1
|
Kensiski A, Gavzy SJ, Wu L, Mas V, Ma B, Bromberg JS. Immunosuppressant imprecision: multidirectional effects on metabolism and microbiome. Clin Microbiol Rev 2025; 38:e0017824. [PMID: 40042298 PMCID: PMC12160495 DOI: 10.1128/cmr.00178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025] Open
Abstract
SUMMARYTransplant recipients require lifelong, multimodal immunosuppression to prevent rejection by dampening alloreactive immunity. These treatments have long been known to lack antigen specificity. Despite empirically selected long-term immunosuppression regimens, most allografts succumb to alloimmune responses that result in chronic inflammation and scarring. Additionally, immunosuppressive medications themselves contribute to unintended intestinal dysbiosis and metabolic disorders. This review focuses on the effect of immunosuppressant treatments on alloimmunity, gut microbiome, and metabolism, with a particular emphasis on the effects on metabolic disorders. We also outline the shared and unique microbial and metabolic signatures produced by each immunosuppressant class, underlining their distinct impacts on immunity and metabolic homeostasis. These observations underscore the need for a holistic understanding of these drugs' on- and off-target effects to refine therapeutic strategies, enhance immunosuppression efficacy, and ultimately enhance graft and patient survival. By characterizing these complex interactions, strategies informed by the gut microbiome and host metabolism may offer a promising adjunctive approach to optimizing immunosuppressive regimens and promoting sustained graft acceptance.
Collapse
Affiliation(s)
- Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Samuel J. Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Valeria Mas
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jonathan S. Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Alcazar-Felix RJ, Shenkar R, Benavides CR, Bindal A, Srinath A, Li Y, Kinkade S, Terranova T, DeBose-Scarlett E, Lightle R, DeBiasse D, Almazroue H, Cruz DV, Romanos S, Jhaveri A, Koskimäki J, Hage S, Bennett C, Girard R, Marchuk DA, Awad IA. Except for Robust Outliers, Rapamycin Increases Lesion Burden in a Murine Model of Cerebral Cavernous Malformations. Transl Stroke Res 2025; 16:859-867. [PMID: 38980519 PMCID: PMC11711328 DOI: 10.1007/s12975-024-01270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/17/2024] [Indexed: 07/10/2024]
Abstract
Cerebral cavernous malformation (CCM) is a hemorrhagic cerebrovascular disease where lesions develop in the setting of endothelial mutations of CCM genes, with many cases also harboring somatic PIK3CA gain of function (GOF) mutations. Rapamycin, an mTORC1 inhibitor, inhibited progression of murine CCM lesions driven by Ccm gene loss and Pik3ca GOF, but it remains unknown if rapamycin is beneficial in the absence of induction of Pik3ca GOF. We investigated the effect of rapamycin at three clinically relevant doses on lesion development in the Ccm3-/-PDGFb-icreERPositive murine model of familial CCM disease, without induction of Pik3ca GOF. Lesion burden, attrition, and acute and chronic hemorrhaging were compared between placebo and rapamycin-treated mice. Plasma miRNome was compared to identify potential biomarkers of rapamycin response. Outlier, exceptionally large CCM lesions (> 2 SD above the mean lesion burden) were exclusively observed in the placebo group. Rapamycin, across all dosages, may have prevented the emergence of large outlier lesions. Yet rapamycin also appeared to exacerbate mean lesion burden of surviving mice when outliers were excluded, increased attrition, and did not alter hemorrhage. miR-30c-2-3p, decreased in rapamycin-treated mouse plasma, has gene targets in PI3K/AKT and mTOR signaling. Progression of outlier lesions in a familial CCM model may have been halted by rapamycin treatment, at the potential expense of increased mean lesion burden and increased attrition. If confirmed, this can have implications for potential rapamycin treatment of familial CCM disease, where lesion development may not be driven by PIK3CA GOF. Further studies are necessary to determine specific pathways that mediate potential beneficial and detrimental effects of rapamycin treatment, and whether somatic PIK3CA mutations drive particularly aggressive lesions.
Collapse
Affiliation(s)
- Roberto J Alcazar-Felix
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Robert Shenkar
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Christian R Benavides
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Akash Bindal
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Abhinav Srinath
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Ying Li
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Serena Kinkade
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Tatiana Terranova
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Evon DeBose-Scarlett
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Rhonda Lightle
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Dorothy DeBiasse
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Hanadi Almazroue
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Diana Vera Cruz
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Sharbel Romanos
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Aditya Jhaveri
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Janne Koskimäki
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Stephanie Hage
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Carolyn Bennett
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Romuald Girard
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA
| | - Douglas A Marchuk
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, 27710, USA
| | - Issam A Awad
- Department of Neurological Surgery, Pritzker School of Medicine and Biological Sciences Division, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
3
|
Huang X, Jin Y, Wang T, Fu D, Ma J, Yu X, Lu Y, Song J, Chen Y, Yan R, Zhang Y. Gut Akkermansia enhances liver protection and facilitates copper removal during D-penicillamine treatment in a Wilson's disease model. Microbiol Spectr 2025; 13:e0057324. [PMID: 40162768 PMCID: PMC12054026 DOI: 10.1128/spectrum.00573-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/08/2025] [Indexed: 04/02/2025] Open
Abstract
Patients afflicted with Wilson's disease (WD) may encounter hepatic and extraneous manifestations due to the progressive accumulation of copper in the liver and other subsequent organs. Copper-chelating agents, such as D-penicillamine (DPA), are commonly utilized in the medical treatment of copper overload in WD. Manipulating the composition of gut microbiota appropriately can enhance drug efficacy and safety. This study aims to investigate how targeted intervention on gut microbiota influences the effectiveness of copper removal in a WD model during DPA treatment. First, following a 4-week treatment of DPA, the liver copper concentration and gut microbial composition were assessed in the WD mice model to identify potential candidates for targeted regulation of gut microbiota. Second, after 8 weeks of manipulating the gut microbiota during DPA treatment, various parameters including blood liver function indicators, tissue copper load, hepatic histopathological features, and gut microbiota were investigated in WD mice. The findings demonstrated that the presence of Akkermansia significantly enhances the efficacy of DPA, leading to a more efficient elimination of copper from tissues and a greater improvement in liver injury, liver dysfunction, and gut dysbiosis. In contrast, Butyricimonas has an antagonistic effect. The results of gene function prediction analysis indicated that the altered gut microbial function by DPA and Akk is primarily linked to energy generation/utilization, amino acid, fatty acid, lipid, and nucleic acid metabolisms. To summarize, this study provides experimental evidence for the potential application of targeted regulation of gut microbiota in the adjunctive therapy of copper dysregulation disease.IMPORTANCECopper is an essential element in virtually all living organisms. Wilson's disease (WD) is a representative disorder caused by the disruption of copper homeostasis. Oral-chelating agents are the first-line treatment for copper-overloaded diseases, with D-penicillamine (DPA) being the prototypical drug. However, the efficacy and adverse effects of DPA remain challenging in its use for WD treatment. In our study, the supplementation of Akkermansia muciniphila (Akk), a key gut microbe, along with DPA was demonstrated to enhance copper removal, ameliorate liver injury and dysfunction, and restore gut dysbiosis in a mouse model of WD. These findings highlight the significant potential applications of targeted modulation of gut microbiota as "pharmacomicrobiomics" in adjunctive therapy for disorders involving copper dysregulation.
Collapse
Affiliation(s)
- Xi Huang
- Department of Electrocardiogram, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanqi Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hospital-Acquired Infection Control, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianyuan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Danting Fu
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jindi Ma
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaopeng Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yingfeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingyuan Song
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yu Chen
- Department of Experimental Animals, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ren Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yimin Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Infectious Diseases, Haining People’s Hospital, Haining, Zhejiang, China
| |
Collapse
|
4
|
Li Y, Chvatal-Medina M, Trillos-Almanza MC, Connelly MA, Moshage H, Bakker SJL, de Meijer VE, Blokzijl H, Dullaart RPF. Plasma GlycA, a Glycoprotein Marker of Chronic Inflammation, and All-Cause Mortality in Cirrhotic Patients and Liver Transplant Recipients. Int J Mol Sci 2025; 26:459. [PMID: 39859175 PMCID: PMC11765328 DOI: 10.3390/ijms26020459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/01/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Low-grade chronic inflammation may impact liver disease. We investigated the extent to which circulating GlycA, a glycoprotein biomarker of low-grade inflammation, and high-sensitivity C-reactive protein (hs-CRP) are altered in patients with cirrhosis and liver transplant recipients (LTRs) and examined their associations with all-cause mortality. Plasma GlycA (nuclear magnetic resonance spectroscopy) and hs-CRP (nephelometry) were assessed in 129 patients with cirrhosis on the waiting list for liver transplantation and 367 LTRs (TransplantLines cohort study; NCT03272841) and compared with 4837 participants from the population-based PREVEND cohort. GlycA levels were lower, while hs-CRP levels were higher in patients with cirrhosis compared to PREVEND participants (p < 0.001). Notably, GlycA increased, but hs-CRP decreased after transplantation. In LTRs, both GlycA and hs-CRP levels were higher than in PREVEND participants (p < 0.001). Survival was impaired in patients with cirrhosis and LTRs with the highest GlycA and the highest hs-CRP tertiles. In Cox regression analysis, GlycA remained associated with mortality in cirrhotic patients after adjusting for potential confounders and for hs-CRP (HR per 1-SD increment: 2.34 [95% CI 1.07-5.13]), while the association with hs-CRP after adjusting was lost. In LTRs, both GlycA and hs-CRP were also associated with mortality (adjusted HR: 1.60 [95% CI: 1.2-2.14] and 1.64 [95% CI: 1.08-2.51], respectively) but not independent of each other. GlycA increases while hs-CRP decreases after liver transplantation. Both inflammatory markers may be associated with all-cause mortality in cirrhotic patients and LTRs, while the association for GlycA seems at least as strong as that for hs-CRP.
Collapse
Affiliation(s)
- Yakun Li
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (M.C.T.-A.); (H.M.); (H.B.)
| | - Mateo Chvatal-Medina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (M.C.T.-A.); (H.M.); (H.B.)
| | - Maria Camila Trillos-Almanza
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (M.C.T.-A.); (H.M.); (H.B.)
| | | | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (M.C.T.-A.); (H.M.); (H.B.)
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands;
| | - Vincent E. de Meijer
- Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, Department of Surgery, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands;
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (M.C.T.-A.); (H.M.); (H.B.)
| | - Robin P. F. Dullaart
- Division of Endocrinology, Department of Internal Medicine, University Medical Center Groningen, University of Groningen, P.O. Box 30001, 9700 RB Groningen, The Netherlands
| |
Collapse
|
5
|
Mohamed ME, Saqr A, Staley C, Onyeaghala G, Teigen L, Dorr CR, Remmel RP, Guan W, Oetting WS, Matas AJ, Israni AK, Jacobson PA. Pharmacomicrobiomics: Immunosuppressive Drugs and Microbiome Interactions in Transplantation. Transplantation 2024; 108:1895-1910. [PMID: 38361239 PMCID: PMC11327386 DOI: 10.1097/tp.0000000000004926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
The human microbiome is associated with human health and disease. Exogenous compounds, including pharmaceutical products, are also known to be affected by the microbiome, and this discovery has led to the field of pharmacomicobiomics. The microbiome can also alter drug pharmacokinetics and pharmacodynamics, possibly resulting in side effects, toxicities, and unanticipated disease response. Microbiome-mediated effects are referred to as drug-microbiome interactions (DMI). Rapid advances in the field of pharmacomicrobiomics have been driven by the availability of efficient bacterial genome sequencing methods and new computational and bioinformatics tools. The success of fecal microbiota transplantation for recurrent Clostridioides difficile has fueled enthusiasm and research in the field. This review focuses on the pharmacomicrobiome in transplantation. Alterations in the microbiome in transplant recipients are well documented, largely because of prophylactic antibiotic use, and the potential for DMI is high. There is evidence that the gut microbiome may alter the pharmacokinetic disposition of tacrolimus and result in microbiome-specific tacrolimus metabolites. The gut microbiome also impacts the enterohepatic recirculation of mycophenolate, resulting in substantial changes in pharmacokinetic disposition and systemic exposure. The mechanisms of these DMI and the specific bacteria or communities of bacteria are under investigation. There are little or no human DMI data for cyclosporine A, corticosteroids, and sirolimus. The available evidence in transplantation is limited and driven by small studies of heterogeneous designs. Larger clinical studies are needed, but the potential for future clinical application of the pharmacomicrobiome in avoiding poor outcomes is high.
Collapse
Affiliation(s)
- Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Abdelrahman Saqr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | | | - Guillaume Onyeaghala
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Levi Teigen
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN
| | - Casey R Dorr
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, University of Minnesota, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Arthur J Matas
- Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Ajay K Israni
- Hennepin Healthcare Research Institute, Minneapolis, MN
- Department of Medicine, Hennepin Healthcare, Minneapolis, MN
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, MN
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
6
|
Chen Z, Chang X, Ye Q, Gao Y, Deng R. Kidney transplantation and gut microbiota. Clin Kidney J 2024; 17:sfae214. [PMID: 39170931 PMCID: PMC11336673 DOI: 10.1093/ckj/sfae214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 08/23/2024] Open
Abstract
Kidney transplantation is an effective way to improve the condition of patients with end-stage renal disease. However, maintaining long-term graft function and improving patient survival remain a key challenge after kidney transplantation. Dysbiosis of intestinal flora has been reported to be associated with complications in renal transplant recipients. The commensal microbiota plays an important role in the immunomodulation of the transplant recipient responses. However, several processes, such as the use of perioperative antibiotics and high-dose immunosuppressants in renal transplant recipients, can lead to gut dysbiosis and disrupt the interaction between the microbiota and the host immune responses, which in turn can lead to complications such as infection and rejection in organ recipients. In this review, we summarize and discuss the changes in intestinal flora and their influencing factors in patients after renal transplantation as well as the evidence related to the impact of intestinal dysbiosis on the prognosis of renal transplantation from in vivo and clinical studies, and conclude with a discussion of the use of microbial therapy in the transplant population. Hopefully, a deeper understanding of the function and composition of the microbiota in patients after renal transplantation may assist in the development of clinical strategies to restore a normal microbiota and facilitate the clinical management of grafts in the future.
Collapse
Affiliation(s)
- Zehuan Chen
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Xinhua Chang
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Qianyu Ye
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Yifang Gao
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| | - Ronghai Deng
- Organ Transplantation Center, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-sen University First Affiliated Hospital
- Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), Sun Yat-sen University First Affiliated Hospital
| |
Collapse
|
7
|
Trillos-Almanza MC, Chvatal-Medina M, Connelly MA, Moshage H, TransplantLines Investigators, Bakker SJL, de Meijer VE, Blokzijl H, Dullaart RPF. Circulating Trimethylamine-N-Oxide Is Elevated in Liver Transplant Recipients. Int J Mol Sci 2024; 25:6031. [PMID: 38892218 PMCID: PMC11172608 DOI: 10.3390/ijms25116031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Liver transplant recipients (LTRs) have lower long-term survival rates compared with the general population. This underscores the necessity for developing biomarkers to assess post-transplantation mortality. Here we compared plasma trimethylamine-N-oxide (TMAO) levels with those in the general population, investigated its determinants, and interrogated its association with all-cause mortality in stable LTRs. Plasma TMAO was measured in 367 stable LTRs from the TransplantLines cohort (NCT03272841) and in 4837 participants from the population-based PREVEND cohort. TMAO levels were 35% higher in LTRs compared with PREVEND participants (4.3 vs. 3.2 µmol/L, p < 0.001). Specifically, TMAO was elevated in LTRs with metabolic dysfunction-associated steatotic liver disease, alcohol-associated liver disease, and polycystic liver disease as underlying etiology (p < 0.001 for each). Among LTRs, TMAO levels were independently associated with eGFR (std. β = -0.43, p < 0.001) and iron supplementation (std. β = 0.13, p = 0.008), and were associated with mortality (29 deaths during 8.6 years follow-up; log-rank test p = 0.017; hazard ratio of highest vs. lowest tertile 4.14, p = 0.007). In conclusion, plasma TMAO is likely elevated in stable LTRs, with impaired eGFR and iron supplementation as potential contributory factors. Our preliminary findings raise the possibility that plasma TMAO could contribute to increased mortality risk in such patients, but this need to be validated through a series of rigorous and methodical studies.
Collapse
Affiliation(s)
- Maria Camila Trillos-Almanza
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (H.M.); (H.B.)
| | - Mateo Chvatal-Medina
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (H.M.); (H.B.)
| | | | - Han Moshage
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (H.M.); (H.B.)
| | - TransplantLines Investigators
- Groningen Institute for Organ Transplantation, University Medical Center Groningen, University of Groningen, 9700 AD Groningen, The Netherlands;
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Vincent E. de Meijer
- Department of Surgery, Division of Hepato-Pancreato-Biliary Surgery and Liver Transplantation, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (M.C.-M.); (H.M.); (H.B.)
| | - Robin P. F. Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands;
| |
Collapse
|
8
|
Miao X, Jiang P, Zhang X, Li X, Wu Z, Jiang Y, Liu H, Xie W, Li X, Shi B, Cai J, Gong W. Lactobacillus rhamnosus HN001 facilitates the efficacy of dual PI3K/mTOR inhibition prolonging cardiac transplant survival and enhancing antitumor effect. Microbiol Spectr 2024; 12:e0183923. [PMID: 38564670 PMCID: PMC11064485 DOI: 10.1128/spectrum.01839-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/24/2023] [Indexed: 04/04/2024] Open
Abstract
UNLABELLED Solid organ transplantation is a crucial treatment for patients who have reached the end stage of heart, lung, kidney, or liver failure. However, the likelihood of developing cancer post-transplantation increases. Additionally, primary malignant tumors remain a major obstacle to the long-term survival of transplanted organs. Therefore, it is essential to investigate effective therapies that can boost the immune system's ability to combat cancer and prevent allograft rejection. We established a mouse orthotopic liver tumor model and conducted allogeneic heterotopic heart transplantation. Various treatments were administered, and survival curves were generated using the Kaplan-Meier method. We also collected graft samples and measured inflammatory cytokine levels in the serum using an inflammatory array. The specificity of the histochemical techniques was tested by staining sections. We administered a combination therapy of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 to primary liver cancer model mice with cardiac allografts. Consistent with our prior findings, L. rhamnosus HN001 alleviated the intestinal flora imbalance caused by BEZ235. Our previous research confirmed that the combination of BEZ235 and L. rhamnosus HN001 significantly prolonged cardiac transplant survival. IMPORTANCE We observed that the combination of phosphoinositide 3-kinase/mammalian target of rapamycin (PI3K/mTOR) dual inhibitor BEZ235 and Lactobacillus rhamnosus HN001 notably prolonged cardiac transplant survival while also inhibiting the progression of primary liver cancer. The combination therapy was efficacious in treating antitumor immunity and allograft rejection, as demonstrated by the efficacy results. We also found that this phenomenon was accompanied by the regulation of inflammatory IL-6 expression. Our study presents a novel and effective therapeutic approach to address antitumor immunity and prevent allograft rejection.
Collapse
Affiliation(s)
- Xiaolong Miao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Peng Jiang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaotong Zhang
- Medical department, Qingdao Eighth People’s Hospital, Qingdao, China
| | - Xinqiang Li
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuancong Jiang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Weixun Xie
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinwei Li
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bingfeng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jinzhen Cai
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
9
|
Ling Q, Han Y, Ma Y, Wang X, Zhu Z, Wang J, Cao J, Lin X, Wang J, Wang B. Alterations in the Gut Microbiome in Liver Recipients with Post-Transplant Diabetes Mellitus. ENGINEERING 2023; 31:98-111. [DOI: 10.1016/j.eng.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2025]
|
10
|
Xiang Z, Wu J, Li J, Zheng S, Wei X, Xu X. Gut Microbiota Modulation: A Viable Strategy to Address Medical Needs in Hepatocellular Carcinoma and Liver Transplantation. ENGINEERING 2023; 29:59-72. [DOI: 10.1016/j.eng.2022.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
|
11
|
Manes A, Di Renzo T, Dodani L, Reale A, Gautiero C, Di Lauro M, Nasti G, Manco F, Muscariello E, Guida B, Tarantino G, Cataldi M. Pharmacomicrobiomics of Classical Immunosuppressant Drugs: A Systematic Review. Biomedicines 2023; 11:2562. [PMID: 37761003 PMCID: PMC10526314 DOI: 10.3390/biomedicines11092562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The clinical response to classical immunosuppressant drugs (cIMDs) is highly variable among individuals. We performed a systematic review of published evidence supporting the hypothesis that gut microorganisms may contribute to this variability by affecting cIMD pharmacokinetics, efficacy or tolerability. The evidence that these drugs affect the composition of intestinal microbiota was also reviewed. The PubMed and Scopus databases were searched using specific keywords without limits of species (human or animal) or time from publication. One thousand and fifty five published papers were retrieved in the initial database search. After screening, 50 papers were selected to be reviewed. Potential effects on cIMD pharmacokinetics, efficacy or tolerability were observed in 17/20 papers evaluating this issue, in particular with tacrolimus, cyclosporine, mycophenolic acid and corticosteroids, whereas evidence was missing for everolimus and sirolimus. Only one of the papers investigating the effect of cIMDs on the gut microbiota reported negative results while all the others showed significant changes in the relative abundance of specific intestinal bacteria. However, no unique pattern of microbiota modification was observed across the different studies. In conclusion, the available evidence supports the hypothesis that intestinal microbiota could contribute to the variability in the response to some cIMDs, whereas data are still missing for others.
Collapse
Affiliation(s)
- Annalaura Manes
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Tiziana Di Renzo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Loreta Dodani
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy; (T.D.R.); (A.R.)
| | - Claudia Gautiero
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Mariastella Di Lauro
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Gilda Nasti
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Federica Manco
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| | - Espedita Muscariello
- Nutrition Unit, Department of Prevention, Local Health Authority Napoli 3 Sud, 80059 Naples, Italy;
| | - Bruna Guida
- Physiology Nutrition Unit, Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy; (C.G.); (M.D.L.); (G.N.); (B.G.)
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University of Naples, 80131 Naples, Italy;
| | - Mauro Cataldi
- Section of Pharmacology, Department of Neuroscience, Reproductive Sciences and Dentistry, Federico II University of Naples, 80131 Naples, Italy; (A.M.); (L.D.); (F.M.)
| |
Collapse
|
12
|
Dalziel JE, Zobel G, Dewhurst H, Hurst C, Olson T, Rodriguez-Sanchez R, Mace L, Parkar N, Thum C, Hannaford R, Fraser K, MacGibbon A, Bassett SA, Dekker J, Anderson RC, Young W. A Diet Enriched with Lacticaseibacillus rhamnosus HN001 and Milk Fat Globule Membrane Alters the Gut Microbiota and Decreases Amygdala GABA a Receptor Expression in Stress-Sensitive Rats. Int J Mol Sci 2023; 24:10433. [PMID: 37445611 DOI: 10.3390/ijms241310433] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Brain signalling pathways involved in subclinical anxiety and depressed mood can be modulated via the gut brain axis (GBA), providing the potential for diet and dietary components to affect mood. We investigated behavioural, physiological and gut microbiome responses to the Lacticaseibacillus rhamnosus strain HN001 (LactoB HN001™), which has been shown to reduce postpartum anxiety and depression, and a milk fat globule membrane-enriched product, Lipid 70 (SurestartTM MFGM Lipid 70), which has been implicated in memory in stress-susceptible Wistar Kyoto rats. We examined behaviour in the open field, elevated plus maze and novel object recognition tests in conjunction with the expression of host genes in neuro-signalling pathways, and we also assessed brain lipidomics. Treatment-induced alterations in the caecal microbiome and short-chain fatty acid (SCFA) profiles were also assessed. Neither ingredient induced behavioural changes or altered the brain lipidome (separately or when combined). However, with regard to brain gene expression, the L. rhamnosus HN001 + Lipid 70 combination produced a synergistic effect, reducing GABAA subunit expression in the amygdala (Gabre, Gat3, Gabrg1) and hippocampus (Gabrd). Treatment with L. rhamnosus HN001 alone altered expression of the metabotropic glutamate receptor (Grm4) in the amygdala but produced only minor changes in gut microbiota composition. In contrast, Lipid 70 alone did not alter brain gene expression but produced a significant shift in the gut microbiota profile. Under the conditions used, there was no observed effect on rat behaviour for the ingredient combination. However, the enhancement of brain gene expression by L. rhamnosus HN001 + Lipid 70 implicates synergistic actions on region-specific neural pathways associated with fear, anxiety, depression and memory. A significant shift in the gut microbiota profile also occurred that was mainly attributable to Lipid 70.
Collapse
Affiliation(s)
- Julie E Dalziel
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Gosia Zobel
- Ethical Agriculture, AgResearch, Hamilton 3240, New Zealand
| | - Hilary Dewhurst
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Charlotte Hurst
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Trent Olson
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | | | - Louise Mace
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Nabil Parkar
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Caroline Thum
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Rina Hannaford
- Digital Agriculture, AgResearch, Palmerston North 4442, New Zealand
| | - Karl Fraser
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Alastair MacGibbon
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - Shalome A Bassett
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - James Dekker
- Fonterra Research and Development Centre Co., Ltd., Palmerston North 4442, New Zealand
| | - Rachel C Anderson
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| | - Wayne Young
- Smart Foods & Bioproducts, AgResearch, Palmerston North 4442, New Zealand
| |
Collapse
|
13
|
Algavi YM, Borenstein E. A data-driven approach for predicting the impact of drugs on the human microbiome. Nat Commun 2023; 14:3614. [PMID: 37330560 PMCID: PMC10276880 DOI: 10.1038/s41467-023-39264-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/19/2023] Open
Abstract
Many medications can negatively impact the bacteria residing in our gut, depleting beneficial species, and causing adverse effects. To guide personalized pharmaceutical treatment, a comprehensive understanding of the impact of various drugs on the gut microbiome is needed, yet, to date, experimentally challenging to obtain. Towards this end, we develop a data-driven approach, integrating information about the chemical properties of each drug and the genomic content of each microbe, to systematically predict drug-microbiome interactions. We show that this framework successfully predicts outcomes of in-vitro pairwise drug-microbe experiments, as well as drug-induced microbiome dysbiosis in both animal models and clinical trials. Applying this methodology, we systematically map a large array of interactions between pharmaceuticals and human gut bacteria and demonstrate that medications' anti-microbial properties are tightly linked to their adverse effects. This computational framework has the potential to unlock the development of personalized medicine and microbiome-based therapeutic approaches, improving outcomes and minimizing side effects.
Collapse
Affiliation(s)
- Yadid M Algavi
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
14
|
Huang H, Chen R, Lin Y, Jiang J, Feng S, Zhang X, Zhang C, Ji Q, Chen H, Xie H, Zheng S, Ling Q. Decoding Single-cell Landscape and Intercellular Crosstalk in the Transplanted Liver. Transplantation 2023; 107:890-902. [PMID: 36413145 DOI: 10.1097/tp.0000000000004365] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Liver transplantation (LT) is the most effective treatment for various end-stage liver diseases. However, the cellular complexity and intercellular crosstalk of the transplanted liver have constrained analyses of graft reconstruction after LT. METHODS We established an immune-tolerated orthotopic LT mouse model to understand the physiological process of graft recovery and intercellular crosstalk. We employed single-cell RNA sequencing and cytometry by time-of-flight to comprehensively reveal the cellular landscape. RESULTS We identified an acute and stable phase during perioperative graft recovery. Using single-cell technology, we made detailed annotations of the cellular landscape of the transplanted liver and determined dynamic modifications of these cells during LT. We found that 96% of graft-derived immune cells were replaced by recipient-derived cells from the preoperative to the stable phase. However, CD206 + MerTK + macrophages and CD49a + CD49b - natural killer cells were composed of both graft and recipient sources even in the stable phase. Intriguingly, the transcriptional profiles of these populations exhibited tissue-resident characteristics, suggesting that recipient-derived macrophages and natural killer cells have the potential to differentiate into 'tissue-resident cells' after LT. Furthermore, we described the transcriptional characteristics of these populations and implicated their role in regulating the metabolic and immune remodeling of the transplanted liver. CONCLUSIONS In summary, this study delineated a cell atlas (type-proportion-source-time) of the transplanted liver and shed light on the physiological process of graft reconstruction and graft-recipient crosstalk.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Yimou Lin
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jingyu Jiang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shi Feng
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueyou Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Cheng Zhang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qinghua Ji
- Zhejiang Puluoting Health Technology Company Limited, China
| | - Hui Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Haiyang Xie
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Shusen Zheng
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Qi Ling
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| |
Collapse
|
15
|
A mixed blessing for liver transplantation patients - Rapamycin. Hepatobiliary Pancreat Dis Int 2023; 22:14-21. [PMID: 36328894 DOI: 10.1016/j.hbpd.2022.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Liver transplantation (LT) is an effective treatment option for end-stage liver disease. Mammalian target of rapamycin (mTOR) inhibitors, such as rapamycin, are widely used post LT. DATA SOURCES In this review, we focused on the anti-cancer activities and metabolic side effects of rapamycin after LT. The literature available on PubMed for the period of January 1999-September 2022 was reviewed. The key words were rapamycin, sirolimus, liver transplantation, hepatocellular carcinoma, diabetes, and lipid metabolism disorder. RESULTS Rapamycin has shown excellent effects and is safer than other immunosuppressive regimens. It has exhibited excellent anti-cancer activity and has the potential in preventing hepatocellular carcinoma (HCC) recurrence post LT. Rapamycin is closely related to two long-term complications after LT, diabetes and lipid metabolism disorders. CONCLUSIONS Rapamycin prevents HCC recurrence post LT in some patients, but it also induces metabolic disorders. Reasonable use of rapamycin benefits the liver recipients.
Collapse
|
16
|
Zhang Y, Zhu X, Yu X, Novák P, Gui Q, Yin K. Enhancing intestinal barrier efficiency: A novel metabolic diseases therapy. Front Nutr 2023; 10:1120168. [PMID: 36937361 PMCID: PMC10018175 DOI: 10.3389/fnut.2023.1120168] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Yaoyuan Zhang
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiao Zhu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xinyuan Yu
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Petr Novák
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Qingjun Gui
- Institute of Translational Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| | - Kai Yin
- Department of General Practice, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- *Correspondence: Qingjun Gui, ; Kai Yin,
| |
Collapse
|
17
|
Miao X, Jiang Y, Kong D, Wu Z, Liu H, Ye X, Gong W. Lactobacillus rhamnosus HN001 Ameliorates BEZ235-Induced Intestinal Dysbiosis and Prolongs Cardiac Transplant Survival. Microbiol Spectr 2022; 10:e0079422. [PMID: 35862958 PMCID: PMC9430965 DOI: 10.1128/spectrum.00794-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/16/2022] [Indexed: 12/03/2022] Open
Abstract
Cardiac allograft rejection remains a major factor limiting long-term engraftment after transplantation. A novel phosphoinositide 3-kinase (PI3K)/mTOR dual inhibitor, BEZ235, prolonged cardiac allograft survival by effectively suppressing activation of the PI3K/serine/threonine kinase (AKT)/mTOR pathway. However, long-term usage of pharmacological immunosuppressant drugs can cause intestinal microbiota dysbiosis. We established mouse models of allogeneic heterotopic heart transplantation with different treatments. Fecal samples were collected and subjected to 16S rRNA sequencing and targeted fecal metabolomic analysis. Graft samples were taken for immune cell detection by flow cytometry. Inflammatory cytokines in serum were quantified by enzyme-linked immunosorbent assay (ELISA). Compared to single-target approaches (IC-87114 and rapamycin), BEZ235 more efficiently prolongs cardiac transplant survival. Interestingly, BEZ235 reduces the diversity and abundance of the intestinal microbiota community. We demonstrated that Lactobacillus rhamnosus HN001 rescues the intestinal microbiota imbalance induced by BEZ235. IMPORTANCE Our data confirmed that the combination of BEZ235 and Lactobacillus rhamnosus HN001 significantly prolongs cardiac transplant survival. A main metabolic product of Lactobacillus rhamnosus HN001, propionic acid (PA), enriches regulatory T (Treg) cells and serves as a potent immunomodulatory supplement to BEZ235. Our study provides a novel and efficient therapeutic strategy for transplant recipients.
Collapse
Affiliation(s)
- Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuancong Jiang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Deqiang Kong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Han Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolin Ye
- Städtisches Klinikum Wolfenbüttel, Wolfenbüttel, Federal Republic of Germany
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| |
Collapse
|
18
|
Fathi I, Nishimura R, Imura T, Inagaki A, Kanai N, Ushiyama A, Kikuchi M, Maekawa M, Yamaguchi H, Goto M. KRP-203 Is a Desirable Immunomodulator for Islet Allotransplantation. Transplantation 2022; 106:963-972. [PMID: 34241985 PMCID: PMC9038237 DOI: 10.1097/tp.0000000000003870] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND The current standard immunosuppressive regimens, calcineurin inhibitors, have diabetogenic and anti-vascularization effects on islet grafts. KRP-203, a sphingosine-1-phosphate functional antagonist, exerts its immunomodulatory function through lymphocyte sequestration. However, the effect of this antagonist on islets is unclear. We examined the effect of KRP-203 on the islet function and vascularization and sought a calcineurin-free regimen for islet allotransplantation. METHODS KRP-203 was administered for 14 d to mice, then diabetogenic effect was evaluated by blood glucose levels and a glucose tolerance test. Static glucose stimulation, the breathing index, and insulin/DNA were examined using isolated islets. Islet neovascularization was evaluated using a multiphoton laser scanning microscope. After islet allotransplantation with either KRP-203 alone, sirolimus alone, or both in combination, the graft survival was evaluated by blood glucose levels and immunohistochemical analyses. A mixed lymphocyte reaction was also performed to investigate the immunologic characteristics of KRP-203 and sirolimus. RESULTS No significant differences in the blood glucose levels or glucose tolerance were observed between the control and KRP-203 groups. Functional assays after islet isolation were also comparable. The multiphoton laser scanning microscope showed no inhibitory effect of KRP-203 on islet neovascularization. Although allogeneic rejection was effectively inhibited by KRP-203 monotherapy (44%), combination therapy prevented rejection in most transplanted mice (83%). CONCLUSIONS KRP-203 is a desirable immunomodulator for islet transplantation because of the preservation of the endocrine function and lack of interference with islet neovascularization. The combination of KRP-203 with low-dose sirolimus may be promising as a calcineurin-free regimen for islet allotransplantation.
Collapse
Affiliation(s)
- Ibrahim Fathi
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Surgery, University of Alexandria, Alexandria, Egypt
| | - Ryuichi Nishimura
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takehiro Imura
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akiko Inagaki
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Norifumi Kanai
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Ushiyama
- Department of Environmental Health, National Institute of Public Health, Wako, Japan
| | - Masafumi Kikuchi
- Department of Pharmaceutical Science, Tohoku University Hospital, Sendai, Japan
| | - Masamitsu Maekawa
- Department of Pharmaceutical Science, Tohoku University Hospital, Sendai, Japan
| | - Hiroaki Yamaguchi
- Department of Pharmacy, Yamagata University Graduate School of Medical Science, Yamagata University Hospital, Yamagata, Japan
| | - Masafumi Goto
- Division of Transplantation and Regenerative Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
19
|
Green PG, Alvarez P, Levine JD. Probiotics attenuate alcohol-induced muscle mechanical hyperalgesia: Preliminary observations. Mol Pain 2022; 18:17448069221075345. [PMID: 35189754 PMCID: PMC8874179 DOI: 10.1177/17448069221075345] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alcohol use disorder (AUD) is a major health problem that causes millions of deaths annually world-wide. AUD is considered to be a chronic pain disorder, that is exacerbated by alcohol withdrawal, contributing to a high (∼80%) relapse rate. Chronic alcohol consumption has a marked impact on the gut microbiome, recognized to have a significant effect on chronic pain. We tested the hypothesis that modulating gut microbiota through feeding rats with probiotics can attenuate alcohol-induced muscle mechanical hyperalgesia. To test this hypothesis, rats were fed alcohol (6.5%, 4 days on 3 days off) for 3 weeks, which induced skeletal muscle mechanical hyperalgesia. Following alcohol feeding, at which time nociceptive thresholds were ∼37% below pre-alcohol levels, rats received probiotics in their drinking water, either Lactobacillus Rhamnosus GG (Culturelle) or De Simone Formulation (a mixture of 8 bacterial species) for 8 days; control rats received plain water to drink. When muscle mechanical nociceptive threshold was evaluated 1 day after beginning probiotic feeding, nociceptive thresholds were significantly higher than rats not receiving probiotics. Mechanical nociceptive thresholds continued to increase during probiotic feeding, with thresholds approaching pre-alcohol levels 5 days after starting probiotics; nociceptive threshold in rats not receiving probiotics remained low. After probiotics were removed from the drinking water, nociceptive thresholds gradually decreased in these two groups, although they remained higher than the group not treated with probiotic (21 days after ending alcohol feeding). These observations suggest that modification of gut microbiota through probiotic feeding has a marked effect on chronic alcohol-induced muscle mechanical hyperalgesia. Our results suggest that administration of probiotics to individuals with AUD may reduce pain associated with alcohol consumption and withdrawal, and may be a novel therapeutic intervention to reduce the high rate of relapse seen in individuals with AUD attempting to abstain from alcohol.
Collapse
Affiliation(s)
- Paul G Green
- Departments of Oral and Maxillofacial Surgery, 8785University of California San Francisco, San Francisco, CA, USA.,Departments of Preventative and Restorative Dental Sciences, 8785University of California San Francisco, San Francisco, CA, USA.,Division of Neuroscience, 8785University of California San Francisco, San Francisco, CA, USA
| | - Pedro Alvarez
- Departments of Oral and Maxillofacial Surgery, 8785University of California San Francisco, San Francisco, CA, USA.,Division of Neuroscience, 8785University of California San Francisco, San Francisco, CA, USA
| | - Jon D Levine
- Departments of Oral and Maxillofacial Surgery, 8785University of California San Francisco, San Francisco, CA, USA.,Division of Neuroscience, 8785University of California San Francisco, San Francisco, CA, USA.,Departments of Medicine, 8785University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
20
|
Wu XM, Yang X, Fan XC, Chen X, Wang YX, Zhang LX, Song JK, Zhao GH. Serum metabolomics in chickens infected with Cryptosporidium baileyi. Parasit Vectors 2021; 14:336. [PMID: 34174965 PMCID: PMC8235856 DOI: 10.1186/s13071-021-04834-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Background Cryptosporidium baileyi is an economically important zoonotic pathogen that causes serious respiratory symptoms in chickens for which no effective control measures are currently available. An accumulating body of evidence indicates the potential and usefulness of metabolomics to further our understanding of the interaction between pathogens and hosts, and to search for new diagnostic or pharmacological biomarkers of complex microorganisms. The aim of this study was to identify the impact of C. baileyi infection on the serum metabolism of chickens and to assess several metabolites as potential diagnostic biomarkers for C. baileyi infection. Methods Ultraperformance liquid chromatography-mass spectrometry (UPLC-MS) and subsequent multivariate statistical analysis were applied to investigate metabolomics profiles in the serum samples of chickens infected with C. baileyi, and to identify potential metabolites that can be used to distinguish chickens infected with C. baileyi from non-infected birds. Results Multivariate statistical analysis identified 138 differential serum metabolites between mock- and C. baileyi-infected chickens at 5 days post-infection (dpi), including 115 upregulated and 23 downregulated compounds. These metabolites were significantly enriched into six pathways, of which two pathways associated with energy and lipid metabolism, namely glycerophospholipid metabolism and sphingolipid metabolism, respectively, were the most enriched. Interestingly, some important immune-related pathways were also significantly enriched, including the intestinal immune network for IgA production, autophagy and cellular senescence. Nine potential C. baileyi-responsive metabolites were identified, including choline, sirolimus, all-trans retinoic acid, PC(14:0/22:1(13Z)), PC(15:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PE(16:1(9Z)/24:1(15Z)), phosphocholine, SM(d18:0/16:1(9Z)(OH)) and sphinganine. Conclusions This is the first report on serum metabolic profiling of chickens with early-stage C. baileyi infection. The results provide novel insights into the pathophysiological mechanisms of C. baileyi in chickens. Graphic abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04834-y.
Collapse
Affiliation(s)
- Xue-Mei Wu
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xin Yang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Xian-Cheng Fan
- Center of Animal Disease Prevention and Control of Huyi District, Xi'an, 710300, People's Republic of China
| | - Xi Chen
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Yu-Xin Wang
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Long-Xian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jun-Ke Song
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Guang-Hui Zhao
- Department of Parasitology, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, People's Republic of China.
| |
Collapse
|