1
|
Thorp EB, Ananthakrishnan A, Lantz CW. Decoding immune cell interactions during cardiac allograft vasculopathy: insights derived from bioinformatic strategies. Front Cardiovasc Med 2025; 12:1568528. [PMID: 40342971 PMCID: PMC12058854 DOI: 10.3389/fcvm.2025.1568528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/04/2025] [Indexed: 05/11/2025] Open
Abstract
Chronic allograft vasculopathy (CAV) is a major cause of late graft failure in heart transplant recipients, characterized by progressive intimal thickening and diffuse narrowing of the coronary arteries. Unlike atherosclerosis, CAV exhibits a distinct cellular composition and lesion distribution, yet its pathogenesis remains incompletely understood. A major challenge in CAV research has been the limited application of advanced "-omics" technologies, which have revolutionized the study of other vascular diseases. Recent advancements in single-cell and spatial transcriptomics, proteomics, and metabolomics have begun to uncover the complex immune-endothelial-stromal interactions driving CAV progression. Notably, single-cell RNA sequencing has identified previously unrecognized immune cell populations and signaling pathways implicated in endothelial injury and vascular remodeling after heart transplantation. Despite these breakthroughs, studies applying these technologies to CAV remain sparse, limiting the translation of these insights into clinical practice. This review aims to bridge this gap by summarizing recent findings from single-cell and multi-omic approaches, highlighting key discoveries, and discussing their implications for understanding CAV pathogenesis.
Collapse
Affiliation(s)
- Edward B. Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Aparnaa Ananthakrishnan
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Connor W. Lantz
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Huang B, Lin H, Zhang Q, Luo Y, Zhou B, Zhuo Z, Sha W, Wei J, Luo L, Zhang H, Chen K. Identification of shared fatty acid metabolism related signatures in dilated cardiomyopathy and myocardial infarction. Future Sci OA 2023; 9:FSO847. [PMID: 37056578 PMCID: PMC10088053 DOI: 10.2144/fsoa-2023-0008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Aim: It is to be elucidated the risk-predictive role of differentially expressed fatty acid metabolism related genes (DE-FRGs) in dilated cardiomyopathy (DCM) and myocardial infarction. Materials & methods: Four gene enrichment analyses defined DE-FRGs’ biological functions and pathways. Three strategies were applied to identify risk biomarkers and construct a nomogram. The 4-DE-FRG correlation with immune cell infiltration, drugs, and ceRNA was explored. Results: DE-FRGs were enriched in lipid metabolism. A risk nomogram was established by ACSL1, ALDH2, CYP27A1 and PPARA, demonstrating a good ability for DCM and myocardial infarction prediction. PPARA was positively correlated with adaptive immunocytes. Thirty-five drugs are candidate therapeutic targets. Conclusion: A nomogram and new biological targets for early diagnosis and treatment of DCM and myocardial infarction were provided.
Collapse
|
3
|
Miller CL, Madsen JC. Targeting IL-6 to prevent cardiac allograft rejection. Am J Transplant 2022; 22 Suppl 4:12-17. [PMID: 36453706 PMCID: PMC10191185 DOI: 10.1111/ajt.17206] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 12/05/2022]
Abstract
Outcomes following heart transplantation remain suboptimal with acute and chronic rejection being major contributors to poor long-term survival. IL-6 is increasingly recognized as a critical pro-inflammatory cytokine involved in allograft injury and has been shown to play a key role in regulating the inflammatory and alloimmune responses following heart transplantation. Therapies that inhibit IL-6 signaling have emerged as promising strategies to prevent allograft rejection. Here, we review experimental and pre-clinical evidence that supports the potential use of IL-6 signaling blockade to improve outcomes in heart transplant recipients.
Collapse
Affiliation(s)
- Cynthia L. Miller
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Einsfeld L, Goldraich LA, Matte B, Clausell N, Valle FH. Pancreatitis as a Potential Trigger for Severe Accelerated Cardiac Allograft Vasculopathy Early Post Heart Transplant: A Case Report. Transplant Proc 2022; 54:2797-2799. [DOI: 10.1016/j.transproceed.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 11/11/2022]
|
5
|
Li D, Pi W, Sun Z, Liu X, Jiang J. Ferroptosis and its role in cardiomyopathy. Biomed Pharmacother 2022; 153:113279. [PMID: 35738177 DOI: 10.1016/j.biopha.2022.113279] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 12/09/2022] Open
Abstract
Heart disease is the leading cause of death worldwide. Cardiomyopathy is a disease characterized by the heart muscle damage, resulting heart in a structurally and functionally change, as well as heart failure and sudden cardiac death. The key pathogenic factor of cardiomyopathy is the loss of cardiomyocytes, but the related molecular mechanisms remain unclear. Ferroptosis is a newly discovered regulated form of cell death, characterized by iron accumulation and lipid peroxidation during cell death. Recent studies have shown that ferroptosis plays an important regulatory roles in the occurrence and development of many heart diseases such as myocardial ischemia/reperfusion injury, cardiomyopathy and heart failure. However, the systemic association of ferroptosis and cardiomyopathy remains largely unknown and needs to be elucidated. In this review, we provide an overview of the molecular mechanisms of ferroptosis and its role in individual cardiomyopathies, highlight that targeting ferroptosis maybe a potential therapeutic strategy for cardiomyopathy therapy in the future.
Collapse
Affiliation(s)
- Danlei Li
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Wenhu Pi
- Key Laboratory of Radiation Oncology of Taizhou, Radiation Oncology Institute of Enze Medical Health Academy, Department of Radiation Oncology, Affiliated Taizhou hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Zhenzhu Sun
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Xiaoman Liu
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Jianjun Jiang
- Department of Cardiology, Taizhou Hospital of Wenzhou Medical University, Linhai 317000, Zhejiang Province, China.
| |
Collapse
|
6
|
Reevaluation of NOD/SCID Mice as NK Cell-Deficient Models. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8851986. [PMID: 34805408 PMCID: PMC8598338 DOI: 10.1155/2021/8851986] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 07/21/2021] [Accepted: 10/21/2021] [Indexed: 12/02/2022]
Abstract
Objective Natural killer (NK) cell-deficient mice are useful models in biomedical research. NOD/SCID mice have been used as a model of this type in research. However, the actual status of NK cells in NOD/SCID mice and CB17/SCID mice in comparison with that in BALB/c mice has not been sufficiently evaluated. Methods Splenocytes from naïve or poly(I:C)-treated mice were isolated for phenotyping and analysis of cytotoxicity-related molecules and inhibitory receptors; for cytotoxicity assay, purified NK cells were also used. Results The proportion of splenic NK cells did not differ significantly between NOD/SCID and CB17/SCID mice. The perforin levels in NK cells were similar between the poly(I:C)-treated CB17/SCID and NOD/SCID mice, while the granzyme B and NKG2A/C/E levels in NK cells from NOD/SCID mice were significantly lower than those from CB17/SCID mice. Moreover, the NKG2D and Ly49A levels in NK cells from NOD/SCID mice were higher than those from CB17/SCID. The splenocytes from CB17/SCID mice showed higher cytotoxicity than those from NOD/SCID mice, while the cytotoxicity of purified NK cells basically did not differ between the two strains. After in vitro stimulation with cytokines, the splenocytes from CB17/SCID mice showed higher IFN-γ production than those from NOD/SCID mice; however, NK cells did not. Conclusion There was no significant difference in the proportion of splenic NK cells between CB17/SCID and NOD/SCID mice, and the function of NK cells was only partially compromised in NOD/SCID mice. Caution should be taken when considering the use of NOD/SCID mice as an NK-deficient model.
Collapse
|
7
|
Abstract
Purpose of Review IL-6 is a pleiotropic, pro-inflammatory cytokine that plays an integral role in the development of acute and chronic rejection after solid organ transplantation. This article reviews the experimental evidence and current clinical application of IL-6/IL-6 receptor (IL-6R) signaling inhibition for the prevention and treatment of allograft injury. Recent Findings There exists a robust body of evidence linking IL-6 to allograft injury mediated by acute inflammation, adaptive cellular/humoral responses, innate immunity, and fibrosis. IL-6 promotes the acute phase reaction, induces B cell maturation/antibody formation, directs cytotoxic T-cell differentiation, and inhibits regulatory T-cell development. Importantly, blockade of the IL-6/IL-6R signaling pathway has been shown to mitigate its harmful effects in experimental studies, particularly in models of kidney and heart transplant rejection. Currently, available agents for IL-6 signaling inhibition include monoclonal antibodies against IL-6 or IL-6R and janus kinase inhibitors. Recent clinical trials have investigated the use of tocilizumab, an anti-IL-6R mAb, for desensitization and treatment of antibody-mediated rejection (AMR) in kidney transplant recipients, with promising initial results. Further studies are underway investigating the use of alternative agents including clazakizumab, an anti-IL-6 mAb, and application of IL-6 signaling blockade to clinical cardiac transplantation. Summary IL-6/IL-6R signaling inhibition provides a novel therapeutic option for the prevention and treatment of allograft injury. To date, evidence from clinical trials supports the use of IL-6 blockade for desensitization and treatment of AMR in kidney transplant recipients. Ongoing and future clinical trials will further elucidate the role of IL-6 signaling inhibition in other types of solid organ transplantation.
Collapse
|
8
|
Glinton K, DeBerge M, Fisher E, Schroth S, Sinha A, Wang JJ, Wasserstrom JA, Ansari MJ, Zhang ZJ, Feinstein M, Leventhal JR, Forbess JM, Lomasney J, Luo X, Thorp EB. Bone marrow-derived AXL tyrosine kinase promotes mitogenic crosstalk and cardiac allograft vasculopathy. J Heart Lung Transplant 2021; 40:435-446. [PMID: 33846079 PMCID: PMC8169599 DOI: 10.1016/j.healun.2021.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/19/2022] Open
Abstract
Cardiac Allograft Vasculopathy (CAV) is a leading contributor to late transplant rejection. Although implicated, the mechanisms by which bone marrow-derived cells promote CAV remain unclear. Emerging evidence implicates the cell surface receptor tyrosine kinase AXL to be elevated in rejecting human allografts. AXL protein is found on multiple cell types, including bone marrow-derived myeloid cells. The causal role of AXL from this compartment and during transplant is largely unknown. This is important because AXL is a key regulator of myeloid inflammation. Utilizing experimental chimeras deficient in the bone marrow-derived Axl gene, we report that Axl antagonizes cardiac allograft survival and promotes CAV. Flow cytometric and histologic analyses of Axl-deficient transplant recipients revealed reductions in both allograft immune cell accumulation and vascular intimal thickness. Co-culture experiments designed to identify cell-intrinsic functions of Axl uncovered complementary cell-proliferative pathways by which Axl promotes CAV-associated inflammation. Specifically, Axl-deficient myeloid cells were less efficient at increasing the replication of both antigen-specific T cells and vascular smooth muscle cells (VSMCs), the latter a key hallmark of CAV. For the latter, we discovered that Axl-was required to amass the VSMC mitogen Platelet-Derived Growth Factor. Taken together, our studies reveal a new role for myeloid Axl in the progression of CAV and mitogenic crosstalk. Inhibition of AXL-protein, in combination with current standards of care, is a candidate strategy to prolong cardiac allograft survival.
Collapse
MESH Headings
- Adult
- Animals
- Bone Marrow Cells/metabolism
- Bone Marrow Cells/pathology
- Cell Proliferation
- Cells, Cultured
- Disease Models, Animal
- Echocardiography
- Flow Cytometry
- Gene Expression Regulation
- Graft Rejection/diagnosis
- Graft Rejection/genetics
- Graft Rejection/metabolism
- Graft Survival
- Heart Transplantation/adverse effects
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Smooth Muscle
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- RNA/genetics
- Receptor Protein-Tyrosine Kinases/biosynthesis
- Receptor Protein-Tyrosine Kinases/genetics
- Transplantation, Homologous
- Axl Receptor Tyrosine Kinase
Collapse
Affiliation(s)
- Kristofor Glinton
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Emily Fisher
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Samantha Schroth
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Arjun Sinha
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jiao-Jing Wang
- The Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - J Andrew Wasserstrom
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Mohammed Javeed Ansari
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Zheng Jenny Zhang
- The Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Matthew Feinstein
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Joseph R Leventhal
- The Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | - Jon Lomasney
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Xunrong Luo
- The Department of Nephrology, Duke University School of Medicine, Durham, North Carolina
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; The Heart Center, Stanley Manne Children's Research Institute, Lurie Children's Hospital, Chicago, Illinois.
| |
Collapse
|
9
|
Natural killer frequency determines natural killer cytotoxicity directly in accentuated zones and indirectly in "moderate-to-normal frequency" segment. Cent Eur J Immunol 2021; 45:315-324. [PMID: 33437184 DOI: 10.5114/ceji.2020.101263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/10/2018] [Indexed: 11/17/2022] Open
Abstract
Natural killer (NK) frequency and NK cytotoxicity (NKc) are key determining factors of a clinical outcome. In our previous study, we showed the prognostic clinical significance of immune parameters when they are beyond the optimal range (accentuated). In this study, we attempted to explain the disparity of accentuated but physiologically and immunologically normal NK parameters that might serve as negative clinical prognostics indications of failed pregnancies. We have analyzed NK%, NKc levels, and their reciprocal correlation in 2,804 patients with reproductive failures. In the entire clinical population, NK% correlates with NKc. Interestingly, we found this relationship to be strongly dependent on NK level's status. NK%-NKc correlation was the strongest (r = 0.2021, p < 0.0001) in a patient group with high NK% (> 17.5%). Patients with NK% between 15-17.5% manifested lower but still significant correlation NK%-NKc (r = 0.1213, p = 0.0155). Additionally, significant correlation (r = 0.2689, p < < 0.0001) between NK% and NKc was observed in a group of patients with NK levels < 7% (1.7-7%). While patients' groups with NK% (7-15%) did not reveal NK%-NKc association. This led us to hypothesize that the qualitative-quantitative status of NK population is responsible for their cytotoxic activity. Consistent with our hypothesis, the "balanced zone" NK% is tightly controlled, and thus does not correlate directly with NKc. In contrast, the "accentuated zones" of NK% escape this control and directly affecting NKc. Demonstrated phenomena supports our idea about the clinical significance of immune accentuation and explains its novel physiological role.
Collapse
|
10
|
Frye CC, Bery AI, Kreisel D, Kulkarni HS. Sterile inflammation in thoracic transplantation. Cell Mol Life Sci 2020; 78:581-601. [PMID: 32803398 DOI: 10.1007/s00018-020-03615-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/20/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The life-saving benefits of organ transplantation can be thwarted by allograft dysfunction due to both infectious and sterile inflammation post-surgery. Sterile inflammation can occur after necrotic cell death due to the release of endogenous ligands [such as damage-associated molecular patterns (DAMPs) and alarmins], which perpetuate inflammation and ongoing cellular injury via various signaling cascades. Ischemia-reperfusion injury (IRI) is a significant contributor to sterile inflammation after organ transplantation and is associated with detrimental short- and long-term outcomes. While the vicious cycle of sterile inflammation and cellular injury is remarkably consistent amongst different organs and even species, we have begun understanding its mechanistic basis only over the last few decades. This understanding has resulted in the developments of novel, yet non-specific therapies for mitigating IRI-induced graft damage, albeit with moderate results. Thus, further understanding of the mechanisms underlying sterile inflammation after transplantation is critical for identifying personalized therapies to prevent or interrupt this vicious cycle and mitigating allograft dysfunction. In this review, we identify common and distinct pathways of post-transplant sterile inflammation across both heart and lung transplantation that can potentially be targeted.
Collapse
Affiliation(s)
- C Corbin Frye
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - Amit I Bery
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA.
| | - Daniel Kreisel
- Division of Cardiothoracic Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hrishikesh S Kulkarni
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, 4523 Clayton Avenue, Campus Box 8052, St. Louis, MO, 63110, USA
| |
Collapse
|
11
|
Schroth S, Glinton K, Luo X, Thorp EB. Innate Functions of Dendritic Cell Subsets in Cardiac Allograft Tolerance. Front Immunol 2020; 11:869. [PMID: 32431717 PMCID: PMC7214785 DOI: 10.3389/fimmu.2020.00869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Survival rates after heart transplant have significantly improved over the last decade. Nevertheless, long-term allograft viability after 10 years remains poor and the sequelae of transplant-associated immunosuppression increases morbidity. Although several studies have implicated roles for lymphocyte-mediated rejection, less is understood with respect to non-major histocompatibility, and innate immune reactivity, which influence graft viability. As immature and mature dendritic cells (DCs) engage in both Major Histocompatibility Complex (MHC)-dependent and MHC-independent immune responses, these cells are at the crossroads of therapeutic strategies that seek to achieve both allograft tolerance and suppression of innate immunity to the allograft. Here we review emerging roles of DC subsets and their molecular protagonists during allograft tolerance and allograft rejection, with a focus on cardiac transplant. New insight into emerging DC subsets in transplant will inform novel strategies for operational tolerance and amelioration of cardiac vasculopathy.
Collapse
Affiliation(s)
- Samantha Schroth
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Kristofor Glinton
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xunrong Luo
- Department of Medicine, School of Medicine, Duke University, Durham, NC, United States
| | - Edward B. Thorp
- Department of Pathology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
12
|
Abstract
The observation that heart failure with reduced ejection fraction is associated with elevated circulating levels of pro-inflammatory cytokines opened a new area of research that has revealed a potentially important role for the immune system in the pathogenesis of heart failure. However, until the publication in 2019 of the CANTOS trial findings on heart failure outcomes, all attempts to target inflammation in the heart failure setting in phase III clinical trials resulted in neutral effects or worsening of clinical outcomes. This lack of positive results in turn prompted questions on whether inflammation is a cause or consequence of heart failure. This Review summarizes the latest developments in our understanding of the role of the innate and adaptive immune systems in the pathogenesis of heart failure, and highlights the results of phase III clinical trials of therapies targeting inflammatory processes in the heart failure setting, such as anti-inflammatory and immunomodulatory strategies. The most recent of these studies, the CANTOS trial, raises the exciting possibility that, in the foreseeable future, we might be able to identify those patients with heart failure who have a cardio-inflammatory phenotype and will thus benefit from therapies targeting inflammation.
Collapse
|
13
|
Przybylek B, Boethig D, Neumann A, Borchert-Moerlins B, Daemen K, Keil J, Haverich A, Falk C, Bara C. Novel Cytokine Score and Cardiac Allograft Vasculopathy. Am J Cardiol 2019; 123:1114-1119. [PMID: 30660351 DOI: 10.1016/j.amjcard.2018.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 12/20/2018] [Accepted: 12/26/2018] [Indexed: 01/05/2023]
Abstract
To date, there are no established noninvasive biomarkers available for prediction of cardiac allograft vasculopathy (CAV) after orthotopic heart transplantation (OHT). Inflammatory processes are supposed to play a central role in the pathogenesis of CAV. Recent studies have suggested that immune mediators could serve as biomarkers for cardiovascular diseases. We hypothesized particular cytokines or a combination thereof may serve as noninvasive biomarkers for CAV. Plasma cytokines were screened from 27 patients with CAV and 27 patients without CAV after OHT. The concentrations of interleukins-4, -6, -10, -21, -23, -31, -33, interferon gamma, tumor necrosis factor alpha, and the soluble activation marker CD40 ligand were determined using Luminex-based multiplex analyses. Although concentrations of all cytokines except interferon gamma were on average higher in the CAV group, there were no significant differences between the groups for any 1 cytokine. Using a binary logistic regression model, we were able to develop a probability score for detecting patients at elevated risk for advanced CAV with a sensitivity of 92.31% and a specificity of 60.71% (receiver-operating characteristic area under the curve 0.799 ± 0.06; p<0.0001). In conclusion, analyzing the concentration of specific inflammatory cytokines could be meaningfully included in evaluation of CAV after OHT.
Collapse
Affiliation(s)
- Bianca Przybylek
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School (MHH), Hannover, Germany
| | - Dietmar Boethig
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School (MHH), Hannover, Germany
| | - Anneke Neumann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School (MHH), Hannover, Germany
| | - Bianca Borchert-Moerlins
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School (MHH), Hannover, Germany
| | - Kerstin Daemen
- Hannover Medical School (MHH), Institute of Transplant Immunology Integrated Research and Treatment Center Transplantation, Hannover, Germany
| | - Jana Keil
- Hannover Medical School (MHH), Institute of Transplant Immunology Integrated Research and Treatment Center Transplantation, Hannover, Germany
| | - Axel Haverich
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School (MHH), Hannover, Germany
| | - Christine Falk
- Hannover Medical School (MHH), Institute of Transplant Immunology Integrated Research and Treatment Center Transplantation, Hannover, Germany; German Centre for Infection Research (DZIF, TTU-IICH), Hannover, Germany
| | - Christoph Bara
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
14
|
|
15
|
Uehara H, Minami K, Quante M, Nian Y, Heinbokel T, Azuma H, El Khal A, Tullius SG. Recall features and allorecognition in innate immunity. Transpl Int 2018; 31:6-13. [PMID: 28926127 PMCID: PMC7781186 DOI: 10.1111/tri.13073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/20/2017] [Accepted: 09/15/2017] [Indexed: 11/28/2022]
Abstract
Alloimmunity traditionally distinguishes short-lived, rapid and nonspecific innate immune responses from adaptive immune responses that are characterized by a highly specific response initiated in a delayed fashion. Key players of innate immunity such as natural killer (NK) cells and macrophages present the first-line defence of immunity. The concept of unspecific responses in innate immunity has recently been challenged. The discovery of pattern recognition receptors (PRRs) has demonstrated that innate immune cells respond in a semi-specific fashion through the recognition of pathogen-associated molecular patterns (PAMPs) representing conserved molecular structures shared by large groups of microorganisms. Although immunological memory has generally been considered as exclusive to adaptive immunity, recent studies have demonstrated that innate immune cells have the potential to acquire memory. Here, we discuss allospecific features of innate immunity and their relevance in transplantation.
Collapse
Affiliation(s)
- Hirofumi Uehara
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Urology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Koichiro Minami
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Urology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Markus Quante
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Visceral, Transplantation, Thoracic and Vascular Surgery, University Hospital Leipzig, Leipzig, Germany
| | - Yeqi Nian
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Timm Heinbokel
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Haruhito Azuma
- Department of Urology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Abdala El Khal
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| | - Stefan G. Tullius
- Division of Transplant Surgery and Transplantation Surgery Research Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
16
|
Paul P, Picard C, Sampol E, Lyonnet L, Di Cristofaro J, Paul-Delvaux L, Lano G, Nicolino-Brunet C, Ravis E, Collart F, Dignat-George F, Dussol B, Sabatier F, Mouly-Bandini A. Genetic and Functional Profiling of CD16-Dependent Natural Killer Activation Identifies Patients at Higher Risk of Cardiac Allograft Vasculopathy. Circulation 2017; 137:1049-1059. [PMID: 29097449 DOI: 10.1161/circulationaha.117.030435] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 10/19/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cardiac transplantation is an effective therapy for end-stage heart failure. Because cardiac allograft vasculopathy (CAV) is the major cause of late mortality after heart transplant (HT), there is a need to identify markers that reflect inflammatory or cytotoxic immune mechanisms contributing to its onset. Noninvasive and early stratification of patients at risk remains a challenge for adapting individualized therapy. The CD16 (Fc-gamma receptor 3A [FCGR3A]) receptor was recently identified as a major determinant of antibody-mediated natural killer (NK) cell activation in HT biopsies; however, little is known about the role of CD16 in promoting allograft vasculopathy. This study aimed to investigate whether markers that reflect CD16-dependent circulating NK cell activation may identify patients at higher risk of developing CAV after HT. METHODS Blood samples were collected from 103 patients undergoing routine coronarography angiography for CAV diagnosis (median 5 years since HT). Genomic and phenotypic analyses of FCGR3A/CD16 Fc-receptor profiles were compared in CAV-positive (n=52) and CAV-free patients (n=51). The levels of CD16 expression and rituximab-dependent cell cytotoxic activity of peripheral NK cells in HT recipients were evaluated using a noninvasive NK-cellular humoral activation test. RESULTS Enhanced levels of CD16 expression and antibody-dependent NK cell cytotoxic function of HT recipients were associated with the FCGR3A-VV genotype. The frequency of the FCGR3A-VV genotype was significantly higher in the CAV+ group (odds ratio, 3.9; P=0.0317) than in the CAV- group. The FCGR3A-VV genotype was identified as an independent marker correlated with the presence of CAV at the time of coronary angiography by using multivariate logistic regression models. The FCGR3A-VV genotype was also identified as a baseline-independent predictor of CAV risk (odds ratio, 4.7; P=0.023). CONCLUSIONS This study unravels a prominent role for the CD16-dependent NK cell activation pathway in the complex array of factors that favor the progression of transplant arteriosclerosis. It highlights the clinical potential of a noninvasive evaluation of FCGR3A/CD16 in the early stratification of CAV risk. The recognition of CD16 as a major checkpoint that controls immune surveillance may promote the design of individualized NK cell-targeted therapies to limit vascular damage in highly responsive sensitized patients. CLINICAL TRIAL REGISTRATION URL: https://www.clinicaltrials.gov. Unique identifier: NCT01569334.
Collapse
Affiliation(s)
- Pascale Paul
- Assistance Publique-Hôpitaux Marseille (AP-HM), Vascular Biology and Cell Therapy Department, France (P.P., L.L., C.N.B., F.D.G., F.S.). .,INSERM, Aix-Marseille Université (AMU), VRCM, UMR-1076, France (P.P., F.D.G., F.S.)
| | - Christophe Picard
- Immunogenetic Laboratory, Établissement Français du Sang, Marseille, France (C.P.).,Aix Marseille Université, Etablissement Français du Sang, CNRS, UMR 7268 ADÉS, France (C.P., J.D.C.)
| | - Emmanuelle Sampol
- Assistance Publique-Hôpitaux Marseille (AP-HM), Pharmacokinetics Department, France (E.S.)
| | - Luc Lyonnet
- Assistance Publique-Hôpitaux Marseille (AP-HM), Vascular Biology and Cell Therapy Department, France (P.P., L.L., C.N.B., F.D.G., F.S.)
| | - Julie Di Cristofaro
- Assistance Publique-Hôpitaux Marseille (AP-HM), Pharmacokinetics Department, France (E.S.)
| | - Louise Paul-Delvaux
- ENSAE-Paristech, Data Science & Statistics Department, Paris, France (L.P.-D.)
| | - Guillaume Lano
- Assistance Publique-Hôpitaux Marseille (AP-HM), Aix Marseille Univ, Center for Clinical Investigation, France (G.L., B.D.)
| | - Corinne Nicolino-Brunet
- Assistance Publique-Hôpitaux Marseille (AP-HM), Vascular Biology and Cell Therapy Department, France (P.P., L.L., C.N.B., F.D.G., F.S.)
| | - Eleonore Ravis
- Assistance Publique Hopitaux de Marseille (AP-HM), Adult Cardiac Surgery Department, France (E.R., F.C., A.M.B.)
| | - Frederic Collart
- Assistance Publique Hopitaux de Marseille (AP-HM), Adult Cardiac Surgery Department, France (E.R., F.C., A.M.B.)
| | - Francoise Dignat-George
- Assistance Publique-Hôpitaux Marseille (AP-HM), Vascular Biology and Cell Therapy Department, France (P.P., L.L., C.N.B., F.D.G., F.S.).,INSERM, Aix-Marseille Université (AMU), VRCM, UMR-1076, France (P.P., F.D.G., F.S.)
| | - Bertrand Dussol
- Assistance Publique-Hôpitaux Marseille (AP-HM), Aix Marseille Univ, Center for Clinical Investigation, France (G.L., B.D.)
| | - Florence Sabatier
- Assistance Publique-Hôpitaux Marseille (AP-HM), Vascular Biology and Cell Therapy Department, France (P.P., L.L., C.N.B., F.D.G., F.S.).,INSERM, Aix-Marseille Université (AMU), VRCM, UMR-1076, France (P.P., F.D.G., F.S.)
| | - Annick Mouly-Bandini
- Assistance Publique Hopitaux de Marseille (AP-HM), Adult Cardiac Surgery Department, France (E.R., F.C., A.M.B.)
| |
Collapse
|
17
|
Kwok C, Pavlosky A, Lian D, Jiang J, Huang X, Yin Z, Liu W, Haig A, Jevnikar AM, Zhang ZX. Necroptosis Is Involved in CD4+ T Cell-Mediated Microvascular Endothelial Cell Death and Chronic Cardiac Allograft Rejection. Transplantation 2017; 101:2026-2037. [PMID: 29633982 DOI: 10.1097/tp.0000000000001578] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite advances in immunosuppressive therapies, the rate of chronic transplant loss remains substantial. Organ injury involves various forms of cell death including apoptosis and necrosis. We now recognize that early injury of cardiac transplants involves a newly described form of programmed necrotic cell death, termed necroptosis. Because this involves receptor-interacting protein (RIP) kinase 1/3, this study aimed to establish the role of RIP3 in chronic cardiac allograft rejection. METHODS We used major histocompatibility complex class II mismatched C57BL/6N (H-2; B6) or B6.RIP3 (H-2; RIP3) mice to B6.C-H-2 (H2-Ab1; bm12) mouse cardiac transplantation. Microvascular endothelial cells (MVEC) were developed from B6 and RIP3 cardiac grafts. RESULT CD4 T cell-mediated cardiac graft rejection is inhibited using RIP3 deficient donor grafts, with reduced cellular infiltration and vasculopathy compared with wild type cardiac grafts. Alloreactive CD4 T cell-mediated MVEC death involves TNFα, Fas ligand (FasL) and granzyme B. Although necroptosis and release of danger molecule high-mobility group box 1 are eliminated by the absence of RIP3, CD4 T cells had attenuated MVEC death through granzyme B and FasL. CONCLUSIONS CD4 T cell-mediated MVEC death involves in TNFα, FasL and granzyme B. Necroptotic cell death and release of the danger molecule may promote inflammatory responses and transplant rejection. Although loss of RIP3 does not eliminate alloimmune responses, chronic graft injury is reduced. RIP3 is an important therapeutic target but additional granzyme and caspases inhibition is required for sufficiently improving long-term graft survival.
Collapse
Affiliation(s)
- Cecilia Kwok
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Alexander Pavlosky
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Dameng Lian
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Ziqin Yin
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
| | - Weihua Liu
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aaron Haig
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Anthony M Jevnikar
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, Ontario, Canada
- Departments of Medicine, Pathology, Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
18
|
Valenzuela NM, Reed EF. Antibody-mediated rejection across solid organ transplants: manifestations, mechanisms, and therapies. J Clin Invest 2017; 127:2492-2504. [PMID: 28604384 DOI: 10.1172/jci90597] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Solid organ transplantation is a curative therapy for hundreds of thousands of patients with end-stage organ failure. However, long-term outcomes have not improved, and nearly half of transplant recipients will lose their allografts by 10 years after transplant. One of the major challenges facing clinical transplantation is antibody-mediated rejection (AMR) caused by anti-donor HLA antibodies. AMR is highly associated with graft loss, but unfortunately there are few efficacious therapies to prevent and reverse AMR. This Review describes the clinical and histological manifestations of AMR, and discusses the immunopathological mechanisms contributing to antibody-mediated allograft injury as well as current and emerging therapies.
Collapse
|
19
|
A20 Haploinsufficiency Aggravates Transplant Arteriosclerosis in Mouse Vascular Allografts: Implications for Clinical Transplantation. Transplantation 2017; 100:e106-e116. [PMID: 27495763 DOI: 10.1097/tp.0000000000001407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Inflammation is central to the pathogenesis of transplant arteriosclerosis (TA). We questioned whether physiologic levels of anti-inflammatory A20 influence TA severity. METHODS We performed major histocompatibility complex mismatched aorta to carotid artery interposition grafts, using wild type (WT) or A20 heterozygote (HET) C57BL/6 (H-2) donors and BALB/c (H-2) recipients, and conversely BALB/c donors and WT/HET recipients. We analyzed aortic allografts by histology, immunohistochemistry, immunofluorescence, and gene profiling (quantitative real-time reverse-transcriptase polymerase chain reaction). We validated select in vivo A20 targets in human and mouse smooth muscle cell (SMC) cultures. RESULTS We noted significantly greater intimal hyperplasia in HET versus WT allografts, indicating aggravated TA. Inadequate upregulation of A20 in HET allografts after transplantation was associated with excessive NF-кB activation, gauged by higher levels of IkBα, p65, VCAM-1, ICAM-1, CXCL10, CCL2, TNF, and IL-6 (mostly localized to SMC). Correspondingly, cytokine-induced upregulation of TNF and IL-6 in human and mouse SMC cultures inversely correlated with A20 expression. Aggravated TA in HET versus WT allografts correlated with increased intimal SMC proliferation, and a higher number of infiltrating IFNγ and Granzyme B CD4 T cells and natural killer cells, and lower number of FoxP3 regulatory T cells. A20 haploinsufficiency in allograft recipients did not influence TA. CONCLUSIONS A20 haploinsufficiency in vascular allografts aggravates lesions of TA by exacerbating inflammation, SMC proliferation, and infiltration of pathogenic T cells. A20 single nucleotide polymorphisms associating with lower A20 expression or function in donors of vascularized allografts may inform risk and severity of TA, highlighting the clinical implications of our findings.
Collapse
|
20
|
Natural killer cells in inflammatory heart disease. Clin Immunol 2016; 175:26-33. [PMID: 27894980 DOI: 10.1016/j.clim.2016.11.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/09/2016] [Accepted: 11/20/2016] [Indexed: 02/07/2023]
Abstract
Despite of a multitude of excellent studies, the regulatory role of natural killer (NK) cells in the pathogenesis of inflammatory cardiac disease is greatly underappreciated. Clinical abnormalities in the numbers and functions of NK cells are observed in myocarditis and inflammatory dilated cardiomyopathy (DCMi) as well as in cardiac transplant rejection [1-6]. Because treatment of these disorders remains largely symptomatic in nature, patients have little options for targeted therapies [7,8]. However, blockade of NK cells and their receptors can protect against inflammation and damage in animal models of cardiac injury and inflammation. In these models, NK cells suppress the maturation and trafficking of inflammatory cells, alter the local cytokine and chemokine environments, and induce apoptosis in nearby resident and hematopoietic cells [1,9,10]. This review will dissect each protective mechanism employed by NK cells and explore how their properties might be exploited for their therapeutic potential.
Collapse
|
21
|
Chu S, Hu L, Wang X, Sun S, Zhang T, Sun Z, Shen L, Jin S, He B. Xuezhikang ameliorates contrast media-induced nephropathy in rats via suppression of oxidative stress, inflammatory responses and apoptosis. Ren Fail 2016; 38:1717-1725. [PMID: 27800691 DOI: 10.1080/0886022x.2016.1207052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The aim of this study was to assess the preventive effect of xuezhikang (XZK) to replace atorvastatin on the contrast media-induced acute kidney injury (CI-AKI). METHODS The male Sprague-Dawley rats were divided into five groups: group 1 (sham), injected with normal saline; group 2 (XZK), treated with XZK; group 3 contrast media (CM), injected with CM; group 4 (CM + ATO), injected with CM + pretreatment with atorvastatin; group 5 (CM + XZK), injected with CM + pretreatment with XZK. Twenty-four hours after injection with normal saline or CM, the blood sample and the kidneys were collected for the measurement of biochemical parameters, oxidative stress markers, nitric oxide production, inflammatory parameters, as well as renal histopathology and apoptosis detection. RESULTS Our results indicated that XZK restored the renal function by reducing serum blood urea nitrogen (BUN) and serum creatinine (Scr), depressing renal malondialdehyde (MDA), increasing renal NO production, decreasing TNF-ɑ and IL-6 expression, attenuating renal pathological changes and inhibiting the apoptosis of renal tubular cells. CONCLUSION XZK's therapeutic effect is similar, or even better than atorvastatin at the same effectual dose in some parts.
Collapse
Affiliation(s)
- Shichun Chu
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Liuhua Hu
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Xiaolei Wang
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Shiqun Sun
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Tuo Zhang
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Zhe Sun
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Linghong Shen
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Shuxuan Jin
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| | - Ben He
- a Department of Cardiology, Renji Hospital, School of Medicine , Shanghai Jiaotong University , Shanghai , PR China
| |
Collapse
|
22
|
Seyda M, Elkhal A, Quante M, Falk CS, Tullius SG. T Cells Going Innate. Trends Immunol 2016; 37:546-556. [PMID: 27402226 DOI: 10.1016/j.it.2016.06.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cell receptors (NKRs) play a crucial role in the homeostasis of antigen-experienced T cells. Indeed, prolonged antigen stimulation may induce changes in the receptor repertoire of T cells to a profile that features NKRs. Chronic antigen exposure, at the same time, has been shown to trigger the loss of costimulatory CD28 molecules with recently reported intensified antigen thresholds of antigen-experienced CD8(+) T cells. In transplantation, NKRs have been shown to assist allograft rejection in a CD28-independent fashion. We discuss here a role for CD28-negative T cells that have acquired the competency of the NKR machinery, potentially promoting allorecognition either through T cell receptor (TCR) crossreactivity or independently from TCR recognition. Collectively, NKRs can bring about innate-like T cells by providing alternative costimulatory pathways that gain relevance in chronic inflammation, potentially leading to resistance to CD28-targeting immunosuppressants.
Collapse
Affiliation(s)
- Midas Seyda
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Abdallah Elkhal
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Markus Quante
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Hannover, Germany
| | - Stefan G Tullius
- Division of Transplant Surgery and Transplant Surgery Research Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Abstract
Antibody-mediated rejection (AMR) has been identified among the most important factors limiting long-term outcome in cardiac and renal transplantation. Therapeutic management remains challenging and the development of effective treatment modalities is hampered by insufficient understanding of the underlying pathophysiology. However, recent findings indicate that in addition to AMR-triggered activation of the classical complement pathway, antibody-dependent cellular cytotoxicity by innate immune cell subsets also promotes vascular graft injury. This review summarizes the accumulating evidence for the contribution of natural killer cells, the key mediators of antibody-dependent cellular cytotoxicity, to human AMR in allotransplantation and xenotransplantation and illustrates the current mechanistic conceptions drawn from animal models.
Collapse
|
24
|
|
25
|
Tolerogenic Dendritic Cells on Transplantation: Immunotherapy Based on Second Signal Blockage. J Immunol Res 2015; 2015:856707. [PMID: 26543876 PMCID: PMC4620289 DOI: 10.1155/2015/856707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs), the most important professional antigen-presenting cells (APC), play crucial role in both immunity and tolerance. It is well known that DCs are able to mount immune responses against foreign antigens and simultaneously tolerate self-antigens. Since DCs can be modulated depending on the surrounding microenvironment, they can act as a bridge between innate and adaptive immunity. However, the mechanisms that support this dual role are not entirely clear. Recent studies have shown that DCs can be manipulated ex vivo in order to trigger their tolerogenic profile, what can be a tool to be used in clinical trials aiming the treatment of various diseases and the prevention of transplant rejection. In this sense, the blockage of costimulatory molecules on DC, in the attempt of inhibiting the second signal in the immunological synapse, can be considered as one of the main strategies under development. This review brings an update on current therapies using tolerogenic dendritic cells modulated with costimulatory blockers with the aim of reducing transplant rejection. However, although there are current clinical trials using tolerogenic DC to treat allograft rejection, the actual challenge is to modulate these cells in order to maintain a permanent tolerogenic profile.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW This review focuses on the known mechanisms of alloimmunity that occur after transplantation and what is being done in order to improve graft and patient survival, particularly in the long term. RECENT FINDINGS The presence of mismatched antigens and epitopes might relate directly to the development of de-novo donor-specific antibodies (DSA), and thus, rejection. In an abdominal wall transplant, the skin graft could be the first to show signs of rejection. The epithelial or endothelial cells are the main targets in acute and chronic rejection, respectively. Possible therapeutical targets are gut homing T cells and cells of the innate immune system. Chimerism development might mostly occur in isolated lymph nodes, but also in the epithelium, particularly after transplantation of bone marrow mesenchymal stromal cells. SUMMARY Ischemia-reperfusion, surgical injury, and bacterial translocation trigger the innate immune system, starting acute rejection. Interaction between donor and recipient immune cells generate injury and tolerance, which occur mostly in secondary lymphoid organs, lamina propria, and epithelium. Chronic rejection mostly affects the endothelial cells, generating graft dysfunction. DSA increase the risk of graft rejection both acutely and chronically, and the liver protects against their effects. Induction therapies deplete lymphocytes prior to implantation, and maintenance therapies inhibit T-cell expansion. Rejection rates are the lowest when depleting drugs and a combination of interleukin 2 receptor blockade, inhibition of T-cell expansion, and steroids are used as maintenance therapy. Chimerism and tolerogenic regiments that induce Tregs and prevent the development of DSA are important treatment goals for the future.
Collapse
|