1
|
Puchany AJ, Hilmi I. Post-reperfusion syndrome in liver transplant recipients: What is new in prevention and management? World J Crit Care Med 2025; 14:101777. [DOI: 10.5492/wjccm.v14.i2.101777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025] Open
Abstract
Post-reperfusion syndrome (PRS) in liver transplant recipients remains one of the most dreaded complications in liver transplant surgery. PRS can impact the short-term and long-term patient and graft outcomes. The definition of PRS has evolved over the years, from changes in arterial blood pressures and heart and/or decreases in the systemic vascular resistance and cardiac output to including the fibrinolysis and grading the severity of PRS. However, all that did not reflect on the management of PRS or its impact on the outcomes. In recent years, new scientific techniques and new technology have been in the pipeline to better understand, manage and maybe prevent PRS. These new methods and techniques are still in the infancy, and they have to be proven not in prevention and management of PRS but their effects in the patient and graft outcomes. In this article, we will review the long history of PRS, its definition, etiology, management and most importantly the new advances in science and technology to prevent and properly manage PRS.
Collapse
Affiliation(s)
- Austin James Puchany
- Department of Anesthesiology & Perioperative Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, United States
| | - Ibtesam Hilmi
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, United States
- Department of Anesthesiology and Perioperative Medicine, Clinical and Translational Science Institute, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
2
|
Abstract
Xenotransplant patient selection recommendations restrict clinical trial participation to seriously ill patients for whom alternative therapies are unavailable or who will likely die while waiting for an allotransplant. Despite a scholarly consensus that this is advisable, we propose to examine this restriction. We offer three lines of criticism: (1) The risk-benefit calculation may well be unfavorable for seriously ill patients and society; (2) the guidelines conflict with criteria for equitable patient selection; and (3) the selection of seriously ill patients may compromise informed consent. We conclude by highlighting how the current guidance reveals a tension between the societal values of justice and beneficence.
Collapse
Affiliation(s)
- Christopher Bobier
- Department of Theology and Philosophy, Hendrickson Institute for Ethical Leadership, St. Mary's University of Minnesota, Winona, MN, USA
| | - Daniel Rodger
- Operating Department Practice, Institute of Health and Social Care, School of Allied and Community Health, London South Bank University, London, UK
- Department of Psychological Sciences, Birkbeck, University of London, London, UK
| |
Collapse
|
3
|
Rodger D, Mack J, Bobier C, Padilla L, Hurst DJ. Xenotransplantation clinical trials: Should patients with diminished capacity be permitted to enroll? Xenotransplantation 2024; 31:e12857. [PMID: 38602051 DOI: 10.1111/xen.12857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/23/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Affiliation(s)
- Daniel Rodger
- School of Allied and Community Health, London South Bank University, Birkbeck College, University of London, London, UK
| | - James Mack
- Rowan-Virtua School of Osteopathic Medicine, Stratford, USA
| | - Christopher Bobier
- Department of Theology and Philosophy, Hendrickson Institute for Ethical Leadership, St. Mary's University of Minnesota, Minneapolis, Minnesota, USA
| | - Luz Padilla
- Department of Surgery, The University of Alabama at Birmingham, Birmingham, USA
| | - Daniel J Hurst
- Department of Family Medicine, Rowan-Virtua School of Osteopathic Medicine, Stratford, New Jersey, USA
| |
Collapse
|
4
|
Hurst DJ, Cooper DKC. Pressing ethical issues relating to clinical pig organ transplantation studies. Xenotransplantation 2024; 31:e12848. [PMID: 38407936 DOI: 10.1111/xen.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/27/2024]
Abstract
Clinical pig heart transplant experiments have been undertaken, and further clinical experiments and/or clinical trials of gene-edited pig organ xenotransplantation are anticipated. The ethical issues relating to xenotransplantation have been discussed for decades but with little resolution. Consideration of certain ethical issues is more urgent than others, and the need to attain consensus is important. These issues include: (i) patient selection criteria for expanded access and/or clinical trials; (ii) appropriate protection of the patient from xenozoonoses, that is, infections caused by pig microorganisms transferred with the organ graft, (iii) minimization of the risk of a xenozoonosis to bystanders, and (iv) the need for additional public perception studies. We discuss why it is important and urgent to achieve consensus on these ethical issues prior to carrying out further expanded access experiments or initiating formal clinical trials. The ways forward on each issue are proposed.
Collapse
Affiliation(s)
- Daniel J Hurst
- Department of Family Medicine, Rowan-Virtua School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Goerlich CE, Griffith BP, Shah A, Treffalls JA, Zhang T, Lewis B, Tatarov I, Hershfeld A, Sentz F, Braileanu G, Ayares D, Singh AK, Mohiuddin MM. A Standardized Approach to Orthotopic (Life-supporting) Porcine Cardiac Xenotransplantation in a Nonhuman Primate Model. Transplantation 2023; 107:1718-1728. [PMID: 36706064 DOI: 10.1097/tp.0000000000004508] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cardiac xenotransplantation from swine has been proposed to "bridge the gap" in supply for heart failure patients requiring transplantation. Recent preclinical success using genetically modified pig donors in baboon recipients has demonstrated survival greater than 6 mo, with a modern understanding of xenotransplantation immunobiology and continued experience with large animal models of cardiac xenotransplantation. As a direct result of this expertise, the Food and Drug Administration approved the first in-human transplantation of a genetically engineered cardiac xenograft through an expanded access application for a single patient. This clinical case demonstrated the feasibility of xenotransplantation. Although this human study demonstrated proof-of-principle application of cardiac xenotransplantation, further regulatory oversight by the Food and Drug Administration may be required with preclinical trials in large animal models of xenotransplantation with long-term survival before approval of a more formalized clinical trial. Here we detail our surgical approach to pig-to-primate large animal models of orthotopic cardiac xenotransplantation, and the postoperative care of the primate recipient, both in the immediate postoperative period and in the months thereafter. We also detail xenograft surveillance methods and common issues that arise in the postoperative period specific to this model and ways to overcome them. These studies require multidisciplinary teams and expertise in orthotopic transplantation (cardiac surgery, anesthesia, and cardiopulmonary bypass), immunology, genetic engineering, and experience in handling large animal donors and recipients, which are described here. This article serves to reduce the barriers to entry into a field with ever-growing enthusiasm, but demands expertise knowledge and experience to be successful.
Collapse
Affiliation(s)
- Corbin E Goerlich
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bartley P Griffith
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Aakash Shah
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - John A Treffalls
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Tianshu Zhang
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Billeta Lewis
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Ivan Tatarov
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Alena Hershfeld
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Faith Sentz
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Gheorghe Braileanu
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | | | - Avneesh K Singh
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | | |
Collapse
|
6
|
Hess NR, Kaczorowski DJ. The history of cardiac xenotransplantation: early attempts, major advances, and current progress. FRONTIERS IN TRANSPLANTATION 2023; 2:1125047. [PMID: 38993853 PMCID: PMC11235224 DOI: 10.3389/frtra.2023.1125047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 07/13/2024]
Abstract
In light of ongoing shortage of donor organs for transplantation, alternative sources for donor organ sources have been examined to address this supply-demand mismatch. Of these, xenotransplantation, or the transplantation of organs across species, has been considered, with early applications dating back to the 1600s. The purpose of this review is to summarize the early experiences of xenotransplantation, with special focus on heart xenotransplantation. It aims to highlight the important ethical concerns of animal-to-human heart xenotransplantation, identify the key immunological barriers to successful long-term xenograft survival, as well as summarize the progress made in terms of development of pharmacological and genetic engineering strategies to address these barriers. Lastly, we discuss more recent attempts of porcine-to-human heart xenotransplantation, as well as provide some commentary on the current concerns and possible applications for future clinical heart xenotransplantation.
Collapse
Affiliation(s)
- Nicholas R. Hess
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David J. Kaczorowski
- Division of Cardiac Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- University of Pittsburgh Medical Center Heart and Vascular Institute, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Reese PP, Gelb BE, Parent B. Unique problems for the design of the first trials of transplanting porcine kidneys into humans. Kidney Int 2023; 103:239-242. [PMID: 36332727 DOI: 10.1016/j.kint.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 11/15/2022]
Abstract
Over the past year, 3 scientific teams conducted experiments of genetically edited porcine organs into human recipients, 3 of whom were deceased and 1 living. In this editorial, we describe challenges for the design of initial xenotransplantation clinical trials and focus on patient selection, consent, and requisite post-transplant follow-up. Given the uncertain clinical benefit of xenotransplantation, we propose that patient selection criteria might include novel elements, such as approaching patients who have a low quality of life and a strong aversion to continued dialysis therapy. We set expectations related to the importance of informing and protecting family members and medical teams who could be exposed to zoonotic viral infection from the donor organ and/or receive unwanted publicity. Meeting these challenges in trial design and oversight will require multidisciplinary expertise, a conceptual model that extends beyond the individual patient, and creative collaboration between scientists and regulatory agencies.
Collapse
Affiliation(s)
- Peter P Reese
- Renal-Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Penn Transplant Institute, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Bruce E Gelb
- Transplant Institute, NYU Langone Health, New York, New York, USA
| | - Brendan Parent
- Division of Medical Ethics, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
8
|
Abstract
Recent advances raise hope for a promising solution to the transplant organ shortage.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Department of Microbiology and Immunology and Department of Surgery, Columbia University Medical Center, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
Sykes M, Sachs DH. Progress in xenotransplantation: overcoming immune barriers. Nat Rev Nephrol 2022; 18:745-761. [PMID: 36198911 DOI: 10.1038/s41581-022-00624-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
Abstract
A major limitation of organ allotransplantation is the insufficient supply of donor organs. Consequently, thousands of patients die every year while waiting for a transplant. Progress in xenotransplantation that has permitted pig organ graft survivals of years in non-human primates has led to renewed excitement about the potential of this approach to alleviate the organ shortage. In 2022, the first pig-to-human heart transplant was performed on a compassionate use basis, and xenotransplantation experiments using pig kidneys in deceased human recipients provided encouraging data. Many advances in xenotransplantation have resulted from improvements in the ability to genetically modify pigs using CRISPR-Cas9 and other methodologies. Gene editing has the capacity to generate pig organs that more closely resemble those of humans and are hence more physiologically compatible and less prone to rejection. Despite such modifications, immune responses to xenografts remain powerful and multi-faceted, involving innate immune components that do not attack allografts. Thus, the induction of innate and adaptive immune tolerance to prevent rejection while preserving the capacity of the immune system to protect the recipient and the graft from infection is desirable to enable clinical xenotransplantation.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA. .,Department of Microbiology and Immunology, Columbia University, New York, NY, USA.
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA. .,Department of Surgery, Columbia University, New York, NY, USA.
| |
Collapse
|
10
|
Pavan-Guimaraes J, Martins PN. Modifying organs with gene therapy and gene modulation in the age of machine perfusion. Curr Opin Organ Transplant 2022; 27:474-480. [PMID: 36102360 DOI: 10.1097/mot.0000000000001007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW This review aims to highlight current advances in gene therapy methods, describing advances in CRISPR-Cas9 gene editing and RNA interference in relevance to liver transplantation, and machine perfusion. RECENT FINDINGS In order to minimize rejection, increase the donor pool of available organs, and minimize the effects of ischemia-reperfusion injury, gene therapy and gene modification strategies are, thus, required in the context of liver transplantation. SUMMARY Gene therapy has been used successfully in a diverse array of diseases, and, more recently, this technique has gained interest in the field of organ transplantation. Biological and logistical challenges reduce the rate of successful procedures, increasing the waiting list even more. We explore the exciting future implications of customized gene therapy in livers using machine perfusion, including its potential to create a future in which organs destined for transplant are individualized to maximize both graft and recipient longevity.
Collapse
Affiliation(s)
- Juliana Pavan-Guimaraes
- Division of Transplantation, Department of Surgery, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | |
Collapse
|
11
|
Silverman H, Odonkor PN. Reevaluating the Ethical Issues in Porcine-to-Human Heart Xenotransplantation. Hastings Cent Rep 2022; 52:32-42. [PMID: 36226875 PMCID: PMC9828571 DOI: 10.1002/hast.1419] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A major limiting factor with heart allotransplantation remains the availability of organs from deceased donors. Porcine heart xenotransplantation could serve as an alternative source of organs for patients with terminal heart failure. A first-in-human porcine xenotransplantation that occurred in January 2022 at the University of Maryland Medical Center provided an opportunity to examine several ethical issues to guide selection criteria for future xenotransplantation clinical trials. In this article, the authors, who are clinicians at UMMC, discuss the appropriate balancing of risks and benefits and the significance, if any, of clinical equipoise. The authors also review the alleged role of the psychosocial evaluation in identifying patients at an elevated risk of posttransplant noncompliance, and they consider how the evaluation's implementation might enhance inequities among diverse populations. The authors argue that, based on the principle of reciprocity, psychosocial criteria should be used, not to exclude patients, but instead to identify patients who need additional support. Finally, the authors discuss the requirements for and the proper assessment of informed and voluntary consent from patients being considered for xenotransplantation.
Collapse
|
12
|
Pierson RN, Allan JS, Cooper DK, D’Alessandro DA, Fishman JA, Kawai T, Lewis GD, Madsen JC, Markmann JF, Riella LV. Expert Opinion Special Feature: Patient Selection for Initial Clinical Trials of Pig Organ Transplantation. Transplantation 2022; 106:1720-1723. [PMID: 35761442 PMCID: PMC10124765 DOI: 10.1097/tp.0000000000004197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Richard N. Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - James S. Allan
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David K.C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - David A. D’Alessandro
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Jay A. Fishman
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Tatsuo Kawai
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gregory D. Lewis
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Joren C. Madsen
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - James F. Markmann
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Leonardo V. Riella
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
13
|
Buchwald JE, Martins PN. Designer organs: The future of personalized transplantation. Artif Organs 2022; 46:180-190. [DOI: 10.1111/aor.14151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Julianna E. Buchwald
- Division of Transplantation Department of Surgery University of Massachusetts Chan Medical School Worcester Massachusetts USA
- RNA Therapeutics Institute University of Massachusetts Chan Medical School Worcester Massachusetts USA
| | - Paulo N. Martins
- Division of Transplantation Department of Surgery University of Massachusetts Chan Medical School Worcester Massachusetts USA
| |
Collapse
|
14
|
Lamm V, Ekser B, Vagefi PA, Cooper DK. Bridging to Allotransplantation-Is Pig Liver Xenotransplantation the Best Option? Transplantation 2022; 106:26-36. [PMID: 33653996 PMCID: PMC10124768 DOI: 10.1097/tp.0000000000003722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the past 20 y, the number of patients in the United States who died while waiting for a human donor liver totaled >52 000. The median national wait time for patients with acute liver failure and the most urgent liver transplant listing was 7 d in 2018. The need for a clinical "bridge" to allotransplantation is clear. Current options for supporting patients with acute liver failure include artificial liver support devices, extracorporeal liver perfusion, and hepatocyte transplantation, all of which have shown mixed results with regard to survival benefit and are largely experimental. Progress in the transplantation of genetically engineered pig liver grafts in nonhuman primates has grown steadily, with survival of the pig graft extended to almost 1 mo in 2017. Further advances may justify consideration of a pig liver transplant as a clinical bridge to allotransplantation. We provide a brief history of pig liver xenotransplantation, summarize the most recent progress in pig-to-nonhuman primate liver transplantation models, and suggest criteria that may be considered for patient selection for a clinical trial of bridging by genetically engineered pig liver xenotransplantation to liver allotransplantation.
Collapse
Affiliation(s)
- Vladimir Lamm
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
15
|
Hurst DJ, Padilla LA, Cooper DKC, Paris W. Scientific and psychosocial ethical considerations for initial clinical trials of kidney xenotransplantation. Xenotransplantation 2021; 29:e12722. [PMID: 34800313 DOI: 10.1111/xen.12722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/23/2021] [Accepted: 10/21/2021] [Indexed: 12/28/2022]
Abstract
The initial clinical trials of pig solid organ xenotransplantation (XTx) are drawing closer and could begin in the coming years. The first clinical trials may aim to transplant genetically-modified pig kidneys into adult humans. The impetus for beginning these first-in-human trials is the severe lack of deceased donor kidneys for transplantation and the number of patients with end-stage renal disease currently on transplant waitlists, which in the USA approaches 100 000. The majority of patients on the kidney transplant waitlist receive continuous renal replacement therapy. In the United States, for patients on the kidney waitlist, the median wait-time to receive a deceased human donor organ is approximately 4.5 years for patients aged 45-74, with a 5-year mortality (or removal from the waitlist because of deteriorating health) of approximately 40%. XTx has the potential to reduce the kidney waitlist morbidity and mortality while improving quality of life. By focusing on scientific and psychosocial criteria, we present ethical considerations of certain inclusion and exclusion criteria for these first-in-human clinical trials that we suggest have not yet been fully explored.
Collapse
Affiliation(s)
- Daniel J Hurst
- Department of Family Medicine, Rowan University School of Osteopathic Medicine, Stratford, New Jersey, USA
| | - Luz A Padilla
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wayne Paris
- School of Social Work, Abilene Christian University, Abilene, Texas, USA
| |
Collapse
|
16
|
Cozzi E, Schneeberger S, Bellini MI, Berglund E, Böhmig G, Fowler K, Hoogduijn M, Jochmans I, Marckmann G, Marson L, Neuberger J, Oberbauer R, Pierson RN, Reichart B, Scobie L, White C, Naesens M. Organ transplants of the future: planning for innovations including xenotransplantation. Transpl Int 2021; 34:2006-2018. [PMID: 34459040 DOI: 10.1111/tri.14031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
The future clinical application of animal-to-human transplantation (xenotransplantation) is of importance to society as a whole. Favourable preclinical data relevant to cell, tissue and solid organ xenotransplants have been obtained from many animal models utilizing genetic engineering and protocols of pathogen-free husbandry. Findings have reached a tipping point, and xenotransplantation of solid organs is approaching clinical evaluation, the process of which now requires close deliberation. Such discussions include considering when there is sufficient evidence from preclinical animal studies to start first-in-human xenotransplantation trials. The present article is based on evidence and opinions formulated by members of the European Society for Organ Transplantation who are involved in the Transplantation Learning Journey project. The article includes a brief overview of preclinical concepts and biology of solid organ xenotransplantation, discusses the selection of candidates for first-in-human studies and considers requirements for study design and conduct. In addition, the paper emphasizes the need for a regulatory framework for xenotransplantation of solid organs and the essential requirement for input from public and patient stakeholders.
Collapse
Affiliation(s)
- Emanuele Cozzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| | - Stefan Schneeberger
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Maria Irene Bellini
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
- Department of Emergency Medicine and Surgery, Azienda Ospedaliera San Camillo Forlanini, Rome, Italy
| | - Erik Berglund
- Department of Clinical Science, Intervention and Technology (CLINTEC), Division of Transplantation Surgery, Karolinska Institute and ITB-MED, Stockholm, Sweden
| | - Georg Böhmig
- Division of Nephrology and Dialysis, Medical University Vienna, Vienna, Austria
| | - Kevin Fowler
- The Voice of the Patient, Inc., Chicago, IL, USA
| | - Martin Hoogduijn
- Department of Internal Medicine, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ina Jochmans
- Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Georg Marckmann
- Institute of Ethics, History and Theory of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Lorna Marson
- The Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | | | | | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Linda Scobie
- Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow, UK
| | | | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
17
|
Jagdale A, Kumar V, Anderson DJ, Locke JE, Hanaway MJ, Eckhoff DE, Iwase H, Cooper DK. Suggested Patient Selection Criteria for Initial Clinical Trials of Pig Kidney Xenotransplantation in the United States. Transplantation 2021; 105:1904-1908. [PMID: 33481554 PMCID: PMC10124769 DOI: 10.1097/tp.0000000000003632] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
There is a critical shortage of kidneys for transplantation into patients with kidney failure. Genetically-engineered pigs could provide an additional source. Increasing success is being reported of the transplantation of pig kidneys in nonhuman primates. Consideration is now being given to the selection of patients for the first clinical trial of pig kidney transplantation. In some US states, patients aged 55–65, particularly if of blood group O, may wait >5 years for a donor organ, by which time >50% are likely to have died or removed from the wait-list because they are no longer acceptable for transplantation. We suggest these patients, if otherwise healthy, might accept the opportunity of early pig kidney transplantation.
Collapse
Affiliation(s)
- Abhijit Jagdale
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vineeta Kumar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Douglas J. Anderson
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jayme E. Locke
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michael J. Hanaway
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Devin E. Eckhoff
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hayato Iwase
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David K.C. Cooper
- Xenotransplantation Program, Division of Transplantation, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Garcia LR, Brito FDS, Felicio ML, Garzesi AM, Tardivo MT, Polegato BF, Minicucci MF, Zornoff LAM. Clinical trials in cardiac xenotransplantation: Are we ready to overcome barriers? J Card Surg 2021; 36:3796-3801. [PMID: 34137071 DOI: 10.1111/jocs.15747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/25/2021] [Accepted: 06/10/2021] [Indexed: 11/28/2022]
Abstract
Heart allotransplantation has become one of the methods of choice in the treatment of severe heart failure. In the face of its difficulties, such as the unmet balance between organ supply and demand, the use of xenotransplantation (XTx) might be an attractive option shortly, even more with the ongoing progress achieved regarding the avoidance of hyperacute rejection and primary organ disfunction, maintenance of xenograft function and control of xenograft growth. To make possible this translational challenge, some points must be taken into account indeed, and they are the equipoise of human benefit and animal suffering, the risk of unknown infections, a well prepared informed consent, ethical and religious beliefs, and the role of cardiac XTx in a ventricular assistance device era.
Collapse
Affiliation(s)
- Leonardo Rufino Garcia
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Flavio de Souza Brito
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Marcello Laneza Felicio
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - André Monti Garzesi
- Department of Surgery, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Márcia Terezinha Tardivo
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Bertha Furlan Polegato
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | - Marcos Ferreira Minicucci
- Department of Internal Medicine, Universidade Estadual Paulista-UNESP, SP, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
19
|
Meier RPH, Longchamp A, Mohiuddin M, Manuel O, Vrakas G, Maluf DG, Buhler LH, Muller YD, Pascual M. Recent progress and remaining hurdles toward clinical xenotransplantation. Xenotransplantation 2021; 28:e12681. [PMID: 33759229 DOI: 10.1111/xen.12681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Xenotransplantation has made tremendous progress over the last decade. METHODS We discuss kidney and heart xenotransplantation, which are nearing initial clinical trials. RESULTS Life sustaining genetically modified kidney xenografts can now last for approximately 500 days and orthotopic heart xenografts for 200 days in non-human primates. Anti-swine specific antibody screening, preemptive desensitization protocols, complement inhibition and targeted immunosuppression are currently being adapted to xenotransplantation with the hope to achieve better control of antibody-mediated rejection (AMR) and improve xenograft longevity. These newest advances could probably facilitate future clinical trials, a significant step for the medical community, given that dialysis remains difficult for many patients and can have prohibitive costs. Performing a successful pig-to-human clinical kidney xenograft, that could last for more than a year after transplant, seems feasible but it still has significant potential hurdles to overcome. The risk/benefit balance is progressively reaching an acceptable equilibrium for future human recipients, e.g. those with a life expectancy inferior to two years. The ultimate question at this stage would be to determine if a "proof of concept" in humans is desirable, or whether further experimental/pre-clinical advances are still needed to demonstrate longer xenograft survival in non-human primates. CONCLUSION In this review, we discuss the most recent advances in kidney and heart xenotransplantation, with a focus on the prevention and treatment of AMR and on the recipient's selection, two aspects that will likely be the major points of discussion in the first pig organ xenotransplantation clinical trials.
Collapse
Affiliation(s)
- Raphael P H Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alban Longchamp
- Department of Vascular Surgery, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Muhammad Mohiuddin
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Oriol Manuel
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Georgios Vrakas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel G Maluf
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Leo H Buhler
- Faculty of Science and Medicine, Section of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yannick D Muller
- Division of Immunology and Allergy, University Hospital of Lausanne, Lausanne, Switzerland
| | - Manuel Pascual
- Transplantation Center, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Javier MFDM, Javier Delmo EM, Hetzer R. Heart transplantation: the Berlin experience and perspectives. Cardiovasc Diagn Ther 2021; 11:243-253. [PMID: 33708496 DOI: 10.21037/cdt-20-290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In patients with end-stage heart failure, heart transplants are now an ingrained practice, as they provide satisfying long-term results with good predictability and quality of life. The successful outcome has evolved from the development of effective immunosuppression, recognition of allograft rejection through diagnostic modalities and improvement in donor organ perfusion. Unfortunately, transplant availability is constrained by the shortage of donor organs and is therefore considered a casuistic therapy. The outcome is defined by unwanted effects of immunosuppressants, increased tumor occurrence and chronic transplant angiopathies. In the long term, patients fear primarily the occurrence of renal insufficiency and secondly osteoporosis with its skeletal complications and corresponding pain. Nevertheless, the overall quality of life is not very limited; on the contrary, patients demonstrate a surprisingly meaningful lives 10-20 years after the transplant. Their physical presentation is similar to those with varying co-morbidities. Most of the 20-year surviving patients are physically active and happy with their daily lives. Medical ambition has seen heart transplantation become reality and develop into an influential force regarding heart surgery, immunology, pharmacology, organ logistics and medical ethics. Its development has also molded our definitions of death and has driven public and health care approval of medical advances. It has provided a strong solidarity among politicians, sociologists, physicians and citizens. Problems regarding ethics continue to endure, and will forecast heart transplants as a defining, but temporary era in human medicine. The donor organ shortage has stimulated the use of resuscitated donor hearts and encouraged exploration and advancement of mechanical circulatory support systems and xenotransplantation as alternatives in the management of end-stage heart failure.
Collapse
|
21
|
Pierson RN, Burdorf L, Madsen JC, Lewis GD, D’Alessandro DA. Pig-to-human heart transplantation: Who goes first? Am J Transplant 2020; 20:2669-2674. [PMID: 32301262 PMCID: PMC9448330 DOI: 10.1111/ajt.15916] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Cardiac xenotransplantation has recently taken an important step towards clinical reality. In anticipation of the "first-in-human" heart xenotransplantation trial, we propose a set of patient characteristics that define potential candidates. Our premise is that, to be ethically justified, the risks posed by current state-of-the-art options must outweigh the anticipated risks of a pioneering xenotransplant procedure. Suitable candidates include patients who are at high immunologic risk because of sensitization to alloantigens, including those who have exhibited early onset or accelerated cardiac allograft vasculopathy. In addition, patients should be considered (1) for whom mechanical circulatory support would be prohibitively risky due to a hypercoagulable state, a contraindication to anticoagulation, or restrictive physiology; (2) with severe biventricular dysfunction predicting unsuccessful univentricular left heart support; and (3) adults with complex congenital heart disease. In conclusion, because the published preclinical benchmark for clinical translation of heart xenotransplantation appears within reach, carefully and deliberately defining appropriate trial participants is timely as the basis for ethical clinical trial design.
Collapse
Affiliation(s)
- Richard N. Pierson
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts,Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Lars Burdorf
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts,Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Joren C. Madsen
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts,Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - Gregory D. Lewis
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| | - David A. D’Alessandro
- Division of Cardiac Surgery, Massachusetts General Hospital, Harvard University, Boston, Massachusetts
| |
Collapse
|
22
|
Sykes M, Sachs DH. Transplanting organs from pigs to humans. Sci Immunol 2020; 4:4/41/eaau6298. [PMID: 31676497 DOI: 10.1126/sciimmunol.aau6298] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
The success of organ transplantation is limited by the complications of immunosuppression, by chronic rejection, and by the insufficient organ supply, and thousands of patients die every year while waiting for a transplant. With recent progress in xenotransplantation permitting porcine organ graft survival of months or even years in nonhuman primates, there is renewed interest in its potential to alleviate the organ shortage. Many of these advances are the result of our heightened capacity to modify pigs genetically, particularly with the development of CRISPR-Cas9-based gene editing methodologies. Although this approach allows the engineering of pig organs that are less prone to rejection, the clinical application of xenotransplantation will require the ability to avoid the ravages of a multifaceted attack on the immune system while preserving the capacity to protect both the recipient and the graft from infectious microorganisms. In this review, we will discuss the potential and limitations of these modifications and how the engineering of the graft can be leveraged to alter the host immune response so that all types of immune attack are avoided.
Collapse
Affiliation(s)
- Megan Sykes
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, NY, USA. .,Department of Microbiology and Immunology, Columbia University Medical Center, NY, USA.,Department of Surgery, Columbia University Medical Center, NY, USA
| | - David H Sachs
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University Medical Center, NY, USA.,Department of Surgery, Columbia University Medical Center, NY, USA
| |
Collapse
|
23
|
Shu S, Ren J, Song J. Cardiac xenotransplantation: a promising way to treat advanced heart failure. Heart Fail Rev 2020; 27:71-91. [DOI: 10.1007/s10741-020-09989-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Kidney Regenerative Medicine: Promises and Limitations. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Hurst DJ, Padilla LA, Trani C, McClintock A, Cooper DKC, Walters W, Hunter J, Eckhoff D, Cleveland D, Paris W. Recommendations to the IRB review process in preparation of xenotransplantation clinical trials. Xenotransplantation 2020; 27:e12587. [DOI: 10.1111/xen.12587] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Daniel J. Hurst
- Department of Family and Community Medicine The University of Alabama at Birmingham Birmingham AL USA
| | - Luz A. Padilla
- Department of Epidemiology The University of Alabama at Birmingham Birmingham AL USA
| | - Christine Trani
- Clinical Research Unit, Abramson Cancer Center University of Pennsylvania Philadelphia PA USA
| | | | - David K. C. Cooper
- UAB Xenotransplantation Program The University of Alabama at Birmingham Birmingham AL USA
| | - Wendy Walters
- The University of Alabama at Birmingham Birmingham AL USA
| | - James Hunter
- Anesthesiology and Perioperative Medicine The University of Alabama at Birmingham Birmingham AL USA
| | - David Eckhoff
- Division of Transplantation The University of Alabama at Birmingham Birmingham AL USA
| | - David Cleveland
- Department of Surgery The University of Alabama at Birmingham Birmingham AL USA
| | - Wayne Paris
- Department of Social Work Abilene Christian University Abilene TX USA
| |
Collapse
|
26
|
Cernigliaro V, Peluso R, Zedda B, Silengo L, Tolosano E, Pellicano R, Altruda F, Fagoonee S. Evolving Cell-Based and Cell-Free Clinical Strategies for Treating Severe Human Liver Diseases. Cells 2020; 9:E386. [PMID: 32046114 PMCID: PMC7072646 DOI: 10.3390/cells9020386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Liver diseases represent a major global health issue, and currently, liver transplantation is the only viable alternative to reduce mortality rates in patients with end-stage liver diseases. However, scarcity of donor organs and risk of recidivism requiring a re-transplantation remain major obstacles. Hence, much hope has turned towards cell-based therapy. Hepatocyte-like cells obtained from embryonic stem cells or adult stem cells bearing multipotent or pluripotent characteristics, as well as cell-based systems, such as organoids, bio-artificial liver devices, bioscaffolds and organ printing are indeed promising. New approaches based on extracellular vesicles are also being investigated as cell substitutes. Extracellular vesicles, through the transfer of bioactive molecules, can modulate liver regeneration and restore hepatic function. This review provides an update on the current state-of-art cell-based and cell-free strategies as alternatives to liver transplantation for patients with end-stage liver diseases.
Collapse
Affiliation(s)
- Viviana Cernigliaro
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Rossella Peluso
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Beatrice Zedda
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (V.C.); (R.P.); (B.Z.)
- Maria Pia Hospital, 10126 Turin, Italy
| | - Lorenzo Silengo
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Emanuela Tolosano
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | | | - Fiorella Altruda
- Molecular Biotechnology Center, Departmet of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126 Turin, Italy; (L.S.); (E.T.)
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Via Nizza 52, 10126 Turin, Italy
| |
Collapse
|
27
|
A major advance toward clinical cardiac xenotransplantation. J Thorac Cardiovasc Surg 2020; 159:166-169. [PMID: 31204127 DOI: 10.1016/j.jtcvs.2019.04.087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/05/2019] [Accepted: 04/07/2019] [Indexed: 01/14/2023]
|
28
|
Carithers Jr. RL. LIVER TRANSPLANTATION: WILL XENOTRANSPLANTATION BE THE ANSWER TO THE DONOR ORGAN SHORTAGE? TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2020; 131:270-285. [PMID: 32675865 PMCID: PMC7358479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Since the first report of a successful liver transplant in 1968, access to this operation has dramatically improved. In 2018, 8,250 patients underwent liver transplantation in the United States. Despite this remarkable advance, a persistent shortage of donor organs remains the primary obstacle to optimal utilization of this life-saving operation. Over the past two decades, transplant professionals have pursued two broad strategies to overcome this roadblock: increasing the number of donor organs and decreasing the number of patients requiring transplantation through advances in medical interventions. Despite these efforts, more than 13,500 patients remained on liver transplant waiting lists at the end of 2018. Almost 1,200 died while waiting, and 1,350 were removed from wait lists because they had become too sick to survive the operation. Clearly, a dramatic new approach to the donor organ shortage is needed. One effort, first attempted by surgeons in the 1960s, was to utilize donor organs from other species (xenotransplantation). The major obstacle to xenotransplantation acceptance has been the fear of transmitting new infectious diseases from animals to humans. As the twentieth century came to a close, national moratoria on xenotransplantation ended both research and clinical activities in this field. The recent discoveries that modern gene-editing techniques can be used to eliminate the retrovirus that is ubiquitous in pigs and that retrovirus-free pigs can be cloned has reopened the possibility that xenotransplantation may be a potentially game-changing approach to eliminating the donor shortage for liver and other solid organ transplant recipients. In response to these advances, the FDA has released comprehensive industry guidelines regarding all aspects of xenotransplantation. This release has resulted in numerous preclinical studies in which organs from genetically modified pigs are transplanted into various nonhuman primates (NHPs). Use of a variety of gene-editing and immunosuppressive techniques has greatly increased the survival of recipient animals in the past few years. Survival of NHP renal transplant recipients has been extended to 435 days, functional cardiac transplant recipients to 195 days, and liver transplant recipients to 29 days. Current research studies using various gene modification strategies combined with newer immunosuppressive protocols are attempting to further extend the survival of these experimental animals. These encouraging results have raised the possibility that clinical xenotransplantation in humans is just beyond the horizon. The most likely candidates for initial clinical studies probably will be kidney transplant recipients who are difficult to crossmatch for human organs, neonates with severe congenital heart disease, and liver transplant candidates with acute liver failure.
Collapse
Affiliation(s)
- Robert L. Carithers Jr.
- Correspondence and reprint requests: Robert L. Carithers, Jr., MD, University of Washington Medical Center, 1959 NE Pacific Street, Seattle, Washington 98195206-218-6615
| |
Collapse
|
29
|
Abstract
There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
30
|
Jorqui-Azofra M. Regulation of Clinical Xenotransplantation: A Reappraisal of the Legal, Ethical, and Social Aspects Involved. Xenotransplantation 2020; 2110:315-358. [DOI: 10.1007/978-1-0716-0255-3_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Cooper DKC, Hara H, Iwase H, Yamamoto T, Jagdale A, Kumar V, Mannon RB, Hanaway MJ, Anderson DJ, Eckhoff DE. Clinical Pig Kidney Xenotransplantation: How Close Are We? J Am Soc Nephrol 2019; 31:12-21. [PMID: 31792154 DOI: 10.1681/asn.2019070651] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Patients with ESKD who would benefit from a kidney transplant face a critical and continuing shortage of kidneys from deceased human donors. As a result, such patients wait a median of 3.9 years to receive a donor kidney, by which time approximately 35% of transplant candidates have died while waiting or have been removed from the waiting list. Those of blood group B or O may experience a significantly longer waiting period. This problem could be resolved if kidneys from genetically engineered pigs offered an alternative with an acceptable clinical outcome. Attempts to accomplish this have followed two major paths: deletion of pig xenoantigens, as well as insertion of "protective" human transgenes to counter the human immune response. Pigs with up to nine genetic manipulations are now available. In nonhuman primates, administering novel agents that block the CD40/CD154 costimulation pathway, such as an anti-CD40 mAb, suppresses the adaptive immune response, leading to pig kidney graft survival of many months without features of rejection (experiments were terminated for infectious complications). In the absence of innate and adaptive immune responses, the transplanted pig kidneys have generally displayed excellent function. A clinical trial is anticipated within 2 years. We suggest that it would be ethical to offer a pig kidney transplant to selected patients who have a life expectancy shorter than the time it would take for them to obtain a kidney from a deceased human donor. In the future, the pigs will also be genetically engineered to control the adaptive immune response, thus enabling exogenous immunosuppressive therapy to be significantly reduced or eliminated.
Collapse
Affiliation(s)
| | - Hidetaka Hara
- Division of Transplantation, Department of Surgery and
| | - Hayato Iwase
- Division of Transplantation, Department of Surgery and
| | | | | | - Vineeta Kumar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Roslyn Bernstein Mannon
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | |
Collapse
|
32
|
|
33
|
Kalman JM, Lavandero S, Mahfoud F, Nahrendorf M, Yacoub MH, Zhao D. Looking back and thinking forwards - 15 years of cardiology and cardiovascular research. Nat Rev Cardiol 2019; 16:651-660. [PMID: 31570832 DOI: 10.1038/s41569-019-0261-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2019] [Indexed: 12/24/2022]
Abstract
The first issue of Nature Reviews Cardiology was published in November 2004 under the name Nature Clinical Practice Cardiovascular Medicine. To celebrate our 15th anniversary in 2019, we invited six of our Advisory Board members to discuss what they considered the most important advances in their field of cardiovascular research or clinical practice in the past 15 years and what changes they envision for cardiovascular medicine in the next 15 years. Several practice-changing breakthroughs are described, including advances in procedural techniques to treat arrhythmias and hypertension and the development of novel therapeutic strategies to treat heart failure and pulmonary arterial hypertension, as well as those that target risk factors such as inflammation and elevated LDL-cholesterol levels. Furthermore, these key opinion leaders predict that machine learning technology and data derived from wearable devices will pave the way towards the coveted goal of personalized medicine.
Collapse
Affiliation(s)
- Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia.
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, University of Chile, Santiago, Chile. .,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Felix Mahfoud
- Department of Internal Medicine III, Saarland University Hospital, Homburg (Saar), Germany. .,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA.
| | - Matthias Nahrendorf
- Center for Systems Biology, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA. .,Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Magdi H Yacoub
- National Heart and Lung Institute, Heart Science Centre, Harefield Hospital, London, UK. .,The Magdi Yacoub Foundation, Aswan Heart Centre, Aswan, Egypt.
| | - Dong Zhao
- Capital Medical University, Beijing Anzhen Hospital, Beijing, China.
| |
Collapse
|
34
|
Kim SC, Mathews DV, Breeden CP, Higginbotham LB, Ladowski J, Martens G, Stephenson A, Farris AB, Strobert EA, Jenkins J, Walters EM, Larsen CP, Tector M, Tector AJ, Adams AB. Long-term survival of pig-to-rhesus macaque renal xenografts is dependent on CD4 T cell depletion. Am J Transplant 2019; 19:2174-2185. [PMID: 30821922 PMCID: PMC6658347 DOI: 10.1111/ajt.15329] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 01/25/2023]
Abstract
The shortage of available organs remains the greatest barrier to expanding access to transplant. Despite advances in genetic editing and immunosuppression, survival in experimental models of kidney xenotransplant has generally been limited to <100 days. We found that pretransplant selection of recipients with low titers of anti-pig antibodies significantly improved survival in a pig-to-rhesus macaque kidney transplant model (6 days vs median survival time 235 days). Immunosuppression included transient pan-T cell depletion and an anti-CD154-based maintenance regimen. Selective depletion of CD4+ T cells but not CD8+ T cells resulted in long-term survival (median survival time >400 days vs 6 days). These studies suggested that CD4+ T cells may have a more prominent role in xenograft rejection compared with CD8+ T cells. Although animals that received selective depletion of CD8+ T cells showed signs of early cellular rejection (marked CD4+ infiltrates), animals receiving selective CD4+ depletion exhibited normal biopsy results until late, when signs of chronic antibody rejection were present. In vitro study results suggested that rhesus CD4+ T cells required the presence of SLA class II to mount an effective proliferative response. The combination of low pretransplant anti-pig antibody and CD4 depletion resulted in consistent, long-term xenograft survival.
Collapse
Affiliation(s)
- SC Kim
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - DV Mathews
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - CP Breeden
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - LB Higginbotham
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - J Ladowski
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - G Martens
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - A Stephenson
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - AB Farris
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia
| | - EA Strobert
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - J Jenkins
- Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - EM Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri
| | - CP Larsen
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia,Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| | - M Tector
- Comprehensive Transplant Institute, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - AJ Tector
- Comprehensive Transplant Institute, University of Alabama Birmingham School of Medicine, Birmingham, Alabama
| | - AB Adams
- Emory Transplant Center, Department of Surgery, School of Medicine, Emory University, Atlanta, Georgia,Yerkes National Primate Research Center, School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
35
|
Cooper DKC. Experimental Pig Heart Xenotransplantation-Recent Progress and Remaining Problems. Ann Thorac Surg 2019; 107:989-992. [PMID: 30471272 DOI: 10.1016/j.athoracsur.2018.09.074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022]
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
36
|
Shaw BI, Kirk AD. Kidney Xenotransplantation: Steps toward Clinical Application. Clin J Am Soc Nephrol 2019; 14:620-622. [PMID: 30728166 PMCID: PMC6450342 DOI: 10.2215/cjn.12471018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Brian I Shaw
- Department of Surgery, Duke University, Durham, North Carolina
| | - Allan D Kirk
- Department of Surgery, Duke University, Durham, North Carolina
| |
Collapse
|
37
|
|
38
|
Cooper DK, Ezzelarab M, Iwase H, Hara H. Perspectives on the Optimal Genetically Engineered Pig in 2018 for Initial Clinical Trials of Kidney or Heart Xenotransplantation. Transplantation 2018; 102:1974-1982. [PMID: 30247446 PMCID: PMC6249080 DOI: 10.1097/tp.0000000000002443] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For a clinical trial today, what might realistically be the optimal pig among those currently available? Deletion of expression of the 3 pig carbohydrate antigens, against which humans have natural (preformed) antibodies (triple-knockout pigs), should form the basis of any clinical trial. However, because both complement and coagulation can be activated in the absence of antibody, the expression of human complement- and coagulation-regulatory proteins is likely to be important in protecting the graft further. Any genetic manipulation that might reduce inflammation of the graft, for example, expression of hemeoxygenase-1 or A20, may also be beneficial to the long-term survival of the graft. The transgene for human CD47 is likely to have a suppressive effect on monocyte/macrophage and T-cell activity. Furthermore, deletion of xenoantigen expression and expression of a human complement-regulatory protein are both associated with a reduced T-cell response. Although there are several other genetic manipulations that may reduce the T-cell response further, it seems likely that exogenous immunosuppressive therapy, particularly if it includes costimulation blockade, will be sufficient. We would therefore suggest that, with our present knowledge and capabilities, the optimal pig might be a triple-knockout pig that expressed 1 or more human complement-regulatory proteins, 1 or more human coagulation-regulatory proteins, a human anti-inflammatory transgene, and CD47. Absent or minimal antibody binding is important, but we suggest that the additional insertion of protective human transgenes will be beneficial, and may be essential.
Collapse
Affiliation(s)
- David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
39
|
Iwase H, Klein EC, Cooper DK. Physiologic Aspects of Pig Kidney Transplantation in Nonhuman Primates. Comp Med 2018; 68:332-340. [PMID: 30208986 PMCID: PMC6200029 DOI: 10.30802/aalas-cm-17-000117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/31/2017] [Accepted: 04/01/2018] [Indexed: 12/13/2022]
Abstract
Xenotransplantation can provide a solution to the current shortage of human organs for patients with terminal renal failure. The increasing availability of genetically engineered pigs, effective immunosuppressive therapy, and antiinflammatory therapy help to protect pig tissues from the primate immune response and can correct molecular incompatibilities. Life-supporting pig kidney xenografts have survived in NHP for more than 6 mo in the absence of markers of consumptive coagulopathy. However, few reports have focused on the physiologic aspects of life-supporting pig kidney xenografts. We have reviewed the literature regarding pig kidney xenotransplantation in NHP. The available data indicate (1) normal serum creatinine, (2) normal serum electrolytes, except for a trend toward increased calcium levels and a transient rise in phosphate followed by a fall to slightly subnormal values, (3) minimal or modest proteinuria without hypoalbuminemia (suggesting that previous reports of proteinuria likely were due to a low-grade immune response rather than physiologic incompatibilities), (4) possible discrepancies between pig erythropoietin and the primate erythropoietin receptor, and (5) significant early increase in kidney graft size, which might result from persistent effects of pig growth hormone. Further study is required regarding identification and investigation of physiologic incompatibilities. However, current evidence suggests that, in the absence of an immune response, a transplanted pig kidney likely would satisfactorily support a human patient.
Collapse
Affiliation(s)
- Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama, USA.
| | - Edwin C Klein
- Department of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David Kc Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama, USA
| |
Collapse
|
40
|
Martínez-Alarcón L, Ríos A, Ramis G, Quereda J, Herrero J, Mendonça L, Muñoz A, Hernández A, Ramírez P, Parrilla P. Impact of 2009 Pandemic H1N1 Influenza A Virus on Veterinary Students' Perception of Xenotransplantation. Transplant Proc 2018; 50:2291-2295. [DOI: 10.1016/j.transproceed.2018.02.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/26/2018] [Indexed: 12/24/2022]
|
41
|
Abstract
PURPOSE OF REVIEW To review the progress in the field of xenotransplantation with special attention to most recent encouraging findings which will eventually bring xenotransplantation to the clinic in the near future. RECENT FINDINGS Starting from early 2000, with the introduction of galactose-α1,3-galactose (Gal)-knockout pigs, prolonged survival especially in heart and kidney xenotransplantation was recorded. However, remaining antibody barriers to non-Gal antigens continue to be the hurdle to overcome. The production of genetically engineered pigs was difficult requiring prolonged time. However, advances in gene editing, such as zinc finger nucleases, transcription activator-like effector nucleases, and most recently clustered regularly interspaced short palindromic repeats (CRISPR) technology made the production of genetically engineered pigs easier and available to more researchers. Today, the survival of pig-to-nonhuman primate heterotopic heart, kidney, and islet xenotransplantation reached more than 900, more than 400, and more than 600 days, respectively. The availability of multiple-gene pigs (five or six genetic modifications) and/or newer costimulation blockade agents significantly contributed to this success. Now, the field is getting ready for clinical trials with an international consensus. SUMMARY Clinical trials in cellular or solid organ xenotransplantation are getting closer with convincing preclinical data from many centers. The next decade will show us new achievements and additional barriers in clinical xenotransplantation.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW There continues to be an inadequate organ supply and lack of effective temporary support, for patients with liver failure. The purpose of this review is to discuss recent progress in the field of orthotopic pig-to-nonhuman primate (NHP) liver xenotransplantation (LXT). RECENT FINDINGS From 1968 to 2012, survival in pig-to-NHP LXT was limited to 9 days, initially due to hyperacute rejection which has been ameliorated through use of genetically engineered donor organs, but ultimately because of profound thrombocytopenia, thrombotic microangiopathy, and bleeding. Most recently, however, demise secondary to lethal coagulopathy has been avoided with LXT of α(1,3)-galactosyltransferase knockouts and cytomegalovirus-negative porcine xenografts into baboons receiving exogenous administration of coagulation factors and co-stimulation blockade, establishing that a porcine liver is capable of supporting NHP life for nearly a month. SUMMARY Continued consistent achievement of pig-to-NHP LXT survival beyond 2 weeks justifies consideration of a clinical application as a bridge to allotransplantation for patients with acute hepatic failure. Further genetic modifications to the donor, as well as additional studies, are required in order to apply LXT as destination therapy.
Collapse
|
43
|
Presence of Pig IgG and IgM in Sera Samples From Baboons After an Orthotopic Liver Xenotransplantation. Transplant Proc 2018; 50:2842-2846. [PMID: 30401409 DOI: 10.1016/j.transproceed.2018.03.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/06/2018] [Indexed: 02/04/2023]
Abstract
INTRODUCTION The immunorejection in xenotransplantation has mostly been studied from the host's immune system activation point of view and there is very little information about the graft-vs-host reaction. OBJECTIVES To validate an enzyme-linked immunosorbent assay (ELISA) test for porcine IgM and IgG quantitation, the assessment of porcine IgG and IgM in sera samples from baboons after liver orthotopic xenotransplantation or in human plasma after xenotransfusion through pig organs, and to assess the presence of porcine immunoglobulin in a baboon after plasmapheresis to a complete change of plasma after 4 passages through pig liver. MATERIALS AND METHODS Two commercial ELISA kits for pig IgG and IgM quantitation were evaluated for cross reactivity with samples from baboons, Rhesus monkeys, squirrel monkeys, and humans. Then, samples from 18 baboons after orthotopic liver xenotransplantation were studied for porcine IgG and IgM. To understand the phenomenon, human plasma samples after xenotransfusion 1, 2, 3, or 4 times through liver or kidney were assessed for porcine IgG presence and finally, the porcine IgG were quantified in sera samples obtained during more than 4 years from a baboon after plasmapheresis with baboon plasma after xenotransfusion 4 times through a pig liver. RESULTS Porcine IgG and IgM were found in samples from xenotransplanted baboon during all survival. The quantity of porcine IgG in plasma after xenotransfusion correlated with the number of passages through the pig liver, and the IgG were completely cleared from the baboon 16 days after plasmapheresis and complete substitution of plasma after 4 xenotransfusions through a pig liver.
Collapse
|
44
|
Cooper DKC, Gaston R, Eckhoff D, Ladowski J, Yamamoto T, Wang L, Iwase H, Hara H, Tector M, Tector AJ. Xenotransplantation-the current status and prospects. Br Med Bull 2018; 125:5-14. [PMID: 29228112 PMCID: PMC6487536 DOI: 10.1093/bmb/ldx043] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/28/2017] [Accepted: 11/22/2017] [Indexed: 02/01/2023]
Abstract
Introduction There is a continuing worldwide shortage of organs from deceased human donors for transplantation into patients with end-stage organ failure. Genetically engineered pigs could resolve this problem, and could also provide tissues and cells for the treatment of conditions such as diabetes, Parkinson's disease and corneal blindness. Sources of data The current literature has been reviewed. Areas of agreement The pathobiologic barriers are now largely defined. Research progress has advanced through the increasing availability of genetically engineered pigs and novel immunosuppressive agents. Life-supporting pig kidneys and islets have functioned for months or years in nonhuman primates. Areas of controversy The potential risk of transfer of a pig infectious microorganism to the recipient continues to be debated. Growing points Increased attention is being paid to selection of patients for initial clinical trials. Areas timely for developing research Most of the advances required to justify a clinical trial have now been met.
Collapse
Affiliation(s)
- D K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - R Gaston
- Department of Nephrology, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - D Eckhoff
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - J Ladowski
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - T Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - L Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - H Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - H Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - M Tector
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| | - A J Tector
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham Medical Center, Birmingham, AL, USA
| |
Collapse
|
45
|
Cooper DKC, Iwase H, Wang L, Yamamoto T, Li Q, Li J, Zhou H, Hara H. Bringing Home The Bacon: Update on The State of Kidney Xenotransplantation. Blood Purif 2018; 45:254-259. [PMID: 29478054 DOI: 10.1159/000485163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND There is a continuing critical shortage of organs from deceased human donors for transplantation, particularly for patients awaiting kidney transplantation. Efforts are being made to resolve the donor kidney shortage by the transplantation of kidneys from genetically-engineered pigs. SUMMARY This review outlines the pathobiological barriers to pig organ xenotransplantation in primates, which include (i) antibody-dependent complement-mediated rejection, (ii) a T cell-mediated elicited antibody and cellular response, (iii) coagulation dysregulation between pigs and primates, and (iv) a persistent inflammatory response. As a result of increasing genetic manipulation of the pig and the introduction of novel immunosuppressive agents, pig kidney graft survival has increased from minutes to months, and even to >1 year in some cases. Aspects of the selection of the patients for a first clinical trial are discussed. Although there would appear to be some cross-reactivity between anti-human leukocyte antigen (HLA) antibodies and swine leukocyte antigens expressed in pigs, some HLA-sensitized patients will be at no disadvantage if they receive a pig kidney. Furthermore, the current limited evidence is that, even if the patient becomes sensitized to pig antigens (after a pig organ transplant), this would not be detrimental to a subsequent allotransplant. The potential risk of infection with a pig microorganism, and the function of a pig kidney in a primate are also discussed. Key Message: The recent encouraging results of pig kidney transplantation in nonhuman primates suggest the likelihood of a successful (and safe) initial clinical trial, with graft survival for months or possibly years.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - H Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - L Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Second Affiliated Hospital, University of South China, Hengyang, China
| | - T Yamamoto
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qi Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Second Affiliated Hospital, University of South China, Hengyang, China
| | - J Li
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Second Affiliated Hospital, University of South China, Hengyang, China
| | - H Zhou
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA.,Huazhong University of Science and Technology, Tongji Hospital, Wuhan, China
| | - H Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
46
|
Meier RPH, Muller YD, Balaphas A, Morel P, Pascual M, Seebach JD, Buhler LH. Xenotransplantation: back to the future? Transpl Int 2018; 31:465-477. [PMID: 29210109 DOI: 10.1111/tri.13104] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 10/05/2017] [Accepted: 11/26/2017] [Indexed: 12/26/2022]
Abstract
The field of xenotransplantation has fluctuated between great optimism and doubts over the last 50 years. The initial clinical attempts were extremely ambitious but faced technical and ethical issues that prompted the research community to go back to preclinical studies. Important players left the field due to perceived xenozoonotic risks and the lack of progress in pig-to-nonhuman-primate transplant models. Initial apparently unsurmountable issues appear now to be possible to overcome due to progress of genetic engineering, allowing the generation of multiple-xenoantigen knockout pigs that express human transgenes and the genomewide inactivation of porcine endogenous retroviruses. These important steps forward were made possible by new genome editing technologies, such as CRISPR/Cas9, allowing researchers to precisely remove or insert genes anywhere in the genome. An additional emerging perspective is the possibility of growing humanized organs in pigs using blastocyst complementation. This article summarizes the current advances in xenotransplantation research in nonhuman primates, and it describes the newly developed genome editing technology tools and interspecific organ generation.
Collapse
Affiliation(s)
- Raphael P H Meier
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Yannick D Muller
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland.,Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Balaphas
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Philippe Morel
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center, Lausanne University Hospital, Lausanne, Switzerland
| | - Jörg D Seebach
- Division of Clinical Immunology and Allergy, Department of Medical Specialties, University Hospitals and Medical Faculty, Geneva, Switzerland
| | - Leo H Buhler
- Visceral and Transplant Surgery, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
47
|
|
48
|
Cooper DKC, Ezzelarab MB, Hara H. Low anti-pig antibody levels are key to the success of solid organ xenotransplantation: But is this sufficient? Xenotransplantation 2017; 24. [PMID: 29067714 DOI: 10.1111/xen.12360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/09/2017] [Accepted: 09/26/2017] [Indexed: 12/15/2022]
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
49
|
Madsen JC. Advances in the immunology of heart transplantation. J Heart Lung Transplant 2017; 36:1299-1305. [PMID: 29173391 DOI: 10.1016/j.healun.2017.10.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Joren C Madsen
- Center for Transplantation Sciences and Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
50
|
The Role of Costimulation Blockade in Solid Organ and Islet Xenotransplantation. J Immunol Res 2017; 2017:8415205. [PMID: 29159187 PMCID: PMC5660816 DOI: 10.1155/2017/8415205] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/17/2017] [Indexed: 12/17/2022] Open
Abstract
Pig-to-human xenotransplantation offers a potential bridge to the growing disparity between patients with end-stage organ failure and graft availability. Early studies attempting to overcome cross-species barriers demonstrated robust humoral immune responses to discordant xenoantigens. Recent advances have led to highly efficient and targeted genomic editing, drastically altering the playing field towards rapid production of less immunogenic porcine tissues and even the discussion of human xenotransplantation trials. However, as these humoral immune barriers to cross-species transplantation are overcome with advanced transgenics, cellular immunity to these novel xenografts remains an outstanding issue. Therefore, understanding and optimizing immunomodulation will be paramount for successful clinical xenotransplantation. Costimulation blockade agents have been introduced in xenotransplantation research in 2000 with anti-CD154mAb. Most recently, prolonged survival has been achieved in solid organ (kidney xenograft survival > 400 days with anti-CD154mAb, heart xenograft survival > 900 days, and liver xenograft survival 29 days with anti-CD40mAb) and islet xenotransplantation (>600 days with anti-CD154mAb) with the use of these potent experimental agents. As the development of novel genetic modifications and costimulation blocking agents converges, we review their impact thus far on preclinical xenotransplantation and the potential for future application.
Collapse
|