1
|
Amiri SP, Nejad FS, Karamigolbaghi M, Jafari E, Robat-Jazi B, Sadeghi A, Amiri SGP, Namdari H, Saboor-Yaraghi AA. Decreased circulating CD39+ regulatory T cell frequencies following non-traumatic brain death. Transpl Immunol 2025; 90:102219. [PMID: 40118258 DOI: 10.1016/j.trim.2025.102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND AND PURPOSE Regulatory T cells (Tregs) are thought to modulate immune responses during Brain death (BD), However findings on their role remain controversial. This study aimed to assess the frequency of circulating Tregs in the peripheral blood of non-traumatic BD cases, specifically focusing on CD4+CD25+CD127low/-CD39+ Tregs and the levels of inflammatory cytokine mRNA in BD individuals. METHODS The percentage of CD4+CD25+CD127low/-CD39+ Tregs was measured using flow cytometry in BD patients upon admission and in control subjects. Additionally, mRNA expression levels of interleukin (IL)-1β, IL-6, IL-8, IL-17, tumor necrosis factor (TNF)-α and Interferon (IFN)-γ were quantified in peripheral blood mononuclear cells (PBMCs) from 28 BD individuals and 28 controls using real-time polymerase chain reaction. RESULTS CD39+ Tregs were significantly reduced in non-traumatic BD cases compared with control group (P < 0.0001). Moreover, the expression levels of IL-1β, IL-6, IL-8, IL-17a, IFN-ɣ, and TNF-α were significantly elevated in non-traumatic BD cases compared to the control group (P < 0.01, P < 0.05, P < 0.01, P < 0.0001, P < 0.0001, P < 0.001 respectively). CONCLUSION This study provides novel evidence of reduced CD39+ Tregs in the peripheral blood of non-traumatic BD patients, accompanied by increased inflammatory cytokine gene expression. Further investigations are needed to explore the underlying mechanisms and potential therapeutic implications.
Collapse
Affiliation(s)
- Sedighe Poursaleh Amiri
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran; Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fattah Sotoudeh Nejad
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Karamigolbaghi
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Jafari
- Department of Stem Cells Technology and Tissue Regeneration, School of Science, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Robat-Jazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Iran
| | - Ahmadreza Sadeghi
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Ghasem Poursaleh Amiri
- Department of Biology, School of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Weiss MG, de Jong AM, Seegert H, Moeslund N, Maassen H, Schjalm C, de Boer E, Leuvenink H, Mollnes TE, Eijken M, Keller AK, Dijkstra G, Jespersen B, Pischke SE. Activation of the Innate Immune System in Brain-Dead Donors Can Be Reduced by Luminal Intestinal Preservation During Organ Procurement Surgery - A Porcine Model. Transpl Int 2024; 37:13569. [PMID: 39544322 PMCID: PMC11560447 DOI: 10.3389/ti.2024.13569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/17/2024]
Abstract
Organs obtained from brain dead donors can have suboptimal outcomes. Activation of the innate immune system and translocation of intestinal bacteria could be causative. Thirty two pigs were assigned to control, brain death (BD), BD + luminal intestinal polyethylene glycol (PEG), and BD + luminal intestinal University of Wisconsin solution (UW) groups. Animals were observed for 360 min after BD before organ retrieval. 2,000 mL luminal intestinal preservation solution was instilled into the duodenum at the start of organ procurement. Repeated measurements of plasma C3a, Terminal Complement Complex (TCC), IL-8, TNF, and lipopolysaccharide binding protein were analysed by immunoassays. C3a was significantly higher in the BD groups compared to controls at 480 min after brain death. TCC was significantly higher in BD and BD + UW, but not BD + PEG, compared to controls at 480 min. TNF was significantly higher in the BD group compared to all other groups at 480 min. LPS binding protein increased following BD in all groups except BD + PEG, which at 480 min was significantly lower compared with all other groups. Brain death induced innate immune system activation was decreased by luminal preservation using PEG during organ procurement, possibly due to reduced bacterial translocation.
Collapse
Affiliation(s)
- Marc Gjern Weiss
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anne Marye de Jong
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Helene Seegert
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Moeslund
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Hanno Maassen
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eline de Boer
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Henri Leuvenink
- Department of Surgery, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Marco Eijken
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Anna Krarup Keller
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Bente Jespersen
- Department of Nephrology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Søren Erik Pischke
- Department of Immunology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Anaesthesiology and Intensive Care, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Iyer SPN, Pino CJ, Yessayan LT, Goldstein SL, Weir MR, Westover AJ, Catanzaro DA, Chung KK, Humes HD. Increasing Eligibility to Transplant Through the Selective Cytopheretic Device: A Review of Case Reports Across Multiple Clinical Conditions. Transplant Direct 2024; 10:e1627. [PMID: 38769980 PMCID: PMC11104718 DOI: 10.1097/txd.0000000000001627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 05/22/2024] Open
Abstract
A stable, minimum physiological health status is required for patients to qualify for transplant or artificial organ support eligibility to ensure the recipient has enough reserve to survive the perioperative transplant period. Herein, we present a novel strategy to stabilize and improve patient clinical status through extracorporeal immunomodulation of systemic hyperinflammation with impact on multiple organ systems to increase eligibility and feasibility for transplant/device implantation. This involves treatment with the selective cytopheretic device (SCD), a cell-directed extracorporeal therapy shown to adhere and immunomodulate activated neutrophils and monocytes toward resolution of systemic inflammation. In this overview, we describe a case series of successful transition of pediatric and adult patients with multiorgan failure to successful transplant/device implantation procedures by treatment with the SCD in the following clinical situations: pediatric hemophagocytic lymphohistiocytosis, and adult hepatorenal and cardiorenal syndromes. Application of the SCD in these cases may represent a novel paradigm in increasing clinical eligibility of patients to successful transplant outcomes.
Collapse
Affiliation(s)
| | - Christopher J. Pino
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Lenar T. Yessayan
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Stuart L. Goldstein
- Division of Nephrology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Matthew R. Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Angela J. Westover
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | | | - Kevin K. Chung
- Department of Medical Affairs, SeaStar Medical, Denver, CO
| | - H. David Humes
- Division of Nephrology, Department of Medicine, University of Michigan, Ann Arbor, MI
| |
Collapse
|
4
|
Custódio G, Massutti AM, da Igreja MR, Lemos NE, Crispim D, Visioli F, Palma VDM, Leitão CB, Rech TH. Does liraglutide alleviate inflammation in brain-dead donors? A randomized clinical trial. Liver Transpl 2024; 30:607-617. [PMID: 37938130 DOI: 10.1097/lvt.0000000000000298] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/14/2023] [Indexed: 11/09/2023]
Abstract
Brain death triggers an inflammatory cascade that damages organs before procurement, adversely affecting the quality of grafts. This randomized clinical trial aimed to compare the efficacy of liraglutide compared to placebo in attenuating brain death-induced inflammation, endoplasmic reticulum stress, and oxidative stress. We conducted a double-blinded, placebo-controlled, randomized clinical trial with brain-dead donors. Fifty brain-dead donors were randomized to receive subcutaneous liraglutide or placebo. The primary outcome was the reduction in IL-6 plasma levels. Secondary outcomes were changes in other plasma pro-inflammatory (IL-1β, interferon-γ, TNF) and anti-inflammatory cytokines (IL-10), expression of antiapoptotic ( BCL2 ), endoplasmic reticulum stress markers ( DDIT3/CHOP , HSPA5/BIP ), and antioxidant ( superoxide dismutase 2 , uncoupling protein 2 ) genes, and expression TNF, DDIT3, and superoxide dismutase 2 proteins in liver biopsies. The liraglutide group showed lower cytokine levels compared to the placebo group during follow-up: Δ IL-6 (-28 [-182, 135] vs. 32 [-10.6, 70.7] pg/mL; p = 0.041) and Δ IL-10 (-0.01 [-2.2, 1.5] vs. 1.9 [-0.2, 6.1] pg/mL; p = 0.042), respectively. The administration of liraglutide did not significantly alter the expression of inflammatory, antiapoptotic, endoplasmic reticulum stress, or antioxidant genes in the liver tissue. Similar to gene expression, expressions of proteins in the liver were not affected by the administration of liraglutide. Treatment with liraglutide did not increase the organ recovery rate [OR = 1.2 (95% CI: 0.2-8.6), p = 0.82]. Liraglutide administration reduced IL-6 and prevented the increase of IL-10 plasma levels in brain-dead donors without affecting the expression of genes and proteins related to inflammation, apoptosis, endoplasmic reticulum stress, or oxidative stress.
Collapse
Affiliation(s)
- Geisiane Custódio
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Intensive Care Unit, Hospital Santa Isabel, Blumenau, SC, Brazil
| | | | | | - Natália Emerim Lemos
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Daisy Crispim
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fernanda Visioli
- Department of Oral Pathology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Victor de Mello Palma
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Cristiane Bauermann Leitão
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Tatiana Helena Rech
- Graduate Program in Medical Sciences: Endocrinology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Diabetes and Metabolism Group, Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
- School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
- Intensive Care Unit, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| |
Collapse
|
5
|
Bera KD, Tabak J, Ploeg RJ. No Evidence of Progressive Proinflammatory Cytokine Storm in Brain-dead Organ Donors-A Time-course Analysis Using Clinical Samples. Transplantation 2024; 108:923-929. [PMID: 38192028 PMCID: PMC10962432 DOI: 10.1097/tp.0000000000004900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/04/2023] [Accepted: 10/25/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Solid organ transplantation is a cost-effective treatment for end-stage organ failure. Organ donation after brain death is an important source of transplanted organs. Data are limited on the effects of brain injury or donor management on grafts. The consensus view has been that brain death creates a progressively proinflammatory environment. We aimed to investigate time-course changes across a range of cytokines in a donation after brain death cohort of donors who died of intracranial hemorrhage without any other systemic source of inflammation. METHODS A donor cohort was defined using the UK Quality in Organ Donation biobank. Serum levels of proteins involved in proinflammatory and brain injury pathways (tumor necrosis factor-alpha, interleukin-6, complement C5a, neuron-specific enolase, and glial fibrillary acidic protein) were measured from admission to organ recovery. Moving median analysis was used to combine donor trajectories and delineate a time-course. RESULTS A cohort of 27 donors with brain death duration between 10 and 30 h was created, with 24 donors contributing to the time-course analysis. We observed no increase in tumor necrosis factor-alpha or interleukin-6 throughout the donor management period. Neuronal injury marker and complement C5a remain high from admission to organ recovery, whereas glial fibrillary acidic protein rises around the confirmation of brain death. CONCLUSIONS We found no evidence of a progressive rise of proinflammatory mediators with prolonged duration of brain death, questioning the hypothesis of a progressively proinflammatory environment. Furthermore, the proposed approach allows us to study chronological changes and identify biomarkers or target pathways when logistical or ethical considerations limit sample availability.
Collapse
Affiliation(s)
- Katarzyna D. Bera
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Oxford, United Kingdom
- Oxford University NHS Foundation Trust, Oxford, United Kingdom
| | - Joel Tabak
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, United Kingdom
| | - Rutger J. Ploeg
- Nuffield Department of Surgical Sciences, Oxford Transplant Centre, Oxford, United Kingdom
- Oxford University NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
6
|
Praska CE, Tamburrini R, Danobeitia JS. Innate immune modulation in transplantation: mechanisms, challenges, and opportunities. FRONTIERS IN TRANSPLANTATION 2023; 2:1277669. [PMID: 38993914 PMCID: PMC11235239 DOI: 10.3389/frtra.2023.1277669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/23/2023] [Indexed: 07/13/2024]
Abstract
Organ transplantation is characterized by a sequence of steps that involve operative trauma, organ preservation, and ischemia-reperfusion injury in the transplant recipient. During this process, the release of damage-associated molecular patterns (DAMPs) promotes the activation of innate immune cells via engagement of the toll-like receptor (TLR) system, the complement system, and coagulation cascade. Different classes of effector responses are then carried out by specialized populations of macrophages, dendritic cells, and T and B lymphocytes; these play a central role in the orchestration and regulation of the inflammatory response and modulation of the ensuing adaptive immune response to transplant allografts. Organ function and rejection of human allografts have traditionally been studied through the lens of adaptive immunity; however, an increasing body of work has provided a more comprehensive picture of the pivotal role of innate regulation of adaptive immune responses in transplant and the potential therapeutic implications. Herein we review literature that examines the repercussions of inflammatory injury to transplantable organs. We highlight novel concepts in the pathophysiology and mechanisms involved in innate control of adaptive immunity and rejection. Furthermore, we discuss existing evidence on novel therapies aimed at innate immunomodulation and how this could be harnessed in the transplant setting.
Collapse
Affiliation(s)
- Corinne E. Praska
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Riccardo Tamburrini
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
| | - Juan Sebastian Danobeitia
- Division of Transplantation, Department of Surgery, University of Wisconsin, Madison, WI, United States
- Baylor Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Zhang F, Liang J, Xiong Y, Zhang F, Wu K, Wang W, Yuan J, Lin T, Wang X. Serum uric acid as a risk factor for rejection after deceased donor kidney transplantation: A mono-institutional analysis of paired kidneys. Front Immunol 2022; 13:973425. [PMID: 36578496 PMCID: PMC9791182 DOI: 10.3389/fimmu.2022.973425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
Background Deceased donor kidney transplantation (DDKT) is a major therapeutic option for patients with end-stage renal diseases. Although medical techniques improved in recent years, acute or chronic rejection after DDKT is not uncommon and often results in poor graft survival. Therefore, the determination of risk factors is very important to stratify patients and to improve outcomes. This study aims to evaluate the risk factors for treated rejection (TR) of patients after DDKT. Methods Clinical data of deceased donors and corresponding recipients were retrospectively collected. The primary outcome was TR defined as the treatment for rejection within 24 months after DDKT. Univariate comparisons of baseline characteristics were performed with Chi-square test, t-test, and Mann-Whitney U test. Logistic regression was constructed to analyze potential risk factors. Receiver operating characteristic (ROC) curve and Jordan index were generated to determine the optimal cutoff value. The association between continuous variables and TR was examined and visualized by using restricted cubic spline (RCS) models. Results Data of 123 deceased donors and 246 recipients were obtained and analyzed. The median age was 41 (4-62) years for recipients and 39 (1-65) years for donors. The recipients who died or suffered graft loss during the follow-up period were 8 (3.3%) and 12 (4.9%), respectively. After univariate analysis and subsequent multivariate analysis, the preoperative serum uric acid (OR, 2.242; 95% CI, 1.037-4.844; P = 0.040), platelet (OR, 2.163; 95% CI, 1.073-4.361, P = 0.031), absolute neutrophil count (OR, 2.183; 95% CI, 1.025-4.649; P = 0.043), and HLA-DQ mismatch (OR, 2.102; 95% CI, 1.093-4.043; P = 0.026) showed statistical significance. RCS models showed that patients with higher levels of uric acid had increased risk of TR. Conclusions Serum uric acid and other three indicators were found to be the independent risk factors for TR, which may contribute to stratify patients and develop personalized regimen in perioperative period.
Collapse
|
8
|
Li T, Feng H, Du J, Xia Q, Cooper DKC, Jiang H, He S, Pan D, Chen G, Wang Y. Serum Antibody Binding and Cytotoxicity to Pig Cells in Chinese Subjects: Relevance to Clinical Renal Xenotransplantation. Front Immunol 2022; 13:844632. [PMID: 35418974 PMCID: PMC8996717 DOI: 10.3389/fimmu.2022.844632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/18/2022] [Indexed: 11/20/2022] Open
Abstract
Kidney xenotransplantation is expected to contribute to resolving the shortage of kidneys from deceased human donors. Although progress in experimental life-supporting pig renal xenotransplantation has been encouraging, there are still issues to be considered before a clinical trial can be initiated. We attempted to clarify some of these by an in vitro study. Blood was drawn from healthy volunteers (Volunteers, n=20), patients with end-stage renal disease (ESRD, n=20) pre-operation (Pre), and on Day 1 (POD 1) and Day 14 (POD 14) after renal allotransplantation, brain-dead organ donors (DBD, n=20), and renal allotransplant recipients who were currently experiencing T cell-mediated rejection (Allo-TCMR, n=20). Serum IgM/IgG binding to, and complement-dependent cytotoxicity (CDC) of, PBMCs and RBCs from (a) wild-type (WT), (b) α1,3-galactosyltransferase gene-knockout (GTKO), (c) GTKO/beta-1,4-N-acety1 galactosaminyltransferase 2-knockout (GTKO/β4GalNT2KO), (d) GTKO/cytidine monophosphate-N-acetylneuraminic acid hydroxylase-knockout (GTKO/CMAHKO), and (e) GTKO/β4GalNT2KO/CMAHKO/hCD55 (TKO/hCD55) pigs were measured by flow cytometry. We obtained the following results: (i) Serum IgM/IgG binding and CDC in Volunteers were significantly greater to WT, GTKO, and GTKO/β4GalNT2KO PBMCs or RBCs than to GTKO/CMAHKO and TKO/hCD55 cells; (ii) ESRD, DBD, and Allo-TCMR serum antibody binding and CDC to WT pig PBMCs were significantly greater than to GTKO, GTKO/β4GalNT2KO, GTKO/CMAHKO, and TKO/hCD55 cells; (iii) antibody binding to GTKO/CMAHKO pig cells was significantly lower in hemodialysis than peritoneal dialysis patients. (iv) Two of twenty allotransplantation recipients' serum IgG binding to GTKO pig PBMCs increased on POD14 compared with Pre, but IgG binding to GTKO pig RBCs did not; (v) In all sera, the lowest antibody binding and CDC were to GTKO/CMAHKO and TKO/CD55 pig cells. We conclude (i) CMAHKO in the pig may be critical to the success of clinical pig kidney xenotransplantation, and may be the most important after GTKO, at least in Chinese patients; (ii) subjects with ESRD, or who are immunosuppressed after kidney allotransplantation, and DBD, have lower levels of antibody binding and CDC to genetically-engineered pig cells than do volunteers; (iii) TKO pigs with selected human 'protective' transgenes, e.g., CD55, are likely to prove to be the optimal sources of kidneys for clinical xenotransplantation.
Collapse
Affiliation(s)
- Tao Li
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Hao Feng
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiaxiang Du
- Genetic Engineering Department, Chengdu Clonorgan Biotechnology Co., Ltd., Chengdu, China
| | - Qiangbing Xia
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - David K. C. Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States
| | - Hongtao Jiang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Songzhe He
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, The Transplantation Institute of Hainan Medical University, Haikou, China
| | - Dengke Pan
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
- *Correspondence: Yi Wang, ; Gang Chen, ; Dengke Pan,
| | - Gang Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education and National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
- *Correspondence: Yi Wang, ; Gang Chen, ; Dengke Pan,
| | - Yi Wang
- Department of Organ Transplantation, The Second Affiliated Hospital of Hainan Medical University, The Transplantation Institute of Hainan Medical University, Haikou, China
- Department of Urology, Second Affiliated Hospital of University of South China, Hengyang, China
- *Correspondence: Yi Wang, ; Gang Chen, ; Dengke Pan,
| |
Collapse
|
9
|
Liu W, Yang D, Shi J, Wen P, Zhang J, Wang Z, Hu B, Shi X, Cao S, Guo W, Zhang S. Caspase-1 Inhibitor Reduces Pyroptosis Induced by Brain Death in Kidney. Front Surg 2021; 8:760989. [PMID: 34901142 PMCID: PMC8662726 DOI: 10.3389/fsurg.2021.760989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/02/2021] [Indexed: 01/03/2023] Open
Abstract
Brain death (BD) induces an organ-level inflammatory response. However, the underlying mechanisms have not been fully elucidated. Here, we investigated the role of caspase-1-mediated pyroptosis in BD-induced kidney injury in rats. A BD model was established in Sprague-Dawley rats. The rats were intravenously injected with Z-YVAD-FMK 1 h before BD, and sham-operated rats served as controls. After 0, 1, 2, 4, and 6 h of BD, renal injury, and renal expression of the nod-like receptor family pyrin domain-containing 3 (NLRP3), caspase-1, caspase-11, gasdermin D (GSDMD), IL-1β, and IL-18 were assessed using quantitative reverse transcriptase-polymerase chain reaction, western blotting, and immunohistochemistry. Blood urea nitrogen and serum creatinine levels were measured. Additionally, renal tubular epithelial cells (NRK-52E) were subjected to 3 h of hypoxia followed by 6 h of reoxygenation and incubated with Z-YVAD-FMK before hypoxia and reoxygenation. Caspase-11 was knocked-down using small interfering RNA technology. Cell viability and levels of pyroptosis-associated proteins were assessed thereafter. NLRP3, caspase-1, GSDMD, IL-1β, and IL-18 expression levels were upregulated in BD rats. Treatment with Z-YVAD-FMK reduced mRNA and protein levels of caspase-1, GSDMD, IL-1β, and IL-18, improved renal function, and alleviated renal injury. Z-YVAD-FMK efficaciously reduced pyroptosis effects in kidneys in BD rats. Thus, it could be considered as a therapeutic target for BD-induced kidney injury.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, China.,Zheng Zhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital and College of Clinical Medicine, Henan University of Science and Technology, Luoyang, China
| | - Dongjing Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, China.,Zheng Zhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Jihua Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, China.,Zheng Zhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Peihao Wen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiakai Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihui Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyi Shi
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shengli Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, China.,Zheng Zhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Engineering Technology Research Center of Organ Transplantation, Zhengzhou, China.,Zheng Zhou Key Laboratory of Hepatobiliary and Pancreatic Diseases and Organ Transplantation, Zhengzhou, China
| |
Collapse
|
10
|
Ricardo-da-Silva FY, Armstrong R, Vidal-Dos-Santos M, Correia CDJ, Coutinho E Silva RDS, da Anunciação LF, Moreira LFP, Leuvenink HGD, Breithaupt-Faloppa AC. 17β-Estradiol Treatment Protects Lungs Against Brain Death Effects in Female Rat Donor. Transplantation 2021; 105:775-784. [PMID: 33031230 DOI: 10.1097/tp.0000000000003467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Brain death (BD) affects the viability of lungs for transplantation. A correlation exists between high-lung inflammation after BD and the decrease in female sex hormones, especially estradiol. Therefore, we investigated the effects of 17β-estradiol (E2) treatment on the lungs of female brain dead rats. METHODS Female Wistar rats were divided into 4 groups: BD (submitted to BD for 6 h), sham (false operated), E2-T0 (treated with E2 immediately after BD; 50 μg/mL, 2 mL/h), and E2-T3 (treated with E2 after 3 h of BD; 50 μg/mL, 2 mL/h). Lung edema, hemorrhage, and leukocyte infiltration were analyzed. Adhesion molecules were evaluated, and analysis of NO synthase gene and protein expression was performed using real-time PCR and immunohistochemistry, respectively. Release of chemokines and matrix degradation in the lungs was analyzed. RESULTS BD increased leukocyte infiltration, as shown by intravital microscopy (P = 0.017), bronchoalveolar lavage cell count (P = 0.016), the release of inflammatory mediators (P = 0.02), and expression of adhesion molecules. BD also increased microvascular permeability and the expression and activity of matrix metalloproteinase-9 in the lungs. E2 treatment reduced leukocyte infiltration, especially in the E2-T3 group, release of inflammatory mediators, adhesion molecules, and matrix metalloproteinase activity in the lungs. CONCLUSIONS E2 treatment was successful in controlling the lung inflammatory response in females submitted to BD. Our results suggest that E2 directly decreases the release of chemokines, restraining cell traffic into the lungs. Thus, E2 has a therapeutic potential, and its role in improving donor lung quality should be explored further.
Collapse
Affiliation(s)
- Fernanda Yamamoto Ricardo-da-Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Roberto Armstrong
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Marina Vidal-Dos-Santos
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cristiano de Jesus Correia
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Raphael Dos Santos Coutinho E Silva
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lucas Ferreira da Anunciação
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Luiz Felipe Pinho Moreira
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Cristina Breithaupt-Faloppa
- Laboratorio de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), Instituto do Coração (InCor), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Coll E, Miñambres E, Sánchez-Fructuoso A, Fondevila C, Campo-Cañaveral de la Cruz JL, Domínguez-Gil B. Uncontrolled Donation After Circulatory Death: A Unique Opportunity. Transplantation 2020; 104:1542-1552. [PMID: 32732830 DOI: 10.1097/tp.0000000000003139] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Uncontrolled donation after circulatory death (uDCD) refers to donation from persons who die following an unexpected and unsuccessfully resuscitated cardiac arrest. Despite the large potential for uDCD, programs of this kind only exist in a reduced number of countries with a limited activity. Barriers to uDCD are of a logistical and ethical-legal nature, as well as arising from the lack of confidence in the results of transplants from uDCD donors. The procedure needs to be designed to reduce and limit the impact of the prolonged warm ischemia inherent to the uDCD process, and to deal with the ethical issues that this practice poses: termination of advanced cardiopulmonary resuscitation, extension of advanced cardiopulmonary resuscitation beyond futility for organ preservation, moment to approach families to discuss donation opportunities, criteria for the determination of death, or the use of normothermic regional perfusion for the in situ preservation of organs. Although the incidence of primary nonfunction and delayed graft function is higher with organs obtained from uDCD donors, overall patient and graft survival is acceptable in kidney, liver, and lung transplantation, with a proper selection and management of both donors and recipients. Normothermic regional perfusion has shown to be critical to achieve optimal outcomes in uDCD kidney and liver transplantation. However, the role of ex situ preservation with machine perfusion is still to be elucidated. uDCD is a unique opportunity to improve patient access to transplantation therapies and to offer more patients the chance to donate organs after death, if this is consistent with their wishes and values.
Collapse
Affiliation(s)
| | - Eduardo Miñambres
- Intensive Care Unit and Donor Coordination Unit, Hospital Universitario Marqués de Valdecilla-IDIVAL, Universidad de Cantabria, Santander, Spain
| | - Ana Sánchez-Fructuoso
- Nephrology Department, Hospital Universitario Clínico San Carlos, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Kidney Perfusion as an Organ Quality Assessment Tool-Are We Counting Our Chickens Before They Have Hatched? J Clin Med 2020; 9:jcm9030879. [PMID: 32210197 PMCID: PMC7141526 DOI: 10.3390/jcm9030879] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/16/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023] Open
Abstract
The final decision to accept an organ for transplantation remains a subjective one. With “poor organ quality” commonly cited as a major reason for kidney discard, accurate, objective, and reliable quality assessment is essential. In an era of increasingly higher-risk deceased donor kidneys, the catch is to accept those where the risk–benefit scale will tip in the right direction. Currently available assessment tools, such as risk-scores predicting outcome and zero-time biopsy, perform unsatisfactory, and assessment options during static cold storage are limited. Kidney perfusion technologies are finding their way into clinical practice, and they bring a new opportunity to assess kidney graft viability and quality, both in hypothermic and normothermic conditions. We give an overview of the current understanding of kidney viability assessment during ex situ kidney perfusion. A pragmatic framework to approach viability assessment is proposed as an interplay of three different compartments: the nephron, the vascular compartment, and the immune compartment. Although many interesting ways to assess kidney injury and function during perfusion have been proposed, none have reached the stage where they can reliably predict posttransplant outcome. Larger well-designed studies and validation cohorts are needed to provide better guidance.
Collapse
|