1
|
Ge J, Pan W, Feeney NJ, Ott L, Anderson E, Alessandrini A, Zanoni I, Markmann JF, Cuenca AG. Adjuvant conditioning induces an immunosuppressive milieu that delays alloislet rejection through the expansion of myeloid-derived suppressor cells. Am J Transplant 2023; 23:935-945. [PMID: 37080464 PMCID: PMC10330215 DOI: 10.1016/j.ajt.2023.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/12/2023] [Indexed: 04/22/2023]
Abstract
Advances in immunosuppression have been relatively stagnant over the past 2 decades, and transplant recipients continue to experience long-term morbidity associated with immunosuppression regimens. Strategies to reduce or eliminate the dosage of immunosuppression medications are needed. We discovered a novel administration strategy using the classic adjuvant alum to condition murine islet transplant recipients, known as adjuvant conditioning (AC), to expand both polymorphonuclear and monocytic myeloid-derived suppressive cells (MDSCs) in vivo. These AC MDSCs potently suppress T cell proliferation when cultured together in vitro. AC MDSCs also facilitate naïve CD4+ T cells to differentiate into regulatory T cells. In addition, we were able to demonstrate a significant delay in alloislet rejection compared with that by saline-treated control following adjuvant treatment in a MDSC-dependent manner. Furthermore, AC MDSCs produce significantly more interleukin (IL)-10 than saline-treated controls, which we demonstrated to be critical for the increased T cell suppressor function of AC MDSCs as well as the observed protective effect of AC against alloislet rejection. Our data suggest that adjuvant-related therapeutics designed to expand MDSCs could be a useful strategy to prevent transplant rejection and curb the use of toxic immunosuppressive regimens currently used in transplant patients.
Collapse
Affiliation(s)
- Jifu Ge
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; Department of Urology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weikang Pan
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Noel J Feeney
- Division of Transplant Surgery, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Leah Ott
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Emily Anderson
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Alessandro Alessandrini
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Massachusetts, USA; Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivan Zanoni
- Division of Gastroenterology/Immunology, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | - James F Markmann
- Division of Transplant Surgery, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Massachusetts, USA
| | - Alex G Cuenca
- Department of Surgery, Boston Children's Hospital, Boston, Massachusetts, USA; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Massachusetts, USA.
| |
Collapse
|
2
|
Khan RL, Khraibi AA, Dumée LF, Corridon PR. From waste to wealth: Repurposing slaughterhouse waste for xenotransplantation. Front Bioeng Biotechnol 2023; 11:1091554. [PMID: 36815880 PMCID: PMC9935833 DOI: 10.3389/fbioe.2023.1091554] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Slaughterhouses produce large quantities of biological waste, and most of these materials are underutilized. In many published reports, the possibility of repurposing this form of waste to create biomaterials, fertilizers, biogas, and feeds has been discussed. However, the employment of particular offal wastes in xenotransplantation has yet to be extensively uncovered. Overall, viable transplantable tissues and organs are scarce, and developing bioartificial components using such discarded materials may help increase their supply. This perspective manuscript explores the viability and sustainability of readily available and easily sourced slaughterhouse waste, such as blood vessels, eyes, kidneys, and tracheas, as starting materials in xenotransplantation derived from decellularization technologies. The manuscript also examines the innovative use of animal stem cells derived from the excreta to create a bioartificial tissue/organ platform that can be translated to humans. Institutional and governmental regulatory approaches will also be outlined to support this endeavor.
Collapse
Affiliation(s)
- Raheema L. Khan
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ali A. Khraibi
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ludovic F. Dumée
- Department of Chemical Engineering, College of Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Research and Innovation Center on CO2 and Hydrogen (RICH), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Peter R. Corridon
- Department of Immunology and Physiology, College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Healthcare Engineering Innovation Center, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Heo S, Park Y, Lee N, Kim Y, Kim YN, Shin HS, Jung Y, Rim H, Rennke HG, Chandraker A. Lack of Efficacy and Safety of Eculizumab for Treatment of Antibody-Mediated Rejection Following Renal Transplantation. Transplant Proc 2022; 54:2117-2124. [PMID: 36192209 DOI: 10.1016/j.transproceed.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/14/2022] [Accepted: 08/02/2022] [Indexed: 10/07/2022]
Abstract
BACKGROUND We evaluated the efficacy and safety of eculizumab in comparison with plasmapheresis and intravenous immunoglobulin therapy in renal transplant recipients diagnosed with antibody-mediated rejection (AMR). METHODS This was a multicenter, open-label, prospective, randomized analysis. The patients were randomized by therapy type (eg, eculizumab infusions or standard of care [SOC]: plasmapheresis/intravenous immunoglobulin). The patients (ie, eculizumab arm: 7 patients, SOC arm: 4 patients) were evaluated for the continued presence of donor-specific antibodies (DSAs) and C4d (staining on biopsy), as well as histologic evidence, using repeat renal biopsy after treatment. RESULTS The allograft biopsies revealed that eculizumab did not prevent the progression to transplant glomerulopathy. Only 2 patients in the SOC arm experienced rejection reversal, and no graft losses occurred in either group. After AMR treatment, the DSA titers generally decreased compared to titers taken at the time of AMR diagnosis. There were no serious adverse effects in the eculizumab arm. CONCLUSIONS Eculizumab alone cannot treat AMR effectively and does not prevent acute AMR from progressing to chronic AMR or transplant glomerulopathy. However, it should be considered as a potential alternative therapy because it may be associated with decreased DSA levels.
Collapse
Affiliation(s)
- Sujung Heo
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Youngchan Park
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Nagyeom Lee
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Yanghyeon Kim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Ye Na Kim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Ho Sik Shin
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea.
| | - Yeonsoon Jung
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Hark Rim
- Renal Division, Department of Internal Medicine, Gospel Hospital, Kosin University College of Medicine, Busan, South Korea; Transplantation Research Institute, Kosin University College of Medicine, Busan, South Korea
| | - Helmut G Rennke
- Renal Pathology, Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anil Chandraker
- Transplantation Research Center, Renal Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Biologically Synthesized Peptides Show Remarkable Inhibition Activity against Angiotensin-Converting Enzyme: A Promising Approach for Peptide Development against Autoimmune Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2396192. [PMID: 35769673 PMCID: PMC9236789 DOI: 10.1155/2022/2396192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Angiotensin-converting enzyme (ACE) regulates several biological functions besides its vital role in immune functions. ACE is elevated in immune cells in inflammatory diseases including atherosclerosis, granuloma, chronic kidney disease, and also autoimmune diseases, like multiple sclerosis, rheumatoid arthritis, and type I diabetes. No significant information prevails in the literature regarding the isolation, identification, and profiling of potential ACE inhibitory peptides. In the present study, indigenous crop varieties like seeds (peanut, corn, oat, sunflower, chickpea, parsley, cottonseed, papaya, sesame, and flaxseed) were used to evaluate their ACE inhibition activity. Variables including hydrolysis time, enzyme-to-substrate ratio (E/S), pH, and temperature were standardized to acquire the most suitable and optimum ACE inhibition activity. Seeds of cotton, chickpea, and peanuts displayed remarkably maximum ACE inhibition activity than other plants. The study disclosed that maximum ACE inhibitory activity (86%) was evaluated from cottonseed at pH 8.0, temperature of 45°C, hydrolysis time of 2 hrs, and enzyme to the substrate (E/S) ratio of 1 : 5 followed by peanuts (76%) and chickpea (55%). SDS-PAGE confirmed that vicilin protein is present in cottonseed and peanut seed while cruciferin and napin proteins are present in chickpeas. LC-MS/MS analysis disclosed potential novel peptides in hydrolyzed cottonseed that can be ascribed as potential ACE inhibitors which have never been reported and studied earlier. The current study further showed that cottonseed peptides due to their promising ACE inhibitory activity can be a valuable source in the field of ACE inhibitor development.
Collapse
|
5
|
Dahal A, Parajuli P, Singh SS, Shrestha L, Sonju JJ, Shrestha P, Chatzistamou I, Jois S. Targeting protein–protein interaction for immunomodulation: A sunflower trypsin inhibitor analog peptidomimetic suppresses RA progression in CIA model. J Pharmacol Sci 2022; 149:124-138. [PMID: 35641025 PMCID: PMC9208026 DOI: 10.1016/j.jphs.2022.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/10/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
Protein–protein interactions (PPI) of co-stimulatory molecules CD2-CD58 are important in the early stage of an immune response, and increased expression of these co-stimulatory molecules is observed in the synovial region of joints in rheumatoid arthritis (RA) patients. A CD2 epitope region that binds to CD58 was grafted on to sunflower trypsin inhibitor (SFTI) template structure to inhibit CD2-CD58 PPI. The peptide was incorporated with an organic moiety dibenzofuran (DBF) in its structure. The designed peptidomimetic was studied for its ability to inhibit CD2-CD58 interactions in vitro, and its thermal and enzymatic stability was evaluated. Stability studies indicated that the grafted peptidomimetic was stable against trypsin cleavage. In vivo studies using the collagen-induced arthritis (CIA) model in mice indicated that the peptidomimetic was able to slow down the progress of arthritis, an autoimmune disease in the mice model. These studies suggest that with the grafting of organic functional groups in the stable peptide template SFTI stabilizes the peptide structure, and these peptides can be used as a template to design stable peptides for therapeutic purposes.
Collapse
Affiliation(s)
- Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Pravin Parajuli
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Prajesh Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology (PMI), School of Medicine, USC, SC 6439 Garners Ferry Rd, Columbia, SC, 29208, USA
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe LA, 71201, USA.
| |
Collapse
|
6
|
Influence of Belatacept- vs. CNI-Based Immunosuppression on Vascular Stiffness and Body Composition. J Clin Med 2022; 11:jcm11051219. [PMID: 35268310 PMCID: PMC8911184 DOI: 10.3390/jcm11051219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/12/2022] [Accepted: 02/19/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Arterial stiffness and phase angle (PhA) have gained importance as a diagnostic and prognostic parameter in the management of cardiovascular disease. There are few studies regarding the differences in arterial stiffness and body composition between renal transplant recipients (RTRs) receiving belatacept (BELA) vs. calcineurin inhibitors (CNI). Therefore, we investigated the differences in arterial stiffness and body composition between RTRs treated with different immunosuppressants, including BELA. Methods: In total, 325 RTRs were enrolled in the study (mean age 52.2 years, M −62.7%). Arterial stiffness was determined with an automated oscillometric device. All body composition parameters were assessed, based on bioelectrical impedance analysis (BIA), and laboratory parameters were obtained from the medical files of the patients. Results: We did not detect any significant difference in terms of arterial stiffness and PhA in RTRs undergoing different immunosuppressive regimens, based on CsA, Tac, or BELA. Age was an essential risk factor for greater arterial stiffness. The PhA was associated with age, BMI, time of dialysis before transplantation, and kidney graft function. Conclusion: No significant differences in arterial stiffness and PhA were observed in RTRs under different immunosuppressive regimens. While our data provide additional evidence for arterial stiffness and PhA in RTRs, more research is needed to fully explore these cardiovascular risk factors and the impact of different immunosuppressive regimens.
Collapse
|
7
|
Li P, Zhang Y, Li Q, Zhang Y. Effect of HO-1-modified BMMSCs on immune function in liver transplantation. Sci Rep 2022; 12:3046. [PMID: 35197503 PMCID: PMC8866406 DOI: 10.1038/s41598-022-06141-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 01/25/2022] [Indexed: 11/10/2022] Open
Abstract
We examined whether haem oxygenase-1 (HO-1) could enhance the immunosuppressive effects of bone marrow mesenchymal stem cells (BMMSCs) on the rejection of transplanted liver allografts in rats. The animals were divided into three groups: the normal saline (NS) group, BMMSC group and HO-1/BMMSCs group. In vitro, the extraction, culture and HO-1 transfection of BMMSCs were performed. Mixed lymphocyte response (MLR) analysis of HO-1/BMMSCs efficacy was performed. The rejection model of orthotopic liver transplantation in rats was established when BMMSCs and HO-1/BMMSCs were transfused via the portal vein. To reduce research bias, we established an isogenic Liver transplantation model of (LEW → LEW) and (BN → BN), which can achieve tolerance. Changes in histopathology and liver function in the transplanted liver and changes in regulatory T cell (Tregs), natural killer (NK) cells and cytokines after transplantation were observed in the different groups. The severe acute rejection after liver transplantation on postoperative Day 10 was observed in the NS group. The BMMSC group showed strong protective effects against rejection within the first 10 days after transplantation, while HO-1/BMMSCs showed stronger effects on rejection than BMMSCs alone. In addition, the activity of natural killer (NK) cells decreased significantly, the levels of regulatory T cells (Tregs), interleukin-10 (IL-10) and transforming growth factor-β (TGF-β) increased significantly and the levels of interleukin-2 (IL-2), interleukin-6 (IL-6), interleukin-17 (IL-17), interleukin-23 (IL-23), tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ) decreased significantly in the HO-1/BMMSC group compared with the BMMSC group. HO-1/BMMSCs showed better immunosuppressive effects after liver transplantation than the other treatments. Our findings reveal that HO-1 can enhance the effects of BMMSCs on inhibiting acute rejection in orthotopic liver transplantation in rats.
Collapse
Affiliation(s)
- Peng Li
- Department of Hepatobiliary Surgery, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yuyi Zhang
- Department of Obstetrics and Gynaecology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China.
| | - Qiongxia Li
- Department of Digestive Endoscopy Centre, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Yubo Zhang
- Department of Stomatology, Xinchang Hospital Affiliated with Wenzhou Medical University, Shaoxing, 312500, China.
| |
Collapse
|
8
|
Kwon Y, Lee KW, Kim YM, Park H, Jung MK, Choi YJ, Son JK, Hong J, Park SH, Kwon GY, Yoo H, Kim K, Kim SJ, Park JB, Shin EC. Expansion of CD45RA -FOXP3 ++ regulatory T cells is associated with immune tolerance in patients with combined kidney and bone marrow transplantation. Clin Transl Immunology 2021; 10:e1325. [PMID: 34401148 PMCID: PMC8353318 DOI: 10.1002/cti2.1325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 01/01/2023] Open
Abstract
Objectives Simultaneous transplantation of a solid organ and bone marrow from the same donor is a possible means of achieving transplant tolerance. Here, we attempted to identify biomarkers that indicate transplant tolerance for discontinuation of immunosuppressants in combined kidney and bone marrow transplantation (CKBMT). Methods Conventional kidney transplant (KT) recipients (n = 20) and CKBMT recipients (n = 6) were included in this study. We examined various immunological parameters by flow cytometry using peripheral blood mononuclear cells (PBMCs), including the frequency and phenotype of regulatory T (Treg) cell subpopulations. We also examined the suppressive activity of the Treg cell population in the setting of mixed lymphocyte reaction (MLR) with or without Treg cell depletion. Results Among six CKBMT recipients, three successfully discontinued immunosuppressants (tolerant group) and three could not (non‐tolerant group). The CD45RA−FOXP3++ Treg cell subpopulation was expanded in CKBMT recipients compared to conventional kidney transplant patients, and this was more obvious in the tolerant group than the non‐tolerant group. In addition, high suppressive activity of the Treg cell population was observed in the tolerant group. The ratio of CD45RA−FOXP3++ Treg cells to CD45RA−FOXP3+ cells indicated good discrimination between the tolerant and non‐tolerant groups. Conclusion Thus, our findings propose a biomarker that can distinguish CKBMT patients who achieve transplant tolerance and are eligible for discontinuation of immunosuppressants and may provide insight into tolerance mechanisms in CKBMT.
Collapse
Affiliation(s)
- Yeongbeen Kwon
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Graduate School Department of Health Sciences & Technology Sungkyunkwan University Seoul Korea.,Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea
| | - Kyo Won Lee
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Surgery Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - You Min Kim
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Hyojun Park
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Medicine Sungkyunkwan University School of Medicine Suwon Korea.,GenNbio Inc. Seoul Korea
| | - Min Kyung Jung
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Young Joon Choi
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea.,Department of Ophthalmology Ajou University School of Medicine Suwon Korea
| | - Jin Kyung Son
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,GenNbio Inc. Seoul Korea
| | - JuHee Hong
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea
| | - Su-Hyung Park
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| | - Ghee Young Kwon
- Department of Pathology Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Heejin Yoo
- Statistics and Data Center Samsung Medical Center Research Institute for Future Medicine Seoul Korea
| | - Kyunga Kim
- Statistics and Data Center Samsung Medical Center Research Institute for Future Medicine Seoul Korea.,Department of Digital Health Samsung Advanced Institute for Health Sciences & Technology Sungkyunkwan University Seoul Korea
| | - Sung Joo Kim
- Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Medicine Sungkyunkwan University School of Medicine Suwon Korea.,GenNbio Inc. Seoul Korea
| | - Jae Berm Park
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST) Graduate School Department of Health Sciences & Technology Sungkyunkwan University Seoul Korea.,Transplantation Research Center Samsung Medical Center Samsung Biomedical Research Institute Seoul Korea.,Department of Surgery Samsung Medical Center Sungkyunkwan University School of Medicine Seoul Korea
| | - Eui-Cheol Shin
- Graduate School of Medical Science and Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon Korea
| |
Collapse
|
9
|
Zhao J, Jiang L, Uehara M, Banouni N, Al Dulaijan BS, Azzi J, Ichimura T, Li X, Jarolim P, Fiorina P, Tullius SG, Madsen JC, Kasinath V, Abdi R. ACTH treatment promotes murine cardiac allograft acceptance. JCI Insight 2021; 6:e143385. [PMID: 34236047 PMCID: PMC8410061 DOI: 10.1172/jci.insight.143385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 06/02/2021] [Indexed: 12/13/2022] Open
Abstract
Heart transplantation is the optimal therapy for patients with end-stage heart disease, but its long-term outcome remains inadequate. Recent studies have highlighted the importance of the melanocortin receptors (MCRs) in inflammation, but how MCRs regulate the balance between alloreactive T cells and Tregs, and whether they impact chronic heart transplant rejection, is unknown. Here, we found that Tregs express MC2R, and MC2R expression was highest among all MCRs by Tregs. Our data indicate that adrenocorticotropic hormone (ACTH), the sole ligand for MC2R, promoted the formation of Tregs by increasing the expression of IL-2Rα (CD25) in CD4+ T cells and activation of STAT5 in CD4+CD25+ T cells. ACTH treatment also improved the survival of heart allografts and increased the formation of Tregs in CD28KO mice. ACTH treatment synergized with the tolerogenic effect of CTLA-4–Ig, resulting in long-term survival of heart allografts and an increase in intragraft Tregs. ACTH administration also demonstrated higher prolongation of heart allograft survival in transgenic mouse recipients with both complete KO and conditional KO of PI3Kγ in T cells. Finally, ACTH treatment reduced chronic rejection markedly. These data demonstrate that ACTH treatment improved heart transplant outcomes, and this effect correlated with an increase in Tregs.
Collapse
Affiliation(s)
- Jing Zhao
- Transplantation Research Center.,Renal Division, and
| | - Liwei Jiang
- Transplantation Research Center.,Renal Division, and
| | - Mayuko Uehara
- Transplantation Research Center.,Renal Division, and
| | - Naima Banouni
- Transplantation Research Center.,Renal Division, and
| | | | - Jamil Azzi
- Transplantation Research Center.,Renal Division, and
| | | | - Xiaofei Li
- Transplantation Research Center.,Renal Division, and
| | - Petr Jarolim
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fiorina
- Department of Nephrology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,International Center for Type 1 Diabetes, Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Università di Milano, Milan, Italy.,Endocrinology Division, ASST Fatebenefratelli Sacco, Milan, Italy
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Joren C Madsen
- Center for Transplantation Sciences, Department of Surgery, and.,Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Reza Abdi
- Transplantation Research Center.,Renal Division, and
| |
Collapse
|
10
|
Wang Z, Sun F, Lu Y, Zhang B, Zhang G, Shi H. Rapid Preparation Method for Preparing Tracheal Decellularized Scaffolds: Vacuum Assistance and Optimization of DNase I. ACS OMEGA 2021; 6:10637-10644. [PMID: 34056217 PMCID: PMC8153783 DOI: 10.1021/acsomega.0c06247] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Decellularized scaffolds are an effective way for tracheal tissue engineering to perform alternative treatments. However, clinically used decellularized tracheal scaffolds have a long preparation cycle. The purpose of this study is to improve the efficiency of decellularization by vacuum assistance and optimizing the concentration of DNase I in the decellularization process and to quickly obtain tracheal decellularized scaffolds. The trachea of New Zealand white rabbits was decellularized with 2, 4, 6, and 8 KU/mL DNase I under vacuum. The performance of the decellularized tracheal scaffold was evaluated through histological analysis, immunohistochemical staining, DNA residue, extracellular matrix composition, scanning electron microscopy, mechanical properties, cell compatibility, and in vivo experiments. Histological analysis and immunohistochemical staining showed that compared with the native trachea, the hierarchical structure of the decellularized trachea remained unchanged after decellularization, nonchondrocytes were effectively removed, and the antigenicity of the scaffold was significantly weakened. Deoxyribonucleic acid (DNA) quantitative analysis showed that the amount of residual DNA in the 6-KU group was significantly decreased. Scanning electron microscopy and mechanical tests showed that small gaps appeared in the basement membrane of the 6-KU group, and the mechanical properties decreased. The CCK-8 test results and in vivo experiments showed that the 6-KU group's acellular scaffold had good cell compatibility and new blood vessels were visible on the surface. Taken together, the 6-KU group could quickly prepare rabbit tracheal scaffolds with good decellularization effects in only 2 days, which significantly shortened the preparation cycle reducing the required cost.
Collapse
|
11
|
|
12
|
Parajuli P, Sable R, Shrestha L, Dahal A, Gauthier T, Taneja V, Jois S. Modulation of co-stimulatory signal from CD2-CD58 proteins by a grafted peptide. Chem Biol Drug Des 2021; 97:607-627. [PMID: 32946175 PMCID: PMC8717467 DOI: 10.1111/cbdd.13797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Abstract
Peptides were designed to inhibit the protein-protein interaction of CD2 and CD58 to modulate the immune response. This work involved the design and synthesis of eight different peptides by replacing each amino acid residue in peptide 6 with alanine as well as grafting the peptide to the sunflower trypsin-inhibitor framework. From the alanine scanning studies, mutation at position 2 of the peptide was shown to result in increased potency to inhibit cell adhesion interactions. The most potent peptide from the alanine scanning was further studied for its detailed three-dimensional structure and binding to CD58 protein using surface plasmon resonance and flow cytometry. This peptide was used to graft to the sunflower trypsin inhibitor to improve the stability of the peptide. The grafted peptide, SFTI-a1, was further studied for its potency as well as its thermal, chemical, and enzymatic stability. The grafted peptide exhibited improved activity compared to our previously grafted peptide and was stable against thermal and enzymatic degradation.
Collapse
Affiliation(s)
- Pravin Parajuli
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| | - Rushikesh Sable
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| | - Leeza Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| | - Ted Gauthier
- Biotechnology Laboratory, LSU AgCenter, Louisiana State University, Baton Rouge, LA 70803 USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Seetharama Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201 USA
| |
Collapse
|
13
|
Baran DA, Rao P, Deo D, Zucker MJ. Differential gene expression in non-adherent heart transplant survivors: Implications for regulatory T-cell expression. Clin Transplant 2020; 34:e13834. [PMID: 32072690 DOI: 10.1111/ctr.13834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/27/2020] [Accepted: 02/16/2020] [Indexed: 11/30/2022]
Abstract
Survival despite prolonged non-adherence with immunosuppression is rare but has been reported in kidney, lung, and liver transplantation. Its occurrence in heart transplantation is quite rare. Our study was prompted by an index patient who survived despite prolonged medication non-adherence. Prospective consent and blood collection were conducted for seven additional patients who presented in a similar fashion. The blood of patients who were diagnosed with rejection, stable early post-transplant, and stable more than 5 years post-transplant were all compared with a custom gene array focusing on T-regulatory cell processes. The two genes that were differentially expressed in every comparison were TGF beta and RNASEN with very low expression in the rejector group. The prolonged non-adherent group had the maximum expression for TGF beta but average RNASEN expression as compared to the low expression for rejectors and high for post-5 years patients. The patients presented survived for varying lengths of time without immunosuppression. The gene array analysis showed intriguing differences between these rare patients and important patient cohorts. Further efforts should be directed to finding and studying more patients who survive despite lack of prescribed immunosuppression. The mechanisms underlying this phenomenon may inform future advances in transplant immunosuppression.
Collapse
Affiliation(s)
| | - Prakash Rao
- New Jersey Sharing Network, New Providence, NJ, USA
| | - Dayanand Deo
- New Jersey Sharing Network, New Providence, NJ, USA
| | | |
Collapse
|
14
|
Stevenson ML, Carucci J, Colegio OR. Skin cancer in transplant recipients: Scientific retreat of the international immunosuppression and transplant skin cancer collaborative and skin care in organ transplant patients—Europe. Clin Transplant 2019; 33:e13736. [DOI: 10.1111/ctr.13736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Mary L. Stevenson
- The Ronald O. Perelman Department of Dermatology NYU Langone Health New York New York
| | - John Carucci
- The Ronald O. Perelman Department of Dermatology NYU Langone Health New York New York
| | | |
Collapse
|
15
|
Singh SS, Jois SD. Homo- and Heterodimerization of Proteins in Cell Signaling: Inhibition and Drug Design. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:1-59. [PMID: 29459028 DOI: 10.1016/bs.apcsb.2017.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein dimerization controls many physiological processes in the body. Proteins form homo-, hetero-, or oligomerization in the cellular environment to regulate the cellular processes. Any deregulation of these processes may result in a disease state. Protein-protein interactions (PPIs) can be inhibited by antibodies, small molecules, or peptides, and inhibition of PPI has therapeutic value. PPI drug discovery research has steadily increased in the last decade, and a few PPI inhibitors have already reached the pharmaceutical market. Several PPI inhibitors are in clinical trials. With advancements in structural and molecular biology methods, several methods are now available to study protein homo- and heterodimerization and their inhibition by drug-like molecules. Recently developed methods to study PPI such as proximity ligation assay and enzyme-fragment complementation assay that detect the PPI in the cellular environment are described with examples. At present, the methods used to design PPI inhibitors can be classified into three major groups: (1) structure-based drug design, (2) high-throughput screening, and (3) fragment-based drug design. In this chapter, we have described some of the experimental methods to study PPIs and their inhibition. Examples of homo- and heterodimers of proteins, their structural and functional aspects, and some of the inhibitors that have clinical importance are discussed. The design of PPI inhibitors of epidermal growth factor receptor heterodimers and CD2-CD58 is discussed in detail.
Collapse
Affiliation(s)
- Sitanshu S Singh
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States
| | - Seetharama D Jois
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA, United States.
| |
Collapse
|
16
|
|
17
|
Zhang Y, Meng Q, Zhang Y, Chen X, Wang Y. Adipose-derived mesenchymal stem cells suppress of acute rejection in small bowel transplantation. Saudi J Gastroenterol 2017; 23:323-329. [PMID: 29205184 PMCID: PMC5738793 DOI: 10.4103/sjg.sjg_122_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND/AIMS Adipose-derived mesenchymal stem cells (ADSCs) possess immunosuppressive activity and hold promise in autologous cell-based therapies. The aim of this study was to determine whether autologous ADSCs can improve outcomes in the rat small bowel transplantation (SBT) model. MATERIALS AND METHODS Allogeneic SBT followed by implantation of autologous ADSCs through the penile vein was conducted in Brown-Norway (BN) donor rats with Lewis (LEW) recipient rats infused with phosphate buffered solution as the control. Allograft and recipient peripheral blood were obtained. We assessed histopathology, apoptosis, cytokines, and regulatory T cells (Tregs). One-way analysis of variance was applied to assess the significance of the data. RESULTS It was found that ADSCs significantly reduced acute rejection and improved the allograft's survival rate. In addition, there were significantly fewer apoptotic cells in allograft mucosae in the ADSC group in comparison with the control group. Furthermore, levels of interleukin (IL)-10 and transforming growth factor-β1 were significantly elevated, whereas those of IL-2 and IL-17 levels were significantly reduced in the ADSC group when compared to the control group. Moreover, flow cytometry analysis revealed that there were significantly more peripheral Tregs after the infusion of ADSCs. CONCLUSIONS These results demonstrate that implanted autologous ADSCs improve allogeneic small bowel allograft outcomes by attenuating the acute rejection and reducing inflammatory responses.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesia, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, People's Republic of China,Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, People's Republic of China
| | - Qinghong Meng
- Department of Clinical Laboratory Medicine, Sino-Singapore Eco-City Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Yanyan Zhang
- Institut National de la Santé et de la Recherche Médicale (INSERM), Micronit, France,Institut Gustave Roussy, Univ Paris-Sud, Université Paris Saclay, Villejuif, France
| | - Xiaobo Chen
- Union Stem and Gene Engineering Co., Ltd, Tianjin, People's Republic of China
| | - Yuliang Wang
- Department of Clinical Laboratory Medicine, 2nd Hospital of Tianjin Medical University, Tianjin Institute of Urology, People's Republic of China,Tianjin First Central Hospital, Tianjin, People's Republic of China,Address for correspondence: Dr. Yuliang Wang, Department of Clinical Laboratory Medicine, 2nd Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin, People's Republic of China. E-mail:
| |
Collapse
|
18
|
Yang Y, Song HL, Zhang W, Wu BJ, Fu NN, Dong C, Shen ZY. Heme oxygenase-1-transduced bone marrow mesenchymal stem cells in reducing acute rejection and improving small bowel transplantation outcomes in rats. Stem Cell Res Ther 2016; 7:164. [PMID: 27866474 PMCID: PMC5116370 DOI: 10.1186/s13287-016-0427-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/22/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Background We determined whether bone marrow mesenchymal stem cells (BMMSCs) transduced with heme oxygenase-1 (HO-1), a cytoprotective and immune-protective factor, could improve outcomes for small bowel transplantation (SBTx) in rats. Methods We performed heterotopic SBTx from Brown Norway rats to Lewis rats, before infusing Ad/HO-1-transduced BMMSCs (Ad/HO-1/BMMSCs) through the superficial dorsal veins of the penis. Respective infusions with Ad/BMMSCs, BMMSCs, and normal saline served as controls. The animals were sacrificed after 1, 5, 7, or 10 days. At each time point, we measured small bowel histology and apoptosis, HO-1 protein and mRNA expression, natural killer (NK) cell activity, cytokine concentrations in serum and intestinal graft, and levels of regulatory T (Treg) cells. Results The saline-treated control group showed aggravated acute cellular rejection over time, with mucosal destruction, increased apoptosis, NK cell activation, and upregulation of proinflammatory and immune-related mediators. Both the Ad/BMMSC-treated group and the BMMSC-treated group exhibited attenuated acute cellular rejection at an early stage, but the effects receded 7 days after transplantation. Strikingly, the Ad/HO-1/BMMSC-treated group demonstrated significantly attenuated acute cellular rejection, reduced apoptosis and NK cell activity, and suppressed concentrations of inflammation and immune-related cytokines, and upregulated expression of anti-inflammatory cytokine mediators and increased Treg cell levels. Conclusion Our data suggest that Ad/HO-1-transduced BMMSCs have a reinforced effect on reducing acute rejection and protecting the outcome of SBTx in rats.
Collapse
Affiliation(s)
- Yang Yang
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Hong Li Song
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China. .,Tianjin Key Laboratory of Organ Transplantation, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| | - Wen Zhang
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Ben Juan Wu
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Nan Nan Fu
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Chong Dong
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Zhong Yang Shen
- Department of Organ Transplantation, Tianjin First Central Hospital, 24# Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|
19
|
Sable R, Durek T, Taneja V, Craik DJ, Pallerla S, Gauthier T, Jois S. Constrained Cyclic Peptides as Immunomodulatory Inhibitors of the CD2:CD58 Protein-Protein Interaction. ACS Chem Biol 2016; 11:2366-74. [PMID: 27337048 DOI: 10.1021/acschembio.6b00486] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interaction between the cell-cell adhesion proteins CD2 and CD58 plays a crucial role in lymphocyte recruitment to inflammatory sites, and inhibitors of this interaction have potential as immunomodulatory drugs in autoimmune diseases. Peptides from the CD2 adhesion domain were designed to inhibit CD2:CD58 interactions. To improve the stability of the peptides, β-sheet epitopes from the CD2 region implicated in CD58 recognition were grafted into the cyclic peptide frameworks of sunflower trypsin inhibitor and rhesus theta defensin. The designed multicyclic peptides were evaluated for their ability to modulate cell-cell interactions in three different cell adhesion assays, with one candidate, SFTI-a, showing potent activity in the nanomolar range (IC50: 51 nM). This peptide also suppresses the immune responses in T cells obtained from mice that exhibit the autoimmune disease rheumatoid arthritis. SFTI-a was resistant to thermal denaturation, as judged by circular dichroism spectroscopy and mass spectrometry, and had a half-life of ∼24 h in human serum. Binding of this peptide to CD58 was predicted by molecular docking studies and experimentally confirmed by surface plasmon resonance experiments. Our results suggest that cyclic peptides from natural sources are promising scaffolds for modulating protein-protein interactions that are typically difficult to target with small-molecule compounds.
Collapse
Affiliation(s)
- Rushikesh Sable
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Thomas Durek
- The
University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Veena Taneja
- Department
of Immunology, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - David J. Craik
- The
University of Queensland, Institute for Molecular Bioscience, Brisbane, Queensland 4072, Australia
| | - Sandeep Pallerla
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| | - Ted Gauthier
- LSU-Ag
Center, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Seetharama Jois
- Basic
Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, Louisiana 71201, United States
| |
Collapse
|
20
|
Yang Y, Shen ZY, Wu B, Yin ML, Zhang BY, Song HL. Mesenchymal stem cells improve the outcomes of liver recipients via regulating CD4+ T helper cytokines in rats. Hepatobiliary Pancreat Dis Int 2016; 15:257-65. [PMID: 27298101 DOI: 10.1016/s1499-3872(16)60085-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bone marrow mesenchymal stem cells (BMMSCs) exert immunosuppressive activities in transplantation. This study aimed to determine whether BMMSCs reduce acute rejection and improve outcomes of liver transplantation in rats. METHODS Orthotopic liver transplantation from Lewis to Brown Norway rats was performed, which was followed by the infusion of BMMSCs through the penile superficial dorsal vein. Normal saline infusion was used as a control. Animals were sacrificed at 0, 24, 72, or 168 hours after BMMSCs infusion. Liver grafts, and recipient serum and spleen tissues were obtained. Histopathology, apoptosis, serum liver enzymes, serum cytokines, and circulating regulatory T (Treg), Th1, Th2 and Th17 cells were assessed at each time point. RESULTS BMMSCs significantly attenuated acute rejection and improved the survival rate of allogeneic liver transplantation recipients. Liver enzymes and liver apoptosis were significantly alleviated. The levels of the Th1/Th2 ratio-associated cytokines such as IL-2 and IFN-gamma were significantly reduced and IL-10 was significantly increased. The levels of the Th17/Tregs axis-associated cytokines such as IL-6, IL-17, IL-23, and TNF-alpha were significantly reduced, whereas TGF-beta concentration was significantly increased. Moreover, flow cytometry analysis showed that the infusion of BMMSCs significantly increased Th2 and Treg cells and decreased Th1 and Th17 cells. CONCLUSION BMMSCs had immunomodulatory effects, attenuated acute rejection and improved outcomes of allogeneic liver transplantation in rats by regulating the levels of cytokines associated with Th1/Th2 and Th17/Treg ratios.
Collapse
Affiliation(s)
- Yang Yang
- Department of Organ Transplantation, Tianjin First Central Hospital, Tianjin 300192, China.
| | | | | | | | | | | |
Collapse
|
21
|
Ascha MS, Ascha ML, Hanouneh IA. Management of immunosuppressant agents following liver transplantation: Less is more. World J Hepatol 2016; 8:148-161. [PMID: 26839639 PMCID: PMC4724578 DOI: 10.4254/wjh.v8.i3.148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/12/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023] Open
Abstract
Immunosuppression in organ transplantation was revolutionary for its time, but technological and population changes cast new light on its use. First, metabolic syndrome (MS) is increasing as a public health issue, concomitantly increasing as an issue for post-orthotopic liver transplantation patients; yet the medications regularly used for immunosuppression contribute to dysfunctional metabolism. Current mainstay immunosuppression involves the use of calcineurin inhibitors; these are potent, but nonspecifically disrupt intracellular signaling in such a way as to exacerbate the impact of MS on the liver. Second, the impacts of acute cellular rejection and malignancy are reviewed in terms of their severity and possible interactions with immunosuppressive medications. Finally, immunosuppressive agents must be considered in terms of new developments in hepatitis C virus treatment, which undercut what used to be inevitable viral recurrence. Overall, while traditional immunosuppressive agents remain the most used, the specific side-effect profiles of all immunosuppressants must be weighed in light of the individual patient.
Collapse
|
22
|
Zarbin M. Cell-Based Therapy for Degenerative Retinal Disease. Trends Mol Med 2016; 22:115-134. [PMID: 26791247 DOI: 10.1016/j.molmed.2015.12.007] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/21/2022]
Abstract
Stem cell-derived retinal pigment epithelium (RPE) and photoreceptors (PRs) have restored vision in preclinical models of human retinal degenerative disease. This review discusses characteristics of stem cell therapy in the eye and the challenges to clinical implementation that are being confronted today. Based on encouraging results from Phase I/II trials, the first Phase II clinical trials of stem cell-derived RPE transplantation are underway. PR transplant experiments have demonstrated restoration of visual function in preclinical models of retinitis pigmentosa and macular degeneration, but also indicate that no single approach is likely to succeed in overcoming PR loss in all cases. A greater understanding of the mechanisms controlling synapse formation as well as the immunoreactivity of transplanted retinal cells is urgently needed.
Collapse
Affiliation(s)
- Marco Zarbin
- Rutgers New Jersey Medical School, Newark, NJ 07103, USA.
| |
Collapse
|
23
|
Stem cell based therapies for age-related macular degeneration: The promises and the challenges. Prog Retin Eye Res 2015; 48:1-39. [DOI: 10.1016/j.preteyeres.2015.06.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/05/2015] [Accepted: 06/11/2015] [Indexed: 12/21/2022]
|
24
|
Wongsaroj P, Kahwaji J, Vo A, Jordan SC. Modern approaches to incompatible kidney transplantation. World J Nephrol 2015; 4:354-362. [PMID: 26167458 PMCID: PMC4491925 DOI: 10.5527/wjn.v4.i3.354] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/11/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
The presence of human-leukocyte antigen (HLA)-antibodies and blood group incompatibility remain a large barrier to kidney transplantation leading to increased morbidity and mortality on the transplant waiting list. Over the last decade a number of new approaches were developed to overcome these barriers. Intravenous immunoglobulin (IVIG) remains the backbone of HLA desensitization therapy and has been shown in a prospective, randomized, placebo controlled trial to improve transplantation rates. Excellent outcomes with the addition of rituximab (anti-B cell) to IVIG based desensitization have been achieved. There is limited experience with bortezomib (anti-plasma cell) and eculizumab (complement inhibition) for desensitization. However, these agents may be good adjuncts for patients who are broadly sensitized with strong, complement-fixing HLA antibodies. Excellent short and long-term outcomes have been achieved in ABO incompatible transplantation with the combination of antibody removal, B cell depletion, and pre-transplant immunosuppression. Kidney paired donation has emerged as a reasonable alternative for programs who cannot provide desensitization or in conjunction with desensitization. Future therapies directed toward cytokines that alter B cell proliferation are under investigation.
Collapse
|
25
|
Eculizumab for Treatment of Refractory Antibody-Mediated Rejection in Kidney Transplant Patients: A Single-Center Experience. Transplant Proc 2015; 47:1754-9. [DOI: 10.1016/j.transproceed.2015.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/29/2015] [Accepted: 06/16/2015] [Indexed: 11/18/2022]
|
26
|
Baron D, Giral M, Brouard S. Reconsidering the detection of tolerance to individualize immunosuppression minimization and to improve long-term kidney graft outcomes. Transpl Int 2015; 28:938-59. [DOI: 10.1111/tri.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/03/2015] [Accepted: 04/02/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Baron
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| | - Magali Giral
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| | - Sophie Brouard
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| |
Collapse
|
27
|
Gokhale AS, Satyanarayanajois S. Peptides and peptidomimetics as immunomodulators. Immunotherapy 2015; 6:755-74. [PMID: 25186605 DOI: 10.2217/imt.14.37] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Peptides and peptidomimetics can function as immunomodulating agents by either blocking the immune response or stimulating the immune response to generate tolerance. Knowledge of B- or T-cell epitopes along with conformational constraints is important in the design of peptide-based immunomodulating agents. Work on the conformational aspects of peptides, synthesis and modified amino acid side chains have contributed to the development of a new generation of therapeutic agents for autoimmune diseases and cancer. The design of peptides/peptidomimetics for immunomodulation in autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, systemic lupus and HIV infection is reviewed. In cancer therapy, peptide epitopes are used in such a way that the body is trained to recognize and fight the cancer cells locally as well as systemically.
Collapse
Affiliation(s)
- Ameya S Gokhale
- Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | | |
Collapse
|
28
|
Reduction of acute rejection by bone marrow mesenchymal stem cells during rat small bowel transplantation. PLoS One 2014; 9:e114528. [PMID: 25500836 PMCID: PMC4266507 DOI: 10.1371/journal.pone.0114528] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 11/03/2014] [Indexed: 01/05/2023] Open
Abstract
Background Bone marrow mesenchymal stem cells (BMMSCs) have shown immunosuppressive activity in transplantation. This study was designed to determine whether BMMSCs could improve outcomes of small bowel transplantation in rats. Methods Heterotopic small bowel transplantation was performed from Brown Norway to Lewis rats, followed by infusion of BMMSCs through the superficial dorsal veins of the penis. Controls included rats infused with normal saline (allogeneic control), isogeneically transplanted rats (BN-BN) and nontransplanted animals. The animals were sacrificed after 1, 5, 7 or 10 days. Small bowel histology and apoptosis, cytokine concentrations in serum and intestinal grafts, and numbers of T regulatory (Treg) cells were assessed at each time point. Results Acute cellular rejection occurred soon after transplantation and became aggravated over time in the allogeneic control rats, with increase in apoptosis, inflammatory response, and T helper (Th)1/Th2 and Th17/Treg-related cytokines. BMMSCs significantly attenuated acute cellular rejection, reduced apoptosis and suppressed the concentrations of interleukin (IL)-2, IL-6, IL-17, IL-23, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ while upregulating IL-10 and transforming growth factor (TGF)-β expression and increasing Treg levels. Conclusion BMMSCs improve the outcomes of allogeneic small bowel transplantation by attenuating the inflammatory response and acute cellular rejection. Treatment with BMMSCs may overcome acute cellular rejection in small bowel transplantation.
Collapse
|
29
|
Cicora F, Mos F, Petroni J, Casanova M, Reniero L, Roberti J. Belatacept-based, ATG-Fresenius-induction regimen for kidney transplant recipients: a proof-of-concept study. Transpl Immunol 2014; 32:35-9. [PMID: 25448417 DOI: 10.1016/j.trim.2014.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 12/28/2022]
Abstract
Belatacept provides effective immunosuppression while avoiding the nephrotoxicities associated with calcineurin inhibitors (CNIs). However, existing belatacept-based regimens still have high rates of acute rejection. We hypothesized that therapy with belatacept, mycophenolic acid (MMA), steroids and induction therapy with rabbit anti-thymocyte globulin Fresenius (ATGF), rejection rate could be reduced. Prospective, single center, proof-of-concept study including males and females aged ≥18years, Epstein-Barr virus (EBV)-seropositive recipients of a first, HLA non-identical, live or deceased donor kidney allograft. Only patients with a calculated panel reactive antibody score of 0% were included. Three donors were positive for Chagas disease. Six of twelve patients had at least one infection and five were readmitted to the hospital for treatment. One patient had a Trypanosoma cruzi infection via the graft treated successfully. Median cold ischemia time for the transplant patients with a deceased donor was 21.5h. Mean serum creatinine levels at 1, 3 and 6months were 1.76±0.59, 1.55±0.60 and 1.49±0.60mg/dl, respectively. Two of twelve patients experienced clinical, biopsy-proven rejection, successfully treated with methylprednisolone. No patient developed post-transplant lymphoproliferative disorder (PTLD) or any other malignancy and no patient lost their graft or died during follow-up. The potential of this approach makes it worthy of further investigation.
Collapse
Affiliation(s)
- Federico Cicora
- Renal Transplantation, Hospital Alemán, Buenos Aires, Argentina; Foundation for Research and Assistance of Kidney Disease (FINAER), Buenos Aires, Argentina
| | - Fernando Mos
- Renal Transplantation, Hospital Alemán, Buenos Aires, Argentina
| | | | - Matías Casanova
- Renal Transplantation, Hospital Alemán, Buenos Aires, Argentina
| | - Liliana Reniero
- Renal Transplantation, Hospital Alemán, Buenos Aires, Argentina
| | - Javier Roberti
- Foundation for Research and Assistance of Kidney Disease (FINAER), Buenos Aires, Argentina.
| |
Collapse
|
30
|
Paz M, Roberti J, Mos F, Cicora F. Conversion to Belatacept-Based Immunosuppression Therapy in Renal Transplant Patients. Transplant Proc 2014; 46:2987-90. [DOI: 10.1016/j.transproceed.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Immunology of Transplant Protocols. CURRENT OTORHINOLARYNGOLOGY REPORTS 2014. [DOI: 10.1007/s40136-014-0057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Ghirardo G, Benetti E, Poli F, Vidal E, Della Vella M, Cozzi E, Murer L. Plasmapheresis-resistant acute humoral rejection successfully treated with anti-C5 antibody. Pediatr Transplant 2014; 18:E1-5. [PMID: 24266980 DOI: 10.1111/petr.12187] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/26/2013] [Indexed: 12/14/2022]
Abstract
Even if kidney graft survival has improved during the last decades, sensitized pediatric patients are an emerging problem. We describe a 17-yr-old male who lost his first graft due to chronic rejection becoming hyperimmunized (CDC PRA 99.61%). A desensitization protocol based on high-dose IVIG, PP, and two Mabthera(®) infusions was performed with minor response (CDC PRA post-desensitization 80%). One month after his second non-living transplant, he developed a biopsy-proven AMR; post-transplant immunological monitoring showed the presence of donor-specific anti-DQ5 antibodies (DSA, MFI 20.000). He received methylprednisolone pulses and 45 PP sessions without clinical response; eculizumab was then used to salvage a kidney undergoing severe PP-resistant rejection. A biopsy performed after the fourth eculizumab infusion showed complete resolution of AMR. Eculizumab infusions were then continued for the first year post-transplantation. Two yr after transplantation, graft function is stable. Anti-C5 therapy may represent an effective therapeutic option in pediatric patients with PP-resistant AMR.
Collapse
Affiliation(s)
- Giulia Ghirardo
- Pediatric Nephrology, Dialysis and Transplant Unit, Department of Pediatrics, University Hospital of Padua, Padua, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Gokhale A, Kanthala S, Latendresse J, Taneja V, Satyanarayanajois S. Immunosuppression by co-stimulatory molecules: inhibition of CD2-CD48/CD58 interaction by peptides from CD2 to suppress progression of collagen-induced arthritis in mice. Chem Biol Drug Des 2014; 82:106-18. [PMID: 23530775 DOI: 10.1111/cbdd.12138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/06/2013] [Accepted: 03/16/2013] [Indexed: 12/21/2022]
Abstract
Targeting co-stimulatory molecules to modulate the immune response has been shown to have useful therapeutic effects for autoimmune diseases. Among the co-stimulatory molecules, CD2 and CD58 are very important in the early stages of generation of an immune response. Our goal was to utilize CD2-derived peptides to modulate protein-protein interactions between CD2 and CD58, thereby modulating the immune response. Several peptides were designed based on the structure of the CD58-binding domain of CD2 protein. Among the CD2-derived peptides, peptide 6 from the F and C β-strand region of CD2 protein exhibited inhibition of cell-cell adhesion in the nanomolar concentration range. Peptide 6 was evaluated for its ability to bind to CD58 in Caco-2 cells and to CD48 in T cells from rodents. A molecular model was proposed for binding a peptide to CD58 and CD48 using docking studies. Furthermore, in vivo studies were carried out to evaluate the therapeutic ability of the peptide to modulate the immune response in the collagen-induced arthritis (CIA) mouse model. In vivo studies indicated that peptide 6 was able to suppress the progression of CIA. Evaluation of the antigenicity of peptides in CIA and transgenic animal models indicated that this peptide is not immunogenic.
Collapse
Affiliation(s)
- Ameya Gokhale
- Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | | | | | | | | |
Collapse
|
34
|
Willems WF, Larsen M, Friedrich PF, Bishop AT. Cell lineage in vascularized bone transplantation. Microsurgery 2014; 34:37-43. [PMID: 24038399 PMCID: PMC3972888 DOI: 10.1002/micr.22147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 11/06/2022]
Abstract
BACKGROUND The biology behind vascularized bone allotransplantation remains largely unknown. We aim to study cell traffic between donor and recipient following bone auto-, and allografting. METHODS Vascularized femoral transplantation was performed with arteriovenous bundle implantation and short-term immunosuppression. Twenty male Piebald Virol Glaxo (PVG; RT1(c) ) rats received isotransplants from female PVG (RT1(c) ) rats and 22 male PVG rats received allografts from female Dark Agouti rats (DA, RT1(a) ), representing a major histocompatibility mismatch. Both groups were randomly analyzed at 4 or 18 weeks. Bone remodeling areas (inner and outer cortical samples) were labeled and laser capture microdissected. Analysis of sex-mismatch genes by real-time reverse transcription-polymerase chain reaction provided the relative Expression Ratio (rER) of donor (female) to recipient (male) cells. RESULTS The rER was 0.456 ± 0.266 at 4 weeks and 0.749 ± 0.387 at 18 weeks (p = 0.09) in allotransplants. In isotransplants, the rER was 0.412 ± 0.239 and 0.467 ± 0.252 at 4 and 18 weeks, respectively (p = 0.21). At 4 weeks, the rER at the outer cortical area of isotransplants was significantly lower in isotransplants as compared with allotransplants (0.247 ± 0.181 vs. 0.549 ± 0.184, p = 0.007). Cells in the inner and outer cortical bone remodeling areas in isotransplants were mainly donor derived (rER < 0.5) at 18 weeks, whereas allotransplants contained mainly recipient-derived cells (rER > 0.5) at 18 weeks. CONCLUSIONS Applying novel methodology, we describe detailed cell traffic in vascularized bone transplants, elaborating our comprehension on bone transplantation.
Collapse
Affiliation(s)
- Wouter F Willems
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN
| | | | | | | |
Collapse
|
35
|
Abstract
Long-term outcome in renal transplantation is heterogeneous, and predicting success is challenging. Astor and colleagues report that serum β2M levels measured on discharge after transplantation correlate closely with long-term patient and graft survival, and may serve as a biomarker of clinical risk. β2M may provide a more precise measurement of glomerular filtration, combined with an index of inflammatory burden related to rejection or systemic vascular disease. Association must not be confused with prediction, however, and the role of β2M must be tested in a validation cohort to define sensitivity, specificity and predictive performance at the individual, rather than the population, level.
Collapse
|
36
|
|
37
|
Okamoto T, Okamoto S, Fujimoto Y, Tabata Y, Uemoto S. Suppression of acute rejection by administration of prostaglandin E2 receptor subtype 4 agonist in rat organ transplantation models. J Surg Res 2013; 183:852-9. [DOI: 10.1016/j.jss.2013.01.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/13/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
38
|
Yong K, Nguyen HD, Hii L, Chan DT, Boudville N, Messineo A, Lim EM, Dogra GK, Lim WH. Association of a change in immunosuppressive regimen with hemodynamic and inflammatory markers of cardiovascular disease after kidney transplantation. Am J Hypertens 2013; 26:843-9. [PMID: 23443728 DOI: 10.1093/ajh/hpt017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Although rejection rates and short-term graft survival have significantly improved in kidney transplantation with the introduction of calcineurin inhibitor (CNI), cardiovascular disease (CVD) and metabolic complications are being increasingly recognized as important causes of morbidity and mortality. We hypothesize that non-CNI proliferation signal inhibitor (PSI)-based immunosuppressive regimen is associated with improved arterial stiffness after kidney transplantation compared with CNI-based immunosuppressive regimens. METHODS This is a prospective, single-center study of renal transplant (RT) recipients comparing the metabolic, cardiovascular (pulse wave velocity and aortic augmentation index (AI) adjusted for heart rate (AI × 75)), inflammatory cytokines (interleukins (ILs) 6, 12, and 18) and graft-related outcomes at 3 and 15 months posttransplantation between RT recipients maintained on CNI- (CNI-CNI) or PSI-based (CNI-PSI) regimens including sirolimus and everolimus. RESULTS Fifty and 17 RT recipients maintained on CNI-CNI and CNI-PSI, respectively, were included in this study. Median time to PSI conversion from CNI was 5 months. Compared with CNI-CNI recipients, CNI-PSI recipients had significantly lower fasting blood glucose in nondiabetics (coefficient = -16.2; 95% confidence interval (CI) = -14.4 to -18.0; P < 0.01), lower IL-18 levels (coefficient = -229.16; 95% CI = -343.94 to -114.38; P < 0.01), and lower AI × 75 (coefficient = -5.14; 95% CI = -9.99 to -0.28; P = 0.04) at 15 months posttransplant in the multivariable models. CONCLUSIONS Our study suggests from the elimination of CNI for PSI may lower AIx75 and IL-18, both surrogate markers of CVD, but adequately powered, randomized, controlled studies are required to establish the causal relationship between immunosuppressive agents and CVD risk.
Collapse
Affiliation(s)
- Kenneth Yong
- Department of Renal Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Salvadori M, Bertoni E. Is it time to give up with calcineurin inhibitors in kidney transplantation? World J Transplant 2013; 3:7-25. [PMID: 24175203 PMCID: PMC3782241 DOI: 10.5500/wjt.v3.i2.7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/17/2013] [Accepted: 05/09/2013] [Indexed: 02/05/2023] Open
Abstract
Calcineurin inhibitors (CNIs) represent today a cornerstone for the maintenance immunosuppressive treatment in solid organ transplantation. Nevertheless, several attempts have been made either to minimize their dosage or to avoid CNIs at all because these drugs have the severe side effect of chronic nephrotoxicity. This issue represents a frontier for renal transplantation. The principal problem is to understanding whether the poor outcome over the long-term may be ascribed to CNIs nephrotoxicity or to the inability of these drugs to control the acute and chronic rejection B cells mediated. The authors analyze extensively all the international trials attempting to withdraw, minimize or avoid the use of CNIs. Few trials undertaken in low risk patients with an early conversion from CNIs to proliferation signal inhibitors were successful, but the vast majority of trials failed to improve CNIs side effects. To date the use of a new drug, a co-stimulation blocker, seems promising in avoiding CNIs with similar efficacy, better glomerular filtration rate and an improved metabolic profile. Moreover the use of this drug is not associated with the development of donor-specific anti-human leukocyte antigen antibodies. This point has a particular relevance, because the failure of CNIs to realize good outcomes in renal transplantation has recently ascribed to their inability to control the acute and chronic rejections B-cell mediated. This paper analyzes all the recent studies that have been done on this issue that represents the real frontier that should be overcome to realize better results over the long-term after transplantation.
Collapse
|
40
|
Anam K, Lazdun Y, Davis PM, Banas RA, Elster EA, Davis TA. Amnion-derived multipotent progenitor cells support allograft tolerance induction. Am J Transplant 2013; 13:1416-28. [PMID: 23651511 DOI: 10.1111/ajt.12252] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 02/11/2013] [Accepted: 03/10/2013] [Indexed: 01/25/2023]
Abstract
Donor-specific immunological tolerance using high doses of bone marrow cells (BMCs) has been demonstrated in mixed chimerism-based tolerance induction protocols; however, the development of graft versus host disease remains a risk. Here, we demonstrate that the co-infusion of limited numbers of donor unfractionated BMCs with human amnion-derived multipotent progenitor cells (AMPs) 7 days post-allograft transplantation facilitates macrochimerism induction and graft tolerance in a mouse skin transplantation model. AMPs + BMCs co-infusion with minimal conditioning led to stable, mixed, multilineage lymphoid and myeloid macrochimerism, deletion of donor-reactive T cells, expansion of CD4(+)CD25(+)Foxp3(+) regulatory T cells (T(regs)) and long-term allograft survival (>300 days). Based on these findings, we speculate that AMPs maybe a pro-tolerogenic cellular therapeutic that could have clinical efficacy for both solid organ and hematopoietic stem cell transplant applications.
Collapse
Affiliation(s)
- K Anam
- Department of Regenerative Medicine, Operational and Undersea Medicine Directorate at the Naval Medical Research Center, Silver Spring, MD, USA
| | | | | | | | | | | |
Collapse
|
41
|
Dierickx D, Tousseyn T, Sagaert X, Fieuws S, Wlodarska I, Morscio J, Brepoels L, Kuypers D, Vanhaecke J, Nevens F, Verleden G, Van Damme-Lombaerts R, Renard M, Pirenne J, De Wolf-Peeters C, Verhoef G. Single-center analysis of biopsy-confirmed posttransplant lymphoproliferative disorder: incidence, clinicopathological characteristics and prognostic factors. Leuk Lymphoma 2013; 54:2433-40. [PMID: 23442063 DOI: 10.3109/10428194.2013.780655] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cell and solid organ transplant recipients diagnosed with biopsy-confirmed posttransplant lymphoproliferative disorder (PTLD) at our institution from 1989 to 2010 were identified. Patient-, transplant- and disease-related characteristics, prognostic factors and outcome were collected and analyzed. One hundred and forty biopsy-proven cases of PTLD were included. Overall incidence in the transplant population was 2.12%, with heart transplant recipients carrying the highest risk. Most PTLDs were monomorphic (82%), with diffuse large B-cell lymphoma being the most frequent subtype. The majority of cases (70.7%) occurred > 1 year posttransplant, and 66% were Epstein-Barr virus positive. Following initial therapy the overall response rate was 68.5%. Three-year relapse-free and overall survivals were 59% and 49%, respectively. At last follow-up, 44% of the patients were alive. Multivariable analysis identified several classical lymphoma-specific poor prognostic factors for the different outcome measures. The value of the International Prognostic Index was confirmed in our analysis.
Collapse
|
42
|
Development of a Sensitive Phospho-p70 S6 Kinase ELISA to Quantify mTOR Proliferation Signal Inhibition. Ther Drug Monit 2013; 35:233-9. [DOI: 10.1097/ftd.0b013e3182804c9b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Abstract
T cells must be activated before they can elicit damage to allografts, through interaction of their T cell receptor (TCR) with peptide-MHC complex and through accessory molecules. Signaling through accessory molecules or costimulatory molecules is a critical way for the immune system to fine tune T cell activation. An emerging therapeutic strategy is to target selective molecules involved in the process of T cell activation using biologic agents, which do not impact TCR signaling, thus only manipulating the T cells, which recognize alloantigen. Costimulatory receptors and their ligands are attractive targets for this strategy and could be used both to prevent acute graft rejection as well as for maintenance immunosuppression. Therapeutic agents targeting costimulatory molecules, notably belatacept, have made the progression from the bench, through nonhuman primate studies and into the clinic. This overview describes some of the most common costimulatory molecules, their role in T cell activation, and the development of reagents, which target these pathways and their efficacy in transplantation.
Collapse
Affiliation(s)
| | | | - Kathryn J Wood
- Transplantation Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU UK
| |
Collapse
|
44
|
Rygiel TP, Luijk B, Meyaard L. Use of an anti-CD200 antibody for prolonging the survival of allografts: a patent evaluation of WO2012106634A1. Expert Opin Ther Pat 2013; 23:389-92. [DOI: 10.1517/13543776.2013.765406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Noone D, Al-Matrafi J, Tinckam K, Zipfel PF, Herzenberg AM, Thorner PS, Pluthero FG, Kahr WHA, Filler G, Hebert D, Harvey E, Licht C. Antibody mediated rejection associated with complement factor h-related protein 3/1 deficiency successfully treated with eculizumab. Am J Transplant 2012; 12:2546-53. [PMID: 22681773 DOI: 10.1111/j.1600-6143.2012.04124.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antibody mediated rejection (AMR) activates the classical complement pathway and can be detrimental to graft survival. AMR can be accompanied by thrombotic microangiopathy (TMA). Eculizumab, a monoclonal C5 antibody prevents induction of the terminal complement cascade (TCC) and has recently emerged as a therapeutic option for AMR. We present a highly sensitized 13-year-old female with end-stage kidney disease secondary to spina bifida-associated reflux nephropathy, who developed severe steroid-, ATG- and plasmapheresis-resistant AMR with TMA 1 week post second kidney transplant despite previous desensitization therapy with immunoglobulin infusions. Eculizumab rescue therapy resulted in a dramatic improvement in biochemical (C3; creatinine) and hematological (platelets) parameters within 6 days. The patient was proven to be deficient in complement Factor H-related protein 3/1 (CFHR3/1), a plasma protein that regulates the complement cascade at the level of C5 conversion and has been involved in the pathogenesis of atypical hemolytic uremic syndrome caused by CFH autoantibodies (DEAP-HUS). CFHR1 deficiency may have worsened the severe clinical progression of AMR and possibly contributed to the development of donor-specific antibodies. Thus, screening for CFHR3/1 deficiency should be considered in patients with severe AMR associated with TMA.
Collapse
Affiliation(s)
- D Noone
- Division of Nephrology, The Hospital for Sick Children, University of Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ekberg H, Johansson ME. Challenges and considerations in diagnosing the kidney disease in deteriorating graft function. Transpl Int 2012; 25:1119-28. [PMID: 22738034 PMCID: PMC3487178 DOI: 10.1111/j.1432-2277.2012.01516.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Despite significant reductions in acute-rejection rates with the introduction of calcineurin inhibitor (CNI)-based immunosuppressive therapy, improvements in long-term graft survival in renal transplantation have been mixed. Improving long-term graft survival continues to present a major challenge in the management of kidney-transplant patients. CNIs are a key component of immunosuppressive therapy, and chronic CNI toxicity has been widely thought to be a major factor in late graft failure. However, recent studies examining the causes of late graft failure in detail have challenged this view, highlighting the importance of antibody-mediated rejection and other factors. In addition, the diagnosis of CNI nephrotoxicity represents a challenge to clinicians, with the potential for over-diagnosis and an inappropriate reduction in immunosuppressive therapy. When graft function is deteriorating, accurately determining the cause of the kidney disease is essential for effective long-term management of the patient. Diagnosis requires a thorough clinical investigation, and in the majority of cases a specific cause can be identified.
Collapse
Affiliation(s)
- Henrik Ekberg
- Department of Nephrology and Transplantation, Skåne University Hospital, Lund University, Malmö, Sweden.
| | | |
Collapse
|
47
|
Sunder-Plassmann G, Födinger M, Säemann MD. Cardiovascular Disease Mortality in Kidney Transplant Recipients: No Light at the End of the Tunnel? Am J Kidney Dis 2012; 59:754-7. [DOI: 10.1053/j.ajkd.2011.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 11/11/2022]
|
48
|
Abstract
Immunotherapy has been used for the treatment of renal diseases for a long time, and there has been significant progress in such treatment. This review focuses on the use of immunotherapy for the treatment of glomerular diseases. The use of immunosuppression in the treatment of minimal change disease, membranous nephropathy, primary focal segmental glomerulosclerosis, lupus nephritis, immunoglobulin-A nephropathy, antineutrophil cytoplasmic antibody-associated disease, and anti-glomerular basement membrane disease is discussed.
Collapse
Affiliation(s)
- Ajay Kher
- The Transplant Institute, Beth Israel Deaconess Medical Center, 110 Francis Street, 7th Floor, Boston, MA 02215, USA.
| | | |
Collapse
|
49
|
Seijas AB, Graziani S, Cancrini C, Finocchi A, Ferrari S, Miniero R, Conti F, Zuntini R, Chini L, Chiarello P, Bengala M, Rossi P, Moschese V, Di Matteo G. The Impact of TACI Mutations: From Hypogammaglobulinemia in Infancy to Autoimmunity in Adulthood. Int J Immunopathol Pharmacol 2012; 25:407-14. [DOI: 10.1177/039463201202500210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- A.B. Barroeta Seijas
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
| | - S. Graziani
- Department of Pediatrics, Policlinico of Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - C. Cancrini
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Pediatrics, Children's Hospital Bambino Gesù/University of Rome Tor Vergata, Rome, Italy
| | - A. Finocchi
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Pediatrics, Children's Hospital Bambino Gesù/University of Rome Tor Vergata, Rome, Italy
| | - S. Ferrari
- Medical Genetics Unit, S. Orsola Malpighi Hospital, Bologna, Italy
| | - R. Miniero
- Department of Pediatrics, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - F. Conti
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
| | - R. Zuntini
- Medical Genetics Unit, S. Orsola Malpighi Hospital, Bologna, Italy
| | - L. Chini
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Pediatrics, Policlinico of Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - P. Chiarello
- Department of Pediatrics, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - M. Bengala
- Medical Genetics Unit, Department of Laboratory Medicine, Policlinico Tor Vergata, Rome, Italy
| | - P. Rossi
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Pediatrics, Children's Hospital Bambino Gesù/University of Rome Tor Vergata, Rome, Italy
| | - V. Moschese
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
- Department of Pediatrics, Policlinico of Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - G. Di Matteo
- Department of Public Health and Cellular Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
50
|
Abstract
The last two decades have witnessed a pandemic in antibody development, with over 600 entering clinical studies and a total of 28 approved by the FDA and European Union. The incorporation of biologics in transplantation has made a significant impact on allograft survival. Herein, we review the armamentarium of clinical and preclinical biologics used for organ transplantation--with the exception of belatacept--from depleting and IL-2R targeting induction agents to costimulation blockade, B-cell therapeutics, BAFF and complement inhibition, anti-adhesion, and anti-cytokine approaches. While individual agents may be insufficient for tolerance induction, they provide possibilities for reduction of steroid or calcineurin inhibitor use, alternatives to rejection episodes refractory to conventional therapies, and specialized immunosuppression for highly sensitized patients.
Collapse
Affiliation(s)
- Eugenia K Page
- Department of Surgery, Emory University Hospital, Atlanta, GA, USA
| | | | | |
Collapse
|