1
|
Buso H, Adam E, Arkwright PD, Bhattad S, Hamidieh AA, Behfar M, Belot A, Benezech S, Chan AY, Crow YJ, Dvorak CC, Flinn AM, Kapoor U, Lankester A, Kobayashi M, Matsumura R, Mottaghipisheh H, Okada S, Ouachee M, Parvaneh N, Ramprakash S, Satwani P, Sharafian S, Triaille C, Wynn RF, Movahedi N, Ziaee V, Williams E, Slatter M, Gennery AR. Hematopoietic Stem Cell Transplantation for C1q Deficiency: A Study on Behalf of the EBMT Inborn Errors Working Party. J Clin Immunol 2024; 45:35. [PMID: 39470951 PMCID: PMC11522153 DOI: 10.1007/s10875-024-01819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
C1q deficiency is a rare inborn error of immunity characterized by increased susceptibility to infections and autoimmune manifestations mimicking SLE, with an associated morbidity and mortality. Because C1q is synthesized by monocytes, to date, four patients treated with allogeneic HSCT have been reported, with a positive outcome in three. We conducted an international retrospective study to assess the outcome of HSCT in C1q deficiency. Eighteen patients, fourteen previously unreported, from eleven referral centres, were included. Two patients had two HSCTs, thus 20 HSCTs were performed in total, at a median age of 10 years (range 0.9-19). Indications for HSCT were autoimmune manifestations not controlled by ongoing treatment in seventeen, and early development of MALT lymphoma in one patient. Overall survival (OS) was 71% and event-free survival was 59% at two years (considering an event as acute GvHD ≥ grade III, disease recurrence and death). In eleven patients HSCT led to resolution of autoimmune features and discontinuation of immunosuppressive treatments (follow-up time range 3-84 months). Five patients died due to transplant-related complications. Patients with a severe autoimmune phenotype, defined as neurological and/or renal involvement, had the worst OS (40% vs 84%; p = 0.034). Reviewing data of 69 genetically confirmed C1q deficient patients, we found that anti-Ro antibodies are associated with neurologic involvement, and anti-RNP and anti-DNA antibodies with renal involvement. In conclusion, HSCT may be a valid curative option for C1q deficiency, but careful selection of patients, with an accurate assessment of risk and benefit, is mandatory.
Collapse
Affiliation(s)
- Helena Buso
- Department of Medicine (DIMED), University of Padova, Padua, Italy
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, NE1 4LP, UK
| | - Etai Adam
- Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Sagar Bhattad
- Division of Paediatric Immunology and Rheumatology, Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandre Belot
- Department of Paediatric Rheumatology, Femme-Mère-Enfant Hospital, HCL, Lyon, France
| | - Sarah Benezech
- Institute of Hematology and Pediatric Oncology, 69008, Lyon, France
| | - Alice Y Chan
- Division of Pediatric Allergy, Immunology, and Blood and Marrow Transplant, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Blood and Marrow Transplant, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Aisling M Flinn
- Department of Pediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Urvi Kapoor
- Division of of Pediatrics Haematology, Oncology and Stem Cell Transplant, Children's Hospital New York-Presbyterian, Columbia University, 161 Fort Washington, Irving 7, New York, NY, 10032, USA
| | - Arjan Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Hospital, 1‑2‑3 Kasumi, Minami‑ku, Hiroshima, 734‑8551, Japan
| | - Risa Matsumura
- Department of Pediatrics, Hiroshima University Hospital, 1‑2‑3 Kasumi, Minami‑ku, Hiroshima, 734‑8551, Japan
| | - Hadi Mottaghipisheh
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Hospital, 1‑2‑3 Kasumi, Minami‑ku, Hiroshima, 734‑8551, Japan
| | - Marie Ouachee
- Institute of Hematology and Pediatric Oncology, 69008, Lyon, France
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Stalin Ramprakash
- Aster International Institute of Oncology, Aster CMI Hospital, Bangalore, India
| | - Prakash Satwani
- Division of of Pediatrics Haematology, Oncology and Stem Cell Transplant, Children's Hospital New York-Presbyterian, Columbia University, 161 Fort Washington, Irving 7, New York, NY, 10032, USA
| | - Samin Sharafian
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Clément Triaille
- Pôle de Pathologies Rhumatismales Systémiques Et Inflammatoires, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Robert F Wynn
- Department of Paediatric Haematology & Oncology, Royal Manchester Children's Hospital, Manchester, UK
| | - Nasim Movahedi
- Golestan Rheumatology Research Center (GRRC), Golestan University of Medical Sciences, Gorgan, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Eleri Williams
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, NE1 4LP, UK
| | - Mary Slatter
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, NE1 4LP, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
2
|
Triaille C, Rao NM, Rice GI, Seabra L, Sutherland FJH, Bondet V, Duffy D, Gennery AR, Fournier B, Bader-Meunier B, Troedson C, Cleary G, Buso H, Dalby-Payne J, Ranade P, Jansen K, De Somer L, Frémond ML, Chavan PP, Wong M, Dale RC, Wouters C, Quartier P, Khubchandani R, Crow YJ. Hereditary C1q Deficiency is Associated with Type 1 Interferon-Pathway Activation and a High Risk of Central Nervous System Inflammation. J Clin Immunol 2024; 44:185. [PMID: 39196411 PMCID: PMC11358312 DOI: 10.1007/s10875-024-01788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024]
Abstract
Hereditary C1q deficiency (C1QDef) is a rare monogenic disorder leading to defective complement pathway activation and systemic lupus erythematosus (SLE)-like manifestations. The link between impairment of the complement cascade and autoimmunity remains incompletely understood. Here, we assessed type 1 interferon pathway activation in patients with C1QDef. Twelve patients with genetically confirmed C1QDef were recruited through an international collaboration. Clinical, biological and radiological data were collected retrospectively. The expression of a standardized panel of interferon stimulated genes (ISGs) in peripheral blood was measured, and the level of interferon alpha (IFNα) protein in cerebrospinal fluid (CSF) determined using SIMOA technology. Central nervous system (encompassing basal ganglia calcification, encephalitis, vasculitis, chronic pachymeningitis), mucocutaneous and renal involvement were present, respectively, in 10, 11 and 2 of 12 patients, and severe infections recorded in 2/12 patients. Elevated ISG expression was observed in all patients tested (n = 10/10), and serum and CSF IFNα elevated in 2/2 patients. Three patients were treated with Janus-kinase inhibitors (JAKi), with variable outcome; one displaying an apparently favourable response in respect of cutaneous and neurological features, and two others experiencing persistent disease despite JAKi therapy. To our knowledge, we report the largest original series of genetically confirmed C1QDef yet described. Additionally, we present a review of all previously described genetically confirmed cases of C1QDef. Overall, individuals with C1QDef demonstrate many characteristics of recognized monogenic interferonopathies: particularly, cutaneous involvement (malar rash, acral vasculitic/papular rash, chilblains), SLE-like disease, basal ganglia calcification, increased expression of ISGs in peripheral blood, and elevated levels of CSF IFNα.
Collapse
Affiliation(s)
- Clément Triaille
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium.
- Pôle de Pathologies Rhumatismales Systémiques Et Inflammatoires, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium.
| | - Neha Mohan Rao
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Gillian I Rice
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Luis Seabra
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
| | - Fraser J H Sutherland
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Vincent Bondet
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Darragh Duffy
- Translational Immunology Unit, Institut Pasteur, Université Paris-Cité, Paris, France
| | - Andrew R Gennery
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
| | - Benjamin Fournier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Brigitte Bader-Meunier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Christopher Troedson
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Gavin Cleary
- Paediatric Rheumatology, Alder Hey Children's Hospital, Liverpool, UK
| | - Helena Buso
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, UK
- Department of Medicine - DIMED, University of Padova, Padua, Italy
| | - Jacqueline Dalby-Payne
- Specialty of Child and Adolescent Health, Faculty of Medicine, The University of Sydney, Camperdown, Australia
- Department of General Medicine, The Children's Hospital at Westmead, Westmead, Australia
| | - Prajakta Ranade
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Katrien Jansen
- Division of Pediatric Neurology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Lien De Somer
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - Marie-Louise Frémond
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | | | - Melanie Wong
- Department of Allergy and Immunology, Children's Hospital at Westmead, Westmead, Australia
| | - Russell C Dale
- T. Y. Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, University of Sydney, Westmead, NSW, Australia
| | - Carine Wouters
- Division of Pediatric Rheumatology, Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Pierre Quartier
- Paediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital, APHP Centre, Université Paris-Cité, Paris, France
| | - Raju Khubchandani
- Department of Pediatric Rheumatology, NH SRCC Hospital, Mumbai, Maharashtra, India
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France.
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Zare Moghaddam M, Mousavi MJ, Ghotloo S. Stem cell-based therapy for systemic lupus erythematous. J Transl Autoimmun 2024; 8:100241. [PMID: 38737817 PMCID: PMC11087996 DOI: 10.1016/j.jtauto.2024.100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Systemic lupus erythematosus (SLE), an autoimmune disease, is among the most prevalent rheumatic autoimmune disorders. It affects autologous connective tissues caused by the breakdown of self-tolerance mechanisms. During the last two decades, stem cell therapy has been increasingly considered as a therapeutic option in various diseases, including parkinson's disease, alzheimer, stroke, spinal cord injury, multiple sclerosis, inflammatory bowel disease, liver disease, diabete, heart disease, bone disease, renal disease, respiratory diseases, and hematological abnormalities such as anemia. This is due to the unique properties of stem cells that divide and differentiate to the specialized cells in the damaged tissues. Moreover, they impose immunomodulatory properties affecting the diseases caused by immunological abnormalities such as rheumatic autoimmune disorders. In the present manuscript, efficacy of stem cell therapy with two main types of stem cells, including mesenchymal stem cell (MSC), and hematopoietic stem cells (HSC) in animal models or human patients of SLE, has been reviewed. Taken together, MSC and HSC therapies improved the disease activity, and severity in kidney, lung, liver, and bone (improvement in the clinical manifestation). In addition, a change in the immunological parameters occurred (improvement in immunological parameters). The level of autoantibodies, including antinuclear antibody (ANA), and anti-double-stranded deoxyribonucleic acid antibodies (dsDNA Abs) reduced. A conversion of Th1/Th2 ratio (in favor of Th2), and Th17/Treg (in favor of Treg) was also detected. In spite of many advantages of MSC and HSC transplantations, including efficacy, safety, and increased survival rate of SLE patients, some complications, including recurrence of the disease, occurrence of infections, and secondary autoimmune diseases (SAD) were observed after transplantation that should be addressed in the next studies.
Collapse
Affiliation(s)
- Maryam Zare Moghaddam
- Department of Immunology, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Mousavi
- Department of Hematology, Faculty of Allied Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Somayeh Ghotloo
- Autoimmune Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
4
|
Federici S, Cinicola BL, La Torre F, Castagnoli R, Lougaris V, Giardino G, Volpi S, Caorsi R, Leonardi L, Corrente S, Soresina A, Cancrini C, Insalaco A, Gattorno M, De Benedetti F, Marseglia GL, Del Giudice MM, Cardinale F. Vasculitis and vasculopathy associated with inborn errors of immunity: an overview. Front Pediatr 2024; 11:1258301. [PMID: 38357265 PMCID: PMC10866297 DOI: 10.3389/fped.2023.1258301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
Systemic autoinflammatory diseases (SAIDs) are disorders of innate immunity, which are characterized by unprovoked recurrent flares of systemic inflammation often characterized by fever associated with clinical manifestations mainly involving the musculoskeletal, mucocutaneous, gastrointestinal, and nervous systems. Several conditions also present with varied, sometimes prominent, involvement of the vascular system, with features of vasculitis characterized by variable target vessel involvement and organ damage. Here, we report a systematic review of vasculitis and vasculopathy associated with inborn errors of immunity.
Collapse
Affiliation(s)
- Silvia Federici
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Riccardo Castagnoli
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Roberta Caorsi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST-Spedali Civili Brescia, Brescia, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Academic Department of Pediatrics, Immune and Infectious Diseases Division, Research Unit of Primary Immunodeficiencies, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Antonella Insalaco
- Division of Rheumatology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Marco Gattorno
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Gian Luigi Marseglia
- Pediatric Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Pavia, Italy
- Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and of General and Specialized Surgery, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
5
|
Al-Mayouf SM, Alkhars F, AlSaleem A. Phenotype and disease course differences in monogenic and sporadic childhood lupus. Lupus 2023; 32:1548-1554. [PMID: 37878993 DOI: 10.1177/09612033231211065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
OBJECTIVE To report the differences in phenotypic characteristics, disease course, and outcome in monogenic and sporadic childhood lupus (SC-lupus) from a single tertiary childhood lupus clinic. METHODS A descriptive, observational, cross-sectional study was conducted. Data were retrospectively collected at the last follow-up visit on patients with monogenic lupus proven by genetic variants and SC-lupus seen between June 1997 and July 2022. SC-lupus patients were selected by systematic sampling from lupus patients presenting to our lupus clinic; the first patient was chosen randomly, and the subsequent patients were chosen at intervals of three. Data comprised the clinical and laboratory findings, disease activity using the SLEDAI, and damage measured by the pSDI. RESULTS A total of 54 patients with a median disease duration of 6.8 (IQR 3.5-10.5) years were included. There were 27 patients with monogenic lupus and 27 patients with SC-lupus, with a median age at disease onset of 3.5 (IQR 1.0-6.0), and 9.5 (IQR 7.0-11.8), respectively. (p < 0.05). The rate of consanguinity and family history of lupus were higher in monogenic lupus patients. The two groups were comparable. However, monogenic lupus patients showed more gastrointestinal tract symptoms, and failure to thrive (p < 0.05). They also had more infections. The frequency of the autoantibody profile was higher in monogenic lupus patients. Belimumab was more frequently used in monogenic lupus while rituximab in SC-lupus patients. Monogenic lupus patients had a higher mean SLEDAI, but statistically, it was insignificant. Patients with monogenic lupus had greater disease damage, with a higher mean pSDI and a higher mortality rate (p < 0.05). CONCLUSION Patients with monogenic lupus are likely to have an early disease onset and a strong family history of lupus, as well as a guarded prognosis, which is likely due to the disease's severity and frequent infections. These differences may be related to the high consanguinity rate and underlying genetic variants.
Collapse
Affiliation(s)
- Sulaiman M Al-Mayouf
- Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Fatima Alkhars
- Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| | - Alhanouf AlSaleem
- Pediatric Rheumatology, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Jia X, Tan L, Chen S, Tang R, Chen W. Monogenic lupus: Tracing the therapeutic implications from single gene mutations. Clin Immunol 2023; 254:109699. [PMID: 37481012 DOI: 10.1016/j.clim.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/21/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
Monogenic lupus, a distinctive variant of systemic lupus erythematosus (SLE), is characterized by early onset, family-centric clustering, and heightened disease severity. So far, over thirty genetic variations have been identified as single-gene etiology of SLE and lupus-like phenotypes. The critical role of these gene mutations in disrupting various immune pathways is increasingly recognized. In particular, single gene mutation-driven dysfunction within the innate immunity, notably deficiencies in the complement system, impedes the degradation of free nucleic acid and immune complexes, thereby promoting activation of innate immune cells. The accumulation of these components in various tissues and organs creates a pro-inflammatory microenvironment, characterized by a surge in pro-inflammatory cytokines, chemokines, reactive oxygen species, and type I interferons. Concurrently, single gene mutation-associated defects in the adaptive immune system give rise to the emergence of autoreactive T cells, hyperactivated B cells and plasma cells. The ensuing spectrum of cytokines and autoimmune antibodies drives systemic disease manifestations, primarily including kidney, skin and central nervous system-related phenotypes. This review provides a thorough overview of the single gene mutations and potential consequent immune dysregulations in monogenic lupus, elucidating the pathogenic mechanisms of monogenic lupus. Furthermore, it discusses the recent advances made in the therapeutic interventions for monogenic lupus.
Collapse
Affiliation(s)
- Xiuzhi Jia
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Li Tan
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Sixiu Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China
| | - Ruihan Tang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| | - Wei Chen
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; NHC Key Laboratory of Clinical Nephrology (Sun Yat-Sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou 510080, China.
| |
Collapse
|
7
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
IgG antibody response to pneumococcal-conjugated vaccine (Prevenar®13) in children with immunodeficiency disorders. Med Microbiol Immunol 2023; 212:93-102. [PMID: 36595027 DOI: 10.1007/s00430-022-00759-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023]
Abstract
Measurement of anti-pneumococcal capsular polysaccharides (anti-PnPs) IgG titers is an important tool in the immunologic assessment of patients with suspected immunodeficiency disorders (ID) to reduce the morbi-mortality and minimize severe infections. Retrospectively, we studied the relationship among anti-PnPs IgG response to 3 doses of Prevenar®13, levels of immune system components, leukocyte populations, and clinical data in children with ID. Serum samples were collected at least 4 weeks post vaccination. Subsequently, multi-serotype enzyme-linked immunosorbent assay (ELISA) was performed. Eighty-seven children (under 12 years) were enrolled. Primary immunodeficiency disorder (PID) was the most common disorder (45) followed by possible immunodeficiency disorder (POID) (19), secondary immunodeficiency disorder (SID) (15), and mixed immunodeficiency disorder (MID) (8). The median age was 3 (1.50-5.33) years, 65% of patients were male. Deficient production of anti-PnPs IgG (titer ≤ 50 mg/L) was detected in 47 patients (54%), especially in the MID group, all of them under immunosuppressive therapy. In PCV13 responders, the mean of leukocyte population levels was higher with statistically significance differences in CD4 + /CD8 + T lymphocytes (p = 0.372, p = 0.014) and CD56 + /CD16 + NK (p = 0.016). Patients with previous bone marrow transplantation were the worst PCV13 responders. Pneumococcal IgG antibody titers (post-vaccination) along with clinical and analytical markers represented.
Collapse
|
9
|
Macrophages in Lupus Nephritis: Exploring a potential new therapeutic avenue. Clin Exp Rheumatol 2022; 21:103211. [PMID: 36252930 DOI: 10.1016/j.autrev.2022.103211] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
Lupus nephritis (LN) is a serious complication of systemic lupus erythematosus (SLE) that occurs in about half of patients. LN is characterized by glomerular deposition of immune complexes, leading to subendothelial, mesangial and subepithelial electron dense deposits, triggering immune cell infiltration and glomerular as well as tubulointerstitial injury. Monocytes and macrophages are abundantly present in inflammatory lesions, both in glomeruli and the tubulointerstitium. Here we discuss how monocytes and macrophages are involved in this process and how monocytes and macrophages may represent specific therapeutic targets to control LN.
Collapse
|
10
|
Achini-Gutzwiller FR, Snowden JA, Corbacioglu S, Greco R. Haematopoietic stem cell transplantation for severe autoimmune diseases in children: A review of current literature, registry activity and future directions on behalf of the autoimmune diseases and paediatric diseases working parties of the European Society for Blood and Marrow Transplantation. Br J Haematol 2022; 198:24-45. [PMID: 37655707 DOI: 10.1111/bjh.18176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/14/2022] [Accepted: 03/18/2022] [Indexed: 11/27/2022]
Abstract
Although modern clinical management strategies have improved the outcome of paediatric patients with severe autoimmune and inflammatory diseases over recent decades, a proportion will experience ongoing or recurrent/relapsing disease activity despite multiple therapies often leading to irreversible organ damage, and compromised quality of life, growth/development and long-term survival. Autologous and allogeneic haematopoietic stem cell transplantation (HSCT) have been used successfully to induce disease control and often apparent cure of severe treatment-refractory autoimmune diseases (ADs) in children. However, transplant-related outcomes are disease-dependent and long-term outcome data are limited in respect to efficacy and safety. Moreover, balancing risks of HSCT against AD prognosis with continually evolving non-transplant options is challenging. This review appraises published literature on HSCT strategies and outcomes in individual paediatric ADs. We also provide a summary of the European Society for Blood and Marrow Transplantation (EBMT) Registry, where 343 HSCT procedures (176 autologous and 167 allogeneic) have been reported in 326 children (<18 years) for a range of AD indications. HSCT is a promising treatment modality, with potential long-term disease control or cure, but therapy-related morbidity and mortality need to be reduced. Further research is warranted to establish the position of HSCT in paediatric ADs via registries and prospective clinical studies to support evidence-based interspeciality guidelines and recommendations.
Collapse
Affiliation(s)
- Federica R Achini-Gutzwiller
- Division of Paediatric Stem Cell Transplantation and Haematology, Children's Research Centre (CRC), University Children's Hospital of Zurich, Zurich, Switzerland
| | - John A Snowden
- Department of Haematology, Sheffield Teaching Hospitals NHS Foundation Trust, Royal Hallamshire Hospital, Sheffield, UK
| | - Selim Corbacioglu
- Department of Paediatric Oncology, Haematology and Stem Cell Transplantation, University Children's Hospital Regensburg, Regensburg, Germany
| | - Raffaella Greco
- Unit of Haematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
11
|
Circulating C1q levels in health and disease, more than just a biomarker. Mol Immunol 2021; 140:206-216. [PMID: 34735869 DOI: 10.1016/j.molimm.2021.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
C1q is the recognition molecule of the classical pathway of the complement system. By binding to its targets, such as antigen-bound immunoglobulins or C-reactive protein, C1q contributes to the innate defense against infections. However, C1q also plays several other roles beyond its traditional role in complement activation. Circulating levels of C1q are determined in routine diagnostics as biomarker in several diseases. Decreased C1q levels are present in several autoimmune conditions. The decreased levels reflect the consumption of C1q by complement activation and serves as a biomarker for disease activity. In contrast, increased C1q levels are present in infectious and inflammatory diseases and may serve as a diagnostic biomarker. The increased levels of C1q are still incompletely understood but are suggested to modulate the adaptive immune response as C1q is known to impact on the maturation status of antigen-presenting cells and C1q impacts directly on T cells leading to decreased T-cell activity in high C1q conditions. In this review, we provide a comprehensive overview of the current literature on circulating levels of C1q in health and disease, and discuss how C1q can both protect against infections as well as maintain tolerance by regulating adaptive immunity.
Collapse
|
12
|
Abinun M, Slatter MA. Haematopoietic stem cell transplantation in paediatric rheumatic disease. Curr Opin Rheumatol 2021; 33:387-397. [PMID: 34261117 DOI: 10.1097/bor.0000000000000823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW A small proportion of children affected by rheumatic diseases suffer from severe, progressive disease, resistant to conventional antirheumatic therapies and to biologic agents interfering with inflammatory cytokines, costimulatory molecules expressed on immune system cells and intracellular signalling pathways. Adding to the poor prognosis is a high risk from significant morbidity and mortality associated with long-term treatment with multiple, often combined anti-inflammatory and immunosuppressive agents. Carefully selected patients from this unfortunate group may benefit from treatment with haematopoietic stem cell transplantation. RECENT FINDINGS The majority of patients with severe paediatric rheumatic and autoinflammatory diseases treated with autologous and/or allogeneic haematopoietic stem cell transplantation achieved long-term remission. However, the incidence of disease relapse and transplant related morbidity and mortality is still significant. SUMMARY Careful patient and donor selection, timing of the transplant earlier in the course of disease rather than the 'last resort' and choosing the most suitable conditioning regimen for each individual patient are the major factors favouring successful outcome. Close co-operation between the patients, their family, and involved medical teams is essential.
Collapse
Affiliation(s)
- Mario Abinun
- Department of Paediatric Immunology, Great North Children's Hospital, Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University
| | - Mary A Slatter
- Haematopoietic Stem Cell Transplantation Unit, Great North Children's Hospital, Newcastle upon Tyne Hospitals, National Health Service Foundation Trust, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
13
|
Zecevic M, Minic A, Pasic S, Perovic V, Prohászka Z. Case Report: Early Onset Systemic Lupus Erythematosus Due to Hereditary C1q Deficiency Treated With Fresh Frozen Plasma. Front Pediatr 2021; 9:756387. [PMID: 34993161 PMCID: PMC8724570 DOI: 10.3389/fped.2021.756387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Hereditary C1q deficiency is associated with early-onset autoimmunity causing SLE or SLE-like disease as well as increased risk for infections with encapsulated bacteria. It is a rare genetic condition inherited in an autosomal recessive manner, caused by mutations in C1q genes. Treatment and management of this rare disease are very complex and include prophylactic vaccination, antibiotics, and immunosuppressive drugs. There are two possible modalities for the replacement of the missing protein: regular fresh frozen plasma (FFP) administration and allogeneic hematopoietic stem cell transplant because the protein is derived from monocytes. Replacing C1q with FFP is being attempted in some patients with success in controlling the disease and in avoiding flare. Case Report: We report a case of sixteen-month-old girl with ulcerations in her mouth, skin erythema, and elevated liver enzymes. ANAs were positive, antibodies against dsDNA were negative, but she had positive anti-Smith antibodies. Complement complements C3 and C4 levels were normal. Total complement activity, classical pathway (hemolytic test) was deficient and C1q antigen was below the detection limit supporting the presence of C1q deficiency. The girl has pathogenic homozygous nonsense mutation in C1qC gene, Arg69Ter (c205>T). The initial response to corticosteroid therapy was good. Regular fresh frozen plasma infusions keep her disease under control, and we were able to reduce the dose of corticosteroids. Conclusion: Young patients with cutaneous lesions resembling SLE, early onset of autoimmunity, with normal C3, C4, elevated ANAs, and negative anti-dsDNA, C1q deficiency should be suspected and complement screening tests should be done. It is important to exclude secondary C1q deficiency. FFP in our patient seems to be well tolerated, without any side effects, able to control the disease.
Collapse
Affiliation(s)
- Milica Zecevic
- Clinical Immunology and Allergy Department, Institute for Health Protection of Mother and Child of Serbia "Dr Vukan Cupic", Belgrade, Serbia
| | - Aleksandra Minic
- Clinical Immunology and Allergy Department, Institute for Health Protection of Mother and Child of Serbia "Dr Vukan Cupic", Belgrade, Serbia
| | - Srdjan Pasic
- Clinical Immunology and Allergy Department, Institute for Health Protection of Mother and Child of Serbia "Dr Vukan Cupic", Belgrade, Serbia.,Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| |
Collapse
|
14
|
Bone marrow transplantation from a human leukocyte antigen-mismatched unrelated donor in a case with C1q deficiency associated with refractory systemic lupus erythematosus. Int J Hematol 2020; 113:302-307. [PMID: 33000368 DOI: 10.1007/s12185-020-03004-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Human C1q deficiency is frequently associated with systemic lupus erythematosus (SLE), which requires long-term systemic corticosteroid administration. We report the case of a 12-year-old female patient with C1q deficiency presenting with intractable SLE who successfully underwent bone marrow transplantation from a human leukocyte antigen (HLA)-mismatched unrelated donor with an immunosuppressive conditioning regimen based on fludarabine, melphalan, and anti-thymocyte globulin. She developed Grade I graft-versus-host disease, but did not have any transplantation-related morbidity. Complete donor chimerism has been maintained for 2 years after transplantation, leading to the restoration of C1q levels and the resolution of SLE symptoms. Normal C1q mRNA expression was observed in CD14 + cells. Hematopoietic stem cell transplantation from an HLA-mismatched donor is a feasible treatment for patients with C1q deficiency with refractory SLE that is dependent on systemic corticosteroid treatment who do not have an HLA-matched donor.
Collapse
|
15
|
Akbar L, Alsagheir R, Al-Mayouf SM. Efficacy of a sequential treatment by belimumab in monogenic systemic lupus erythematosus. Eur J Rheumatol 2020; 7:eurjrheum.2020.20087. [PMID: 32910770 PMCID: PMC7574768 DOI: 10.5152/eurjrheum.2020.20087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/17/2020] [Indexed: 02/02/2023] Open
Abstract
The objective of the study was to report the safety and potential therapeutic effect of belimumab in monogenic systemic lupus erythematosus (SLE). Consecutive children with monogenic SLE treated with belimumab were evaluated retrospectively. Response parameters assessment was completed at the time of initiation of belimumab, at 6 months, and last follow-up visit. Response parameters comprised physician global assessment (physician GA) and parent global assessment (parent GA), global disease activity as measured by SLE disease activity index (SLEDAI), and daily glucocorticoids dose. Undesirable events affecting patients during treatment were also collected. Six children with monogenic SLE proved by genetic testing (five patients with C1q deficiency and one patient with deoxyribonuclease II (DNase II) deficiency), failed glucocorticoids and sequential immunosuppressive medications. Belimumab was added to glucocorticoids and current immunosuppressive medications. The main indications for belimumab initiation were mucocutaneous disease, arthritis, and inability to taper glucocorticoids. All patients tolerated belimumab infusion. No serious events were reported. However, one patient was lost to follow-up and died because of sepsis. Compared to the baseline values, there was an improvement in physician GA, parent GA, and SLEDAI, and a notable reduction in the need of daily corticosteroids. However, there were no significant changes in the complement and ds-DNA antibody levels. Belimumab can be considered as an adjunctive therapeutic option for patients with refractory monogenic SLE. Further follow-up and more patients needed to confirm this finding and a larger prospective study is required for more definitive conclusions.
Collapse
Affiliation(s)
- Lujayn Akbar
- Department of Pediatric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Razan Alsagheir
- Department of Pediatric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sulaiman M Al-Mayouf
- Department of Pediatric Rheumatology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Brodszki N, Frazer-Abel A, Grumach AS, Kirschfink M, Litzman J, Perez E, Seppänen MRJ, Sullivan KE, Jolles S. European Society for Immunodeficiencies (ESID) and European Reference Network on Rare Primary Immunodeficiency, Autoinflammatory and Autoimmune Diseases (ERN RITA) Complement Guideline: Deficiencies, Diagnosis, and Management. J Clin Immunol 2020; 40:576-591. [PMID: 32064578 PMCID: PMC7253377 DOI: 10.1007/s10875-020-00754-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022]
Abstract
This guideline aims to describe the complement system and the functions of the constituent pathways, with particular focus on primary immunodeficiencies (PIDs) and their diagnosis and management. The complement system is a crucial part of the innate immune system, with multiple membrane-bound and soluble components. There are three distinct enzymatic cascade pathways within the complement system, the classical, alternative and lectin pathways, which converge with the cleavage of central C3. Complement deficiencies account for ~5% of PIDs. The clinical consequences of inherited defects in the complement system are protean and include increased susceptibility to infection, autoimmune diseases (e.g., systemic lupus erythematosus), age-related macular degeneration, renal disorders (e.g., atypical hemolytic uremic syndrome) and angioedema. Modern complement analysis allows an in-depth insight into the functional and molecular basis of nearly all complement deficiencies. However, therapeutic options remain relatively limited for the majority of complement deficiencies with the exception of hereditary angioedema and inhibition of an overactivated complement system in regulation defects. Current management strategies for complement disorders associated with infection include education, family testing, vaccinations, antibiotics and emergency planning.
Collapse
Affiliation(s)
- Nicholas Brodszki
- Department of Pediatrics, Children's Hospital, Skåne University Hospital, Lund, Sweden
| | - Ashley Frazer-Abel
- Division of Rheumatology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Anete S Grumach
- Clinical Immunology, Reference Center on Rare Diseases, University Center Health ABC, Santo Andre, SP, Brazil
| | | | - Jiri Litzman
- Department of Clinical Immunology and Allergology, St Anne's University Hospital, and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Elena Perez
- Allergy Associates of the Palm Beaches, North Palm Beach, FL, USA
| | - Mikko R J Seppänen
- Rare Disease Center, Children's Hospital, and Adult Primary Immunodeficiency Outpatient Clinic, Inflammation Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Kathleen E Sullivan
- Division of Allergy and Immunology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, Cardiff University & University Hospital of Wales, Cardiff, UK.
| |
Collapse
|
17
|
Sharma M, Vignesh P, Tiewsoh K, Rawat A. Revisiting the complement system in systemic lupus erythematosus. Expert Rev Clin Immunol 2020; 16:397-408. [PMID: 32228236 DOI: 10.1080/1744666x.2020.1745063] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Systemic lupus erythematosus (SLE) is a multi-system autoimmune disease, characterized by the production of autoantibodies. Numerous mechanisms contribute to the pathogenesis and autoimmunity in SLE. One of the most important mechanisms is the defective function of the early complement components that are involved in clearing the immune-complexes and apoptotic debris. Major evidence supporting this hypothesis is the development of severe lupus in individuals with monogenic defects in any one of the early complement components such as C1q, C1 s, C1 r, C2, or C4.Areas covered: In this review, we discuss hereditary defects in classical complement components and their clinical manifestations, acquired defects of complements in lupus, the role of complements in the pathogenesis of antiphospholipid antibody syndrome and lupus nephritis, and laboratory assessment of complement components and their functions. Articles from the last 20 years were retrieved from PubMed for this purpose.Expert opinion: Complements have a dual role in the pathogenesis of SLE. On one hand, deficiency of complement components predisposes to lupus, while, on the other, excess complement activation plays a role in the organ damage. Understanding the intricacies of the role of complements in SLE can pave way for the development of targeted therapies.
Collapse
Affiliation(s)
- Madhubala Sharma
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Pandiarajan Vignesh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Karalanglin Tiewsoh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
18
|
Chan AY, Leiding JW, Liu X, Logan BR, Burroughs LM, Allenspach EJ, Skoda-Smith S, Uzel G, Notarangelo LD, Slatter M, Gennery AR, Smith AR, Pai SY, Jordan MB, Marsh RA, Cowan MJ, Dvorak CC, Craddock JA, Prockop SE, Chandrakasan S, Kapoor N, Buckley RH, Parikh S, Chellapandian D, Oshrine BR, Bednarski JJ, Cooper MA, Shenoy S, Davila Saldana BJ, Forbes LR, Martinez C, Haddad E, Shyr DC, Chen K, Sullivan KE, Heimall J, Wright N, Bhatia M, Cuvelier GDE, Goldman FD, Meyts I, Miller HK, Seidel MG, Vander Lugt MT, Bacchetta R, Weinacht KG, Andolina JR, Caywood E, Chong H, de la Morena MT, Aquino VM, Shereck E, Walter JE, Dorsey MJ, Seroogy CM, Griffith LM, Kohn DB, Puck JM, Pulsipher MA, Torgerson TR. Hematopoietic Cell Transplantation in Patients With Primary Immune Regulatory Disorders (PIRD): A Primary Immune Deficiency Treatment Consortium (PIDTC) Survey. Front Immunol 2020; 11:239. [PMID: 32153572 PMCID: PMC7046837 DOI: 10.3389/fimmu.2020.00239] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 01/29/2020] [Indexed: 12/20/2022] Open
Abstract
Primary Immune Regulatory Disorders (PIRD) are an expanding group of diseases caused by gene defects in several different immune pathways, such as regulatory T cell function. Patients with PIRD develop clinical manifestations associated with diminished and exaggerated immune responses. Management of these patients is complicated; oftentimes immunosuppressive therapies are insufficient, and patients may require hematopoietic cell transplant (HCT) for treatment. Analysis of HCT data in PIRD patients have previously focused on a single gene defect. This study surveyed transplanted patients with a phenotypic clinical picture consistent with PIRD treated in 33 Primary Immune Deficiency Treatment Consortium centers and European centers. Our data showed that PIRD patients often had immunodeficient and autoimmune features affecting multiple organ systems. Transplantation resulted in resolution of disease manifestations in more than half of the patients with an overall 5-years survival of 67%. This study, the first to encompass disorders across the PIRD spectrum, highlights the need for further research in PIRD management.
Collapse
Affiliation(s)
- Alice Y Chan
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer W Leiding
- Department of Pediatrics, Johns Hopkins All Children's Hospital, University of South Florida, St. Petersburg, FL, United States
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Lauri M Burroughs
- Department of Pediatrics, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Eric J Allenspach
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Suzanne Skoda-Smith
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Luigi D Notarangelo
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mary Slatter
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Andrew R Gennery
- Primary Immunodeficiency Group, Paediatric Immunology and Haematopoietic Stem Cell Transplantation, Translational and Clinical Research Institute, Great North Childrens' Hospital, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Angela R Smith
- Pediatric Blood and Marrow Transplant, University of Minnesota, Minneapolis, MN, United States
| | - Sung-Yun Pai
- Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States.,Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Michael B Jordan
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Morton J Cowan
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - John A Craddock
- Texas Children's Cancer Center, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Susan E Prockop
- Stem Cell Transplant and Cellular Therapy Service, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States
| | - Neena Kapoor
- Section of Transplantation and Cellular Therapy, Cancer and Blood Disease Institute, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Rebecca H Buckley
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Suhag Parikh
- Departments of Pediatrics and Immunology, Duke University School of Medicine, Durham, NC, United States
| | - Deepak Chellapandian
- Cancer and Blood Disorders Institute, Blood and Marrow Transplant Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Benjamin R Oshrine
- Cancer and Blood Disorders Institute, Blood and Marrow Transplant Program, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States
| | - Jeffrey J Bednarski
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Megan A Cooper
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Shalini Shenoy
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Blachy J Davila Saldana
- Division of Blood and Marrow Transplantation, Children's National Health System, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Lisa R Forbes
- Department of Pediatrics, Immunology, Allergy, and Retrovirology Baylor College of Medicine, Texas Children's Hospital William T. Shearer Center for Human Immunobiology, Houston, TX, United States
| | - Caridad Martinez
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital Cancer Center, Houston, TX, United States
| | - Elie Haddad
- Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - David C Shyr
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Karin Chen
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Kathleen E Sullivan
- Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, United States
| | - Jennifer Heimall
- Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA, United States
| | - Nicola Wright
- Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, AB, Canada
| | - Monica Bhatia
- Pediatric Stem Cell Transplantation, Columbia University College of Physicians and Surgeons, New York, NY, United States
| | - Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Frederick D Goldman
- Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Isabelle Meyts
- Laboratory of Inborn Errors of Immunity, Department of Immunology, Microbiology and Transplantation, KU Leuven, Leuven, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | | | - Markus G Seidel
- Research Unit for Pediatric Hematology and Immunology, Department of Pediatrics and Adolescent Medicine, Medical University Graz, Graz, Austria
| | - Mark T Vander Lugt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Rosa Bacchetta
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Katja G Weinacht
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Jeffrey R Andolina
- Department of Pediatrics, Golisano Children's Hospital, University of Rochester Medical Center, Rochester, NY, United States
| | - Emi Caywood
- Nemours/Alfred I duPont Hospital for Children, Wilmington, DE, United States
| | - Hey Chong
- UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, United States
| | - Maria Teresa de la Morena
- Department of Pediatrics, Seattle Children's Hospital, University of Washington School of Medicine, Seattle, WA, United States
| | - Victor M Aquino
- Department of Pediatrics, University of Texas Southwestern Medical Center Dallas, Dallas, TX, United States
| | - Evan Shereck
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, United States
| | - Jolan E Walter
- Division of Allergy and Immunology, Department of Pediatrics, Morsani College of Medicine, University of South Florida, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins All Children's Hospital, St. Petersburg, FL, United States.,Division of Allergy and Immunology, Department of Pediatrics, Massachusetts General Hospital for Children, Boston, MA, United States
| | - Morna J Dorsey
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Christine M Seroogy
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Donald B Kohn
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, CA, United States
| | - Jennifer M Puck
- Division of Pediatric Allergy, Immunology, BMT, Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA, United States
| | - Michael A Pulsipher
- Section of Transplantation and Cellular Therapy, Cancer and Blood Disease Institute, Keck School of Medicine, Children's Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Troy R Torgerson
- Allen Institute for Immunology and Department of Pediatrics, University of Washington, Seattle, WA, United States
| |
Collapse
|
19
|
Complement activation and regulation in rheumatic disease. Semin Immunol 2019; 45:101339. [DOI: 10.1016/j.smim.2019.101339] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/24/2019] [Accepted: 10/24/2019] [Indexed: 01/02/2023]
|
20
|
Lubbers R, Beaart-van de Voorde LJJ, van Leeuwen K, de Boer M, Gelderman KA, van den Berg MJ, Ketel AG, Simon A, de Ree J, Huizinga TWJ, Steup-Beekman GM, Trouw LA. Complex medical history of a patient with a compound heterozygous mutation in C1QC. Lupus 2019; 28:1255-1260. [PMID: 31357913 PMCID: PMC6710612 DOI: 10.1177/0961203319865029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Introduction C1q is an essential part of the classical pathway of complement activation. Genetic deficiencies, caused by homozygous mutations in one of the C1q genes, are rare and are strongly associated with development of systemic lupus erythematosus (SLE). Here we describe a C1q-deficient patient with a compound heterozygous mutation. Material and methods Serum was analysed with enzyme-linked immunosorbent assay (ELISA) and Western blot for the presence of C1q, and DNA and RNA sequencing was performed to identify the mutations and confirm that these were located on different chromosomes. Results The medical history of the patient includes SLE diagnosis at age 11 years with cerebral involvement at age 13, various infections, osteonecrosis and hemophagocytic syndrome. Using ELISA and Western blot, we confirmed the absence of C1q in the serum of the patient. Using DNA sequencing, two mutations in the C1QC gene were identified: c.100G > A p.(Gly34Arg) and c.205C > T p.(Arg69X). With RNA sequencing we confirmed that the mutations are located on different chromosomes. Discussion The patient described in this case report has a compound heterozygous mutation in C1QC resulting in C1q deficiency.
Collapse
Affiliation(s)
- R Lubbers
- 1 Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - K van Leeuwen
- 2 Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - M de Boer
- 2 Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - K A Gelderman
- 2 Sanquin Diagnostic Services, Amsterdam, the Netherlands
| | - M J van den Berg
- 3 Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Pediatric Rheumatology and Immunology, Amsterdam, the Netherlands
| | - A G Ketel
- 4 Spaarnegasthuis, Hoofddorp, the Netherlands
| | - A Simon
- 5 Radboud University Medical Center, Center for Immunodeficiency and Autoinflammation, Department of Internal Medicine, Nijmegen, the Netherlands
| | - J de Ree
- 4 Spaarnegasthuis, Hoofddorp, the Netherlands
| | - T W J Huizinga
- 1 Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - G M Steup-Beekman
- 1 Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands
| | - L A Trouw
- 1 Department of Rheumatology, Leiden University Medical Center, Leiden, the Netherlands.,6 Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
21
|
Shamriz O, Chandrakasan S. Update on Advances in Hematopoietic Cell Transplantation for Primary Immunodeficiency Disorders. Immunol Allergy Clin North Am 2018; 39:113-128. [PMID: 30466768 DOI: 10.1016/j.iac.2018.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hematopoietic stem cell transplantation (HSCT) in patients with primary immunodeficiency disorders (PIDDs) is being increasingly used as a curative option. Understanding the critical components, such as disease's nature and activity and pre-HSCT and post-HSCT patient care is key to a successful outcome. HSCT should be tailored to the underlying PIDD, as different PIDDs, such as severe combined immune deficiency, Treg dysfunction, and phagocytic disorders, have different transplant approaches. Therefore, successful HSCT in patients with PIDDs requires teamwork between immunologists and transplant physicians. In this article, the authors elaborate on various aspects of PIDD-HSCT and highlight recent advances.
Collapse
Affiliation(s)
- Oded Shamriz
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, 2015 Uppergate Drive, ECC Room 418, Atlanta, GA 30030, USA; Pediatric Division, Hadassah-Hebrew University Medical Center, Ein-Kerem, POB 12000, Jerusalem, Israel 91120
| | - Shanmuganathan Chandrakasan
- Division of Bone Marrow Transplant, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, 2015 Uppergate Drive, ECC Room 418, Atlanta, GA 30030, USA.
| |
Collapse
|
22
|
Batu ED, Koşukcu C, Taşkıran E, Sahin S, Akman S, Sözeri B, Ünsal E, Bilginer Y, Kasapcopur O, Alikaşifoğlu M, Ozen S. Whole Exome Sequencing in Early-onset Systemic Lupus Erythematosus. J Rheumatol 2018; 45:1671-1679. [PMID: 30008451 DOI: 10.3899/jrheum.171358] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/16/2022]
Abstract
Objective.Systemic lupus erythematosus (SLE) is a multisystem autoimmune disorder. Early-onset, familial, and/or syndromic SLE may reveal monogenic pathologies. The aim of this study was to examine genetic associations in patients with early-onset or familial SLE.Methods.We enrolled 7 SLE cases (from different families) with disease onset ≤ 5 years of age and family history consistent with an autosomal recessive inheritance. Whole exome sequencing (WES) was performed in 6 index cases. Suspected variants were confirmed by Sanger sequencing. We did not perform WES in 1 patient who had features similar to the first 3 cases; only the exons of C1QA, C1QB, and C1QC were screened with Sanger sequencing.Results.We demonstrated 2 novel and 3 previously reported variants in genes associated with SLE: a homozygous non-sense alteration (c.622C>T/p.Gln208Ter) in C1QA in 2 patients; homozygous non-sense alteration (c.79C>T/p.Gln27Ter) in C1QC in 1 (novel variant); homozygous missense alteration (c.100G>A/p.Gly34Arg) in C1QC in 1; homozygous missense alteration (c.1945G>C/p.Ala649Pro) in C1S in 1 (novel variant); and homozygous frameshift alteration (c.289_290delAC/p.Thr97Ilefs*2) in DNASE1L3 in 1 patient. Further, in 1 patient, we determined a strong candidate variant in HDAC7 (histone decetylase 7).Conclusion.Five patients had homozygous alterations in genes coding early complement proteins. This may lead to decreased clearance of apoptotic bodies. One patient had DNASE1L3 variant, which functions in the clearance of self-antigens. In 1 patient, we determined a novel gene that may be important in SLE pathogenesis. We suggest that monogenic causes/associations should be sought in early-onset and/or familial SLE.
Collapse
|
23
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
24
|
Ekinci Z, Ozturk K. Systemic lupus erythematosus with C1q deficiency: treatment with fresh frozen plasma. Lupus 2017; 27:134-138. [PMID: 29113537 DOI: 10.1177/0961203317741565] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Treatment and outcome of systemic lupus erythematosus (SLE) in C1q deficient patients are rarely reported. The aim of this report is to share our experience about the course of management of three cases diagnosed as SLE with C1q deficiency, in light of present literature. Initial and dominant complaints of three cases from two different families were cutaneous manifestations. One patient was also diagnosed with arthritis and thrombocytopenia. Antinuclear antibody was positive in all cases, whereas anti-dsDNA was negative with normal levels of complement C3, C4 and decreased CH50 activity. C1QA gene of two patients had homozygous nonsense mutation (c.622 > T/p.Gln208Ter). Previously, all of them had been treated with steroids, hydroxychloroquine and methotrexate or azathioprine. It was learned that they had responded only to high dosage prednisolone and their symptoms flared up during dosage reduction even under methotrexate or azathioprine. All symptoms of all three cases improved by daily fresh frozen plasma (FFP) infusions, and once cutaneous lesions subsided, the infusions were reduced to a frequency that would prevent the flare up of the symptoms. Literature search revealed seven reports on fresh frozen plasma treatment in SLE with C1q deficient patients. In this report, it is concluded that severe cutaneous lesions, as seen in these C1q deficient SLE patients, cannot be controlled with conventional immunosuppressive treatment. Instead, regular fresh frozen plasma infusions are proposed as a more reasonable method of treatment.
Collapse
Affiliation(s)
- Z Ekinci
- 1 Kadıköy Florence Nightingale Medical Center, Istanbul, Turkey
| | - K Ozturk
- 2 Cengiz Gökçek Kadın Doğum ve Çocuk Hastalıkları Hastanesi, Gaziantep, Turkey
| |
Collapse
|
25
|
Trouw LA, Pickering MC, Blom AM. The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol 2017; 13:538-547. [DOI: 10.1038/nrrheum.2017.125] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Vignesh P, Rawat A, Sharma M, Singh S. Complement in autoimmune diseases. Clin Chim Acta 2017; 465:123-130. [PMID: 28040558 DOI: 10.1016/j.cca.2016.12.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 12/15/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022]
|
27
|
van Schaarenburg RA, Magro-Checa C, Bakker JA, Teng YKO, Bajema IM, Huizinga TW, Steup-Beekman GM, Trouw LA. C1q Deficiency and Neuropsychiatric Systemic Lupus Erythematosus. Front Immunol 2016; 7:647. [PMID: 28082982 PMCID: PMC5186770 DOI: 10.3389/fimmu.2016.00647] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/13/2016] [Indexed: 12/25/2022] Open
Abstract
C1q deficiency is a rare immunodeficiency, which is strongly associated with the development of systemic lupus erythematosus (SLE). A mutation in one of the C1q genes can either lead to complete deficiency or to low C1q levels with C1q polypeptide in the form of low-molecular weight (LMW) C1q. Patients with C1q deficiency mainly present with cutaneous and renal involvement. Although less frequent, neuropsychiatric (NP) involvement has also been reported in 20% of the C1q-deficient patients. This involvement appears to be absent in other deficiencies of early components of the complement classical pathway (CP) (C1r/C1s, C2, or C4 deficiencies). We describe a new case with C1q deficiency with a homozygous G34R mutation in C1qC-producing LMW-C1q presenting with a severe SLE flare with NP involvement. The serum of this patient contained very low levels of a LMW variant of C1q polypeptides. Cell lysates contained the three chains of C1q, but no intact C1q was detected, consistent with the hypothesis of the existence of a LMW-C1q. Furthermore, we provide a literature overview of NP-SLE in C1q deficiency and hypothesize about the potential role of C1q in the pathogenesis of NP involvement in these patients. The onset of NP-SLE in C1q-deficient individuals is more severe when compared with complement competent NP-SLE patients. An important number of cases present with seizures and the most frequent findings in neuroimaging are changes in basal ganglia and cerebral vasculitis. A defective CP, because of non-functional C1q, does not protect against NP involvement in SLE. The absence of C1q and, subsequently, some of its biological functions may be associated with more severe NP-SLE.
Collapse
Affiliation(s)
| | - César Magro-Checa
- Department of Rheumatology, Leiden University Medical Center , Leiden , Netherlands
| | - Jaap A Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center , Leiden , Netherlands
| | - Y K Onno Teng
- Department of Nephrology, Leiden University Medical Center , Leiden , Netherlands
| | - Ingeborg M Bajema
- Department of Pathology, Leiden University Medical Center , Leiden , Netherlands
| | - Tom W Huizinga
- Department of Rheumatology, Leiden University Medical Center , Leiden , Netherlands
| | | | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
28
|
Macedo ACL, Isaac L. Systemic Lupus Erythematosus and Deficiencies of Early Components of the Complement Classical Pathway. Front Immunol 2016; 7:55. [PMID: 26941740 PMCID: PMC4764694 DOI: 10.3389/fimmu.2016.00055] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/05/2016] [Indexed: 12/24/2022] Open
Abstract
The complement system plays an important role in the innate and acquired immune response against pathogens. It consists of more than 30 proteins found in soluble form or attached to cell membranes. Most complement proteins circulate in inactive forms and can be sequentially activated by the classical, alternative, or lectin pathways. Biological functions, such as opsonization, removal of apoptotic cells, adjuvant function, activation of B lymphocytes, degranulation of mast cells and basophils, and solubilization and clearance of immune complex and cell lysis, are dependent on complement activation. Although the activation of the complement system is important to avoid infections, it also can contribute to the inflammatory response triggered by immune complex deposition in tissues in autoimmune diseases. Paradoxically, the deficiency of early complement proteins from the classical pathway (CP) is strongly associated with development of systemic lupus erythematous (SLE) - mainly C1q deficiency (93%) and C4 deficiency (75%). The aim of this review is to focus on the deficiencies of early components of the CP (C1q, C1r, C1s, C4, and C2) proteins in SLE patients.
Collapse
Affiliation(s)
- Ana Catarina Lunz Macedo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Faculty of Medicine, Children's Hospital, Clinics Hospital, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo , São Paulo , Brazil
| |
Collapse
|