which varied the tidal volume. Animals were ventilated for 6 h recording hemodynamics, lung function, and inflammatory mediators followed by an extensive necropsy. RESULTS In normal tissue (NT), OD + LDS caused minimal histologic damage and a significant reduction in BALF total protein (p < 0.05) and MMP-9 activity (p < 0.05), as compared with OD + HDS. In acutely injured tissue (ALIT), OD + LDS resulted in reduced histologic injury and pulmonary edema (p < 0.05), as compared with OD + HDS. CONCLUSIONS Both NT and ALIT are resistant to VILI caused by OD alone, but when combined with a HDS, significant tissue injury develops.
Collapse
|
33
|
Kollisch-Singule M, Jain SV, Satalin J, Andrews P, Searles Q, Liu Z, Zhou Y, Wang G, Meier AH, Gatto LA, Nieman GF, Habashi NM. Limiting ventilator-associated lung injury in a preterm porcine neonatal model. J Pediatr Surg 2017; 52:50-55. [PMID: 27837992 DOI: 10.1016/j.jpedsurg.2016.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/20/2016] [Indexed: 01/28/2023]
Abstract
PURPOSE Preterm infants are prone to respiratory distress syndrome (RDS), with severe cases requiring mechanical ventilation for support. However, there are no clear guidelines regarding the optimal ventilation strategy. We hypothesized that airway pressure release ventilation (APRV) would mitigate lung injury in a preterm porcine neonatal model. METHODS Preterm piglets were delivered on gestational day 98 (85% of 115day term), instrumented, and randomized to volume guarantee (VG; n=10) with low tidal volumes (5.5cm3kg-1) and PEEP 4cmH2O or APRV (n=10) with initial ventilator settings: PHigh 18cmH2O, PLow 0cmH2O, THigh 1.30s, TLow 0.15s. Ventilator setting changes were made in response to clinical parameters in both groups. Animals were monitored continuously for 24hours. RESULTS The mortality rates between the two groups were not significantly different (p>0.05). The VG group had relatively increased oxygen requirements (FiO2 50%±9%) compared with the APRV group (FiO2 28%±5%; p>0.05) and a decrease in PaO2/FiO2 ratio (VG 162±33mmHg; APRV 251±45mmHg; p<0.05). The compliance of the VG group (0.51±0.07L·cmH2O-1) was significantly less than the APRV group (0.90±0.06L·cmH2O-1; p<0.05). CONCLUSION This study demonstrates that APRV improves oxygenation and compliance as compared with VG. This preliminary work suggests further study into the clinical uses of APRV in the neonate is warranted. LEVEL OF EVIDENCE Not Applicable (Basic Science Animal Study).
Collapse
Affiliation(s)
| | - Sumeet V Jain
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Penny Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD, 21201, USA.
| | - Quinn Searles
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Zhiyong Liu
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Yan Zhou
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Andreas H Meier
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA; Department of Biological Sciences, SUNY Cortland, 22 Graham Ave, Cortland, NY, 13045, USA.
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams St., Syracuse, NY, 13210, USA.
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, 22 S. Greene St., Baltimore, MD, 21201, USA.
| |
Collapse
|
34
|
Gil Cano A, Gracia Romero M, Monge García MI, Guijo González P, Ruiz Campos J. Preemptive hemodynamic intervention restricting the administration of fluids attenuates lung edema progression in oleic acid-induced lung injury. Med Intensiva 2016; 41:135-142. [PMID: 27986329 DOI: 10.1016/j.medin.2016.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/04/2016] [Accepted: 08/03/2016] [Indexed: 11/28/2022]
Abstract
OBJECTIVE A study is made of the influence of preemptive hemodynamic intervention restricting fluid administration upon the development of oleic acid-induced lung injury. DESIGN A randomized in vivo study in rabbits was carried out. SETTING University research laboratory. SUBJECTS Sixteen anesthetized, mechanically ventilated rabbits. VARIABLES Hemodynamic measurements obtained by transesophageal Doppler signal. Respiratory mechanics computed by a least square fitting method. Lung edema assessed by the ratio of wet weight to dry weight of the right lung. Histological examination of the left lung. INTERVENTIONS Animals were randomly assigned to either the early protective lung strategy (EPLS) (n=8) or the early protective hemodynamic strategy (EPHS) (n=8). In both groups, lung injury was induced by the intravenous infusion of oleic acid (OA) (0.133mlkg-1h-1 for 2h). At the same time, the EPLS group received 15mlkg-1h-1 of Ringer lactate solution, while the EPHS group received 30mlkg-1h-1. Measurements were obtained at baseline and 1 and 2h after starting OA infusion. RESULTS After 2h, the cardiac index decreased in the EPLS group (p<0.05), whereas in the EPHS group it remained unchanged. Lung compliance decreased significantly only in the EPHS group (p<0.05). Lung edema was greater in the EPHS group (p<0.05). Histological damage proved similar in both groups (p=0.4). CONCLUSIONS In this experimental model of early lung injury, lung edema progression was attenuated by preemptively restricting the administration of fluids.
Collapse
Affiliation(s)
- A Gil Cano
- Laboratorio de Investigación Experimental, Unidad de Gestión Clínica de Medicina Intensiva, Hospital del SAS de Jerez, Jerez de la Frontera, Cádiz, Spain.
| | - M Gracia Romero
- Laboratorio de Investigación Experimental, Unidad de Gestión Clínica de Medicina Intensiva, Hospital del SAS de Jerez, Jerez de la Frontera, Cádiz, Spain
| | - M I Monge García
- Laboratorio de Investigación Experimental, Unidad de Gestión Clínica de Medicina Intensiva, Hospital del SAS de Jerez, Jerez de la Frontera, Cádiz, Spain
| | - P Guijo González
- Laboratorio de Investigación Experimental, Unidad de Gestión Clínica de Medicina Intensiva, Hospital del SAS de Jerez, Jerez de la Frontera, Cádiz, Spain
| | - J Ruiz Campos
- Servicio de Anatomía Patológica, Hospital del SAS de Jerez, Jerez de la Frontera, Cádiz, Spain
| |
Collapse
|
35
|
Early stabilizing alveolar ventilation prevents acute respiratory distress syndrome. J Trauma Acute Care Surg 2016. [DOI: 10.1097/01.ta.0000490132.44632.bf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Jain SV, Kollisch-Singule M, Sadowitz B, Dombert L, Satalin J, Andrews P, Gatto LA, Nieman GF, Habashi NM. The 30-year evolution of airway pressure release ventilation (APRV). Intensive Care Med Exp 2016; 4:11. [PMID: 27207149 PMCID: PMC4875584 DOI: 10.1186/s40635-016-0085-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/03/2016] [Indexed: 02/07/2023] Open
Abstract
Airway pressure release ventilation (APRV) was first described in 1987 and defined as continuous positive airway pressure (CPAP) with a brief release while allowing the patient to spontaneously breathe throughout the respiratory cycle. The current understanding of the optimal strategy to minimize ventilator-induced lung injury is to "open the lung and keep it open". APRV should be ideal for this strategy with the prolonged CPAP duration recruiting the lung and the minimal release duration preventing lung collapse. However, APRV is inconsistently defined with significant variation in the settings used in experimental studies and in clinical practice. The goal of this review was to analyze the published literature and determine APRV efficacy as a lung-protective strategy. We reviewed all original articles in which the authors stated that APRV was used. The primary analysis was to correlate APRV settings with physiologic and clinical outcomes. Results showed that there was tremendous variation in settings that were all defined as APRV, particularly CPAP and release phase duration and the parameters used to guide these settings. Thus, it was impossible to assess efficacy of a single strategy since almost none of the APRV settings were identical. Therefore, we divided all APRV studies divided into two basic categories: (1) fixed-setting APRV (F-APRV) in which the release phase is set and left constant; and (2) personalized-APRV (P-APRV) in which the release phase is set based on changes in lung mechanics using the slope of the expiratory flow curve. Results showed that in no study was there a statistically significant worse outcome with APRV, regardless of the settings (F-ARPV or P-APRV). Multiple studies demonstrated that P-APRV stabilizes alveoli and reduces the incidence of acute respiratory distress syndrome (ARDS) in clinically relevant animal models and in trauma patients. In conclusion, over the 30 years since the mode's inception there have been no strict criteria in defining a mechanical breath as being APRV. P-APRV has shown great promise as a highly lung-protective ventilation strategy.
Collapse
Affiliation(s)
- Sumeet V Jain
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | | | - Benjamin Sadowitz
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Luke Dombert
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Josh Satalin
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.
| | - Penny Andrews
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.,Department of Biological Sciences, 10 SUNY Cortland, Cortland, NY, 13045, USA
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Nader M Habashi
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| |
Collapse
|
37
|
Nieman GF, Gatto LA, Bates JHT, Habashi NM. Mechanical Ventilation as a Therapeutic Tool to Reduce ARDS Incidence. Chest 2016; 148:1396-1404. [PMID: 26135199 DOI: 10.1378/chest.15-0990] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trauma, hemorrhagic shock, or sepsis can incite systemic inflammatory response syndrome, which can result in early acute lung injury (EALI). As EALI advances, improperly set mechanical ventilation (MV) can amplify early injury into a secondary ventilator-induced lung injury that invariably develops into overt ARDS. Once established, ARDS is refractory to most therapeutic strategies, which have not been able to lower ARDS mortality below the current unacceptably high 40%. Low tidal volume ventilation is one of the few treatments shown to have a moderate positive impact on ARDS survival, presumably by reducing ventilator-induced lung injury. Thus, there is a compelling case to be made that the focus of ARDS management should switch from treatment once this syndrome has become established to the application of preventative measures while patients are still in the EALI stage. Indeed, studies have shown that ARDS incidence is markedly reduced when conventional MV is applied preemptively using a combination of low tidal volume and positive end-expiratory pressure in both patients in the ICU and in surgical patients at high risk for developing ARDS. Furthermore, there is evidence from animal models and high-risk trauma patients that superior prevention of ARDS can be achieved using preemptive airway pressure release ventilation with a very brief duration of pressure release. Preventing rather than treating ARDS may be the way forward in dealing with this recalcitrant condition and would represent a paradigm shift in the way that MV is currently practiced.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY.
| | | | | | - Nader M Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, Baltimore, MD
| |
Collapse
|
38
|
Sadowitz B, Jain S, Kollisch-Singule M, Satalin J, Andrews P, Habashi N, Gatto LA, Nieman G. Preemptive mechanical ventilation can block progressive acute lung injury. World J Crit Care Med 2016; 5:74-82. [PMID: 26855896 PMCID: PMC4733459 DOI: 10.5492/wjccm.v5.i1.74] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/15/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023] Open
Abstract
Mortality from acute respiratory distress syndrome (ARDS) remains unacceptable, approaching 45% in certain high-risk patient populations. Treating fulminant ARDS is currently relegated to supportive care measures only. Thus, the best treatment for ARDS may lie with preventing this syndrome from ever occurring. Clinical studies were examined to determine why ARDS has remained resistant to treatment over the past several decades. In addition, both basic science and clinical studies were examined to determine the impact that early, protective mechanical ventilation may have on preventing the development of ARDS in at-risk patients. Fulminant ARDS is highly resistant to both pharmacologic treatment and methods of mechanical ventilation. However, ARDS is a progressive disease with an early treatment window that can be exploited. In particular, protective mechanical ventilation initiated before the onset of lung injury can prevent the progression to ARDS. Airway pressure release ventilation (APRV) is a novel mechanical ventilation strategy for delivering a protective breath that has been shown to block progressive acute lung injury (ALI) and prevent ALI from progressing to ARDS. ARDS mortality currently remains as high as 45% in some studies. As ARDS is a progressive disease, the key to treatment lies with preventing the disease from ever occurring while it remains subclinical. Early protective mechanical ventilation with APRV appears to offer substantial benefit in this regard and may be the prophylactic treatment of choice for preventing ARDS.
Collapse
|
39
|
Kollisch-Singule M, Emr B, Jain SV, Andrews P, Satalin J, Liu J, Porcellio E, Kenyon V, Wang G, Marx W, Gatto LA, Nieman GF, Habashi NM. The effects of airway pressure release ventilation on respiratory mechanics in extrapulmonary lung injury. Intensive Care Med Exp 2015; 3:35. [PMID: 26694915 PMCID: PMC4688284 DOI: 10.1186/s40635-015-0071-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Lung injury is often studied without consideration for pathologic changes in the chest wall. In order to reduce the incidence of lung injury using preemptive mechanical ventilation, it is important to recognize the influence of altered chest wall mechanics on disease pathogenesis. In this study, we hypothesize that airway pressure release ventilation (APRV) may be able to reduce the chest wall elastance associated with an extrapulmonary lung injury model as compared with low tidal volume (LVt) ventilation. METHODS Female Yorkshire pigs were anesthetized and instrumented. Fecal peritonitis was established, and the superior mesenteric artery was clamped for 30 min to induce an ischemia/reperfusion injury. Immediately following injury, pigs were randomized into (1) LVt (n = 3), positive end-expiratory pressure (PEEP) 5 cmH2O, V t 6 cc kg(-1), FiO2 21 %, and guided by the ARDSnet protocol or (2) APRV (n = 3), P High 16-22 cmH2O, P Low 0 cmH2O, T High 4.5 s, T Low set to terminate the peak expiratory flow at 75 %, and FiO2 21 %. Pigs were monitored continuously for 48 h. Lung samples and bronchoalveolar lavage fluid were collected at necropsy. RESULTS LVt resulted in mild acute respiratory distress syndrome (ARDS) (PaO2/FiO2 = 226.2 ± 17.1 mmHg) whereas APRV prevented ARDS (PaO2/FiO2 = 465.7 ± 66.5 mmHg; p < 0.05). LVt had a reduced surfactant protein A concentration and increased histologic injury as compared with APRV. The plateau pressure in APRV (34.3 ± 0.9 cmH2O) was significantly greater than LVt (22.2 ± 2.0 cmH2O; p < 0.05) yet transpulmonary pressure between groups was similar (p > 0.05). This was because the pleural pressure was significantly lower in LVt (7.6 ± 0.5 cmH2O) as compared with APRV (17.4 ± 3.5 cmH2O; p < 0.05). Finally, the elastance of the lung, chest wall, and respiratory system were all significantly greater in LVt as compared with APRV (all p < 0.05). CONCLUSIONS APRV preserved surfactant and lung architecture and maintenance of oxygenation. Despite the greater plateau pressure and tidal volumes in the APRV group, the transpulmonary pressure was similar to that of LVt. Thus, the majority of the plateau pressure in the APRV group was distributed as pleural pressure in this extrapulmonary lung injury model. APRV maintained a normal lung elastance and an open, homogeneously ventilated lung without increasing lung stress.
Collapse
Affiliation(s)
- Michaela Kollisch-Singule
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Bryanna Emr
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Sumeet V Jain
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Penny Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Jiao Liu
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Elizabeth Porcellio
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Van Kenyon
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Guirong Wang
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - William Marx
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
- Department of Biological Sciences, SUNY Cortland, Cortland, NY, USA.
| | - Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY, 13210, USA.
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Nieman GF, Gatto LA, Habashi NM. Reducing acute respiratory distress syndrome occurrence using mechanical ventilation. World J Respirol 2015; 5:188-198. [DOI: 10.5320/wjr.v5.i3.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 07/01/2015] [Accepted: 07/17/2015] [Indexed: 02/06/2023] Open
Abstract
The standard treatment for acute respiratory distress syndrome (ARDS) is supportive in the form of low tidal volume ventilation applied after significant lung injury has already developed. Nevertheless, ARDS mortality remains unacceptably high (> 40%). Indeed, once ARDS is established it becomes refractory to treatment, and therefore avoidance is key. However, preventive techniques and therapeutics to reduce the incidence of ARDS in patients at high-risk have not been validated clinically. This review discusses the current data suggesting that preemptive application of the properly adjusted mechanical breath can block progressive acute lung injury and significantly reduce the occurrence of ARDS.
Collapse
|
41
|
Nieman GF, Gatto LA, Habashi NM. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. J Appl Physiol (1985) 2015; 119:1245-61. [PMID: 26472873 DOI: 10.1152/japplphysiol.00659.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/01/2015] [Indexed: 02/08/2023] Open
Abstract
The earliest description of what is now known as the acute respiratory distress syndrome (ARDS) was a highly lethal double pneumonia. Ashbaugh and colleagues (Ashbaugh DG, Bigelow DB, Petty TL, Levine BE Lancet 2: 319-323, 1967) correctly identified the disease as ARDS in 1967. Their initial study showing the positive effect of mechanical ventilation with positive end-expiratory pressure (PEEP) on ARDS mortality was dampened when it was discovered that improperly used mechanical ventilation can cause a secondary ventilator-induced lung injury (VILI), thereby greatly exacerbating ARDS mortality. This Synthesis Report will review the pathophysiology of ARDS and VILI from a mechanical stress-strain perspective. Although inflammation is also an important component of VILI pathology, it is secondary to the mechanical damage caused by excessive strain. The mechanical breath will be deconstructed to show that multiple parameters that comprise the breath-airway pressure, flows, volumes, and the duration during which they are applied to each breath-are critical to lung injury and protection. Specifically, the mechanisms by which a properly set mechanical breath can reduce the development of excessive fluid flux and pulmonary edema, which are a hallmark of ARDS pathology, are reviewed. Using our knowledge of how multiple parameters in the mechanical breath affect lung physiology, the optimal combination of pressures, volumes, flows, and durations that should offer maximum lung protection are postulated.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, Upstate Medical University, Syracuse, New York;
| | - Louis A Gatto
- Biological Sciences Department, State University of New York, Cortland, New York; and
| | - Nader M Habashi
- R Adams Cowley Shock/Trauma Center, University of Maryland Medical Center, Baltimore, Maryland
| |
Collapse
|
42
|
Emr BM, Roy S, Kollisch-Singule M, Gatto LA, Barravecchia M, Lin X, Young JL, Wang G, Liu J, Satalin J, Snyder K, Nieman GF, Dean DA. Electroporation-mediated gene delivery of Na+,K+ -ATPase, and ENaC subunits to the lung attenuates acute respiratory distress syndrome in a two-hit porcine model. Shock 2015; 43:16-23. [PMID: 25004064 DOI: 10.1097/shk.0000000000000228] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is a common cause of organ failure with an associated mortality rate of 40%. The initiating event is disruption of alveolar-capillary interface causing leakage of edema into alveoli. HYPOTHESIS Electroporation-mediated gene delivery of epithelial sodium channel (ENaC) and Na+,K+ -ATPase into alveolar cells would improve alveolar clearance of edema and attenuate ARDS. METHODS Pigs were anesthetized and instrumented, and the superior mesenteric artery was clamped to cause gut ischemia/reperfusion injury and peritoneal sepsis by fecal clot implantation. Animals were ventilated according to ARDSnet protocol. Four hours after injury, animals were randomized into groups: (i) treatment: Na+,K+ -ATPase/ENaC plasmid (n = 5) and (ii) control: empty plasmid (n = 5). Plasmids were delivered to the lung using bronchoscope. Electroporation was delivered using eight-square-wave electric pulses across the chest. Following electroporation, pigs were monitored 48 h. RESULTS The Pao2/Fio2 ratio and lung compliance were higher in the treatment group. Lung wet/dry ratio was lower in the treatment group. Relative expression of the Na+,K+ -ATPase transgene was higher throughout lungs receiving treatment plasmids. Quantitative histopathology revealed a reduction in intra-alveolar fibrin in the treatment group. Bronchoalveolar lavage showed increased surfactant protein B in the treatment group. Survival was improved in the treatment group. CONCLUSIONS Electroporation-mediated transfer of Na+,K+ -ATPase/ENaC plasmids improved lung function, reduced fibrin deposits, decreased lung edema, and improved survival in a translational porcine model of ARDS. Gene therapy can attenuate ARDS pathophysiology in a high-fidelity animal model, suggesting a potential new therapy for patients.
Collapse
Affiliation(s)
- Bryanna M Emr
- *Department of Surgery, SUNY Upstate Medical University, Syracuse; †Department of Biology, SUNY Cortland, Cortland; and Departments of ‡Pediatrics and §Biomedical Engineering, University of Rochester, Rochester, New York
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Lung Injury Prediction Score Is Useful in Predicting Acute Respiratory Distress Syndrome and Mortality in Surgical Critical Care Patients. Crit Care Res Pract 2015; 2015:157408. [PMID: 26301105 PMCID: PMC4537732 DOI: 10.1155/2015/157408] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/27/2015] [Accepted: 07/01/2015] [Indexed: 01/06/2023] Open
Abstract
Background. Lung injury prediction score (LIPS) is valuable for early recognition of ventilated patients at high risk for developing acute respiratory distress syndrome (ARDS). This study analyzes the value of LIPS in predicting ARDS and mortality among ventilated surgical patients. Methods. IRB approved, prospective observational study including all ventilated patients admitted to the surgical intensive care unit at a single tertiary center over 6 months. ARDS was defined using the Berlin criteria. LIPS were calculated for all patients and analyzed. Logistic regression models evaluated the ability of LIPS to predict development of ARDS and mortality. A receiver operator characteristic (ROC) curve demonstrated the optimal LIPS value to statistically predict development of ARDS. Results. 268 ventilated patients were observed; 141 developed ARDS and 127 did not. The average LIPS for patients who developed ARDS was 8.8 ± 2.8 versus 5.4 ± 2.8 for those who did not (p < 0.001). An ROC area under the curve of 0.79 demonstrates LIPS is statistically powerful for predicting ARDS development. Furthermore, for every 1-unit increase in LIPS, the odds of developing ARDS increase by 1.50 (p < 0.001) and odds of ICU mortality increase by 1.22 (p < 0.001). Conclusion. LIPS is reliable for predicting development of ARDS and predicting mortality in critically ill surgical patients.
Collapse
|
44
|
Andrews PL, Sadowitz B, Kollisch-Singule M, Satalin J, Roy S, Snyder K, Gatto LA, Nieman GF, Habashi NM. Alveolar instability (atelectrauma) is not identified by arterial oxygenation predisposing the development of an occult ventilator-induced lung injury. Intensive Care Med Exp 2015. [PMID: 26215818 PMCID: PMC4480795 DOI: 10.1186/s40635-015-0054-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Improperly set mechanical ventilation (MV) with normal lungs can advance lung injury and increase the incidence of acute respiratory distress syndrome (ARDS). A key mechanism of ventilator-induced lung injury (VILI) is an alteration in alveolar mechanics including alveolar instability or recruitment/derecruitment (R/D). We hypothesize that R/D cannot be identified by PaO2 (masking occult VILI), and if protective ventilation is not applied, ARDS incidence will increase. METHODS Sprague-Dawley rats (n = 8) were anesthetized, surgically instrumented, and placed on MV. A thoracotomy was performed and an in vivo microscope attached to the pleural surface of the lung with baseline dynamic changes in alveolar size during MV recorded. Alveolar instability was induced by intra-tracheal instillation of Tween and alveolar R/D identified as a marked change in alveolar size from inspiration to expiration with increases in positive end-expiratory pressure (PEEP) levels. RESULTS Despite maintaining a clinically acceptable PaO2 (55-80 mmHg), the alveoli remained unstable with significant R/D at low PEEP levels. Although PaO2 consistently increased with an increase in PEEP, R/D did not plateau until PEEP was >9 cmH2O. CONCLUSIONS PaO2 remained clinically acceptable while alveolar instability persisted at all levels of PEEP (especially PEEP <9 cmH2O). Therefore, PaO2 levels cannot be used reliably to guide protective MV strategies or infer that VILI is not occurring. Using PaO2 to set a PEEP level necessary to stabilize the alveoli could underestimate the potential for VILI. These findings highlight the need for more accurate marker(s) of alveolar stability to guide protective MV necessary to prevent VILI.
Collapse
Affiliation(s)
- Penny L Andrews
- Department of Critical Care, R Adams Cowley Shock Trauma Center, Baltimore, MD, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Lung protective ventilation (ARDSNet) versus airway pressure release ventilation: ventilatory management in a combined model of acute lung and brain injury. J Trauma Acute Care Surg 2015; 78:240-9; discussion 249-51. [PMID: 25757107 DOI: 10.1097/ta.0000000000000518] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Concomitant lung/brain traumatic injury results in significant morbidity and mortality. Lung protective ventilation (Acute Respiratory Distress Syndrome Network [ARDSNet]) has become the standard for managing adult respiratory distress syndrome; however, the resulting permissive hypercapnea may compound traumatic brain injury. Airway pressure release ventilation (APRV) offers an alternative strategy for the management of this patient population. APRV was hypothesized to retard the progression of acute lung/brain injury to a degree greater than ARDSNet in a swine model. METHODS Yorkshire swine were randomized to ARDSNet, APRV, or sham. Ventilatory settings and pulmonary parameters, vitals, blood gases, quantitative histopathology, and cerebral microdialysis were compared between groups using χ2, Fisher's exact, Student's t test, Wilcoxon rank-sum, and mixed-effects repeated-measures modeling. RESULTS Twenty-two swine (17 male, 5 female), weighing a mean (SD) of 25 (6.0) kg, were randomized to APRV (n = 9), ARDSNet (n = 12), or sham (n = 1). PaO2/FIO2 ratio dropped significantly, while intracranial pressure increased significantly for all three groups immediately following lung and brain injury. Over time, peak inspiratory pressure, mean airway pressure, and PaO2/FIO2 ratio significantly increased, while total respiratory rate significantly decreased within the APRV group compared with the ARDSNet group. Histopathology did not show significant differences between groups in overall brain or lung tissue injury; however, cerebral microdialysis trends suggested increased ischemia within the APRV group compared with ARDSNet over time. CONCLUSION Previous studies have not evaluated the effects of APRV in this population. While our macroscopic parameters and histopathology did not observe a significant difference between groups, microdialysis data suggest a trend toward increased cerebral ischemia associated with APRV over time. Additional and future studies should focus on extending the time interval for observation to further delineate differences between groups.
Collapse
|
46
|
Smith BJ, Lundblad LKA, Kollisch-Singule M, Satalin J, Nieman G, Habashi N, Bates JHT. Predicting the response of the injured lung to the mechanical breath profile. J Appl Physiol (1985) 2015; 118:932-40. [PMID: 25635004 PMCID: PMC4385881 DOI: 10.1152/japplphysiol.00902.2014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/22/2015] [Indexed: 11/22/2022] Open
Abstract
Mechanical ventilation is a crucial component of the supportive care provided to patients with acute respiratory distress syndrome. Current practice stipulates the use of a low tidal volume (VT) of 6 ml/kg ideal body weight, the presumptive notion being that this limits overdistension of the tissues and thus reduces volutrauma. We have recently found, however, that airway pressure release ventilation (APRV) is efficacious at preventing ventilator-induced lung injury, yet APRV has a very different mechanical breath profile compared with conventional low-VT ventilation. To gain insight into the relative merits of these two ventilation modes, we measured lung mechanics and derecruitability in rats before and following Tween lavage. We fit to these lung mechanics measurements a computational model of the lung that accounts for both the degree of tissue distension of the open lung and the amount of lung derecruitment that takes place as a function of time. Using this model, we predicted how tissue distension, open lung fraction, and intratidal recruitment vary as a function of ventilator settings both for conventional low-VT ventilation and for APRV. Our predictions indicate that APRV is more effective at recruiting the lung than low-VT ventilation, but without causing more overdistension of the tissues. On the other hand, low-VT ventilation generally produces less intratidal recruitment than APRV. Predictions such as these may be useful for deciding on the relative benefits of different ventilation modes and thus may serve as a means for determining how to ventilate a given lung in the least injurious fashion.
Collapse
Affiliation(s)
- Bradford J Smith
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Lennart K A Lundblad
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont
| | - Michaela Kollisch-Singule
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York; and
| | - Joshua Satalin
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York; and
| | - Gary Nieman
- Department of Surgery, State University of New York Upstate Medical University, Syracuse, New York; and
| | - Nader Habashi
- R. Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jason H T Bates
- Vermont Lung Center, University of Vermont College of Medicine, Burlington, Vermont;
| |
Collapse
|
47
|
Sadowsky D, Nieman G, Barclay D, Mi Q, Zamora R, Constantine G, Golub L, Lee HM, Roy S, Gatto LA, Vodovotz Y. Impact of chemically-modified tetracycline 3 on intertwined physiological, biochemical, and inflammatory networks in porcine sepsis/ARDS. INTERNATIONAL JOURNAL OF BURNS AND TRAUMA 2015; 5:22-35. [PMID: 26064799 PMCID: PMC4448085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
Sepsis can lead to multiple organ dysfunction, including the Acute Respiratory Distress Syndrome (ARDS), due to intertwined, dynamic changes in inflammation and organ physiology. We have demonstrated the efficacy of Chemically-Modified Tetracycline 3 (CMT-3) at reducing inflammation and ameliorating pathophysiology in the setting of a clinically realistic porcine model of ARDS. Here, we sought to gain insights into the derangements that characterize sepsis/ARDS and the possible impact of CMT-3 thereon, by combined experimental and computational studies. Two groups of anesthetized, ventilated pigs were subjected to experimental sepsis via placement of a peritoneal fecal clot and intestinal ischemia/reperfusion by clamping the superior mesenteric artery for 30 min. The treatment group (n = 3) received CMT-3 at 1 hour after injury (T1), while the control group (n = 3) received a placebo. Multiple inflammatory mediators, along with clinically relevant physiologic and blood chemistry variables, were measured serially until death of the animal or T48. Principal Component Analysis (PCA) and Dynamic Bayesian Network (DBN) inference were used to relate these variables. PCA revealed a separation of cardiac and pulmonary physiologic variables by principal component, and a decreased rank of oxygen index and arterial PO2/FiO2 ratio in the treatment group compared to control. DBN suggested a conserved network structure in both control and CMT-3 animals: a response driven by positive feedback between interleukin-6 and lung dysfunction. Resulting networks further suggested that in control animals, acute kidney injury, acidosis, and respiratory failure play an increased role in the response to insult compared to CMT-3 animals. These combined in vivo and in silico studies in a high fidelity, clinically applicable animal model suggest a dynamic interplay between inflammatory, physiologic, and blood chemistry variables in the setting of sepsis and ARDS that may be dramatically altered by pleiotropic interruption of inflammation by CMT-3.
Collapse
Affiliation(s)
- David Sadowsky
- Department of Surgery, University of PittsburghPittsburgh, PA, USA
| | - Gary Nieman
- Department of Surgery, Upstate Medical UniversitySyracuse, NY, USA
| | - Derek Barclay
- Department of Surgery, University of PittsburghPittsburgh, PA, USA
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of PittsburghPittsburgh, PA, USA
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA
| | - Ruben Zamora
- Department of Surgery, University of PittsburghPittsburgh, PA, USA
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA
| | - Gregory Constantine
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA
- Department of Mathematics, University of PittsburghPittsburgh, PA, USA
| | - Lorne Golub
- Department of Oral Biology and Pathology, School of Dental Medicine, SUNY Stony BrookStony Brook, NY, USA
| | - Hsi-Ming Lee
- Department of Oral Biology and Pathology, School of Dental Medicine, SUNY Stony BrookStony Brook, NY, USA
| | - Shreyas Roy
- Department of Surgery, Upstate Medical UniversitySyracuse, NY, USA
| | - Louis A Gatto
- Department of Biological Sciences, SUNY CortlandCortland, NY, USA
| | - Yoram Vodovotz
- Department of Surgery, University of PittsburghPittsburgh, PA, USA
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of PittsburghPittsburgh, PA, USA
| |
Collapse
|
48
|
Li W, Rosenbruch M, Pauluhn J. Effect of PEEP on phosgene-induced lung edema: pilot study on dogs using protective ventilation strategies. ACTA ACUST UNITED AC 2014; 67:109-16. [PMID: 25467748 DOI: 10.1016/j.etp.2014.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/20/2014] [Accepted: 10/21/2014] [Indexed: 12/30/2022]
Abstract
Various therapeutic regimes have been proposed for treatment of phosgene-induced acute lung injury (P-ALI). Most of these treatments rely on late-stage supportive measures to maintain the oxygenation of the lung. This exploratory proof-of-concept study on Beagle dogs focused on protective positive end-expiratory pressure (PEEP) ventilation, initiated early at the yet asymptomatic stage after phosgene exposure. Conscious, spontaneously breathing dogs were head-only exposed to a potentially lethal inhalation dose of phosgene (870 ppm × min). Shortly after exposure, the dogs were anesthetized, intubated and then subjected to mechanical ventilation (PEEP; tidal volume (VT)=10-12 mL/kg body weight, 40 breaths/min) at 0, 4, or 12 cm H2O over a post-exposure period of 8h (one dog per setting). For reference, one additional dog received the same dose of phosgene without anesthesia and mechanical ventilation. Time-course changes of hematocrit, leukocytes, and thrombocytes were determined in peripheral blood. At necropsy, changes lung weights, bronchoalveolar lavage, and histology were used to assess the efficacy of treatment. The most salient outcome in the non-ventilated dog was a time-related hemoconcentration and leukocytosis and autopsy findings suggestive of pulmonary congestion and edema. The pulmonary epithelium of the major airways was generally intact; however, in their lumen inflammatory cells, cellular debris and mucus were present. Relative to the dog receiving no intervention, the lung edema was markedly alleviated by PEEP at both 4 and 12 cm H2O but not at 0 cm H2O PEEP. In summary, the time-dependent progression into a life-threatening pulmonary edema can effectively be suppressed by protective, low-pressure PEEP when implemented early enough after exposure to phosgene. However, due to the exploratory nature of this study, the findings may suggest an association between PEEP and protection from pulmonary edema. However, definite conclusions and recommendations cannot be made yet based upon the small sample size and the limited variables examined.
Collapse
Affiliation(s)
- Wenli Li
- Fourth Military Medical University, Department of Toxicology, Xi'an, China
| | - Martin Rosenbruch
- Bayer HealthCare Pharma, Experimental Toxicology, Wuppertal, Germany
| | - Jürgen Pauluhn
- Bayer HealthCare Pharma, Experimental Toxicology, Wuppertal, Germany.
| |
Collapse
|
49
|
Kollisch-Singule M, Emr B, Smith B, Ruiz C, Roy S, Meng Q, Jain S, Satalin J, Snyder K, Ghosh A, Marx WH, Andrews P, Habashi N, Nieman GF, Gatto LA. Airway pressure release ventilation reduces conducting airway micro-strain in lung injury. J Am Coll Surg 2014; 219:968-76. [PMID: 25440027 DOI: 10.1016/j.jamcollsurg.2014.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/25/2014] [Accepted: 08/01/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Improper mechanical ventilation can exacerbate acute lung damage, causing a secondary ventilator-induced lung injury (VILI). We hypothesized that VILI can be reduced by modifying specific components of the ventilation waveform (mechanical breath), and we studied the impact of airway pressure release ventilation (APRV) and controlled mandatory ventilation (CMV) on the lung micro-anatomy (alveoli and conducting airways). The distribution of gas during inspiration and expiration and the strain generated during mechanical ventilation in the micro-anatomy (micro-strain) were calculated. STUDY DESIGN Rats were anesthetized, surgically prepared, and randomized into 1 uninjured control group (n = 2) and 4 groups with lung injury: APRV 75% (n = 2), time at expiration (TLow) set to terminate appropriately at 75% of peak expiratory flow rate (PEFR); APRV 10% (n = 2), TLow set to terminate inappropriately at 10% of PEFR; CMV with PEEP 5 cm H2O (PEEP 5; n = 2); or PEEP 16 cm H2O (PEEP 16; n = 2). Lung injury was induced in the experimental groups by Tween lavage and ventilated with their respective settings. Lungs were fixed at peak inspiration and end expiration for standard histology. Conducting airway and alveolar air space areas were quantified and conducting airway micro-strain was calculated. RESULTS All lung injury groups redistributed inspired gas away from alveoli into the conducting airways. The APRV 75% minimized gas redistribution and micro-strain in the conducting airways and provided the alveolar air space occupancy most similar to control at both inspiration and expiration. CONCLUSIONS In an injured lung, APRV 75% maintained micro-anatomic gas distribution similar to that of the normal lung. The lung protection demonstrated in previous studies using APRV 75% may be due to a more homogeneous distribution of gas at the micro-anatomic level as well as a reduction in conducting airway micro-strain.
Collapse
Affiliation(s)
| | - Bryanna Emr
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Bradford Smith
- Department of Medicine, University of Vermont, Burlington, VT
| | - Cynthia Ruiz
- Department of Biological Sciences, SUNY Cortland, Cortland, NY
| | - Shreyas Roy
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Qinghe Meng
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Sumeet Jain
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Joshua Satalin
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY.
| | - Kathy Snyder
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Auyon Ghosh
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - William H Marx
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Penny Andrews
- R Adams Cowley Shock Trauma Center, Trauma Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Nader Habashi
- R Adams Cowley Shock Trauma Center, Trauma Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Gary F Nieman
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY
| | - Louis A Gatto
- Department of General Surgery, SUNY Upstate Medical University, Syracuse, NY; Department of Biological Sciences, SUNY Cortland, Cortland, NY
| |
Collapse
|
50
|
Airway pressure release ventilation: improving oxygenation: indications, rationale, and adverse events associated with airway pressure release ventilation in patients with acute respiratory distress syndrome for advance practice nurses. Dimens Crit Care Nurs 2014; 32:222-8. [PMID: 23933639 DOI: 10.1097/dcc.0b013e3182a076ce] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Airway pressure release ventilation (APRV) is a mode of ventilation that has been around since the 1980s and was originally viewed as a type of continuous positive pressure mode of ventilation. Conceptually, APRV can be thought of as a type of inverse-ratio, pressure-controlled, intermittent mandatory ventilation during which the maintenance of spontaneous breathing and prolonged application of high mean airway pressure contribute to the clinical benefits. The aim of this review article was to familiarize the bedside clinician working in the intensive care unit with the theory and rationale behind this mode of ventilation. The potential advantages and disadvantages of APRV will also be discussed to empower the advance practice clinician and bedside nurse to advocate for their patient diagnosed with the often-high mortality disease of acute respiratory distress syndrome.
Collapse
|