1
|
Lamm V, Ekser B, Vagefi PA, Cooper DK. Bridging to Allotransplantation-Is Pig Liver Xenotransplantation the Best Option? Transplantation 2022; 106:26-36. [PMID: 33653996 PMCID: PMC10124768 DOI: 10.1097/tp.0000000000003722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the past 20 y, the number of patients in the United States who died while waiting for a human donor liver totaled >52 000. The median national wait time for patients with acute liver failure and the most urgent liver transplant listing was 7 d in 2018. The need for a clinical "bridge" to allotransplantation is clear. Current options for supporting patients with acute liver failure include artificial liver support devices, extracorporeal liver perfusion, and hepatocyte transplantation, all of which have shown mixed results with regard to survival benefit and are largely experimental. Progress in the transplantation of genetically engineered pig liver grafts in nonhuman primates has grown steadily, with survival of the pig graft extended to almost 1 mo in 2017. Further advances may justify consideration of a pig liver transplant as a clinical bridge to allotransplantation. We provide a brief history of pig liver xenotransplantation, summarize the most recent progress in pig-to-nonhuman primate liver transplantation models, and suggest criteria that may be considered for patient selection for a clinical trial of bridging by genetically engineered pig liver xenotransplantation to liver allotransplantation.
Collapse
Affiliation(s)
- Vladimir Lamm
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO
| | - Burcin Ekser
- Division of Transplant Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN
| | - Parsia A. Vagefi
- Division of Surgical Transplantation, Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TX
| | - David K.C. Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
2
|
Kasraeian M, Ghasemi E, Dianatpour M, Tanideh N, Razeghian IJ, Khodabandeh Z, Dorvash MR, Zare S, Koohi Hosseinabadi O, Tamadon A. In utero xenotransplantation of mice bone marrow-derived stromal/stem cells into fetal rat liver: An experimental study. Int J Reprod Biomed 2020; 18:701-712. [PMID: 33062916 PMCID: PMC7521162 DOI: 10.18502/ijrm.v13i9.7665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 02/16/2020] [Accepted: 05/16/2020] [Indexed: 12/20/2022] Open
Abstract
Background Animals can play an important role in preparing tissues for human through the development of xenotransplantation protocols. The most common problem with liver transplantation like any other organ transplantation is organ supply shortage. Objective To evaluate the in utero xenotransplantation of mouse bone marrow-derived stromal/stem cells (BMSCs) to the liver of rat fetus to produce mouse liver tissue. Materials and Methods BMSCs were isolated and confirmed from enhanced green fluorescent protein (eGFP)-genetic labeled mice. Using a microinjection protocol, mice BMSCs were injected into the liver of rat fetuses in utero on day 14 of pregnancy. After birth, livers were collected and the presence of mice eGFP-positive cells in rat livers was evaluated through polymerase chain reaction. Results The eGFP mRNA was detected in the liver of injected infant rats. BMSCs of adult mice were capable to remain functional probably as hepatocyte-like cells in liver of infant rats after in utero xenotransplantation. Conclusion BMSCs have the potential for intrauterine xenotransplantation for the treatment of liver dysfunction before birth. This method can also be used for xenoproduction of liver tissue for transplantation.
Collapse
Affiliation(s)
- Maryam Kasraeian
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Research Center, Perinatology Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Ghasemi
- Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Research Center, Perinatology Ward, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Human Genetic, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmacology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Dorvash
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, the Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
3
|
Furuta T, Furuya K, Zheng YW, Oda T. Novel alternative transplantation therapy for orthotopic liver transplantation in liver failure: A systematic review. World J Transplant 2020; 10:64-78. [PMID: 32257850 PMCID: PMC7109592 DOI: 10.5500/wjt.v10.i3.64] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/10/2020] [Accepted: 03/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the only treatment for end-stage liver failure; however, graft shortage impedes its applicability. Therefore, studies investigating alternative therapies are plenty. Nevertheless, no study has comprehensively analyzed these therapies from different perspectives.
AIM To summarize the current status of alternative transplantation therapies for OLT and to support future research.
METHODS A systematic literature search was performed using PubMed, Cochrane Library and EMBASE for articles published between January 2010 and 2018, using the following MeSH terms: [(liver transplantation) AND cell] OR [(liver transplantation) AND differentiation] OR [(liver transplantation) AND organoid] OR [(liver transplantation) AND xenotransplantation]. Various types of studies describing therapies to replace OLT were retrieved for full-text evaluation. Among them, we selected articles including in vivo transplantation.
RESULTS A total of 89 studies were selected. There are three principle forms of treatment for liver failure: Xeno-organ transplantation, scaffold-based transplantation, and cell transplantation. Xeno-organ transplantation was covered in 14 articles, scaffold-based transplantation was discussed in 22 articles, and cell transplantation was discussed in 53 articles. Various types of alternative therapies were discussed: Organ liver, 25 articles; adult hepatocytes, 31 articles; fetal hepatocytes, three articles; mesenchymal stem cells (MSCs), 25 articles; embryonic stem cells, one article; and induced pluripotent stem cells, three articles and other sources. Clinical applications were discussed in 12 studies: Cell transplantation using hepatocytes in four studies, five studies using umbilical cord-derived MSCs, three studies using bone marrow-derived MSCs, and two studies using hematopoietic stem cells.
CONCLUSION The clinical applications are present only for cell transplantation. Scaffold-based transplantation is a comprehensive treatment combining organ and cell transplantations, which warrants future research to find relevant clinical applications.
Collapse
Affiliation(s)
- Tomoaki Furuta
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Kinji Furuya
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| | - Yun-Wen Zheng
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
- Institute of Regenerative Medicine and Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu Province, China
- Department of Regenerative Medicine, School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
- Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Tatsuya Oda
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba-shi 305-8575, Ibaraki, Japan
| |
Collapse
|
4
|
Abstract
There is a well-known worldwide shortage of deceased human donor organs for clinical transplantation. The transplantation of organs from genetically engineered pigs may prove an alternative solution. In the past 5 years, there have been sequential advances that have significantly increased pig graft survival in nonhuman primates. This progress has been associated with (1) the availability of increasingly sophisticated genetically engineered pigs; (2) the introduction of novel immunosuppressive agents, particularly those that block the second T-cell signal (costimulation blockade); (3) a better understanding of the inflammatory response to pig xenografts; and (4) increasing experience in the management of nonhuman primates with pig organ or cell grafts. The range of investigations required in experimental studies has increased. The standard immunologic assays are still carried out, but increasingly investigations aimed toward other pathobiologic barriers (e.g., coagulation dysregulation and inflammation) have become more important in determining injury to the graft.Now that prolonged graft survival, extending to months or even years, is increasingly being obtained, the function of the grafts can be more reliably assessed. If the source pigs are bred and housed under biosecure isolation conditions, and weaned early from the sow, most microorganisms can be eradicated from the herd. The potential risk of porcine endogenous retrovirus (PERV) infection remains unknown, but is probably small. Attention is being directed toward the selection of patients for the first clinical trials of xenotransplantation.
Collapse
Affiliation(s)
- David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
5
|
|
6
|
Navarro-Alvarez N, Machaidze Z, Schuetz C, Zhu A, Liu WH, Shah JA, Vagefi PA, Elias N, Buhler L, Sachs DH, Markmann JF, Yeh H. Xenogeneic Heterotopic Auxiliary Liver transplantation (XHALT) promotes native liver regeneration in a Post-Hepatectomy Liver failure model. PLoS One 2018; 13:e0207272. [PMID: 30462716 PMCID: PMC6248961 DOI: 10.1371/journal.pone.0207272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/29/2018] [Indexed: 01/10/2023] Open
Abstract
The liver’s regenerative capacity is unique, but too small a segment can overwhelm its ability to simultaneously regenerate and support the host, resulting in liver dysfunction and death. Here we tested a temporary Xenogeneic Heterotopic Auxiliary Liver Transplant (XHALT) from Gal-KO miniature swine in a baboon model of Post-Hepatectomy Liver Failure (PHLF) by 90%- hepatectomy. Immunosuppression consisted of CVF, ATG, FK 506 and steroids. 90%-hepatectomized animals died within 4–5 days with the clinical picture of PHLF, (high LFTs and bilirubin, ascites, encephalopathy and coagulopathy). The 10% remnants had macroscopic and histological evidence of severe steatosis and absence of hepatocyte replication. In contrast, the addition of XHALT prolonged survival up to 11 days, with the cause of death being sepsis, rather than liver failure. The remnant liver appeared grossly normal, and on histology, there was no evidence of fatty infiltration, but there was pronounced Ki-67 staining. In conclusion, temporary auxiliary xenografts have the potential to support a small for size liver graft while it grows to adequate size or provide an opportunity for organ recovery in acute liver failure.
Collapse
Affiliation(s)
- Nalu Navarro-Alvarez
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Zurab Machaidze
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Christian Schuetz
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Alexander Zhu
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Wei-hui Liu
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Jigesh A. Shah
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Parsia A. Vagefi
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Nahel Elias
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Leo Buhler
- University of Geneva School of Medicine, Geneva, Switzerland
| | - David H. Sachs
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - James F. Markmann
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
| | - Heidi Yeh
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Martínez-Alarcón L, Ríos A, Ramis G, Quereda J, Herrero J, Mendonça L, Muñoz A, Hernández A, Ramírez P, Parrilla P. Impact of 2009 Pandemic H1N1 Influenza A Virus on Veterinary Students' Perception of Xenotransplantation. Transplant Proc 2018; 50:2291-2295. [DOI: 10.1016/j.transproceed.2018.02.178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/26/2018] [Indexed: 12/24/2022]
|
8
|
Wang L, Cooper DKC, Burdorf L, Wang Y, Iwase H. Overcoming Coagulation Dysregulation in Pig Solid Organ Transplantation in Nonhuman Primates: Recent Progress. Transplantation 2018; 102:1050-1058. [PMID: 29538262 PMCID: PMC7228622 DOI: 10.1097/tp.0000000000002171] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/26/2018] [Indexed: 01/17/2023]
Abstract
There has recently been considerable progress in the results of pig organ transplantation in nonhuman primates, largely associated with the availability of (i) pigs genetically engineered to overcome coagulation dysregulation, and (ii) novel immunosuppressive agents. The barriers of thrombotic microangiopathy and/or consumptive coagulation were believed to be associated with (i) activation of the graft vascular endothelial cells by a low level of antipig antibody binding and/or complement deposition and/or innate immune cell activity, and (ii) molecular incompatibilities between the nonhuman primate and pig coagulation-anticoagulation systems. The introduction of a human coagulation-regulatory transgene, for example, thrombomodulin, endothelial protein C receptor, into the pig vascular endothelial cells has contributed to preventing a procoagulant state from developing, resulting in a considerable increase in graft survival. In the heterotopic (non-life-supporting) heart transplant model, graft survival has increased from a maximum of 179 days in 2005 to 945 days. After life-supporting kidney transplantation, survival has been extended from 90 days in 2004 to 499 days. In view of the more complex coagulation dysfunction seen after pig liver and, particularly, lung transplantation, progress has been less dramatic, but the maximum survival of a pig liver has been increased from 7 days in 2010 to 29 days, and of a pig lung from 4 days in 2007 to 9 days. There is a realistic prospect that the transplantation of a kidney or heart, in combination with a conventional immunosuppressive regimen, will enable long-term recipient survival.
Collapse
Affiliation(s)
- Liaoran Wang
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - David K C Cooper
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
| | - Lars Burdorf
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Yi Wang
- Second Affiliated Hospital, University of South China, Hengyang City, Hunan, China
| | - Hayato Iwase
- Xenotransplantation Program, Department of Surgery, University of Alabama at Birmingham, Birmingham AL
| |
Collapse
|
9
|
Lee JY, Park JH, Cho DW. Comparison of tracheal reconstruction with allograft, fresh xenograft and artificial trachea scaffold in a rabbit model. J Artif Organs 2018; 21:325-331. [PMID: 29752586 DOI: 10.1007/s10047-018-1045-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/04/2018] [Indexed: 12/31/2022]
Abstract
This study evaluated the possibility of tracheal reconstruction with allograft, pig-to-rabbit fresh xenograft or use of a tissue-engineered trachea, and compared acute rejection of three different transplanted tracheal segments in rabbits. Eighteen healthy New Zealand White rabbits weighing 2.5-3.1 kg were transplanted with three different types of trachea substitutes. Two rabbits and two alpha 1, 3-galactosyltransferase gene-knockout pigs weighing 5 kg were used as donors. The rabbits were divided into three groups: an allograft control group consisting of rabbit-to-rabbit allotransplantation animals (n = 6), a fresh xenograft group consisting of pig-to-rabbit xenotransplantation animals (n = 6), and an artificial trachea scaffold group (n = 6). All animals were monitored for 4 weeks for anastomotic complications or infection. The recipients were sacrificed at 28 days after surgery and the grafts were evaluated. On bronchoscopy, all of the fresh xenograft group animals showed ischemic and necrotic changes at 28 days after trachea replacement. The allograft rabbits and the tissue-engineered rabbits showed mild mucosal granulation. The levels of interleukin-2 and interferon-γ in the fresh xenograft group were higher than in other groups. Histopathologic examination of the graft in the fresh xenograft rabbits showed ischemic and necrotic changes, including a loss of epithelium, mucosal granulation, and necrosis of cartilaginous rings. The pig-to-rabbit xenografts showed more severe acute rejection within a month than the rabbits with allograft or artificial trachea-mimetic graft. In addition, the artificial tracheal scaffold used in the present experiment is superior to fresh xenograft and may facilitate tracheal reconstruction in the clinical setting.
Collapse
Affiliation(s)
- Jae Yeon Lee
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea
| | - Jeong Hun Park
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, Pohang, 790-784, Republic of Korea.
| |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW To review the progress in the field of xenotransplantation with special attention to most recent encouraging findings which will eventually bring xenotransplantation to the clinic in the near future. RECENT FINDINGS Starting from early 2000, with the introduction of galactose-α1,3-galactose (Gal)-knockout pigs, prolonged survival especially in heart and kidney xenotransplantation was recorded. However, remaining antibody barriers to non-Gal antigens continue to be the hurdle to overcome. The production of genetically engineered pigs was difficult requiring prolonged time. However, advances in gene editing, such as zinc finger nucleases, transcription activator-like effector nucleases, and most recently clustered regularly interspaced short palindromic repeats (CRISPR) technology made the production of genetically engineered pigs easier and available to more researchers. Today, the survival of pig-to-nonhuman primate heterotopic heart, kidney, and islet xenotransplantation reached more than 900, more than 400, and more than 600 days, respectively. The availability of multiple-gene pigs (five or six genetic modifications) and/or newer costimulation blockade agents significantly contributed to this success. Now, the field is getting ready for clinical trials with an international consensus. SUMMARY Clinical trials in cellular or solid organ xenotransplantation are getting closer with convincing preclinical data from many centers. The next decade will show us new achievements and additional barriers in clinical xenotransplantation.
Collapse
|
11
|
Febrero B, Ríos A, López-Navas A, Martínez-Alarcón L, Almela J, Ramis G, Ramírez P, Parrilla P. Teenagers and Their Future Role in Transplantation: An Analysis of Their Attitudes Toward Solid Organ Xenotransplantation. Transplant Proc 2018; 50:526-529. [DOI: 10.1016/j.transproceed.2017.09.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/21/2017] [Indexed: 01/13/2023]
|
12
|
Cooper DK, Wijkstrom M, Hariharan S, Chan JL, Singh A, Horvath K, Mohiuddin M, Cimeno A, Barth RN, LaMattina JC, Pierson RN. Selection of Patients for Initial Clinical Trials of Solid Organ Xenotransplantation. Transplantation 2017; 101:1551-1558. [PMID: 27906824 PMCID: PMC5453852 DOI: 10.1097/tp.0000000000001582] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Several groups have reported extended survival of genetically engineered pig organs in nonhuman primates, varying from almost 10 months for life-supporting kidney grafts and more than 2 years for non-life-supporting heart grafts to less than 1 month for life-supporting liver and lung grafts. We have attempted to define groups of patients who may not have an option to wait for an allograft. These include kidney, heart, and lung candidates who are highly-allosensitized. In addition, some kidney candidates (who have previously lost at least 2 allografts from rapid recurrence of native kidney disease) have a high risk of further recurrence and will not be offered a repeat allotransplant. Patients with complex congenital heart disease, who may have undergone previous palliative surgical procedures, may be unsuitable for ventricular assist device implantation. Patients dying of fulminant hepatic failure, for whom no alternative therapy is available, may be candidates for a pig liver, even if only as a bridge until an allograft becomes available. When the results of pig organ xenotransplantation in nonhuman primates suggest a realistic potential for success of a pilot clinical trial, highly selected patients should be offered participation.
Collapse
Affiliation(s)
- David K.C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Martin Wijkstrom
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Sundaram Hariharan
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA
| | - Joshua L. Chan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Avneesh Singh
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Keith Horvath
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Muhammad Mohiuddin
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Arielle Cimeno
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Rolf N. Barth
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - John C. LaMattina
- Division of Transplantation Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD
| | - Richard N. Pierson
- Division of Cardiac Surgery, Department of Surgery, University of Maryland, Baltimore VAMC, Baltimore, MD, USA
| |
Collapse
|
13
|
Abstract
Experience with clinical liver xenotransplantation has largely involved the transplantation of livers from nonhuman primates. Experience with pig livers has been scarce. This brief review will be restricted to assessing the potential therapeutic impact of pig liver xenotransplantation in acute liver failure and the remaining barriers that currently do not justify clinical trials. A relatively new surgical technique of heterotopic pig liver xenotransplantation is described that might play a role in bridging a patient with acute liver failure until either the native liver recovers or a suitable liver allograft is obtained. Other topics discussed include the possible mechanisms for the development of the thrombocytopenis that rapidly occurs after pig liver xenotransplantation in a primate, the impact of pig complement on graft injury, the potential infectious risks, and potential physiologic incompatibilities between pig and human. There is cautious optimism that all of these problems can be overcome by judicious genetic manipulation of the pig. If liver graft survival could be achieved in the absence of thrombocytopenia or rejection for a period of even a few days, there may be a role for pig liver transplantation as a bridge to allotransplantation in carefully selected patients.
Collapse
|
14
|
Mattei G, Magliaro C, Pirone A, Ahluwalia A. Decellularized Human Liver Is Too Heterogeneous for Designing a Generic Extracellular Matrix Mimic Hepatic Scaffold. Artif Organs 2017; 41:E347-E355. [PMID: 28543403 DOI: 10.1111/aor.12925] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/24/2016] [Accepted: 01/04/2017] [Indexed: 12/12/2022]
Abstract
Decellularized human livers are considered the perfect extracellular matrix (ECM) surrogate because both three-dimensional architecture and biological features of the hepatic microenvironment are thought to be preserved. However, donor human livers are in chronically short supply, both for transplantation or as decellularized scaffolds, and will become even scarcer as life expectancy increases. It is hence of interest to determine the structural and biochemical properties of human hepatic ECM to derive design criteria for engineering biomimetic scaffolds. The intention of this work was to obtain quantitative design specifications for fabricating scaffolds for hepatic tissue engineering using human livers as a template. To this end, hepatic samples from five patients scheduled for hepatic resection were decellularized using a protocol shown to reproducibly conserve matrix composition and microstructure in porcine livers. The decellularization outcome was evaluated through histological and quantitative image analyses to evaluate cell removal, protein, and glycosaminoglycan content per unit area. Applying the same decellularization protocol to human liver samples obtained from five different patients yielded five different outcomes. Only one liver out of five was completely decellularized, while the other four showed different levels of remaining cells and matrix. Moreover, protein and glycosaminoglycan content per unit area after decellularization were also found to be patient- (or donor-) dependent. This donor-to-donor variability of human livers thus precludes their use as templates for engineering a generic "one-size fits all" ECM-mimic hepatic scaffold.
Collapse
Affiliation(s)
| | | | - Andrea Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | |
Collapse
|
15
|
Ekser B, Markmann JF, Tector AJ. Current status of pig liver xenotransplantation. Int J Surg 2015; 23:240-246. [PMID: 26190837 DOI: 10.1016/j.ijsu.2015.06.083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 06/28/2015] [Indexed: 12/26/2022]
Abstract
The shortage of organs from deceased human donors is a major problem limiting the number of organs transplanted each year and results in the death of thousands of patients on the waiting list. Pigs are currently the preferred species for clinical organ xenotransplantation. Progress in genetically-engineered (GE) pig liver xenotransplantation increased graft and recipient survival from hours with unmodified pig livers to up to 9 days with normal to near-normal liver function. Deletion of genes such as GGTA1 (Gal-knockout pigs) or adding genes such as human complement regulatory proteins (hCD55, hCD46 expressing pigs) enabled hyperacute rejection to be overcome. Although survival up to 9 days was recorded, extended pig graft survival was not achieved due to lethal thrombocytopenia. The current status of GE pig liver xenotransplantation with world experience, potential factors causing thrombocytopenia, new targets on pig endothelial cells, and novel GE pigs with more genes deletion to avoid remaining antibody response, such as beta1,4-N-acetyl galactosaminyl transferase 2 (β4GalNT2), are discussed.
Collapse
Affiliation(s)
- Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - James F Markmann
- Division of Transplantation, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
16
|
Ekser B, Cooper DKC, Tector AJ. The need for xenotransplantation as a source of organs and cells for clinical transplantation. Int J Surg 2015; 23:199-204. [PMID: 26188183 DOI: 10.1016/j.ijsu.2015.06.066] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 10/23/2022]
Abstract
The limited availability of deceased human organs and cells for the purposes of clinical transplantation remains critical worldwide. Despite the increasing utilization of 'high-risk', 'marginal', or 'extended criteria' deceased donors, in the U.S. each day 30 patients either die or are removed from the waiting list because they become too sick to undergo organ transplantation. In certain other countries, where there is cultural resistance to deceased donation, e.g., Japan, the increased utilization of living donors, e.g., of a single kidney or partial liver, only very partially addresses the organ shortage. For transplants of tissues and cells, e.g., pancreatic islet transplantation for patients with diabetes, and corneal transplantation for patients with corneal blindness (whose numbers worldwide are potentially in the millions), allotransplantation will never prove a sufficient source. There is an urgent need for an alternative source of organs and cells. The pig could prove to be a satisfactory source, and clinical xenotransplantation using pig organs or cells, particularly with the advantages provided by genetic engineering to provide resistance to the human immune response, may resolve the organ shortage. The physiologic compatibilities and incompatibilities of the pig and the human are briefly reviewed.
Collapse
Affiliation(s)
- Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - A Joseph Tector
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
17
|
Yang JF, Cao HC, Pan QL, Yu J, Li J, Li LJ. Mesenchymal stem cells from the human umbilical cord ameliorate fulminant hepatic failure and increase survival in mice. Hepatobiliary Pancreat Dis Int 2015; 14:186-93. [PMID: 25865692 DOI: 10.1016/s1499-3872(15)60354-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Cell therapy has been promising for various diseases. We investigated whether transplantation of human umbilical cord mesenchymal stem cells (hUCMSCs) has any therapeutic effects on D-galactosamine/lipopolysaccharide (GalN/LPS)-induced fulminant hepatic failure in mice. METHODS hUCMSCs isolated from human umbilical cord were cultured and transplanted via the tail vein into severe combined immune deficiency mice with GalN/LPS-induced fulminant hepatic failure. After transplantation, the localization and differentiation of hUCMSCs in the injured livers were investigated by immunohistochemical and genetic analyses. The recovery of the injured livers was evaluated histologically. The survival rate of experimental animals was analyzed by the Kaplan-Meier method and log-rank test. RESULTS hUCMSCs expressed high levels of CD29, CD73, CD13, CD105 and CD90, but did not express CD31, CD79b, CD133, CD34, and CD45. Cultured hUCMSCs displayed adipogenic and osteogenic differentiation potential. Hematoxylin and eosin staining revealed that transplantation of hUCMSCs reduced hepatic necrosis and promoted liver regeneration. Transplantation of hUCMSCs prolonged the survival rate of mice with fulminant hepatic failure. Polymerase chain reaction for human alu sequences showed the presence of human cells in mouse livers. Positive staining for human albumin, human alpha-fetoprotein and human cytokeratin 18 suggested the formation of hUCMSCs-derived hepatocyte-like cells in vivo. CONCLUSIONS hUCMSC was a potential candidate for stem cell based therapies. After transplantation, hUCMSCs partially repaired hepatic damage induced by GalN/LPS in mice. hUCMSCs engrafted into the injured liver and differentiated into hepatocyte-like cells.
Collapse
Affiliation(s)
- Jin-Feng Yang
- The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Road, Hangzhou 310003, China.
| | | | | | | | | | | |
Collapse
|
18
|
Construction of a Biocompatible Decellularized Porcine Hepatic Lobe for Liver Bioengineering. Int J Artif Organs 2015; 38:96-104. [DOI: 10.5301/ijao.5000394] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2015] [Indexed: 12/20/2022]
Abstract
Objective One of the major obstacles in applying decellularized organs for clinical use is the recellularization step, during which huge numbers of cells are required to develop whole livers. We established a simple protocol for constructing a bioartificial hepatic lobe and investigated its biocompatibility. Methods The right lateral lobe of porcine liver was decellularized using 0.1% sodium dodecyl sulfate through the right branch of the portal vein. Decellularized lobes were evaluated by histological and biochemical analyses. DNA content was quantified to validate the decellularization protocol. The presence of immunogenic and pathogenic antigens was checked to exclude potential rejection and thrombosis after xenotransplantation. Xeno-reactivity of decellularized tissue against human peripheral blood mononuclear cells was examined. Cytotoxicity was evaluated against hepatocarcinoma cells. Finally, scaffolds were incubated in collagenase for biodegradation testing. Results The decellularized lobe preserved the three-dimensional architecture, ultrastructure, extracellular matrix components, and vasculature. Scaffolds were almost depleted of DNA in addition to antigenic and pathogenic antigens, which are considered barriers to xenotransplantation. The human immune response against scaffolds was considered non-significant. Our matrices were biocompatible and biodegradable. Conclusions We successfully developed a non-cytotoxic, non-immunogenic, and biodegradable porcine hepatic lobe for future liver regeneration and bioengineering.
Collapse
|
19
|
Ramackers W, Klose J, Vondran FWR, Schrem H, Kaltenborn A, Klempnauer J, Kleine M. Species-specific regulation of fibrinogen synthesis with implications for porcine hepatocyte xenotransplantation. Xenotransplantation 2014; 21:444-53. [PMID: 25175927 DOI: 10.1111/xen.12110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/19/2014] [Indexed: 12/12/2022]
Abstract
BACKGROUND Patients with liver failure could potentially be bridged with porcine xenogeneic liver cell transplantation. We examined species-specific differences between primary human and porcine hepatocytes in the regulation of coagulation protein expression and function. METHODS Isolated primary human and porcine hepatocytes were stimulated with either porcine or human interleukin (IL)-6 (10 ng/ml), IL-1β (10 ng/ml), and tumor necrosis factor-alpha (TNF-α, 30 ng/ml). mRNA expression of coagulation factors were measured by RT-PCR and real-time PCR. Cell culture supernatants were used for the measurement of fibrinogen by ELISA and determination of fibrin clot generation. RESULTS Fibrinogen expression in human hepatocytes increased after IL-6 treatment (P = 0.010) and decreased after TNF-α treatment (P = 0.005). Porcine hepatocytes displayed a lower increase in fibrinogen expression after IL-6 treatment as compared to hepatocytes of human origin (P = 0.021). Porcine hepatocytes responded contrarily following TNF-α treatment with an increased expression of fibrinogen resulting in a significant species-specific difference between human and porcine hepatocytes (P = 0.029). Fibrin polymer generation by human hepatocytes was stable and widely branched after IL-6 treatment, while stimulation with TNF-α displayed no fibrin generation at all. In contrast, treatment of porcine hepatocytes with TNF-α resulted in generation of a stable and widely branched fibrin polymer, and stimulation with IL-6 only leads to generation of partial fibrin aggregates. CONCLUSION We identified species-specific differences in the regulation of fibrinogen mRNA expression and fibrin generation under inflammatory stimuli. In hepatic xenotransplantation of porcine origin, these interspecies differences might lead to a loss of physiological coagulation function and a loss of transplanted cells.
Collapse
Affiliation(s)
- Wolf Ramackers
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center Transplantation (IFB-Tx), Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Cieślar-Pobuda A, Wiechec E. Research on liver regeneration as an answer to the shortage of donors for liver transplantation. Hepatol Res 2014; 44:944-6. [PMID: 25224133 DOI: 10.1111/hepr.12265] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Artur Cieślar-Pobuda
- Department of Clinical & Experimental Medicine (IKE), Division of Cell Biology, Integrative Regenerative Medicine Center (IGEN), Linköping University, Linkoping, Sweden; Biosystems Group, Institute of Automatic Control, Silesian University of Technology, Gliwice, Poland
| | | |
Collapse
|
21
|
Behnam Manesh S, Omani Samani R, Behnam Manesh S. Ethical issues of transplanting organs from transgenic animals into human beings. CELL JOURNAL 2014; 16:353-60. [PMID: 25383334 PMCID: PMC4204195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 04/09/2014] [Indexed: 10/29/2022]
Abstract
One of the most important applications of transgenic animals for medical purposes is to transplant their organs into human's body, an issue which has caused a lot of ethical and scientific discussions. we can divide the ethical arguments to two comprehensive groups; the first group which is known as deontological critiques (related to the action itself regardless of any results pointing the human or animal) and the second group, called the consequentialist critiques (which are directly pointing the consequences of the action). The latter arguments also can be divided to two subgroups. In the first one which named anthropocentrism, just humankind has inherent value in the moral society, and it studies the problem just from a human-based point of view while in second named, biocentrism all the living organism have this value and it deals specially with the problem from the animal-based viewpoint. In this descriptive-analytic study, ethical issues were retrieved from books, papers, international guidelines, thesis, declarations and instructions, and even some weekly journals using keywords related to transgenic animals, organ, and transplantation. According to the precautionary principle with the strong legal and ethical background, due to lack of accepted scientific certainties about the safety of the procedure, in this phase, transplanting animal's organs into human beings have the potential harm and danger for both human and animals, and application of this procedure is unethical until the safety to human will be proven.
Collapse
Affiliation(s)
- Shima Behnam Manesh
- Department of Epidemiology and Reproductive Health at Reproductive Epidemiology Research Center, Royan
Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,P.O.Box: 16635148Department of Epidemiology and Reproductive Health at Reproductive Epidemiology Research CenterRoyan Institute for Reproductive BiomedicineACECRTehranIran
| | - Reza Omani Samani
- Department of Epidemiology and Reproductive Health at Reproductive Epidemiology Research Center, Royan
Institute for Reproductive Biomedicine, ACECR, Tehran, Iran,Medical Ethics and History of Medicine Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Shayan Behnam Manesh
- Department of Epidemiology and Reproductive Health at Reproductive Epidemiology Research Center, Royan
Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
22
|
Ríos A, López-Navas AI, Martínez-Alarcón L, Sánchez J, Ramis G, Ramírez P, Parrilla P. A study of the attitude of Latin-American residents in Spain toward organ xenotransplantation. Xenotransplantation 2013; 21:149-61. [DOI: 10.1111/xen.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/02/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Antonio Ríos
- International Collaborative Donor Project; Murcia Spain
- Regional Transplant Center; Consejería de Sanidad; Servicio Murciano de Salud; Murcia Spain
- Department of Surgery; Faculty of Medicine; University of Murcia; Murcia Spain
- Surgery Service; Virgen de la Arrixaca University Hospital; Murcia Health Service; Murcia Spain
| | - Ana Isabel López-Navas
- International Collaborative Donor Project; Murcia Spain
- Regional Transplant Center; Consejería de Sanidad; Servicio Murciano de Salud; Murcia Spain
- Department of Psychology; UCAM; San Antonio Catholic University; Murcia Spain
| | - Laura Martínez-Alarcón
- International Collaborative Donor Project; Murcia Spain
- Regional Transplant Center; Consejería de Sanidad; Servicio Murciano de Salud; Murcia Spain
- Surgery Service; Virgen de la Arrixaca University Hospital; Murcia Health Service; Murcia Spain
| | - José Sánchez
- International Collaborative Donor Project; Murcia Spain
| | | | - Pablo Ramírez
- Regional Transplant Center; Consejería de Sanidad; Servicio Murciano de Salud; Murcia Spain
- Department of Surgery; Faculty of Medicine; University of Murcia; Murcia Spain
- Surgery Service; Virgen de la Arrixaca University Hospital; Murcia Health Service; Murcia Spain
| | - Pascual Parrilla
- Department of Surgery; Faculty of Medicine; University of Murcia; Murcia Spain
- Surgery Service; Virgen de la Arrixaca University Hospital; Murcia Health Service; Murcia Spain
| |
Collapse
|
23
|
Abstract
Organ transplantation is one of the medical miracles or the 20th century. It has the capacity to substantially improve exercise performance and quality of life in patients who are severely limited with chronic organ failure. We focus on the most commonly performed solid-organ transplants and describe peak exercise performance following recovery from transplantation. Across all of the common transplants, evaluated significant reduction in VO2peak is seen (typically renal and liver 65%-80% with heart and/or lung 50%-60% of predicted). Those with the lowest VO2peak pretransplant have the lowest VO2peak posttransplant. Overall very few patients have a VO2peak in the normal range. Investigation of the cause of the reduction of VO2peak has identified many factors pre- and posttransplant that may contribute. These include organ-specific factors in the otherwise well-functioning allograft (e.g., chronotropic incompetence in heart transplantation) as well as allograft dysfunction itself (e.g., chronic lung allograft dysfunction). However, looking across all transplants, a pattern emerges. A low muscle mass with qualitative change in large exercising skeletal muscle groups is seen pretransplant. Many factor posttransplant aggravate these changes or prevent them recovering, especially calcineurin antagonist drugs which are key immunosuppressing agents. This results in the reduction of VO2peak despite restoration of near normal function of the initially failing organ system. As such organ transplantation has provided an experiment of nature that has focused our attention on an important confounder of chronic organ failure-skeletal muscle dysfunction.
Collapse
Affiliation(s)
- Trevor J Williams
- Department of Allergy, Immunology, and Respiratory Medicine Alfred Hospital and Monash University, Melbourne, Australia.
| | | |
Collapse
|
24
|
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
25
|
Gruttadauria S, Grosso G, Pagano D, Biondi A, Echeverri G, Seria E, Pietrosi G, Liotta R, Basile F, Gridelli B. Marrow-Derived Mesenchymal Stem Cells Restore Biochemical Markers of Acute Liver Injury in Experimental Model. Transplant Proc 2013; 45:480-6. [DOI: 10.1016/j.transproceed.2012.06.087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 04/20/2012] [Accepted: 06/06/2012] [Indexed: 01/02/2023]
|
26
|
Walters EM, Wolf E, Whyte JJ, Mao J, Renner S, Nagashima H, Kobayashi E, Zhao J, Wells KD, Critser JK, Riley LK, Prather RS. Completion of the swine genome will simplify the production of swine as a large animal biomedical model. BMC Med Genomics 2012; 5:55. [PMID: 23151353 PMCID: PMC3499190 DOI: 10.1186/1755-8794-5-55] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 10/28/2011] [Indexed: 12/25/2022] Open
Abstract
Background Anatomic and physiological similarities to the human make swine an excellent large animal model for human health and disease. Methods Cloning from a modified somatic cell, which can be determined in cells prior to making the animal, is the only method available for the production of targeted modifications in swine. Results Since some strains of swine are similar in size to humans, technologies that have been developed for swine can be readily adapted to humans and vice versa. Here the importance of swine as a biomedical model, current technologies to produce genetically enhanced swine, current biomedical models, and how the completion of the swine genome will promote swine as a biomedical model are discussed. Conclusions The completion of the swine genome will enhance the continued use and development of swine as models of human health, syndromes and conditions.
Collapse
Affiliation(s)
- Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Galvao FHF, Soler W, Pompeu E, Waisberg DR, Mello ESD, Costa ACL, Teodoro W, Velosa AP, Capelozzi VL, Antonangelo L, Catanozi S, Martins A, Malbouisson LMS, Cruz RJ, Figueira ER, Filho JAR, Chaib E, D'Albuquerque LAC. Immunoglobulin G profile in hyperacute rejection after multivisceral xenotransplantation. Xenotransplantation 2012; 19:298-304. [PMID: 22957972 DOI: 10.1111/xen.12002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Xenotransplantation is a potential solution for the high mortality of patients on the waiting list for multivisceral transplantation; nevertheless, hyperacute rejection (HAR) hampers this practice and motivates innovative research. In this report, we describe a model of multivisceral xenotransplantation in which we observed immunoglobulin G (IgG) involvement in HAR. METHODS We recovered en bloc multivisceral grafts (distal esophagus, stomach, small intestine, colon, liver, pancreas, and kidneys) from rabbits (n = 20) and implanted them in the swine (n = 15) or rabbits (n = 5, control). Three hours after graft reperfusion, we collected samples from all graft organs for histological study and to assess IgG fixation by immunofluorescence. Histopathologic findings were graded according to previously described methods. RESULTS No histopathological features of rejection were seen in the rabbit allografts. In the swine-to-rabbit grafts, features of HAR were moderate in the liver and severe in esophagus, stomach, intestines, spleen, pancreas, and kidney. Xenograft vessels were the central target of HAR. The main lesions included edema, hemorrhage, thrombosis, myosites, fibrinoid degeneration, and necrosis. IgG deposition was intense on cell membranes, mainly in the vascular endothelium. CONCLUSIONS Rabbit-to-swine multivisceral xenotransplants undergo moderate HAR in the liver and severe HAR in the other organs. Moderate HAR in the liver suggests a degree of resistance to the humoral immune response in this organ. Strong IgG fixation in cell membranes, including vascular endothelium, confirms HAR characterized by a primary humoral immune response. This model allows appraisal of HAR in multiple organs and investigation of the liver's relative resistance to this immune response.
Collapse
Affiliation(s)
- Flavio H F Galvao
- Department of Gastroenterology (LIM 37), University of São Paulo School of Medicine, Sao Paulo, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ekser B, Burlak C, Waldman JP, Lutz AJ, Paris LL, Veroux M, Robson SC, Rees MA, Ayares D, Gridelli B, Tector AJ, Cooper DKC. Immunobiology of liver xenotransplantation. Expert Rev Clin Immunol 2012; 8:621-34. [PMID: 23078060 PMCID: PMC3774271 DOI: 10.1586/eci.12.56] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pigs are currently the preferred species for future organ xenotransplantation. With advances in the development of genetically modified pigs, clinical xenotransplantation is becoming closer to reality. In preclinical studies (pig-to-nonhuman primate), the xenotransplantation of livers from pigs transgenic for human CD55 or from α1,3-galactosyltransferase gene-knockout pigs+/- transgenic for human CD46, is associated with survival of approximately 7-9 days. Although hepatic function, including coagulation, has proved to be satisfactory, the immediate development of thrombocytopenia is very limiting for pig liver xenotransplantation even as a 'bridge' to allotransplantation. Current studies are directed to understand the immunobiology of platelet activation, aggregation and phagocytosis, in particular the interaction between platelets and liver sinusoidal endothelial cells, hepatocytes and Kupffer cells, toward identifying interventions that may enable clinical application.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Christopher Burlak
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Joshua P Waldman
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | - Andrew J Lutz
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Leela L Paris
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - Massimiliano Veroux
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Simon C Robson
- Liver Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Michael A Rees
- Department of Urology, University of Toledo Health Sciences Campus, Toledo, OH, USA
| | | | - Bruno Gridelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - A Joseph Tector
- Department of Surgery, Transplant Institute, Indiana University School of Medicine, Indiana University Health, Indianapolis, IN, USA
| | - David KC Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
29
|
Soleimani M, Fonouni H, Esmaeilzadeh M, Kashfi A, Fani Yazdi SH, Golriz M, Hafezi M, Rahbari NN, Schmidt J, Mehrabi A. Appropriate donor size for porcine liver xenotransplant. EXP CLIN TRANSPLANT 2012; 10:148-53. [PMID: 22432759 DOI: 10.6002/ect.2011.0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES Owing to an imbalance between demand and supply, which is more prominent in pediatric transplant, every year more patients lose their lives on waiting lists. In addition to the use of deceased-donor split and living-donor organs, xenotransplant could provide a solution if associated problems, such as immunologic and physiologic ones, are solved. This study sought to analyze the surgical aspects for liver xenotransplant in a porcine model. MATERIALS AND METHODS Landrace pigs (n=22, 23 to 37 kg) underwent a laparotomy under general anesthesia. The hepatic hilum was prepared and the common bile ducts, common hepatic artery, portal vein, supra- and infrahepatic inferior vena cava were identified. The length and diameter of each vessel and bile duct and the weight of the liver were measured. RESULTS Pearson tests showed a clear correlation between the increase of the pigs' weight and the livers' weight, and the length of the vessels and the bile ducts. We did not find a clear correlation between the increase of the pigs' liver weight and the diameters of the vessels and the bile duct. CONCLUSIONS As the first reporting, this study on xenotransplants from the surgical point of view, we postulate that it could be possible to estimate the size of the liver and the proper length of its vessels and bile duct by weighing only the pigs. It was not feasible to match the diameter of mentioned structures by the livers' weight. However, the weight of pig's liver as well as vascular anatomy of pigs appeared to be suitable alternative for the human liver.
Collapse
Affiliation(s)
- Mehrdad Soleimani
- Department of General, Visceral and Transplant Surgery, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Liver transplantation has evolved into an accepted treatment for many suffering from end-stage liver failure. The complex nature of the liver results in every organ system being impacted by either the failing or the transplanted liver. Organ shortage remains problematic, and work to ensure maximizing the organ donor pool as well as the success of each organ transplant continues. The clinical care and condition of the patient before transplant can impact the outcome after transplant. Nurses can play an integral role in early identification of graft dysfunction, rejection, or infection. Because of the intimate and large amount of time that the nurse is at the patient’s bedside, he or she is often in a position to monitor for potential risks to the patient and take corrective action.
Collapse
Affiliation(s)
- Tracy A Grogan
- Transplant Intensive Care Unit, UPMC Presbyterian, University of Pittsburgh Medical Center, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
31
|
Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R, Trucco M, Cooper DKC. Clinical xenotransplantation: the next medical revolution? Lancet 2012; 379:672-83. [PMID: 22019026 DOI: 10.1016/s0140-6736(11)61091-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The shortage of organs and cells from deceased individuals continues to restrict allotransplantation. Pigs could provide an alternative source of tissue and cells but the immunological challenges and other barriers associated with xenotransplantation need to be overcome. Transplantation of organs from genetically modified pigs into non-human primates is now not substantially limited by hyperacute, acute antibody-mediated, or cellular rejection, but other issues have become more prominent, such as development of thrombotic microangiopathy in the graft or systemic consumptive coagulopathy in the recipient. To address these problems, pigs that express one or more human thromboregulatory or anti-inflammatory genes are being developed. The results of preclinical transplantation of pig cells--eg, islets, neuronal cells, hepatocytes, or corneas--are much more encouraging than they are for organ transplantation, with survival times greater than 1 year in all cases. Risk of transfer of an infectious microorganism to the recipient is small.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ekser B, Klein E, He J, Stolz DB, Echeverri GJ, Long C, Lin CC, Ezzelarab M, Hara H, Veroux M, Ayares D, Cooper DKC, Gridelli B. Genetically-engineered pig-to-baboon liver xenotransplantation: histopathology of xenografts and native organs. PLoS One 2012; 7:e29720. [PMID: 22247784 PMCID: PMC3256162 DOI: 10.1371/journal.pone.0029720] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 12/02/2011] [Indexed: 11/18/2022] Open
Abstract
Orthotopic liver transplantation was carried out in baboons using wild-type (WT, n = 1) or genetically-engineered pigs (α1,3-galactosyltransferase gene-knockout, GTKO), n = 1; GTKO pigs transgenic for human CD46, n = 7) and a clinically-acceptable immunosuppressive regimen. Biopsies were obtained from the WT pig liver pre-Tx and at 30 min, 1, 2, 3, 4 and 5 h post-transplantation. Biopsies of genetically-engineered livers were obtained pre-Tx, 2 h after reperfusion and at necropsy (4–7 days after transplantation). Tissues were examined by light, confocal, and electron microscopy. All major native organs were also examined. The WT pig liver underwent hyperacute rejection. After genetically-engineered pig liver transplantation, hyperacute rejection did not occur. Survival was limited to 4–7 days due to repeated spontaneous bleeding in the liver and native organs (as a result of profound thrombocytopenia) which necessitated euthanasia. At 2 h, graft histology was largely normal. At necropsy, genetically-engineered pig livers showed hemorrhagic necrosis, platelet aggregation, platelet-fibrin thrombi, monocyte/macrophage margination mainly in liver sinusoids, and vascular endothelial cell hypertrophy, confirmed by confocal and electron microscopy. Immunohistochemistry showed minimal deposition of IgM, and almost absence of IgG, C3, C4d, C5b-9, and of a cellular infiltrate, suggesting that neither antibody- nor cell-mediated rejection played a major role.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - Edwin Klein
- Division of Laboratory Animal Resources, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jing He
- Division of Immunogenetics, Department of Pediatrics, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Donna B. Stolz
- Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Gabriel J. Echeverri
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - Cassandra Long
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Chih Che Lin
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Hidetaka Hara
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
| | - Massimiliano Veroux
- Department of Surgery, Transplantation and Advanced Technologies, Vascular Surgery and Organ Transplant Unit, University Hospital of Catania, Catania, Italy
| | - David Ayares
- Revivicor Inc., Blacksburg, Virginia, United States of America
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Bruno Gridelli
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, United States of America
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| |
Collapse
|
33
|
Abstract
Xenotransplantation, the transplantation of cells, tissues, or organs between different species, has the potential to overcome the current shortage of human organs and tissues for transplantation. In the last decade, the progress made in the field is remarkable, suggesting that clinical xenotransplantation procedures, particularly those involving cells, may become a reality in the not-too-distant future. However, several hurdles remain, mainly immunological barriers, physiological discrepancies, and safety issues, making xenotransplantion a complex and multidisciplinary discipline.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Acute-on-chronic liver failure (ACLF), a syndrome precipitated by acute liver injury in patients with advanced cirrhosis, is associated with multiorgan dysfunction and high rates of mortality. Liver support systems have been developed in an attempt to improve survival of patients with ACLF by providing a bridge until recovery of the native liver function. RECENT FINDINGS Nonbiological devices such as molecular adsorbent recirculating system (MARS) and fractionated plasma separation and adsorption (Prometheus) are effective in improving severe hepatic encephalopathy and cholestasis, have good safety and tolerability profiles and are frequently employed in patients with ACLD; however, randomized controlled trials (RCTs) failed to show improvement in survival. Biologic devices that incorporate hepatic cells in bioreactors are also under development. Recent data from pilot studies suggested improvement in survival rates in some groups of patients with ACLF; however, their effect on patient survival in RCT is still unknown. SUMMARY Liver support systems are safe and well tolerated when used in management of patients with ACLF. Their use should continue in controlled clinical trials to explore their role in bridging patients to liver transplantation or recovery in well defined patient groups.
Collapse
|
35
|
Martínez-Alarcón L, Ríos A, Pons JA, González MJ, Ramis G, Ramírez P, Parrilla P. Attitudinal study of organ xenotransplantation in patients on the kidney and liver transplant waiting list in a country with a high rate of deceased donation. Xenotransplantation 2011; 18:168-75. [DOI: 10.1111/j.1399-3089.2011.00637.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Ekser B, Gridelli B, Veroux M, Cooper DK. Clinical pig liver xenotransplantation: how far do we have to go? Xenotransplantation 2011; 18:158-67. [DOI: 10.1111/j.1399-3089.2011.00642.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Ekser B, Kumar G, Veroux M, Cooper DKC. Therapeutic issues in the treatment of vascularized xenotransplants using gal-knockout donors in nonhuman primates. Curr Opin Organ Transplant 2011; 16:222-30. [PMID: 21415825 PMCID: PMC3095213 DOI: 10.1097/mot.0b013e3283446c3c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Solid organ xenotransplantation could be the future of transplantation, but improved outcomes are required in experimental models before clinical trials are justified. This review summarizes recent advances in solid organ xenotransplantation using organs from α1,3-galactosyltransferase gene-knockout (GTKO) pigs (with or without other genetic modifications) and novel therapeutic approaches. RECENT FINDINGS Work on the development of genetically engineered pigs has been considerable during the past few years, with many research institutes reporting the outcomes of research. Multiple gene modifications on a GTKO background have been reported, and the results of transplantation using organs from these pigs have been published. Progress, however, has been variable, and several obstacles, for example, coagulation dysregulation, have been identified. Heterotopic pig heart xenotransplantation has been associated with graft survival up to 8 months, but kidney graft survival has not improved significantly. SUMMARY The availability of GTKO pigs with additional genetic modifications aimed toward expression of multiple complement-regulatory proteins and/or human thromboregulatory genes, combined with novel immunosuppressive regimens, for example, the inclusion of B cell-depleting agents, should improve pig organ survival in the near future.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | |
Collapse
|
38
|
Kumar G, Ekser B, Abu-Elmagd KM, Cooper DK. Multivisceral xenotransplantation-does it have a future? Xenotransplantation 2010; 17:418-22. [DOI: 10.1111/j.1399-3089.2010.00613.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Ekser B, Echeverri GJ, Hassett AC, Yazer MH, Long C, Meyer M, Ezzelarab M, Lin CC, Hara H, van der Windt DJ, Dons EM, Phelps C, Ayares D, Cooper DKC, Gridelli B. Hepatic function after genetically engineered pig liver transplantation in baboons. Transplantation 2010; 90:483-93. [PMID: 20606605 PMCID: PMC2933286 DOI: 10.1097/tp.0b013e3181e98d51] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND If "bridging" to allo-transplantation (Tx) is to be achieved by a pig liver xenograft, adequate hepatic function needs to be assured. METHODS We have studied hepatic function in baboons after Tx of livers from alpha1,3-galactosyltransferase gene-knockout (GTKO, n=1) or GTKO pigs transgenic for CD46 (GTKO/CD46, n=5). Monitoring was by liver function tests and coagulation parameters. Pig-specific proteins in the baboon serum/plasma were identified by Western blot. In four baboons, coagulation factors were measured. The results were compared with values from healthy humans, baboons, and pigs. RESULTS Recipient baboons died or were euthanized after 4 to 7 days after internal bleeding associated with profound thrombocytopenia. However, parameters of liver function, including coagulation, remained in the near-normal range, except for some cholestasis. Western blot demonstrated that pig proteins (albumin, fibrinogen, haptoglobin, and plasminogen) were produced by the liver from day 1. Production of several pig coagulation factors was confirmed. CONCLUSIONS After the Tx of genetically engineered pig livers into baboons (1) many parameters of hepatic function, including coagulation, were normal or near normal; (2) there was evidence for production of pig proteins, including coagulation factors; and (3) these appeared to function adequately in baboons although interspecies compatibility of such proteins remains to be confirmed.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cooper DK, Teuteberg JJ. Pig heart xenotransplantation as a bridge to allotransplantation. J Heart Lung Transplant 2010; 29:838-40. [DOI: 10.1016/j.healun.2010.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 11/27/2022] Open
|
41
|
Schneider MKJ, Seebach JD. Xenotransplantation literature update: November 2009-January 2010. Xenotransplantation 2010; 17:166-70. [PMID: 20522250 DOI: 10.1111/j.1399-3089.2010.00585.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mårten K J Schneider
- Laboratory for Transplantation Immunology, Division of Internal Medicine, University Hospital Zurich, Zurich, Switzerland.
| | | |
Collapse
|
42
|
Ekser B, Cooper DKC. Overcoming the barriers to xenotransplantation: prospects for the future. Expert Rev Clin Immunol 2010; 6:219-30. [PMID: 20402385 PMCID: PMC2857338 DOI: 10.1586/eci.09.81] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cross-species transplantation (xenotransplantation) has immense potential to solve the critical need for organs, tissues and cells for clinical transplantation. The increasing availability of genetically engineered pigs is enabling progress to be made in pig-to-nonhuman primate experimental models. Potent pharmacologic immunosuppressive regimens have largely prevented T-cell rejection and a T-cell-dependent elicited antibody response. However, coagulation dysfunction between the pig and primate is proving to be a major problem, and this can result in life-threatening consumptive coagulopathy. This complication is unlikely to be overcome until pigs expressing a human 'antithrombotic' or 'anticoagulant' gene, such as thrombomodulin, tissue factor pathway inhibitor or CD39, become available. Progress in islet xenotransplantation has been more encouraging, and diabetes has been controlled in nonhuman primates for periods in excess of 6 months, although this has usually been achieved using immunosuppressive protocols that might not be clinically applicable. Further advances are required to overcome the remaining barriers.
Collapse
Affiliation(s)
- Burcin Ekser
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA, and Department of Surgery and Organ Transplantation, University of Padua, Padua, Italy
| | - David KC Cooper
- Thomas E Starzl Transplantation Institute, University of Pittsburgh Medical Center, Starzl Biomedical Science Tower, W1543, 200 Lothrop Street, Pittsburgh, PA 15261, USA, Tel.: +1 412 383 6961, Fax: +1 412 624 1172,
| |
Collapse
|
43
|
Ekser B, Long C, Echeverri GJ, Hara H, Ezzelarab M, Lin CC, de Vera ME, Wagner R, Klein E, Wolf RF, Ayares D, Cooper DKC, Gridelli B. Impact of thrombocytopenia on survival of baboons with genetically modified pig liver transplants: clinical relevance. Am J Transplant 2010; 10:273-85. [PMID: 20041862 DOI: 10.1111/j.1600-6143.2009.02945.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A lack of deceased human donor livers leads to a significant mortality in patients with acute-on-chronic or acute (fulminant) liver failure or with primary nonfunction of an allograft. Genetically engineered pigs could provide livers that might bridge the patient to allotransplantation. Orthotopic liver transplantation in baboons using livers from alpha1,3-galactosyltransferase gene-knockout (GTKO) pigs (n = 2) or from GTKO pigs transgenic for CD46 (n = 8) were carried out with a clinically acceptable immunosuppressive regimen. Six of 10 baboons survived for 4-7 days. In all cases, liver function was adequate, as evidenced by tests of detoxification, protein synthesis, complement activity and coagulation parameters. The major problem that prevented more prolonged survival beyond 7 days was a profound thrombocytopenia that developed within 1 h after reperfusion, ultimately resulting in spontaneous hemorrhage at various sites. We postulate that this is associated with the expression of tissue factor on platelets after contact with pig endothelium, resulting in platelet and platelet-peripheral blood mononuclear cell(s) aggregation and deposition of aggregates in the liver graft, though we were unable to confirm this conclusively. If this problem can be resolved, we would anticipate that a pig liver could provide a period during which a patient in liver failure could be successfully bridged to allotransplantation.
Collapse
Affiliation(s)
- B Ekser
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Filho JAR, Nani RS, Carmona MJC, Ballesteros MV, D'Albuquerque LAC. Anestesia para trasplante hepático en hepatitis fulminante. COLOMBIAN JOURNAL OF ANESTHESIOLOGY 2009. [DOI: 10.1016/s0120-3347(09)74010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|