1
|
Evidence for the important role of inflammation in xenotransplantation. JOURNAL OF INFLAMMATION-LONDON 2019; 16:10. [PMID: 31148951 PMCID: PMC6537172 DOI: 10.1186/s12950-019-0213-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022]
Abstract
There is increasing evidence of a sustained state of systemic inflammation after pig-to-nonhuman primate (NHP) xenotransplantation (that has been termed systemic inflammation in xenograft recipients [SIXR]). Increases in inflammatory markers, e.g., C-reactive protein, histones, serum amyloid A, D-dimer, cytokines, chemokines, and a decrease in free triiodothyronine, have been demonstrated in the recipient NHPs. The complex interactions between inflammation, coagulation, and the immune response are well-recognized, but the role of inflammation in xenograft recipients is not fully understood. The evidence suggests that inflammation can promote the activation of coagulation and the adaptive immune response, but the exact mechanisms remain uncertain. If prolonged xenograft survival is to be achieved, anti-inflammatory strategies (e.g., the administration of anti-inflammatory agents, and/or the generation of genetically-engineered organ-source pigs that are protected from the effect of inflammation) may be necessary to prevent, control, or negate the effect of the systemic inflammation that develops in xenograft recipients. This may allow for a reduction in the intensity of exogenous immunosuppressive therapy. If immunological tolerance to a xenograft is to be obtained, then control of inflammation may be essential.
Collapse
|
2
|
Cooper DKC, Ezzelarab MB, Hara H, Iwase H, Lee W, Wijkstrom M, Bottino R. The pathobiology of pig-to-primate xenotransplantation: a historical review. Xenotransplantation 2016; 23:83-105. [PMID: 26813438 DOI: 10.1111/xen.12219] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/22/2015] [Indexed: 12/16/2022]
Abstract
The immunologic barriers to successful xenotransplantation are related to the presence of natural anti-pig antibodies in humans and non-human primates that bind to antigens expressed on the transplanted pig organ (the most important of which is galactose-α1,3-galactose [Gal]), and activate the complement cascade, which results in rapid destruction of the graft, a process known as hyperacute rejection. High levels of elicited anti-pig IgG may develop if the adaptive immune response is not prevented by adequate immunosuppressive therapy, resulting in activation and injury of the vascular endothelium. The transplantation of organs and cells from pigs that do not express the important Gal antigen (α1,3-galactosyltransferase gene-knockout [GTKO] pigs) and express one or more human complement-regulatory proteins (hCRP, e.g., CD46, CD55), when combined with an effective costimulation blockade-based immunosuppressive regimen, prevents early antibody-mediated and cellular rejection. However, low levels of anti-non-Gal antibody and innate immune cells and/or platelets may initiate the development of a thrombotic microangiopathy in the graft that may be associated with a consumptive coagulopathy in the recipient. This pathogenic process is accentuated by the dysregulation of the coagulation-anticoagulation systems between pigs and primates. The expression in GTKO/hCRP pigs of a human coagulation-regulatory protein, for example, thrombomodulin, is increasingly being associated with prolonged pig graft survival in non-human primates. Initial clinical trials of islet and corneal xenotransplantation are already underway, and trials of pig kidney or heart transplantation are anticipated within the next few years.
Collapse
Affiliation(s)
- David K C Cooper
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed B Ezzelarab
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hidetaka Hara
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hayato Iwase
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Whayoung Lee
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Martin Wijkstrom
- The Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Rita Bottino
- Institute for Cellular Therapeutics, Allegheny-Singer Research Institute, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Ezzelarab MB, Ayares D, Cooper DKC. Transgenic expression of human CD46: does it reduce the primate T-cell response to pig endothelial cells? Xenotransplantation 2015; 22:487-9. [PMID: 26584837 DOI: 10.1111/xen.12209] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | | | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Ezzelarab MB, Ekser B, Azimzadeh A, Lin CC, Zhao Y, Rodriguez R, Echeverri GJ, Iwase H, Long C, Hara H, Ayares D, Pierson RN, Thomson AW, Cooper DK. Systemic inflammation in xenograft recipients precedes activation of coagulation. Xenotransplantation 2014; 22:32-47. [PMID: 25209710 DOI: 10.1111/xen.12133] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 07/25/2014] [Indexed: 01/21/2023]
Abstract
BACKGROUND Dysregulation of coagulation is considered a major barrier against successful pig organ xenotransplantation in non-human primates. Inflammation is known to promote activation of coagulation. The role of pro-inflammatory factors as well as the relationship between inflammation and activation of coagulation in xenograft recipients is poorly understood. METHODS Baboons received kidney (n=3), heart (n=4), or artery patch (n=8) xenografts from α1,3-galactosyltransferase gene-knockout (GTKO) pigs or GTKO pigs additionally transgenic for human complement-regulatory protein CD46 (GTKO/CD46). Immunosuppression (IS) was based on either CTLA4Ig or anti-CD154 costimulation blockade. Three artery patch recipients did not receive IS. Pro-inflammatory cytokines, chemokines, and coagulation parameters were evaluated in the circulation after transplantation. In artery patch recipients, monocytes and dendritic cells (DC) were monitored in peripheral blood. Expression of tissue factor (TF) and CD40 on monocytes and DC were assessed by flow cytometry. C-reactive protein (C-RP) levels in the blood and C-RP deposition in xenografts as well as native organs were evaluated. Baboon and pig C-RP mRNA in heart and kidney xenografts were evaluated. RESULTS In heart and kidney xenograft recipients, the levels of INFγ, TNF-α, IL-12, and IL-8 were not significantly higher after transplantation. However, MCP-1 and IL-6 levels were significantly higher after transplantation, particularly in kidney recipients. Elevated C-RP levels preceded activation of coagulation in heart and kidney recipients, where high levels of C-RP were maintained until the time of euthanasia in both heart and kidney recipients. In artery patch recipients, INFγ, TNF-α, IL-12, IL-8, and MCP-1 were elevated with no IS, while IL-6 was not. With IS, INFγ, TNF-α, IL-12, IL-8, and MCP-1 were reduced, but IL-6 was elevated. Elevated IL-6 levels were observed as early as 2 weeks in artery patch recipients. While IS was associated with reduced thrombin activation, fibrinogen and C-RP levels were increased when IS was given. There was a significant positive correlation between C-RP, IL-6, and fibrinogen levels. Additionally, absolute numbers of monocytes were significantly increased when IS was given, but not without IS. This was associated with increased CD40 and TF expression on CD14+ monocytes and lineage(neg) CD11c+ DC, with increased differentiation of the pro-inflammatory CD14+ CD11c+ monocyte population. At the time of euthanasia, C-RP deposition in kidney and heart xenografts, C-RP positive cells in artery patch xenograft and native lungs were detected. Finally, high levels of both pig and baboon C-RP mRNA were detected in heart and kidney xenografts. CONCLUSIONS Inflammatory responses precede activation of coagulation after organ xenotransplantation. Early upregulation of C-RP and IL-6 levels may amplify activation of coagulation through upregulation of TF on innate immune cells. Prevention of systemic inflammation in xenograft recipients (SIXR) may be required to prevent dysregulation of coagulation and avoid excessive IS after xenotransplantation.
Collapse
Affiliation(s)
- Mohamed B Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Cowan PJ, Cooper DKC, d'Apice AJF. Kidney xenotransplantation. Kidney Int 2014; 85:265-75. [PMID: 24088952 PMCID: PMC3946635 DOI: 10.1038/ki.2013.381] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 12/14/2022]
Abstract
Xenotransplantation using pigs as donors offers the possibility of eliminating the chronic shortage of donor kidneys, but there are several obstacles to be overcome before this goal can be achieved. Preclinical studies have shown that, while porcine renal xenografts are broadly compatible physiologically, they provoke a complex rejection process involving preformed and elicited antibodies, heightened innate immune cell reactivity, dysregulated coagulation, and a strong T cell-mediated adaptive response. Furthermore, the susceptibility of the xenograft to proinflammatory and procoagulant stimuli is probably increased by cross-species molecular defects in regulatory pathways. To balance these disadvantages, xenotransplantation has at its disposal a unique tool to address particular rejection mechanisms and incompatibilities: genetic modification of the donor. This review focuses on the pathophysiology of porcine renal xenograft rejection, and on the significant genetic, pharmacological, and technical progress that has been made to prolong xenograft survival.
Collapse
Affiliation(s)
- Peter J Cowan
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Anthony J F d'Apice
- 1] Immunology Research Centre, St Vincent's Hospital, Melbourne, Victoria, Australia [2] Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
6
|
Abstract
The shortage of human organs for transplantation has focused research on the possibility of transplanting pig organs into humans. Many factors contribute to the failure of a pig organ graft in a primate. A rapid innate immune response (natural anti-pig antibody, complement activation, and an innate cellular response; e.g., neutrophils, monocytes, macrophages, and natural killer cells) is followed by an adaptive immune response, although T-cell infiltration of the graft has rarely been reported. Other factors (e.g., coagulation dysregulation and inflammation) appear to play a significantly greater role than in allotransplantation. The immune responses to a pig xenograft cannot therefore be controlled simply by suppression of T-cell activity. Before xenotransplantation can be introduced successfully into the clinic, the problems of the innate, coagulopathic, and inflammatory responses will have to be overcome, most likely by the transplantation of organs from genetically engineered pigs. Many of the genetic manipulations aimed at protecting against these responses also reduce the adaptive response. The T-cell and elicited antibody responses can be prevented by the biological and/or pharmacologic agents currently available, in particular, by costimulation blockade-based regimens. The exogenous immunosuppressive regimen may be significantly reduced by the presence of a graft from a pig transgenic for a mutant (human) class II transactivator gene, resulting in down-regulation of swine leukocyte antigen class II expression, or from a pig with "local" vascular endothelial cell expression of an immunosuppressive gene (e.g., CTLA4-Ig). The immunomodulatory efficacy of regulatory T cells or mesenchymal stromal cells has been demonstrated in vitro but not yet in vivo.
Collapse
|
7
|
Li J, Andreyev O, Chen M, Marco M, Iwase H, Long C, Ayares D, Shen Z, Cooper DKC, Ezzelarab MB. Human T cells upregulate CD69 after coculture with xenogeneic genetically-modified pig mesenchymal stromal cells. Cell Immunol 2013; 285:23-30. [PMID: 24044963 DOI: 10.1016/j.cellimm.2013.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 07/24/2013] [Accepted: 08/20/2013] [Indexed: 12/29/2022]
Abstract
Mesenchymal stromal cells (MSC) obtained from α1,3-galactosyltransferase gene knock-out pigs transgenic for the human complement-regulatory protein CD46 (GTKO/CD46 pMSC) suppress in vitro human anti-pig cellular responses as efficiently as allogeneic human MSC. We investigated the immunoregulatory effects of GTKO/CD46 pMSC on human CD4(+) and CD8(+) T cell proliferation in response to pig aortic endothelial cells (pAEC). pMSC efficiently suppressed T cell proliferation, which was associated with downregulation of granzyme B expression. No induction of CD4(+)CD25(+)Foxp3(hi) regulatory T cells or T cell apoptosis was documented. In correlation with T cell proliferation, CD25 expression was upregulated on T cells in response to pAEC but not to pMSC. In contrast, CD69 expression was upregulated on T cells in response to both pMSC and pAEC, which was associated with a significant increase in the phosphorylation of STAT5. GTKO/CD46 pMSC possibly regulate human T cell responses through modulation of CD69 expression and STAT5 signaling.
Collapse
Affiliation(s)
- Jiang Li
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Transplantation Surgery, Tianjin First Center Hospital, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hermann BP, Sukhwani M, Winkler F, Pascarella JN, Peters KA, Sheng Y, Valli H, Rodriguez M, Ezzelarab M, Dargo G, Peterson K, Masterson K, Ramsey C, Ward T, Lienesch M, Volk A, Cooper DK, Thomson AW, Kiss JE, Penedo MCT, Schatten GP, Mitalipov S, Orwig KE. Spermatogonial stem cell transplantation into rhesus testes regenerates spermatogenesis producing functional sperm. Cell Stem Cell 2012; 11:715-26. [PMID: 23122294 PMCID: PMC3580057 DOI: 10.1016/j.stem.2012.07.017] [Citation(s) in RCA: 273] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 06/16/2012] [Accepted: 07/12/2012] [Indexed: 01/12/2023]
Abstract
Spermatogonial stem cells (SSCs) maintain spermatogenesis throughout a man's life and may have application for treating some cases of male infertility, including those caused by chemotherapy before puberty. We performed autologous and allogeneic SSC transplantations into the testes of 18 adult and 5 prepubertal recipient macaques that were rendered infertile with alkylating chemotherapy. After autologous transplant, the donor genotype from lentivirus-marked SSCs was evident in the ejaculated sperm of 9/12 adult and 3/5 prepubertal recipients after they reached maturity. Allogeneic transplant led to donor-recipient chimerism in sperm from 2/6 adult recipients. Ejaculated sperm from one recipient transplanted with allogeneic donor SSCs were injected into 85 rhesus oocytes via intracytoplasmic sperm injection. Eighty-one oocytes were fertilized, producing embryos ranging from four-cell to blastocyst with donor paternal origin confirmed in 7/81 embryos. This demonstration of functional donor spermatogenesis following SSC transplantation in primates is an important milestone for informed clinical translation.
Collapse
Affiliation(s)
- Brian P. Hermann
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Center for Research in Reproductive Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Magee-Womens Research Institute, Pittsburgh, PA 15213
| | | | | | | | | | - Yi Sheng
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Magee-Womens Research Institute, Pittsburgh, PA 15213
| | - Hanna Valli
- Molecular Genetics and Developmental Biology Graduate Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Magee-Womens Research Institute, Pittsburgh, PA 15213
| | | | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Gina Dargo
- Hemapheresis Department, ITxM Diagnostics Pittsburgh, PA 15213
| | - Kim Peterson
- Hemapheresis Department, ITxM Diagnostics Pittsburgh, PA 15213
| | - Keith Masterson
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Cathy Ramsey
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Thea Ward
- Veterinary Genetics Laboratory, University of California Davis, CA 95616
| | | | | | - David K. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Angus W. Thomson
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
| | - Joseph E. Kiss
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Hemapheresis Department, ITxM Diagnostics Pittsburgh, PA 15213
| | | | - Gerald P. Schatten
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Magee-Womens Research Institute, Pittsburgh, PA 15213
| | - Shoukhrat Mitalipov
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Oregon Stem Cell Center , Oregon Health & Science University, Beaverton, OR 97006
- Departments of Obstetrics & Gynecology and Molecular & Medical Genetics, Oregon Health & Science University, Beaverton, OR 97006
| | - Kyle E. Orwig
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Center for Research in Reproductive Physiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260
- Magee-Womens Research Institute, Pittsburgh, PA 15213
| |
Collapse
|
9
|
Wilhite T, Ezzelarab C, Hara H, Long C, Ayares D, Cooper DKC, Ezzelarab M. The effect of Gal expression on pig cells on the human T-cell xenoresponse. Xenotransplantation 2012; 19:56-63. [PMID: 22360754 DOI: 10.1111/j.1399-3089.2011.00691.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lack of Gal expression on pig cells is associated with a reduced primate humoral immune response as well as a reduction in cytokine production by human cells in vitro. We investigated whether lack of Gal expression is associated with reduced human T-cell response in vitro. METHODS Peripheral blood mononuclear cells (PBMCs) were obtained from healthy humans and naïve baboons. Human CD4+ and CD8+ T cells were isolated. Porcine aortic endothelial cells (pAECs) were isolated from wild-type (WT) and α1,3-galactosyltransferase gene-knockout (GTKO) pigs. WT pAECs were treated with α-galactosidase, reducing Gal expression. Swine leukocyte antigen (SLA) class I and II expression on pAECs was measured, as was T-cell proliferation and cytokine production in response to pAECs. RESULTS Reduced Gal expression on WT pAECs after α-galactosidase treatment was associated with reduced human PBMC proliferation (P<0.005). SLA class I and II expression on WT and GTKO pAECs was comparable. Human CD4+ and CD8+ T-cell proliferation was less against GTKO pAECs before (P<0.001) and after (P<0.01 and P<0.05, respectively) activation. Human and baboon PBMC proliferation was less against GTKO pAECs before (P<0.05) and after (P<0.01 and P<0.05, respectively) activation. Human PBMCs produced a comparable cytokine/chemokine response to WT and GTKO pAECs. However, there was less production of IFN-γ/TNF-α by CD4+ and IFN-γ/granzyme B/IP-10 by CD8+ T cells in response to GTKO pAECs. CONCLUSIONS The absence of Gal on pig cells is associated with reduced human T-cell proliferation (and possibly selected cytokine production). Adaptive primate T-cell responses are likely to be reduced in GTKO xenograft recipients.
Collapse
Affiliation(s)
- Tyler Wilhite
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Dons EM, Montoya C, Long CE, Hara H, Echeverri GJ, Ekser B, Ezzelarab C, Medellin DR, van der Windt DJ, Murase N, Rigatti LH, Wagner R, Wolf RF, Ezzelarab M, West LJ, Ijzermans JNM, Cooper DKC. T-cell-based immunosuppressive therapy inhibits the development of natural antibodies in infant baboons. Transplantation 2012; 93:769-76. [PMID: 22441321 PMCID: PMC3776575 DOI: 10.1097/tp.0b013e3182481168] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND We set out to determine whether B-cell tolerance to A/B-incompatible alloantigens and pig xenoantigens could be achieved in infant baboons. METHODS Artery patch grafts were implanted in the abdominal aorta in 3-month-old baboons using A/B-incompatible (AB-I) allografts or wild-type pig xenografts (pig). Group 1 (Gp1) (controls, n=6) received no immunosuppressive therapy (IS) and no graft. Gp2 (n=2) received an AB-I or pig graft but no IS. Gp3 received AB-I grafts+IS (Gp3A: n=2) or pig grafts+IS (Gp3B: n=2). IS consisted of ATG, anti-CD154mAb, and mycophenolate mofetil until age 8 to 12 months. Gp4 (n=2) received IS only but no graft. RESULTS In Gp1, anti-A/B and cytotoxic anti-pig immunoglobulin-M increased steadily during the first year. Gp2 became sensitized to donor-specific AB-I or pig antigens within 2 weeks. Gp3 and Gp4 infants that received anti-CD154mAb made no or minimal anti-A/B and anti-pig antibodies while receiving IS. DISCUSSION The production of natural anti-A/B and anti-pig antibodies was inhibited by IS with anti-CD154mAb, even in the absence of an allograft or xenograft, suggesting that natural antibodies may not be entirely T-cell independent. These data are in contrast to clinical experience with AB-I allotransplantation in infants, who cease producing only donor-specific antibodies.
Collapse
Affiliation(s)
- Eefje M. Dons
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Surgery, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Claudia Montoya
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Cassandra E. Long
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Gabriel J. Echeverri
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Burcin Ekser
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Corin Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Dasha Roa Medellin
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Dirk J. van der Windt
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
- Department of Surgery, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Noriko Murase
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lora H. Rigatti
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA
| | - Robert Wagner
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, PA
| | - Roman F. Wolf
- Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Mohamed Ezzelarab
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Lori J. West
- Department of Pediatrics, Cardiac Transplant Research, University of Alberta, Edmonton, AL, Canada
| | - Jan N. M. Ijzermans
- Department of Surgery, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands
| | - David K. C. Cooper
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
11
|
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DKC. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379:672-83. [PMID: 22019026 DOI: 10.1016/s0140-6736(11)61091-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shortage of organs and cells from deceased individuals continues to restrict allotransplantation. Pigs could provide an alternative source of tissue and cells but the immunological challenges and other barriers associated with xenotransplantation need to be overcome. Transplantation of organs from genetically modified pigs into non-human primates is now not substantially limited by hyperacute, acute antibody-mediated, or cellular rejection, but other issues have become more prominent, such as development of thrombotic microangiopathy in the graft or systemic consumptive coagulopathy in the recipient. To address these problems, pigs that express one or more human thromboregulatory or anti-inflammatory genes are being developed. The results of preclinical transplantation of pig cells--eg, islets, neuronal cells, hepatocytes, or corneas--are much more encouraging than they are for organ transplantation, with survival times greater than 1 year in all cases. Risk of transfer of an infectious microorganism to the recipient is small.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
van der Windt DJ, Dons EM, Montoya CL, Ezzelarab M, Long C, Wolf RF, Ijzermans JNM, Lakkis FG, Cooper DKC. T-lymphocyte homeostasis and function in infant baboons: implications for transplantation. Transpl Int 2012; 25:218-28. [PMID: 22093092 DOI: 10.1111/j.1432-2277.2011.01384.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Laboratory mice are born lymphopenic and demonstrate lymphopenia-induced proliferation that generates memory T cells, yet they are prone to immunologic tolerance. Here we tested whether these fundamental immunologic observations apply to higher animals by studying the immune system of infant baboons. Using flow cytometry of the peripheral blood cells, it was found that baboons are born relatively lymphopenic and subsequently expand their initially naïve T cell pool with increasing numbers of memory T cells. After transplantation of an artery patch allograft or xenograft, non-immunosuppressed recipients readily mounted an immune response against donor-type antigens, as evidenced by mixed lymphocyte reaction. Immunosuppression with anti-thymocyte globulin (ATG), anti-CD154 mAb, and mycophenolate mofetil prevented T cell-mediated rejection. After lymphocyte depletion with ATG, homeostatic T cell proliferation was observed. In conclusion, the baboon proved a suitable model to investigate the infant immune system. In this study, neonatal lymphopenia and expansion of the memory T cell population were observed but, unlike mice, there were no indications that infant baboons are prone to T cell tolerance. The expansion of memory T cells during the neonatal period or after induction therapy may actually form an obstacle to tapering immunosuppressive therapy, or ultimately achieving immunologic tolerance.
Collapse
Affiliation(s)
- Dirk J van der Windt
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kumar G, Hara H, Long C, Shaikh H, Ayares D, Cooper DKC, Ezzelarab M. Adipose-derived mesenchymal stromal cells from genetically modified pigs: immunogenicity and immune modulatory properties. Cytotherapy 2012; 14:494-504. [PMID: 22264190 DOI: 10.3109/14653249.2011.651529] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND AIMS The immunomodulatory and anti-inflammatory effects of mesenchymal stromal cells (MSC) could prove to be a potential therapeutic approach for prolongation of survival of cell xenotransplantation. Adipose (Ad) MSC from genetically modified pigs could be an abundant source of pig donor-specific MSC. METHODS Pig (p) MSC were isolated from adipose tissue of α1,3-galactosyltransferase gene knock-out pigs transgenic for human (h) CD46 (GTKO/hCD46), a potential source of islets. After characterization with differentiation and flow cytometry (FCM), AdMSC were compared with bone marrow (BM) MSC of the same pig and human adipose-derived (hAd) MSC. The modulation of human peripheral blood mononuclear cell (hPBMC) responses to GTKO pig aortic endothelial cells (pAEC) by different MSC was compared by measuring 3H-thymidine uptake. The supernatants from the AdMSC cultures were used to determine the role of soluble factors. RESULTS GTKO/hCD46 pAdMSC (i) did not express galactose-α1,3-galactose (Gal) but expressed hCD46, (ii) differentiated into chondroblasts, osteocytes and adipocytes, (iii) expressed stem cell markers, (iv) expressed lower levels of Swine Leucocyte Antigen I (SLAI), Swine Leucocyte Antigen II DR (SLAIIDR) and CD80 than pAEC before and after pig interferon (IFN)-γ stimulation. The proliferative responses of hPBMC to GTKO/hCD46 pAdMSC and hAdMSC stimulators were similar, and both were significantly lower than to GTKO pAEC (P < 0.05). The proliferation of hPBMC to GTKO pAEC was equally suppressed by GTKO/hCD46 pAdMSC and hAdMSC (P > 0.05). The supernatant from GTKO/hCD46 pAdMSC did not suppress the human xenoresponse to GTKO pAEC, which was cell-cell contact-dependent. CONCLUSIONS Initial evidence suggests that genetically modified pAdMSC function across the xenogeneic barrier and may have a role in cellular xenotransplantation.
Collapse
Affiliation(s)
- Goutham Kumar
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Koshika T, Phelps C, Fang J, Lee SE, Fujita M, Ayares D, Cooper DKC, Hara H. Relative efficiency of porcine and human cytotoxic T-lymphocyte antigen 4 immunoglobulin in inhibiting human CD4+ T-cell responses co-stimulated by porcine and human B7 molecules. Immunology 2012; 134:386-97. [PMID: 22043861 DOI: 10.1111/j.1365-2567.2011.03496.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
α1,3-Galactosyltransferase gene-knockout pigs transgenic for porcine cytotoxic T-lymphocyte antigen 4 immunoglobulin (pCTLA4-Ig) have been produced to reduce T-cell-mediated rejection following xenotransplantation. The level of soluble pCTLA4-Ig in their blood was greatly in excess of the therapeutic level in patients, rendering the pigs immune-incompetent. Soluble pCTLA4-Ig produced by these transgenic pigs was evaluated for binding to porcine and human (h) B7 molecules, and for its inhibitory effect on allogeneic and xenogeneic human T-cell responses. Porcine CTLA4-Ig-expressing peripheral blood mononuclear cells (PBMCs) and aortic endothelial cells (AECs) were evaluated for their direct inhibitory effect on hCD4+ T-cell responses. Soluble pCTLA4-Ig and purified hCTLA4-Ig showed similar binding to pB7 molecules, but pCTLA4-Ig showed significantly less binding to hB7 molecules. The pCTLA4-Ig and hCTLA4-Ig inhibited the response of hCD4+ T cells to pAECs equally, but pCTLA4-Ig was less successful in inhibiting the human allogeneic response. The hCD4+ T-cell response to PBMCs from pCTLA4-Ig pigs was significantly lower than that of non-pCTLA4-Ig pigs. Although pCTLA4-Ig was detected in the cytoplasm of pCTLA4-Ig-expressing pAECs, only a minimal level of soluble pCTLA4-Ig was detected in the supernatant during culture, and pCTLA4-Ig-expressing pAECs did not inhibit the xenogeneic direct human T-cell response. High-level tissue-specific production of pCTLA4-Ig may be required for sufficient immunosuppression for organ or cell (e.g., islets) transplantation.
Collapse
Affiliation(s)
- Tadatsura Koshika
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, PA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ezzelarab M, Ezzelarab C, Wilhite T, Kumar G, Hara H, Ayares D, Cooper DKC. Genetically-modified pig mesenchymal stromal cells: xenoantigenicity and effect on human T-cell xenoresponses. Xenotransplantation 2011; 18:183-95. [PMID: 21696448 DOI: 10.1111/j.1399-3089.2011.00635.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Mesenchymal stromal cells (MSC) are being investigated as immunomodulatory therapy in the field of transplantation, particularly islet transplantation. While MSC can regenerate across species barriers, the immunoregulatory influence of genetically modified pig MSC (pMSC) on the human and non-human primate T-cell responses has not been studied. METHODS Mesenchymal stromal cells from wild-type (WT), α1,3-galactosyltransferase gene knockout (GTKO) and GTKO pigs transgenic for the human complement-regulatory protein CD46 (GTKO/CD46) were isolated and tested for differentiation. Antibody binding and T-cell responses to WT and GTKO pMSC in comparison with GTKO pig aortic endothelial cells (pAEC) were investigated. The expression of swine leukocyte antigen (SLA) class II (SLA II) was tested. Costimulatory molecules CD80 and CD86 mRNA levels were measured. Human T-cell proliferation and the production of pro-inflammatory cytokines in response to GTKO and GTKO/CD46 pMSC in comparison with human MSC (hMSC) were evaluated. RESULTS α1,3-galactosyltransferase gene knockout and GTKO/CD46 pMSC isolation and differentiation were achieved in vitro. Binding of human antibodies and T-cell responses were lower to GTKO than those to WT pMSC. Human and baboon (naïve and sensitized) antibody binding were significantly lower to GTKO pMSC than to GTKO pAEC. Before activation, <1% of GTKO pMSC expressed SLA II, compared with 2.5% of GTKO pAEC. After pig interferon-gamma (pIFN-γ) activation, 99% of GTKO pAEC upregulated SLA II expression, compared with 49% of GTKO pMSC. Only 3% of GTKO pMSC expressed CD80 compared with 80% of GTKO pAEC without activation. After pIFN-γ activation, GTKO pAEC upregulated CD86 mRNA level stronger than GTKO pMSC. The human CD4(+) T-cell response to GTKO pMSC was significantly weaker than that to GTKO pAEC, even after pIFN-γ activation. More than 99% of GTKO/CD46 pMSC expressed hCD46. Human peripheral blood mononuclear cells and CD4(+) T-cell responses to GTKO and GTKO/CD46 pMSC were comparable with those to hMSC, and all were significantly lower than to GTKO pAEC. GTKO/CD46 pMSC downregulated human T-cell proliferation as efficiently as hMSC. The level of proinflammatory cytokines IL-2, IFN-γ, TNF-α, and sCD40L correlated with the downregulation of T-cell proliferation by all types of MSC. CONCLUSION Genetically modified pMSC is significantly less immunogenic than WT pMSC. GTKO/CD46 pMSC downregulates the human T-cell responses to pig antigens as efficiently as human MSC, which can be advantageous for therapeutic cell xenotransplantation.
Collapse
Affiliation(s)
- Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, 200 Lothrop Street,Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Hara H, Koike N, Long C, Piluek J, Roh DS, SundarRaj N, Funderburgh JL, Mizuguchi Y, Isse K, Phelps CJ, Ball SF, Ayares DL, Cooper DKC. Initial in vitro investigation of the human immune response to corneal cells from genetically engineered pigs. Invest Ophthalmol Vis Sci 2011; 52:5278-86. [PMID: 21596821 DOI: 10.1167/iovs.10-6947] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE To compare the in vitro human humoral and cellular immune responses to wild-type (WT) pig corneal endothelial cells (pCECs) with those to pig aortic endothelial cells (pAECs). These responses were further compared with CECs from genetically engineered pigs (α1,3-galactosyltransferase gene-knockout [GTKO] pigs and pigs expressing a human complement-regulatory protein [CD46]) and human donors. METHODS The expression of Galα1,3Gal (Gal), swine leukocyte antigen (SLA) class I and class II on pCECs and pAECs, with or without activation by porcine IFN-γ, was tested by flow cytometry. Pooled human serum was used to measure IgM/IgG binding to and complement-dependent cytotoxicity (CDC) to cells from WT, GTKO, and GTKO/CD46 pigs. The human CD4(+) T-cell response to cells from WT, GTKO, GTKO/CD46 pigs and human was tested by mixed lymphocyte reaction (MLR). RESULTS There was a lower level of expression of the Gal antigen and of SLA class I and II on the WT pCECs than on the WT pAECs, resulting in less antibody binding and reduced human CD4(+) T-cell proliferation. However, lysis of the WT pCECs was equivalent to that of the pAECs, suggesting more susceptibility to injury. There were significantly weaker humoral and cellular responses to the pCECs from GTKO/CD46 pigs compared with the WT pCECs, although the cellular response to the GTKO/CD46 pCECs was greater than to the human CECs. CONCLUSIONS These data provide the first report of in vitro investigations of CECs from genetically engineered pigs and suggest that pig corneas may provide an acceptable alternative to human corneas for clinical transplantation.
Collapse
Affiliation(s)
- Hidetaka Hara
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Y, Chang H, Zou J, Jin X, Qi Z. The effect of atorvastatin on mRNA levels of inflammatory genes expression in human peripheral blood lymphocytes by DNA microarray. Biomed Pharmacother 2011; 65:118-22. [DOI: 10.1016/j.biopha.2010.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/07/2010] [Indexed: 11/15/2022] Open
|
18
|
Lin CC, Ezzelarab M, Hara H, Long C, Lin CW, Dorling A, Cooper DKC. Atorvastatin or transgenic expression of TFPI inhibits coagulation initiated by anti-nonGal IgG binding to porcine aortic endothelial cells. J Thromb Haemost 2011. [PMID: 20553382 DOI: 10.1111/j.1538-7836.2010.03950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Intravascular thrombosis remains a barrier to successful xenotransplantation. Tissue factor (TF) expression on porcine aortic endothelial cells (PAECs), which results from their activation by xenoreactive antibodies (Abs) to Galα1,3Gal (Gal) and subsequent complement activation, plays an important role. OBJECTIVES The present study aimed to clarify the role of Abs directed against nonGal antigens in the activation of PAECs to express functional TF and to investigate selected methods of inhibiting TF activity. METHODS PAECs from wild-type (WT), α1,3-galactosyltransferase gene-knockout (GT-KO) pigs, or pigs transgenic for CD46 or tissue factor pathway inhibitor (TFPI), were incubated with naïve baboon serum (BS) or sensitized BS (with high anti-nonGal Ab levels). TF activity of PAECs was assessed. RESULTS Only fresh, but not heat-inactivated (HI), naïve BS activated WT PAECs to express functional TF. Similarly, PAECs from CD46 pigs were resistant to activation by naïve BS, but not to activation by fresh or HI sensitized BS. HI sensitized BS also activated GT-KO PAECs to induce TF activity. TF expression on PAECs induced by anti-nonGal Abs was inhibited if serum was pretreated with (i) an anti-IgG Fab Ab or (ii) atorvastatin, or (iii) when PAECs were transgenic for TFPI. CONCLUSIONS Anti-nonGal IgG Abs activated PAECs to induce TF activity through a complement-independent pathway. This implies that GT-KO pigs expressing a complement-regulatory protein may be insufficient to prevent the activation of PAECs. Genetic modification with an 'anticoagulant' gene (e.g. TFPI) or a therapeutic approach (e.g. atorvastatin) will be required to prevent coagulation dysregulation after pig-to-primate organ transplantation.
Collapse
Affiliation(s)
- C C Lin
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Chamberlain MD, Gupta R, Sefton MV. Chimeric vessel tissue engineering driven by endothelialized modules in immunosuppressed Sprague-Dawley rats. Tissue Eng Part A 2010; 17:151-60. [PMID: 20695789 DOI: 10.1089/ten.tea.2010.0293] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modular tissue engineering is a means of building functional, vascularized tissues using small (∼1 mm long×0.5 mm diameter) components. While this approach is being explored for its utility in adipose and cardiac tissue engineering and in islet transplantation, the initial question in this study was to assess the fate of the endothelial cells (EC) after transplantation delivered on the surface of modules, without an embedded cell. Rat aortic EC-covered collagen gel modules were transplanted into the omental pouch of allogeneic (outbred) Sprague-Dawley rats with and without immunosuppressive drug treatment (atorvastatin and tacrolimus) for 3-60 days. There was a significant increase in vessel density at all time points in the drug treated rats as compared to untreated rats. Green fluorescent protein (GFP)-positive donor rat aortic EC migrated from the surface of the modules and formed primitive vessels by day 7. In the untreated rats, the GFP-positive cells were not seen after day 7. In drug-treated rats, GFP-positive vessels matured over time, accumulated erythrocytes, were supported by host smooth muscle cells, and formed chimeric vessels that survived until day 60. This resulted in the formation of a densely vascularized, perfusable network by day 60. To our knowledge, this is the first study that demonstrates that primary unmodified EC, without the addition of supporting cells, form a chimeric and stable vascular bed in allogeneic, although drug-treated, animals.
Collapse
Affiliation(s)
- Michael Dean Chamberlain
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
20
|
Lin CC, Ezzelarab M, Hara H, Long C, Lin CW, Dorling A, Cooper DKC. Atorvastatin or transgenic expression of TFPI inhibits coagulation initiated by anti-nonGal IgG binding to porcine aortic endothelial cells. J Thromb Haemost 2010; 8:2001-10. [PMID: 20553382 PMCID: PMC2965779 DOI: 10.1111/j.1538-7836.2010.03950.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Intravascular thrombosis remains a barrier to successful xenotransplantation. Tissue factor (TF) expression on porcine aortic endothelial cells (PAECs), which results from their activation by xenoreactive antibodies (Abs) to Galα1,3Gal (Gal) and subsequent complement activation, plays an important role. OBJECTIVES The present study aimed to clarify the role of Abs directed against nonGal antigens in the activation of PAECs to express functional TF and to investigate selected methods of inhibiting TF activity. METHODS PAECs from wild-type (WT), α1,3-galactosyltransferase gene-knockout (GT-KO) pigs, or pigs transgenic for CD46 or tissue factor pathway inhibitor (TFPI), were incubated with naïve baboon serum (BS) or sensitized BS (with high anti-nonGal Ab levels). TF activity of PAECs was assessed. RESULTS Only fresh, but not heat-inactivated (HI), naïve BS activated WT PAECs to express functional TF. Similarly, PAECs from CD46 pigs were resistant to activation by naïve BS, but not to activation by fresh or HI sensitized BS. HI sensitized BS also activated GT-KO PAECs to induce TF activity. TF expression on PAECs induced by anti-nonGal Abs was inhibited if serum was pretreated with (i) an anti-IgG Fab Ab or (ii) atorvastatin, or (iii) when PAECs were transgenic for TFPI. CONCLUSIONS Anti-nonGal IgG Abs activated PAECs to induce TF activity through a complement-independent pathway. This implies that GT-KO pigs expressing a complement-regulatory protein may be insufficient to prevent the activation of PAECs. Genetic modification with an 'anticoagulant' gene (e.g. TFPI) or a therapeutic approach (e.g. atorvastatin) will be required to prevent coagulation dysregulation after pig-to-primate organ transplantation.
Collapse
Affiliation(s)
- C C Lin
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update: September-October 2008. Xenotransplantation 2009; 15:417-21. [PMID: 19152670 DOI: 10.1111/j.1399-3089.2008.00500.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mårten K J Schneider
- Department of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|
22
|
Cooper DK. Frankenswine, or bringing home the bacon: How close are we to clinical trials in xenotransplantation? Organogenesis 2008; 4:1-10. [PMID: 19279708 DOI: 10.4161/org.5383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/19/2022] Open
Abstract
Xenotransplantation-specifically from pig into human-could resolve the critical shortage of organs, tissues and cells for clinical transplantation. Genetic engineering techniques in pigs are relatively well-developed and to date have largely been aimed at producing pigs that either (1) express high levels of one or more human complement-regulatory protein(s), such as decay-accelerating factor or membrane cofactor protein, or (2) have deletion of the gene responsible for the expression of the oligosaccharide, Galalpha1,3Gal (Gal), the major target for human anti-pig antibodies, or (3) have both manipulations. Currently the transplantation of pig organs in adequately-immunosuppressed baboons results in graft function for periods of 2-6 months (auxiliary hearts) and 2-3 months (life-supporting kidneys). Pig islets have maintained normoglycemia in diabetic monkeys for >6 months. The remaining immunologic barriers to successful xenotransplantation are discussed, and brief reviews made of (1) the potential risk of the transmission of an infectious microorganism from pig to patient and possibly to the public at large, (2) the potential physiologic incompatibilities between a pig organ and its human counterpart, (3) the major ethical considerations of clinical xenotransplantation, and (4) the possible alternatives that compete with xenotransplantation in the field of organ or cell replacement, such as mechanical devices, tissue engineering, stem cell biology and organogenesis. Finally, the proximity of clinical trials is discussed. Islet xenotransplantation is already at the stage where clinical trials are actively being considered, but the transplantation of pig organs will probably require further genetic modifications to be made to the organ-source pigs to protect their tissues from the coagulation/anticoagulation dysfunction that plays a significant role in pig graft failure after transplantation in primates.
Collapse
Affiliation(s)
- David Kc Cooper
- Thomas E. Starzl Transplantation Institute; Department of Surgery; University of Pittsburgh; Pittsburgh, Pennsylvania USA
| |
Collapse
|