1
|
Banerjee G, Papri SR, Huang H, Satapathy SK, Banerjee P. Deep sequencing-derived Metagenome Assembled Genomes from the gut microbiome of liver transplant patients. Sci Data 2025; 12:39. [PMID: 39788961 PMCID: PMC11717916 DOI: 10.1038/s41597-024-04153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 11/18/2024] [Indexed: 01/12/2025] Open
Abstract
Recurrence of metabolic dysfunction-associated steatotic liver disease (MASLD) after liver transplantation (LT) is a continuing concern. The role of gut microbiome dysbiosis in MASLD initiation and progression has been well established. However, there is a lack of comprehensive gut microbiome shotgun sequence data for patients experiencing MASLD recurrence after LT. In this data descriptor, we describe a dataset of deep metagenomic sequences of a well-defined LT recipient population. Community-based analysis revealed a high abundance of Akkermansia muciniphila, consistently observed in most patient samples with a low (0-2) MASLD Activity Score (NAS). We constructed 357 metagenome-assembled genomes (MAGs), including 220 high-quality MAGs (>90% completion). The abundance of different species of Bacteroides MAGs dominated in patient samples with NAS > 5 ("definite MASH"). In contrast, the MAGs of A. muciniphila, Akkermansia sp., and Blutia sp. dominated in samples from patients without MASH (NAS = 0-2). In addition, the phylogenetic analysis of A. muciniphila and Akkermansia sp. MAGs identified two new phylogroups of Akkermansia that are distinct from the previously reported three phylogroups.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Suraya Rahman Papri
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hai Huang
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sanjaya Kumar Satapathy
- Division of Hepatology, Sandra Atlas Bass Center for Liver Diseases & Transplantation, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Health, Manhasset, NY, USA.
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Jatana S, Krys D, Verhoeff K, Kung JY, Jogiat U, Montano-Loza AJ, Shapiro AMJ, Dajani K, Anderson B, Bigam DL. Liver Allograft Cirrhosis, Retransplant, and Mortality Secondary to Recurrent Disease After Transplant for MASH: A Systematic Review and Meta-analysis. Transplantation 2024:00007890-990000000-00954. [PMID: 39658843 DOI: 10.1097/tp.0000000000005276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
BACKGROUND Recurrent disease after liver transplant is well recognized for many diseases. Metabolic dysfunction-associated steatotic liver disease (MASLD) and steatohepatitis (MASH) are leading indications for liver transplant, and there is scarce knowledge about recurrence-related end outcomes such as retransplant and mortality. This project aims to assess the proportion of patients transplanted for MASH who develop recurrent disease and adverse clinical outcomes. METHODS A systematic review and pooled proportions meta-analysis was performed by searching the following databases: MEDLINE, Embase, Scopus, Web of Science Core Collection, and Cochrane Library. Inclusion criteria were studies discussing adult patients with liver transplants secondary to MASH or presumed MASH with recurrent disease-related outcomes. Outcomes were assessed in time frames from <6 mo to ≥5 y. RESULTS Of 5859 records, 40 were included (16 157 patients). Recurrent MASLD and MASH (28 studies each) occurred in frequencies of 35%-49% and 11%-24%, respectively. Fibrosis occurred in 4%-25% (13 studies). Recurrent disease-related cirrhosis (13 studies), graft failure (8 studies), and retransplant (9 studies) occurred in 0%-2%, 3%-9%, and 0%-1%, respectively. Recurrent disease-related hepatocellular carcinoma (1 study) and mortality (17 studies) both had a prevalence of 0%. Studies were of moderate or high quality using the Methodological Index for Non-Randomized Studies tool. CONCLUSIONS Recurrent MASLD and MASH after liver transplant occur frequently, but adverse clinical outcomes due to disease recurrence are infrequent, maybe due to insufficient data on long-term follow-up. Long-term outcomes after transplantation for MASLD appear favorable; however, identifying those more likely to have progressive recurrent disease leading to adverse clinical outcomes may allow for pre- and posttransplant interventions to improve outcomes further.
Collapse
Affiliation(s)
- Sukhdeep Jatana
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Daniel Krys
- Faculty of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Kevin Verhoeff
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Janice Y Kung
- Geoffrey and Robyn Sperber Health Sciences Library, University of Alberta, Edmonton, AB, Canada
| | - Uzair Jogiat
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Aldo J Montano-Loza
- Division of Gastroenterology and Liver Unit, University of Alberta, Edmonton, AB, Canada
| | | | - Khaled Dajani
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Blaire Anderson
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - David L Bigam
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
3
|
Wang L, Xu J, You N, Shao L, Zhuang Z, Zhuo L, Liu J, Shi J. Characteristics of intestinal flora in nonobese nonalcoholic fatty liver disease patients and the impact of ursodeoxycholic acid treatment on these features. Lipids 2024; 59:193-207. [PMID: 39246185 DOI: 10.1002/lipd.12410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 09/10/2024]
Abstract
The study aimed to investigate the alterations in gut microbiota among nonobese individuals with nonalcoholic fatty liver disease (NAFLD) and their response to treatment with ursodeoxycholic acid (UDCA). A total of 90 patients diagnosed with NAFLD and 36 healthy subjects were recruited to participate in this study. Among them, a subgroup of 14 nonobese nonalcoholic steatohepatitis (NASH) were treated with UDCA. Demographic and serologic data were collected for all participants, while stool samples were obtained for fecal microbiome analysis using 16S sequencing. In nonobese NAFLD patients, the alpha diversity of intestinal flora decreased (Shannon index, p < 0.05), and the composition of intestinal flora changed (beta diversity, p < 0.05). The abundance of 20 genera, including Fusobacterium, Lachnoclostridium, Klebsiella, etc., exhibited significant changes (p < 0.05). Among them, nine species including Fusobacterium, Lachnoclostridium, Klebsiella, etc. were found to be associated with abnormal liver enzymes and glucolipid metabolic disorders. Among the 14 NASH patients treated with UDCA, improvements were observed in terms of liver enzymes, CAP values, and E values (p < 0.05), however, no improve the glucolipid metabolism. While the alpha diversity of intestinal flora did not show significant changes after UDCA treatment, there was a notable alteration in the composition of intestinal flora (beta diversity, p < 0.05). Furthermore, UCDA treatment led to an improvement in the relative abundance of Alistipes, Holdemanella, Gilisia, etc. among nonobese NASH patients (p < 0.05). Nonobese NAFLD patients exhibit dysbiosis of the intestinal microbiota. UDCA can ameliorate hepatic enzyme abnormalities and reduce liver fat content in nonobese NASH patients, potentially through its ability to restore intestinal microbiota balance.
Collapse
Affiliation(s)
- Liyan Wang
- Department of Infectious diseases, The Second Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Jiali Xu
- Department of Endocrinology, The Second People's Hospital of Quzhou, Quzhou, Zhejiang, China
| | - Ningning You
- Department of Gastroenterology, Taizhou Enze Medical Center, Taizhou, Zhejiang, China
| | - Li Shao
- Institute of Translational Medicine, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Zhenjie Zhuang
- Institute of Translational Medicine, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Lili Zhuo
- Department of Endocrinology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Jing Liu
- Department of Hepatology, Hangzhou Normal University Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Junping Shi
- Institute of Hepatology and Metabolic Diseases, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Ghazanfar H, Javed N, Qasim A, Zacharia GS, Ghazanfar A, Jyala A, Shehi E, Patel H. Metabolic Dysfunction-Associated Steatohepatitis and Progression to Hepatocellular Carcinoma: A Literature Review. Cancers (Basel) 2024; 16:1214. [PMID: 38539547 PMCID: PMC10969013 DOI: 10.3390/cancers16061214] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 11/26/2024] Open
Abstract
The prevalence of metabolic-associated fatty liver disease (MAFLD) is increasing globally due to factors such as urbanization, obesity, poor nutrition, sedentary lifestyles, healthcare accessibility, diagnostic advancements, and genetic influences. Research on MAFLD and HCC risk factors, pathogenesis, and biomarkers has been conducted through a narrative review of relevant studies, with a focus on PubMed and Web of Science databases and exclusion criteria based on article availability and language. Steatosis marks the early stage of MASH advancement, commonly associated with factors of metabolic syndrome such as obesity and type 2 diabetes. Various mechanisms, including heightened lipolysis, hepatic lipogenesis, and consumption of high-calorie diets, contribute to the accumulation of lipids in the liver. Insulin resistance is pivotal in the development of steatosis, as it leads to the release of free fatty acids from adipose tissue. Natural compounds hold promise in regulating lipid metabolism and inflammation to combat these conditions. Liver fibrosis serves as a significant predictor of MASH progression and HCC development, underscoring the need to target fibrosis in treatment approaches. Risk factors for MASH-associated HCC encompass advanced liver fibrosis, older age, male gender, metabolic syndrome, genetic predispositions, and dietary habits, emphasizing the requirement for efficient surveillance and diagnostic measures. Considering these factors, it is important for further studies to determine the biochemical impact of these risk factors in order to establish targeted therapies that can prevent the development of HCC or reduce progression of MASH, indirectly decreasing the risk of HCC.
Collapse
Affiliation(s)
- Haider Ghazanfar
- Division of Gastroenterology, Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (A.J.); (E.S.)
| | - Nismat Javed
- Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (G.S.Z.)
| | - Abeer Qasim
- Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (G.S.Z.)
| | - George Sarin Zacharia
- Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (G.S.Z.)
| | - Ali Ghazanfar
- Department of Internal Medicine, Fauji Foundation Hospital, Rawalpindi 45000, Pakistan
| | - Abhilasha Jyala
- Division of Gastroenterology, Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (A.J.); (E.S.)
| | - Elona Shehi
- Division of Gastroenterology, Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (A.J.); (E.S.)
| | - Harish Patel
- Division of Gastroenterology, Department of Internal Medicine, BronxCare Health System, Bronx, NY 10457, USA (A.J.); (E.S.)
| |
Collapse
|
5
|
Hizo GH, Rampelotto PH. The Impact of Probiotic Bifidobacterium on Liver Diseases and the Microbiota. Life (Basel) 2024; 14:239. [PMID: 38398748 PMCID: PMC10890151 DOI: 10.3390/life14020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have shown the promising potential of probiotics, especially the bacterial genus Bifidobacterium, in the treatment of liver diseases. In this work, a systematic review was conducted, with a focus on studies that employed advanced Next Generation Sequencing (NGS) technologies to explore the potential of Bifidobacterium as a probiotic for treating liver pathologies such as Non-Alcoholic Fatty Liver Disease (NAFLD), Non-Alcoholic Steatohepatitis (NASH), Alcoholic Liver Disease (ALD), Cirrhosis, and Hepatocelullar Carcinoma (HCC) and its impact on the microbiota. Our results indicate that Bifidobacterium is a safe and effective probiotic for treating liver lesions. It successfully restored balance to the intestinal microbiota and improved biochemical and clinical parameters in NAFLD, ALD, and Cirrhosis. No significant adverse effects were identified. While more research is needed to establish its efficacy in treating NASH and HCC, the evidence suggests that Bifidobacterium is a promising probiotic for managing liver lesions.
Collapse
Affiliation(s)
- Gabriel Henrique Hizo
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-907, Brazil
| |
Collapse
|
6
|
Banerjee G, Papri SR, Satapathy SK, Banerjee P. Akkermansia muciniphila - A Potential Next-generation Probiotic for Non-alcoholic Fatty Liver Disease. Curr Pharm Biotechnol 2024; 25:426-433. [PMID: 37724669 DOI: 10.2174/1389201025666230915103052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver conditions, and its growing prevalence is a serious concern worldwide, especially in Western countries. Researchers have pointed out several genetic mutations associated with NAFLD; however, the imbalance of the gut microbial community also plays a critical role in the progression of NAFLD. Due to the lack of approved medicine, probiotics gain special attention in controlling metabolic disorders like NAFLD. Among these probiotics, Akkermansia muciniphila (a member of natural gut microflora) is considered one of the most efficient and important bacterium in maintaining gut health, energy homeostasis, and lipid metabolism. In this perspective, we discussed the probable molecular mechanism of A. muciniphila in controlling the progression of NAFLD and restoring liver health. The therapeutic potential of A. muciniphila in NAFLD has been tested primarily on animal models, and thus, more randomized human trials should be conducted to prove its efficacy.
Collapse
Affiliation(s)
- Goutam Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Suraya R Papri
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Sanjaya K Satapathy
- 2Department of Medicine, Northwell Health Center for Liver Disease & Transplantation, North Shore, University Hospital/Northwell Health, 400 Community Drive, Manhasset, NY 11030, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| |
Collapse
|
7
|
Hizo GH, Rampelotto PH. The Role of Bifidobacterium in Liver Diseases: A Systematic Review of Next-Generation Sequencing Studies. Microorganisms 2023; 11:2999. [PMID: 38138143 PMCID: PMC10745637 DOI: 10.3390/microorganisms11122999] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
The physiopathology of liver diseases is complex and can be caused by various factors. Bifidobacterium is a bacterial genus commonly found in the human gut microbiome and has been shown to influence the development of different stages of liver diseases significantly. This study investigated the relationship between the Bifidobacterium genus and liver injury. In this work, we performed a systematic review in major databases using the key terms "Bifidobacterium", "ALD", "NAFLD", "NASH", "cirrhosis", and "HCC" to achieve our purpose. In total, 31 articles were selected for analysis. In particular, we focused on studies that used next-generation sequencing (NGS) technologies. The studies focused on assessing Bifidobacterium levels in the diseases and interventional aimed at examining the therapeutic potential of Bifidobacterium in the mentioned conditions. Overall, the abundance of Bifidobacterium was reduced in hepatic pathologies. Low levels of Bifidobacterium were associated with harmful biochemical and physiological parameters, as well as an adverse clinical outcome. However, interventional studies using different drugs and treatments were able to increase the abundance of the genus and improve clinical outcomes. These results strongly support the hypothesis that changes in the abundance of Bifidobacterium significantly influence both the pathophysiology of hepatic diseases and the related clinical outcomes. In addition, our critical assessment of the NGS methods and related statistical analyses employed in each study highlights concerns with the methods used to define the differential abundance of Bifidobacterium, including potential biases and the omission of relevant information.
Collapse
Affiliation(s)
- Gabriel Henrique Hizo
- Graduate Program in Gastroenterology and Hepatology Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-907, Brazil
| |
Collapse
|
8
|
Rabindranath M, Zaya R, Prayitno K, Orchanian-Cheff A, Patel K, Jaeckel E, Bhat M. A Comprehensive Review of Liver Allograft Fibrosis and Steatosis: From Cause to Diagnosis. Transplant Direct 2023; 9:e1547. [PMID: 37854023 PMCID: PMC10581596 DOI: 10.1097/txd.0000000000001547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 10/20/2023] Open
Abstract
Despite advances in posttransplant care, long-term outcomes for liver transplant recipients remain unchanged. Approximately 25% of recipients will advance to graft cirrhosis and require retransplantation. Graft fibrosis progresses in the context of de novo or recurrent disease. Recurrent hepatitis C virus infection was previously the most important cause of graft failure but is now curable in the majority of patients. However, with an increasing prevalence of obesity and diabetes and nonalcoholic fatty liver disease as the most rapidly increasing indication for liver transplantation, metabolic dysfunction-associated liver injury is anticipated to become an important cause of graft fibrosis alongside alloimmune hepatitis and alcoholic liver disease. To better understand the landscape of the graft fibrosis literature, we summarize the associated epidemiology, cause, potential mechanisms, diagnosis, and complications. We additionally highlight the need for better noninvasive methods to ameliorate the management of graft fibrosis. Some examples include leveraging the microbiome, genetic, and machine learning methods to address these limitations. Overall, graft fibrosis is routinely seen by transplant clinicians, but it requires a better understanding of its underlying biology and contributors that can help inform diagnostic and therapeutic practices.
Collapse
Affiliation(s)
- Madhumitha Rabindranath
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Rita Zaya
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
| | - Khairunnadiya Prayitno
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, Toronto, ON, Canada
| | - Keyur Patel
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Elmar Jaeckel
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mamatha Bhat
- Ajmera Transplant Program, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Korobeinikova AV, Zlobovskaya OA, Sheptulina AF, Ashniev GA, Bobrova MM, Yafarova AA, Akasheva DU, Kabieva SS, Bakoev SY, Zagaynova AV, Lukashina MV, Abramov IA, Pokrovskaya MS, Doludin YV, Tolkacheva LR, Kurnosov AS, Zyatenkova EV, Lavrenova EA, Efimova IA, Glazunova EV, Kiselev AR, Shipulin GA, Kontsevaya AV, Keskinov AA, Yudin VS, Makarov VV, Drapkina OM, Yudin SM. Gut Microbiota Patterns in Patients with Non-Alcoholic Fatty Liver Disease: A Comprehensive Assessment Using Three Analysis Methods. Int J Mol Sci 2023; 24:15272. [PMID: 37894951 PMCID: PMC10607775 DOI: 10.3390/ijms242015272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common chronic liver disease worldwide, affecting nearly 25% of the global adult population. Increasing evidence suggests that functional and compositional changes in the gut microbiota may contribute to the development and promote the progression of NAFLD. 16S rRNA gene next-generation sequencing is widely used to determine specific features of the NAFLD microbiome, but a complex system such as the gut microbiota requires a comprehensive approach. We used three different approaches: MALDI-TOF-MS of bacterial cultures, qPCR, and 16S NGS sequencing, as well as a wide variety of statistical methods to assess the differences in gut microbiota composition between NAFLD patients without significant fibrosis and the control group. The listed methods showed enrichment in Collinsella sp. and Oscillospiraceae for the control samples and enrichment in Lachnospiraceae (and in particular Dorea sp.) and Veillonellaceae in NAFLD. The families, Bifidobacteriaceae, Lactobacillaceae, and Enterococcaceae (particularly Enterococcus faecium and Enterococcus faecalis), were also found to be important taxa for NAFLD microbiome evaluation. Considering individual method observations, an increase in Candida krusei and a decrease in Bacteroides uniformis for NAFLD patients were detected using MALDI-TOF-MS. An increase in Gracilibacteraceae, Chitinophagaceae, Pirellulaceae, Erysipelatoclostridiaceae, Muribaculaceae, and Comamonadaceae, and a decrease in Acidaminococcaceae in NAFLD were observed with 16S NGS, and enrichment in Fusobacterium nucleatum was shown using qPCR analysis. These findings confirm that NAFLD is associated with changes in gut microbiota composition. Further investigations are required to determine the cause-and-effect relationships and the impact of microbiota-derived compounds on the development and progression of NAFLD.
Collapse
Affiliation(s)
- Anna V. Korobeinikova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Olga A. Zlobovskaya
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anna F. Sheptulina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - German A. Ashniev
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Maria M. Bobrova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Adel A. Yafarova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Dariga U. Akasheva
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Shuanat Sh. Kabieva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Siroj Yu. Bakoev
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anjelica V. Zagaynova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Maria V. Lukashina
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Ivan A. Abramov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Mariya S. Pokrovskaya
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Yurii V. Doludin
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Larisa R. Tolkacheva
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Alexander S. Kurnosov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Elena V. Zyatenkova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Evgeniya A. Lavrenova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Irina A. Efimova
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Evgeniya V. Glazunova
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - German A. Shipulin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Anna V. Kontsevaya
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Anton A. Keskinov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Vladimir S. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Valentin V. Makarov
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, Petroverigskyj Lane 10, bld.3, 101990 Moscow, Russia; (A.F.S.); (A.A.Y.); (D.U.A.)
| | - Sergey M. Yudin
- Centre for Strategic Planning and Management of Biomedical Health Risks of Federal Medical Biological Agency, Pogodinskaya Str., 10/1, 119121 Moscow, Russia; (A.V.K.); (S.S.K.); (S.Y.B.); (M.V.L.); (A.S.K.)
| |
Collapse
|
10
|
Sen T, Thummer RP. The Impact of Human Microbiotas in Hematopoietic Stem Cell and Organ Transplantation. Front Immunol 2022; 13:932228. [PMID: 35874759 PMCID: PMC9300833 DOI: 10.3389/fimmu.2022.932228] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/06/2022] [Indexed: 11/18/2022] Open
Abstract
The human microbiota heavily influences most vital aspects of human physiology including organ transplantation outcomes and transplant rejection risk. A variety of organ transplantation scenarios such as lung and heart transplantation as well as hematopoietic stem cell transplantation is heavily influenced by the human microbiotas. The human microbiota refers to a rich, diverse, and complex ecosystem of bacteria, fungi, archaea, helminths, protozoans, parasites, and viruses. Research accumulating over the past decade has established the existence of complex cross-species, cross-kingdom interactions between the residents of the various human microbiotas and the human body. Since the gut microbiota is the densest, most popular, and most studied human microbiota, the impact of other human microbiotas such as the oral, lung, urinary, and genital microbiotas is often overshadowed. However, these microbiotas also provide critical and unique insights pertaining to transplantation success, rejection risk, and overall host health, across multiple different transplantation scenarios. Organ transplantation as well as the pre-, peri-, and post-transplant pharmacological regimens patients undergo is known to adversely impact the microbiotas, thereby increasing the risk of adverse patient outcomes. Over the past decade, holistic approaches to post-transplant patient care such as the administration of clinical and dietary interventions aiming at restoring deranged microbiota community structures have been gaining momentum. Examples of these include prebiotic and probiotic administration, fecal microbial transplantation, and bacteriophage-mediated multidrug-resistant bacterial decolonization. This review will discuss these perspectives and explore the role of different human microbiotas in the context of various transplantation scenarios.
Collapse
Affiliation(s)
| | - Rajkumar P. Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| |
Collapse
|
11
|
Di Ciaula A, Bonfrate L, Portincasa P. The role of microbiota in nonalcoholic fatty liver disease. Eur J Clin Invest 2022; 52:e13768. [PMID: 35294774 DOI: 10.1111/eci.13768] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/17/2022] [Accepted: 03/06/2022] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most frequent liver disease worldwide. Gut microbiota can play a role in the pathogenesis of NAFLD since dysbiosis is associated with reduced bacterial diversity, altered Firmicutes/Bacteroidetes ratio, a relative abundance of alcohol-producing bacteria, or other specific genera. Changes can promote disrupted intestinal barrier and hyperpermeability, filtration of bacterial products, activation of the immune system, and pro-inflammatory changes in the intestine, in the liver, and at a systemic level. Microbiota-derived molecules can contribute to the steatogenic effects. The link between gut dysbiosis and NAFLD, however, is confused by several factors which include age, BMI, comorbidities, dietary components, and lifestyle. The role of toxic chemicals in food and water requires further studies in both gut dysbiosis and NAFLD. We can anticipate that gut microbiota manipulation will represent a potential therapeutic tool to delay or reverse the progression of NAFLD, paving the way to primary prevention measures.
Collapse
Affiliation(s)
- Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Leonilde Bonfrate
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
12
|
Biliary Diseases from the Microbiome Perspective: How Microorganisms Could Change the Approach to Benign and Malignant Diseases. Microorganisms 2022; 10:microorganisms10020312. [PMID: 35208765 PMCID: PMC8877314 DOI: 10.3390/microorganisms10020312] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Recent evidence regarding microbiota is modifying the cornerstones on pathogenesis and the approaches to several gastrointestinal diseases, including biliary diseases. The burden of biliary diseases, indeed, is progressively increasing, considering that gallstone disease affects up to 20% of the European population. At the same time, neoplasms of the biliary system have an increasing incidence and poor prognosis. Framing the specific state of biliary eubiosis or dysbiosis is made difficult by the use of heterogeneous techniques and the sometimes unwarranted invasive sampling in healthy subjects. The influence of the microbial balance on the health status of the biliary tract could also account for some of the complications surrounding the post-liver-transplant phase. The aim of this extensive narrative review is to summarize the current evidence on this topic, to highlight gaps in the available evidence in order to guide further clinical research in these settings, and, eventually, to provide new tools to treat biliary lithiasis, biliopancreatic cancers, and even cholestatic disease.
Collapse
|
13
|
Understanding the Role of the Gut Microbiome and Microbial Metabolites in Non-Alcoholic Fatty Liver Disease: Current Evidence and Perspectives. Biomolecules 2021; 12:biom12010056. [PMID: 35053205 PMCID: PMC8774162 DOI: 10.3390/biom12010056] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/24/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.
Collapse
|