1
|
Sun X, Huang A, Zhang H, Song N, Huang Z, Xin G, Wang Z, Liu M, Jiang K, Huang L. L-Alanyl-L-Glutamine Alleviated Ischemia-Reperfusion Injury and Primary Graft Dysfunction in Rat Lung Transplants. Transplantation 2025; 109:319-331. [PMID: 39054570 DOI: 10.1097/tp.0000000000005144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
BACKGROUND Concern of ischemia-reperfusion injury reduces utilization of donor lungs. We hypothesized adding L-alanyl-L-glutamine (L-AG) to preservation solution may protect donor lungs from ischemia-reperfusion injury through its multiple cytoprotective effects. METHODS A lung transplantation cell culture model was used on human lung epithelial cells and pulmonary microvascular endothelial cells, and the effects of adding different concentrations of L-AG on basic cellular function were tested. Rat donor lungs were preserved at 4 °C with 8 mmol/L L-AG for 12 h followed by 4 h reperfusion or monitored for 3 d. Lung function, lung histology, inflammation, and cell death biomarker were tested. Computerized tomography scan was used and metabolomic analysis was performed on lung tissues. RESULTS Cold preservation with L-AG improved cell viability and inhibited apoptosis in cell culture. Rat donor lungs treated with L-AG during cold storage showed decreased peak airway pressure, higher dynamic compliance and oxygenation ability, reduced lung injury, apoptosis, and oxidative stress during reperfusion. L-AG treatment significantly changed 130 metabolites during reperfusion, with enhanced amino acid biosynthesis and tricarboxylic acid cycle. Furthermore, cold storage with L-AG decreased primary graft dysfunction grade, improved oxygenation, reduced pulmonary atelectasis, sign of infection, and pneumothorax in a rat left lung transplant 3-d survival model. CONCLUSIONS Adding L-AG to cold preservation solution reduced lung injury and alleviated primary graft dysfunction by inhibiting inflammation, oxidative stress, and cell death with modified metabolic activities.
Collapse
Affiliation(s)
- Xiangfu Sun
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ai Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Zhang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naicheng Song
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihong Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaojie Xin
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaokai Wang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ke Jiang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Huang
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
2
|
Xia W, Liu W, He Z, Song C, Liu J, Chen R, Chen J, Wang X, Xu H, Mao W. Machine Learning for Predicting Primary Graft Dysfunction After Lung Transplantation: An Interpretable Model Study. Transplantation 2025:00007890-990000000-00978. [PMID: 39789697 DOI: 10.1097/tp.0000000000005326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
BACKGROUND Primary graft dysfunction (PGD) develops within 72 h after lung transplantation (Lung Tx) and greatly influences patients' prognosis. This study aimed to establish an accurate machine learning (ML) model for predicting grade 3 PGD (PGD3) after Lung Tx. METHODS This retrospective study incorporated 802 patients receiving Lung Tx between July 2018 and October 2023 (640 in the derivation cohort and 162 in the external validation cohort), and 640 patients were randomly assigned to training and internal validation cohorts in a 7:3 ratio. Independent risk factors for PGD3 were determined by integrating the univariate logistic regression and least absolute shrinkage and selection operator regression analyses. Subsequently, 9 ML models were used to construct prediction models for PGD3 based on selected variables. Their prediction performances were further evaluated. Besides, model stratification performance was assessed with 3 posttransplant metrics. Finally, the SHapley Additive exPlanations algorithm was used to understand the predictive importance of selected variables. RESULTS We identified 9 independent clinical risk factors as selected variables. Among 9 ML models, the random forest (RF) model displayed optimal performance (area under the curve [AUC] = 0.9415, sensitivity [Se] = 0.8972, specificity [Sp] = 0.8795 in the training cohort; AUC = 0.7975, Se = 0.7520, Sp = 0.7313 in the internal validation cohort; and AUC = 0.8214, Se = 0.8235, Sp = 0.6667 in the external validation cohort). Further assessments on calibration and clinical usefulness indicated the promising applicability of the RF model in PGD3 prediction. Meanwhile, the RF model also performed best in terms of risk stratification for postoperative support (extracorporeal membrane oxygenation time: P < 0.001, mechanical ventilation time: P = 0.006, intensive care unit time: P < 0.001). CONCLUSIONS The RF model had the optimal performance in PGD3 prediction and postoperative risk stratification for patients after Lung Tx.
Collapse
Affiliation(s)
- Wei Xia
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Weici Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhao He
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Chenghu Song
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jiwei Liu
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Ruo Chen
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jingyu Chen
- Department of Lung Transplantation, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Xiaokun Wang
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Hongyang Xu
- Department of Intensive Care Unit, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| | - Wenjun Mao
- Department of Thoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, Jiangsu, China
| |
Collapse
|
3
|
Hauser BR, Estafanos M, Ayyat KS, Yun JJ, Elgharably H. Current status of routine use of veno-arterial extracorporeal membrane oxygenation during lung transplantation. Expert Rev Med Devices 2024; 21:1153-1163. [PMID: 39670791 DOI: 10.1080/17434440.2024.2442485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Recently, there has been growing experience with utilizing a veno-arterial extracorporeal membrane oxygenator (VA ECMO) routinely during lung transplantation procedures. Yet, there is a lack of consensus on the protocols, benefits, and outcomes of routine VA ECMO use in lung transplantation. AREAS COVERED This article presents an overview of the current status of routine use of VA ECMO during lung transplantation, including rationale, protocols, applications, and outcomes. EXPERT OPINION Utilization of VA ECMO during lung transplantation has emerged as an alternative mechanical circulatory support modality to cardiopulmonary bypass, with growing evidence showing lower rates of peri-operative complications. Some groups took that further into routine application of VA ECMO during lung transplantation. The current available evidence suggests that routine utilization of VA ECMO during lung transplantation is associated with lower rates of primary graft dysfunction and improved early outcomes. Use of VA ECMO allows controlled reperfusion of the allograft and avoids an unplanned "crash" on pump in case of hemodynamic instability, which carries worse outcomes after lung transplantation. As a relatively new approach, further follow-up of growing experience, as well as prospective clinical trials, is necessary to develop a consensus about routine utilization of VA ECMO during lung transplantation.
Collapse
Affiliation(s)
- Benjamin R Hauser
- School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA
| | - Mina Estafanos
- Department of Surgery, Division of Cardiac Surgery, University of Rochester, Rochester, NY, USA
| | - Kamal S Ayyat
- Department of Thoracic & Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - James J Yun
- Department of Thoracic & Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| | - Haytham Elgharably
- Department of Thoracic & Cardiovascular Surgery, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Jeong JC, Gelman AE, Chong AS. Update on the immunological mechanisms of primary graft dysfunction and chronic lung allograft dysfunction. Curr Opin Organ Transplant 2024; 29:412-419. [PMID: 39422603 PMCID: PMC11537820 DOI: 10.1097/mot.0000000000001175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
PURPOSE OF REVIEW Primary graft dysfunction (PGD) and chronic lung allograft dysfunction (CLAD) are the leading causes of graft loss in lung transplant recipients. The development of mouse lung transplant models has allowed for the genetic dissection of cellular and molecular pathways that prevent graft survival. This review provides an overview into recent mechanistic insights into PGD and CLAD. RECENT FINDINGS Mouse orthotopic lung transplant models and investigations of human lung transplant recipeints have revealed new molecular and cellular targets that promote PGD and CLAD. Donor and recipient-derived innate immune cells promote PGD and CLAD. PGD is driven by communication between classical monocytes and tissue-resident nonclassical monocytes activating alveolar macrophages to release chemokines that recruit neutrophils. Products of cell damage trigger neutrophil NET release, which together with NK cells, antibodies and complement, that further promote PGD. The development of CLAD involves circuits that activate B cells, CD8 + T cells, classical monocytes, and eosinophils. SUMMARY Effective targeted management of PGD and CLAD in lung transplant recipient to improve their long-term outcome remains a critical unmet need. Current mechanistic studies and therapeutic studies in mouse models and humans identify new possibilities for prevention and treatment.
Collapse
Affiliation(s)
- Jong Cheol Jeong
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Andrew E. Gelman
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Anita S Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
5
|
Amarelli C, Bello I, Aigner C, Berman M, Boffini M, Clark S, Dalvindt M, de Wolf J, Ensminger S, Gomez de Antonio D, Hoyos L, Palmieri L, Schweiger M, Sponga S, Wiegmann B, Neyrinck A. European Society of Organ Transplantation (ESOT) Consensus Statement on Machine Perfusion in Cardiothoracic Transplant. Transpl Int 2024; 37:13112. [PMID: 39649067 PMCID: PMC11620879 DOI: 10.3389/ti.2024.13112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/26/2024] [Indexed: 12/10/2024]
Abstract
The machine perfusion (MP) of transplantable grafts has emerged as an upcoming field in Cardiothoracic (CT) transplantation during the last decade. This technology carries the potential to assess, preserve, and even recondition thoracic grafts before transplantation, so it is a possible game-changer in the field. This technology field has reached a critical turning point, with a growing number of publications coming predominantly from a few leading institutions, but still need solid scientific evidence. Due to the increasing need to expand the donor pool, especially in Europe, where the donor age is steeply increased, a consensus has been established to address the growing need and knowledge of machine perfusion in cardiothoracic transplantation, targeting the unmet scientific need in this growing field but also, priorities for development, and regional differences in utilization rates and organizational issues. To address MP in CT, the European Society of Organ Transplantation (ESOT) convened a dedicated Working group comprised of experts in CT to review literature about MP to develop guidelines that were subsequently discussed and voted on during the Consensus Conference that took place in person in Prague during the TLJ 3.0 in November 2022. The findings and recommendations of the Cardiothoracic Working Group on MP are presented in this article.
Collapse
Affiliation(s)
- Cristiano Amarelli
- Department of Cardiac Surgery and Transplants, Monaldi, Azienda dei Colli, Naples, Italy
| | - Irene Bello
- Institut Clínic Respiratorio, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Clemens Aigner
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Marius Berman
- Transplant Unit, Royal Papworth Hospital, NHS Foundation Trust, Cambridge, United Kingdom
| | - Massimo Boffini
- Cardiac Surgery Division, Surgical Sciences Department, Citta della Salute e della Scienza, University of Torino, Turin, Italy
| | - Stephen Clark
- Department Cardiothoracic Transplant, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Marita Dalvindt
- Department of Cardiothoracic Surgery, Lund University, Lund, Sweden
| | - Julien de Wolf
- Department of Thoracic Surgery, Lung Heart Institute, University Hospital of Lille, Lille, France
| | - Stephan Ensminger
- Department of Cardiac and Thoracic Vascular Surgery, University Heart Center Lübeck, Lübeck, Germany
| | - David Gomez de Antonio
- Department of Thoracic Surgery, Puerta de Hierro University Hospital Majadahonda, Madrid, Spain
| | - Lucas Hoyos
- Thoracic Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Lucrezia Palmieri
- Department of Translational Medical Sciences, Monaldi Hospital, University of Campania “Luigi Vanvitelli“, Naples, Italy
| | - Martin Schweiger
- Department of Congenital Cardiovascular Surgery, Pediatric Heart Center, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Sandro Sponga
- Division of Cardiac Surgery, Cardiothoracic Department, University Hospital of Udine, Udine, Italy
| | - Bettina Wiegmann
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hanover, Germany
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, Anesthesiology and Algology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
6
|
Van Slambrouck J, Loopmans S, Prisciandaro E, Barbarossa A, Kortleven P, Feys S, Vandervelde CM, Jin X, Cenik I, Moermans K, Fieuws S, Provoost AL, Willems A, De Leyn P, Van Veer H, Depypere L, Jansen Y, Pirenne J, Neyrinck A, Weynand B, Vanaudenaerde B, Carmeliet G, Vos R, Van Raemdonck D, Ghesquière B, Van Weyenbergh J, Ceulemans LJ. The effect of rewarming ischemia on tissue transcriptome and metabolome signatures: A clinical observational study in lung transplantation. J Heart Lung Transplant 2024:S1053-2498(24)01905-3. [PMID: 39486771 DOI: 10.1016/j.healun.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND In lung transplantation (LuTx), various ischemic phases exist, yet the rewarming ischemia time (RIT) during implantation has often been overlooked. During RIT, lungs are deflated and exposed to the body temperature in the recipient's chest cavity. Our prior clinical findings demonstrated that prolonged RIT increases the risk of primary graft dysfunction. However, the molecular mechanisms of rewarming ischemic injury in this context remain unexplored. We aimed to characterize the rewarming ischemia phase during LuTx by measuring organ temperature and comparing transcriptome and metabolome profiles in tissue obtained at the end versus the start of implantation. METHODS In a clinical observational study, 34 double-LuTx with ice preservation were analyzed. Lung core and surface temperature (n = 65 and 55 lungs) were measured during implantation. Biopsies (n = 59 lungs) were wedged from right middle lobe and left lingula at start and end of implantation. Tissue transcriptomic and metabolomic profiling were performed. RESULTS Temperature increased rapidly during implantation, reaching core/surface temperatures of 21.5°C/25.4°C within 30 minutes. Transcriptomics showed increased proinflammatory signaling and oxidative stress at the end of implantation. Upregulation of NLRP3 and NFKB1 correlated with RIT. Metabolomics indicated elevated levels of amino acids, hypoxanthine, uric acid, and cysteineglutathione disulfide alongside decreased levels of glucose and carnitines. Arginine, tyrosine, and 1-carboxyethylleucine showed a correlation with incremental RIT. CONCLUSIONS The final rewarming ischemia phase in LuTx involves rapid organ rewarming, accompanied by transcriptomic and metabolomic changes indicating proinflammatory signaling and disturbed cell metabolism. Limiting implantation time and cooling of the lung represent potential interventions to alleviate rewarming ischemic injury.
Collapse
Affiliation(s)
- Jan Van Slambrouck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Shauni Loopmans
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, Leuven, Belgium; Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Elena Prisciandaro
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Annalisa Barbarossa
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Phéline Kortleven
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Pharmaceutical and Pharmacological Sciences, Molecular Virology and Gene Therapy, KU Leuven, Leuven, Belgium
| | - Simon Feys
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Infectious and Inflammatory Disorders, KU Leuven, Leuven, Belgium; Department of Medical Intensive Care, University Hospitals Leuven, Leuven, Belgium
| | - Christelle M Vandervelde
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Xin Jin
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Ismail Cenik
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Karen Moermans
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Steffen Fieuws
- Department of Public Health, Interuniversity Center for Biostatistics and Statistical Bioinformatics, KU Leuven, Leuven, Belgium
| | - An-Lies Provoost
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Anton Willems
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, Leuven, Belgium; Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Paul De Leyn
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Hans Van Veer
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Lieven Depypere
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Yanina Jansen
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Department of Microbiology, Immunology and Transplantation, Laboratory of Abdominal Transplantation, KU Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Arne Neyrinck
- Department of Cardiovascular Sciences, Anesthesiology and Algology, KU Leuven, Leuven, Belgium; Department of Anesthesiology, University Hospitals Leuven, Leuven, Belgium
| | - Birgit Weynand
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium; Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Leuven, Belgium
| | - Bart Vanaudenaerde
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Chronic Diseases and Metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Robin Vos
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium; Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Dirk Van Raemdonck
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Department of Cellular and Molecular Medicine, Laboratory of Applied Mass Spectrometry, KU Leuven, Leuven, Belgium; Center for Cancer Biology, Metabolomics Core Facility Leuven, VIB, Leuven, Belgium
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Rega Institute, KU Leuven, Leuven, Belgium
| | - Laurens J Ceulemans
- Department of Thoracic Surgery, University Hospitals Leuven, Leuven, Belgium; Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE), KU Leuven, Leuven, Belgium.
| |
Collapse
|
7
|
Nakagiri T, Köhler NR, Janciauskiene S, Neubert L, Knöfel AK, Pradhan P, Ruhparwar A, Ius F, Immenschuh S. Hemopexin alleviates sterile inflammation in ischemia-reperfusion-induced lung injury. Front Immunol 2024; 15:1451577. [PMID: 39430764 PMCID: PMC11487521 DOI: 10.3389/fimmu.2024.1451577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Introduction Pulmonary ischemia-reperfusion (IR) injury (IRI) plays a significant role in various lung disorders and is a key factor in the development of primary graft dysfunction following lung transplantation. Hemopexin (Hx) is the major serum scavenger protein for heme, which is a prooxidant and pro-inflammatory compound. In the current study, we hypothesized that Hx could confer beneficial effects in sterile inflammation induced by IR-mediated lung injury. Methods To examine this hypothesis, we administered Hx in an experimental mouse model of unilateral lung IRI. Results Our results demonstrate that treatment with Hx alleviated histopathological signs of inflammation in ischemic lungs, as evidenced by a reduction in the number of infiltrating neutrophils and decreased levels of perivascular edema. In addition, thrombotic vaso-occlusion in pulmonary blood vessels of IRI lungs was reduced by Hx. Immunohistochemical analysis revealed that Hx inhibited the up-regulation of heme oxygenase-1, an enzyme highly induced by heme, in ischemic lungs. Finally, Hx administration caused a decrease in the levels of circulating B- and CD8+ T-lymphocytes in the peripheral blood of mice with pulmonary IRI. Conclusion These findings suggest that the serum heme scavenger protein Hx holds therapeutic promise in alleviating lung IRI-mediated sterile inflammation. Thus, Hx may represent a preemptive therapeutic approach in IR-related lung disorders such as primary graft dysfunction in lung transplantation.
Collapse
Affiliation(s)
- Tomoyuki Nakagiri
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Nadine R. Köhler
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Sabina Janciauskiene
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- Department of Genetics and Clinical Immunology, The Institute of Tuberculosis and Lung Diseases, Warsaw, Poland
| | - Lavinia Neubert
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Ann-Kathrin Knöfel
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Pooja Pradhan
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Arjang Ruhparwar
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Fabio Ius
- Department of Cardiothoracic, Transplantation, and Vascular Surgery, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Stephan Immenschuh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| |
Collapse
|
8
|
Mi X, Zhang X, Dai Z, Yan X, Xing Y, Mei J, Ma L, Guo C, Tian D, Du X, Liu L, Pu Q. Clinical characteristics and outcomes of lung transplantation in patients with severe COVID-19 infection: A systematic review and meta-analysis. Int J Infect Dis 2024; 147:107176. [PMID: 39025203 DOI: 10.1016/j.ijid.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVES To synthesize the clinical experience of patients with COVID-19-associated acute respiratory distress syndrome (ARDS) or pulmonary fibrosis (PF) receiving lung transplantation (LTx) and compare the characteristics and outcomes of COVID-19 and non-COVID-19 LTx patients. METHODS A literature search of online databases (PubMed, Web of Science, Embase, the Cochrane Library, China Science and Technology Journal Database, and Wan Fang databases) was performed regarding LTx for COVID-19-associated ARDS or PF. This study was registered on PROSPERO (CRD2024507647). RESULTS Eight eligible studies were included with 478 COVID-19 LTx patients and 163 non-COVID-19 LTx patients. In COVID-19 LTx patients, the pooled hospital mortality and follow-up survival rate was 0.00% (95% CI 0.00-0.03) and 87.40% (95% CI 0.76-0.96). Compared to non-COVID-19 LTx patients, COVID-19 LTx patients were associated with significantly higher rate of primary graft dysfunction (odds ratio [OR] 8.72, 95% CI 3.54-21.47, P < 0.001) but significantly higher follow-up survival rate (OR 2.48, 95% CI 1.02-6.01, P = 0.04), within an overall similar follow-up period. CONCLUSIONS For patients with COVID-19-associated ARDS or PF, LTx offers acceptable short-term outcomes and is suggested as a viable lifesaving treatment.
Collapse
Affiliation(s)
- Xingqi Mi
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaolong Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhangyi Dai
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xi Yan
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yikai Xing
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jiandong Mei
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Ma
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chenglin Guo
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Dong Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xinmiao Du
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lunxu Liu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Pu
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Gouchoe DA, Zhang Z, Kim JL, Lee YG, Whitson BA, Zhu H. Improving lung allograft function in the early post-operative period through the inhibition of pyroptosis. MEDICAL REVIEW (2021) 2024; 4:384-394. [PMID: 39444796 PMCID: PMC11495470 DOI: 10.1515/mr-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/04/2024] [Indexed: 10/25/2024]
Abstract
Lung transplantation is the only definitive therapy for end-stage pulmonary disease. Less than 20 % of offered lungs are successfully transplanted due to a limited ischemic time window and poor donor lung quality manifested by pulmonary edema, hypoxia, or trauma. Therefore, poor donor organ recovery and utilization are significant barriers to wider implementation of the life-saving therapy of transplantation. While ischemia reperfusion injury (IRI) is often identified as the underlying molecular insult leading to immediate poor lung function in the post-operative period, this injury encompasses several pathways of cellular injury in addition to the recruitment of the innate immune system to the site of injury to propagate this inflammatory cascade. Pyroptosis is a central molecular inflammatory pathway that is the most significant contributor to injury in this early post-operative phase. Pyroptosis is another form of programmed cell death and is often associated with IRI. The mitigation of pyroptosis in the early post-operative period following lung transplantation is a potential novel way to prevent poor allograft function and improve outcomes for all recipients. Here we detail the pyroptotic pathway, its importance in lung transplantation, and several therapeutic modalities that can mitigate this harmful inflammatory pathway.
Collapse
Affiliation(s)
- Doug A. Gouchoe
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zhentao Zhang
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Jung-Lye Kim
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Yong Gyu Lee
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Bryan A. Whitson
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- COPPER Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hua Zhu
- Department of Surgery, Division of Cardiac Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
10
|
Gouchoe DA, Sanchez PG, D'Cunha J, Bermudez CA, Daneshmand MA, Davis RD, Hartwig MG, Wozniak TC, Kon ZN, Griffith BP, Lynch WR, Machuca TN, Weyant MJ, Jessen ME, Mulligan MS, D'Ovidio F, Camp PC, Cantu E, Whitson BA. Ex vivo lung perfusion in donation after circulatory death: A post hoc analysis of the Normothermic Ex Vivo Lung Perfusion as an Assessment of Extended/Marginal Donors Lungs trial. J Thorac Cardiovasc Surg 2024; 168:724-734.e7. [PMID: 38508486 DOI: 10.1016/j.jtcvs.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVE Donation after circulatory death (DCD) donors offer the ability to expand the lung donor pool and ex vivo lung perfusion (EVLP) further contributes to this ability by allowing for additional evaluation and resuscitation of these extended criteria donors. We sought to determine the outcomes of recipients receiving organs from DCD EVLP donors in a multicenter setting. METHODS This was an unplanned post hoc analysis of a multicenter, prospective, nonrandomized trial that took place during 2011 to 2017 with 3 years of follow-up. Patients were placed into 3 groups based off procurement strategy: brain-dead donor (control), brain-dead donor evaluated by EVLP, and DCD donors evaluated by EVLP. The primary outcomes were severe primary graft dysfunction at 72 hours and survival. Secondary outcomes included select perioperative outcomes, and 1-year and 3-years allograft function and quality of life measures. RESULTS The DCD EVLP group had significantly higher incidence of severe primary graft dysfunction at 72 hours (P = .03), longer days on mechanical ventilation (P < .001) and in-hospital length of stay (P = .045). Survival at 3 years was 76.5% (95% CI, 69.2%-84.7%) for the control group, 68.3% (95% CI, 58.9%-79.1%) for the brain-dead donor group, and 60.7% (95% CI, 45.1%-81.8%) for the DCD group (P = .36). At 3-year follow-up, presence observed bronchiolitis obliterans syndrome or quality of life metrics did not differ among the groups. CONCLUSIONS Although DCD EVLP allografts might not be appropriate to transplant in every candidate recipient, the expansion of their use might afford recipients stagnant on the waitlist a viable therapy.
Collapse
Affiliation(s)
- Doug A Gouchoe
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Center, College of Medicine, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, Wright-Patterson Air Force Base, Ohio
| | - Pablo G Sanchez
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pa
| | - Jonathan D'Cunha
- Department of Cardiothoracic Surgery, Mayo Clinic Arizona, Phoenix, Ariz
| | | | - Mani A Daneshmand
- Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Ga
| | - Robert D Davis
- Department of Cardiovascular and Thoracic Surgery, Florida Hospital Transplant Center, Orlando, Fla
| | - Matthew G Hartwig
- Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, NC
| | - Thomas C Wozniak
- Division of Cardiothoracic Surgery, ProHealth Care, Waukesha, Wis
| | - Zachary N Kon
- Division of Cardiothoracic Surgery, Department of Surgery, Northwell Health, Manhasset, NY
| | - Bartley P Griffith
- Department of Cardiac Surgery, University of Maryland Medical Center, Baltimore, Md
| | - William R Lynch
- Section of Thoracic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Mich
| | - Tiago N Machuca
- Division of Lung Transplantation, Department of Surgery, University of Miami Miller School of Medicine, Miami, Fla
| | | | - Michael E Jessen
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern, Dallas, Tex
| | - Michael S Mulligan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, Wash
| | - Frank D'Ovidio
- Section of General Thoracic Surgery, Lung Transplant Program, Columbia University Medical Center, New York, NY
| | - Phillip C Camp
- Department of Cardiothoracic Surgery, Corewell Health-East, Dearborn, Mich
| | - Edward Cantu
- Division of Cardiac Surgery, University of Pennsylvania, Philadelphia, Pa
| | - Bryan A Whitson
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Center, College of Medicine, Columbus, Ohio; Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory, The Ohio State University, Columbus, Ohio; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Center, College of Medicine, Columbus, Ohio.
| |
Collapse
|
11
|
Yu J, Fu Y, Gao J, Zhang Q, Zhang N, Zhang Z, Jiang X, Chen C, Wen Z. Cathepsin C from extracellular histone-induced M1 alveolar macrophages promotes NETosis during lung ischemia-reperfusion injury. Redox Biol 2024; 74:103231. [PMID: 38861835 PMCID: PMC11209641 DOI: 10.1016/j.redox.2024.103231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/13/2024] Open
Abstract
Primary graft dysfunction (PGD) is a severe form of acute lung injury resulting from lung ischemia/reperfusion injury (I/R) in lung transplantation (LTx), associated with elevated post-transplant morbidity and mortality rates. Neutrophils infiltrating during reperfusion are identified as pivotal contributors to lung I/R injury by releasing excessive neutrophil extracellular traps (NETs) via NETosis. While alveolar macrophages (AMs) are involved in regulating neutrophil chemotaxis and infiltration, their role in NETosis during lung I/R remains inadequately elucidated. Extracellular histones constitute the main structure of NETs and can activate AMs. In this study, we confirmed the significant involvement of extracellular histone-induced M1 phenotype of AMs (M1-AMs) in driving NETosis during lung I/R. Using secretome analysis, public protein databases, and transwell co-culture models of AMs and neutrophils, we identified Cathepsin C (CTSC) derived from AMs as a major mediator in NETosis. Further elucidating the molecular mechanisms, we found that CTSC induced NETosis through a pathway dependent on NADPH oxidase-mediated production of reactive oxygen species (ROS). CTSC could significantly activate p38 MAPK, resulting in the phosphorylation of the NADPH oxidase subunit p47phox, thereby facilitating the trafficking of cytoplasmic subunits to the cell membrane and activating NADPH oxidase. Moreover, CTSC up-regulated and activated its substrate membrane proteinase 3 (mPR3), resulting in an increased release of NETosis-related inflammatory factors. Inhibiting CTSC revealed great potential in mitigating NETosis-related injury during lung I/R. These findings suggests that CTSC from AMs may be a crucial factor in mediating NETosis during lung I/R, and targeting CTSC inhition may represent a novel intervention for PGD in LTx.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Anesthesiology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qingqing Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Gouchoe DA, Yi T, Kim JL, Lee YG, Black SM, Breuer C, Ma J, Whitson BA. MG53 mitigates warm ischemic lung injury in a murine model of transplantation. J Thorac Cardiovasc Surg 2024; 168:e13-e26. [PMID: 37925138 DOI: 10.1016/j.jtcvs.2023.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/12/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
OBJECTIVES Lung transplant warm ischemia-reperfusion injury (IRI) results in cellular injury, inflammation, and poor graft function. Mitsugumin 53 (MG53) is an endogenous protein with cell membrane repair properties and the ability to modulate the inflammasome. We hypothesize that the absence of circulating MG53 protein in the recipient increases IRI, and higher levels of circulating MG53 protein mitigate IRI associated with lung transplantation. METHODS To demonstrate protection, wild-type (wt) lung donor allografts were transplanted into a wt background, a MG53 knockout (mg53-/-), or a constitutively overexpressed MG53 (tissue plasminogen activator-MG53) recipient mouse after 1 hour of warm ischemic injury. Mice survived for 5 days after transplantation. Bronchioalveolar lavage, serum, and tissue were collected at sacrifice. Bronchioalveolar lavage, serum, and tissue markers of apoptosis and a biometric profile of lung health were analyzed. RESULTS mg53-/- mice had significantly greater levels of markers of overall cell lysis and endothelial cell injury. Overexpression of MG53 resulted in a signature similar to that of wt controls. At the time of explant, tissue plasminogen activator-MG53 recipient tissue expressed significantly greater levels of MG53, measured by immunohistochemistry, compared with mg53-/-, demonstrating uptake of endogenous overexpressed MG53 into donor tissue. CONCLUSIONS In a warm IRI model of lung transplantation, the absence of MG53 resulted in increased cell injury and inflammation. Endogenous overexpression of MG53 in the recipient results in protection in the wt donor. Together, these data suggest that MG53 is a potential therapeutic agent for use in lung transplantation to mitigate IRI.
Collapse
Affiliation(s)
- Doug A Gouchoe
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, Wright-Patterson AFB, Ohio
| | - Tai Yi
- Department of Surgery, Nationwide Children's Hospital, Columbus, Ohio
| | - Jung-Lye Kim
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Yong Gyu Lee
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sylvester M Black
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Transplantation, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | | | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, Va
| | - Bryan A Whitson
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; The Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical, College of Medicine, Columbus, Ohio.
| |
Collapse
|
13
|
Henry JP, Carlier F, Higny J, Benoit M, Xhaët O, Blommaert D, Telbis AM, Robaye B, Gabriel L, Guedes A, Michaux I, Demeure F, Luchian ML. Impact of Pre-Transplant Left Ventricular Diastolic Pressure on Primary Graft Dysfunction after Lung Transplantation: A Narrative Review. Diagnostics (Basel) 2024; 14:1340. [PMID: 39001230 PMCID: PMC11240543 DOI: 10.3390/diagnostics14131340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
Lung transplantation (LT) constitutes the last therapeutic option for selected patients with end-stage respiratory disease. Primary graft dysfunction (PGD) is a form of severe lung injury, occurring in the first 72 h following LT and constitutes the most common cause of early death after LT. The presence of pulmonary hypertension (PH) has been reported to favor PGD development, with a negative impact on patients' outcomes while complicating medical management. Although several studies have suggested a potential association between pre-LT left ventricular diastolic dysfunction (LVDD) and PGD occurrence, the underlying mechanisms of such an association remain elusive. Importantly, the heterogeneity of the study protocols and the various inclusion criteria used to define the diastolic dysfunction in those patients prevents solid conclusions from being drawn. In this review, we aim at summarizing PGD mechanisms, risk factors, and diagnostic criteria, with a further focus on the interplay between LVDD and PGD development. Finally, we explore the predictive value of several diastolic dysfunction diagnostic parameters to predict PGD occurrence and severity.
Collapse
Affiliation(s)
- Jean Philippe Henry
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - François Carlier
- Department of Pneumology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium;
| | - Julien Higny
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Martin Benoit
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Olivier Xhaët
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Dominique Blommaert
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Alin-Mihail Telbis
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Benoit Robaye
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Laurence Gabriel
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Antoine Guedes
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Isabelle Michaux
- Department of Intensive Care, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium;
| | - Fabian Demeure
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| | - Maria-Luiza Luchian
- Department of Cardiology, Université Catholique de Louvain, CHU UCL Namur, 5530 Yvoir, Belgium; (J.H.); (M.B.); (O.X.); (D.B.); (A.-M.T.); (B.R.); (L.G.); (A.G.); (F.D.); (M.-L.L.)
| |
Collapse
|
14
|
Gouchoe DA, Whitson BA, Rosenheck J, Henn MC, Mokadam NA, Ramsammy V, Kirkby S, Nunley D, Ganapathi AM. Long-Term Survival Following Primary Graft Dysfunction Development in Lung Transplantation. J Surg Res 2024; 296:47-55. [PMID: 38219506 DOI: 10.1016/j.jss.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/14/2023] [Accepted: 12/17/2023] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Primary graft dysfunction (PGD) is a known risk factor for early mortality following lung transplant (LT). However, the outcomes of patients who achieve long-term survival following index hospitalization are unknown. We aimed to determine the long-term association of PGD grade 3 (PGD3) in patients without in-hospital mortality. METHODS LT recipients were identified from the United Network for Organ Sharing Database. Patients were stratified based on the grade of PGD at 72 h (No PGD, Grade 1/2 or Grade 3). Groups were assessed with comparative statistics. Long-term survival was evaluated using Kaplan-Meier methods and a multivariable shared frailty model including recipient, donor, and transplant characteristics. RESULTS The PGD3 group had significantly increased length of stay, dialysis, and treated rejection post-transplant (P < 0.001). Unadjusted survival analysis revealed a significant difference in long-term survival (P < 0.001) between groups; however, following adjustment, PGD3 was not independently associated with long-term survival (hazard ratio: 0.972; 95% confidence interval: 0.862-1.096). Increased mortality was significantly associated with increased recipient age and treated rejection. Decreased mortality was significantly associated with no donor diabetes, bilateral LT as compared to single LT, transplant in 2015-2016 and 2017-2018, and no post-transplant dialysis. CONCLUSIONS While PGD3 remains a challenge post LT, PGD3 at 72 h is not independently associated with decreased long-term survival, while complications such as dialysis and rejection are, in patients who survive index hospitalization. Transplant providers should be aggressive in preventing further complications in recipients with severe PGD to minimize the negative association on long-term survival.
Collapse
Affiliation(s)
- Doug A Gouchoe
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, WPAFB, Columbus, Ohio
| | - Bryan A Whitson
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Justin Rosenheck
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Matthew C Henn
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Nahush A Mokadam
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Verai Ramsammy
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Stephen Kirkby
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - David Nunley
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Asvin M Ganapathi
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
15
|
Gouchoe DA, Lee YG, Kim JL, Zhang Z, Marshall JM, Ganapathi A, Zhu H, Black SM, Ma J, Whitson BA. Mitsugumin 53 mitigation of ischemia-reperfusion injury in a mouse model. J Thorac Cardiovasc Surg 2024; 167:e48-e58. [PMID: 37562677 DOI: 10.1016/j.jtcvs.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
OBJECTIVE Primary graft dysfunction is often attributed to ischemia-reperfusion injury, and prevention would be a therapeutic approach to mitigate injury. Mitsugumin 53, a myokine, is a component of the endogenous cell membrane repair machinery. Previously, exogenous administration of recombinant human (recombinant human mitsugumin 53) protein has been shown to mitigate acute lung injury. In this study, we aimed to quantify a therapeutic benefit of recombinant human mitsugumin 53 to mitigate a transplant-relevant model of ischemia-reperfusion injury. METHODS C57BL/6J mice were subjected to 1 hour of ischemia (via left lung hilar clamp), followed by 24 hours of reperfusion. mg53-/- mice were administered exogenous recombinant human mitsugumin 53 or saline before reperfusion. Tissue, bronchoalveolar lavage, and blood samples were collected at death and used to quantify the extent of lung injury via histology and biochemical assays. RESULTS Administration of recombinant human mitsugumin 53 showed a significant decrease in an established biometric profile of lung injury as measured by lactate dehydrogenase and endothelin-1 in the bronchoalveolar lavage and plasma. Biochemical markers of apoptosis and pyroptosis (interleukin-1β and tumor necrosis factor-α) were also significantly mitigated, overall demonstrating recombinant human mitsugumin 53's ability to decrease the inflammatory response of ischemia-reperfusion injury. Exogenous recombinant human mitsugumin 53 administration showed a trend toward decreasing overall cellular infiltrate and neutrophil response. Fluorescent colocalization imaging revealed recombinant human mitsugumin 53 was effectively delivered to the endothelium. CONCLUSIONS These data demonstrate that recombinant human mitsugumin 53 has the potential to prevent or reverse ischemia-reperfusion injury-mediated lung damage. Although additional studies are needed in wild-type mice to demonstrate efficacy, this work serves as proof-of-concept to indicate the potential therapeutic benefit of mitsugumin 53 administration to mitigate ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Doug A Gouchoe
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; 88th Surgical Operations Squadron, Wright-Patterson Medical Center, WPAFB, Ohio
| | - Yong Gyu Lee
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jung Lye Kim
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Zhentao Zhang
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Joanna M Marshall
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Asvin Ganapathi
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Hua Zhu
- Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Sylvester M Black
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Transplantation, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Jianjie Ma
- Division of Surgical Sciences, Department of Surgery, University of Virginia Medical School, Charlottesville, Va
| | - Bryan A Whitson
- COPPER Lab (Collaboration for Organ Perfusion, Protection, Engineering, and Regeneration Laboratory), The Ohio State University, Columbus, Ohio; Division of Cardiac Surgery, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio; The Davis Heart and Lung Research Institute at The Ohio State University Wexner Medical, College of Medicine, Columbus, Ohio.
| |
Collapse
|
16
|
Nykänen AI, Liu M, Keshavjee S. Mesenchymal Stromal Cell Therapy in Lung Transplantation. Bioengineering (Basel) 2023; 10:728. [PMID: 37370659 DOI: 10.3390/bioengineering10060728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lung transplantation is often the only viable treatment option for a patient with end-stage lung disease. Lung transplant results have improved substantially over time, but ischemia-reperfusion injury, primary graft dysfunction, acute rejection, and chronic lung allograft dysfunction (CLAD) continue to be significant problems. Mesenchymal stromal cells (MSC) are pluripotent cells that have anti-inflammatory and protective paracrine effects and may be beneficial in solid organ transplantation. Here, we review the experimental studies where MSCs have been used to protect the donor lung against ischemia-reperfusion injury and alloimmune responses, as well as the experimental and clinical studies using MSCs to prevent or treat CLAD. In addition, we outline ex vivo lung perfusion (EVLP) as an optimal platform for donor lung MSC delivery, as well as how the therapeutic potential of MSCs could be further leveraged with genetic engineering.
Collapse
Affiliation(s)
- Antti I Nykänen
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Cardiothoracic Surgery, Helsinki University Hospital and University of Helsinki, FI-00029 Helsinki, Finland
| | - Mingyao Liu
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Hospital Institute, University Health Network, Toronto, ON M5G 1L7, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|