1
|
Hamade YJ, Dharnipragada R, Chen CC. The ClearPoint Array Frame: An MRI Compatible System that Supports Non-craniotomy, Multi-trajectory (NCMT) Stereotactic Procedures. World Neurosurg 2024; 184:e754-e764. [PMID: 38350598 DOI: 10.1016/j.wneu.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
BACKGROUND With continued evolution in stereotactic techniques and an expanding armamentarium of surgical therapeutic options, non-craniotomy stereotactic procedures in neuro-oncology are becoming increasingly complex, often requiring multi-trajectory approaches. Here we demonstrate that the ClearPoint SmartFrame Array (Solana Beach, California, USA), a second-generation magnetic resonance imaging-compatible stereotactic frame, supports such non-craniotomy, multi-trajectory (NCMT) stereotactic procedures. METHODS We previously published case reports demonstrating the feasibility of NCMT through the ClearPoint SmartFrame Array. Here we prospectively followed the next 10 consecutive patients who underwent such multi-trajectory procedures to further establish procedural safety and clinical utility. RESULTS Ten patients underwent complex, multi-trajectory stereotactic procedures, including combinations of needle biopsy ± cyst drainage and laser interstitial thermal therapy targeting geographically distinct regions of neoplastic lesions under the same anesthetic event. The median maximal radial error of stereotaxis was 1.0 mm. In all cases, definitive diagnosis was achieved, and >90% of the intended targets were ablated. The average stereotaxis time for the multi-trajectory procedure was 119 ± 22.2 minutes, comparing favorably to our previously published results of single-trajectory procedures (80 ± 9.59 minutes, P = 0.125). There were no procedural complications. Post-procedure, the neurologic condition of 1 patient improved, while the remaining 9 patients remained stable. All patients were discharged home, with a median hospital stay of 1 day (range: 1-12 days). With a median follow-up of 376 days (range: 155-1438 days), there were no 30-day readmissions or wound complications. CONCLUSIONS Geographically distinct regions of brain cancer can be safely and accurately accessed through the ClearPoint Array frame in NCMT stereotactic procedures.
Collapse
Affiliation(s)
- Youssef J Hamade
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Rajiv Dharnipragada
- University of Minnesota Medical School, University of Minnesota Twin-Cities, Minneapolis, Minnesota, USA
| | - Clark C Chen
- Department of Neurosurgery, Warren Alpert School of Medicine, Rhode Island Hospital, Brown University, Providence, Rhode Island, USA.
| |
Collapse
|
2
|
Fredrich I, Halabi EA, Kohler RH, Ge X, Garris CS, Weissleder R. Highly Active Myeloid Therapy for Cancer. ACS NANO 2023; 17:20666-20679. [PMID: 37824733 PMCID: PMC10941024 DOI: 10.1021/acsnano.3c08034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Tumor-associated macrophages (TAM) interact with cancer and stromal cells and are integral to sustaining many cancer-promoting features. Therapeutic manipulation of TAM could therefore improve clinical outcomes and synergize with immunotherapy and other cancer therapies. While different nanocarriers have been used to target TAM, a knowledge gap exists on which TAM pathways to target and what payloads to deliver for optimal antitumor effects. We hypothesized that a multipart combination involving the Janus tyrosine kinase (JAK), noncanonical nuclear factor kappa light chain enhancer of activated B cells (NF-κB), and toll-like receptor (TLR) pathways could lead to a highly active myeloid therapy (HAMT). Thus, we devised a screen to determine drug combinations that yield maximum IL-12 production from myeloid cells to treat the otherwise highly immunosuppressive myeloid environments in tumors. Here we show the extraordinary efficacy of a triple small-molecule combination in a TAM-targeted nanoparticle for eradicating murine tumors, jumpstarting a highly efficient antitumor response by adopting a distinctive antitumor TAM phenotype and synergizing with other immunotherapies. The HAMT therapy represents a recently developed approach in immunotherapy and leads to durable responses in murine cancer models.
Collapse
Affiliation(s)
- Ina Fredrich
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
| | - Elias A. Halabi
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
| | - Rainer H. Kohler
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
| | - Xinying Ge
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
| | - Christopher S. Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, United States
- Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, United States
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, United States
| |
Collapse
|
3
|
Kavain ablates the radio-resistance of IDH-wildtype glioblastoma by targeting LITAF/NF-κB pathway. Cell Oncol (Dordr) 2023; 46:179-193. [PMID: 36464713 DOI: 10.1007/s13402-022-00743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Glioblastoma multiforma (GBM) is the most malignant intrinsic tumor of the central nervous system (CNS), with high morbidity of 3.19/100,000 per year and a poor 5-year survival rate (< 5%) worldwide. Numerous studies have indicated that GBM shows remarkable radioresistance and aggressive recurrence. However, the mechanisms to endow GBM cells with radioresistance are complex and unclear. METHODS Cell growth curve and colony formation assays were used to analyze the radioresistance of GBM. Immunoprecipitation and immunoblotting experiments were carried out to analyze protein expression and interaction. RESULTS In the present study, we found that LITAF, lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α factor, is up-regulated both in mRNA and protein in GBM tumors. Meanwhile, we observed that high LITAF expression contributes to radioresistance of GBM cell lines (including U87, U251, DK, and AM38 cells), indicated by knockout or knockdown of LITAF in cells sensitizing them to radiation treatment both in vitro and in vivo. Furthermore, we demonstrated that kavain, an active constituent of Piper methysticum Forst., effectively ablates GSC-like cells' (such as CD133 + U87, U251, DK, and AM38 populations) radioresistance in a LITAF-dependent manner. CONCLUSION In mechanism, our results indicated that 1) the elevation of LITAF in GBM cells activates the NF-κB pathway to promote mesenchymal transition, and 2) kavain disturbs STAT6B/LITAF protein interaction and then expels LITAF from the nucleus. Therefore, we consider that kavain may be a potential candidate to develop an irradiation therapy adjuvant for GBM.
Collapse
|
4
|
Sanders S, Herpai DM, Rodriguez A, Huang Y, Chou J, Hsu FC, Seals D, Mott R, Miller LD, Debinski W. The Presence and Potential Role of ALDH1A2 in the Glioblastoma Microenvironment. Cells 2021; 10:2485. [PMID: 34572134 PMCID: PMC8468822 DOI: 10.3390/cells10092485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant glioma. Therapeutic targeting of GBM is made more difficult due to its heterogeneity, resistance to treatment, and diffuse infiltration into the brain parenchyma. Better understanding of the tumor microenvironment should aid in finding more effective management of GBM. GBM-associated macrophages (GAM) comprise up to 30% of the GBM microenvironment. Therefore, exploration of GAM activity/function and their specific markers are important for developing new therapeutic agents. In this study, we identified and evaluated the expression of ALDH1A2 in the GBM microenvironment, and especially in M2 GAM, though it is also expressed in reactive astrocytes and multinucleated tumor cells. We demonstrated that M2 GAM highly express ALDH1A2 when compared to other ALDH1 family proteins. Additionally, GBM samples showed higher expression of ALDH1A2 when compared to low-grade gliomas (LGG), and this expression was increased upon tumor recurrence both at the gene and protein levels. We demonstrated that the enzymatic product of ALDH1A2, retinoic acid (RA), modulated the expression and activity of MMP-2 and MMP-9 in macrophages, but not in GBM tumor cells. Thus, the expression of ALDH1A2 may promote the progressive phenotype of GBM.
Collapse
Affiliation(s)
- Stephanie Sanders
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Denise M. Herpai
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Analiz Rodriguez
- Department of Neurosurgery, Jackson T. Stephens Spine and Neuroscience Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yue Huang
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| | - Jeff Chou
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston Salem, NC 27157, USA;
| | - Darren Seals
- Biology Department, Appalachian State University, Boone, NC 28608, USA;
| | - Ryan Mott
- Department of Pathology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA;
| | - Lance D. Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
| | - Waldemar Debinski
- Department of Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC 27157, USA; (S.S.); (D.M.H.); (Y.H.); (J.C.); (L.D.M.)
- Brain Tumor Center of Excellence, Wake Forest Baptist Medical Center Comprehensive Cancer Center, Winston Salem, NC 27157, USA
| |
Collapse
|
5
|
De Martino M, Padilla O, Daviaud C, Wu CC, Gartrell RD, Vanpouille-Box C. Exploiting Radiation Therapy to Restore Immune Reactivity of Glioblastoma. Front Oncol 2021; 11:671044. [PMID: 34094969 PMCID: PMC8173136 DOI: 10.3389/fonc.2021.671044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma (GBM) is among the most aggressive of brain tumors and confers a dismal prognosis despite advances in surgical technique, radiation delivery methods, chemotherapy, and tumor-treating fields. While immunotherapy (IT) has improved the care of several adult cancers with previously dismal prognoses, monotherapy with IT in GBM has shown minimal response in first recurrence. Recent discoveries in lymphatics and evaluation of blood brain barrier offer insight to improve the use of ITs and determine the best combinations of therapies, including radiation. We highlight important features of the tumor immune microenvironment in GBM and potential for combining radiation and immunotherapy to improve prognosis in this devastating disease.
Collapse
Affiliation(s)
- Mara De Martino
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Oscar Padilla
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States
| | - Camille Daviaud
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Cheng-Chia Wu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, NY, United States.,Herbert Irving Comprehensive Cancer Center, New York, NY, United States
| | - Robyn D Gartrell
- Department of Pediatrics, Pediatric Hematology/Oncology/SCT, Columbia University Irving Medical Center, New York, NY, United States
| | - Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States.,Sandra and Edward Meyer Cancer Center, New York, NY, United States
| |
Collapse
|
6
|
Lombardo SD, Bramanti A, Ciurleo R, Basile MS, Pennisi M, Bella R, Mangano K, Bramanti P, Nicoletti F, Fagone P. Profiling of inhibitory immune checkpoints in glioblastoma: Potential pathogenetic players. Oncol Lett 2020; 20:332. [PMID: 33123243 PMCID: PMC7583708 DOI: 10.3892/ol.2020.12195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
Glioblastoma (GBM) represents the most frequent glial tumor, with almost 3 new cases per 100,000 people per year. Despite treatment, the prognosis for GBM patients remains extremely poor, with a median survival of 14.6 months, and a 5-year survival less than 5%. It is generally believed that GBM creates a highly immunosuppressive microenvironment, sustained by the expression of immune-regulatory factors, including inhibitory immune checkpoints, on both infiltrating cells and tumor cells. However, the trials assessing the efficacy of current immune checkpoint inhibitors in GBM are still disappointing. In the present study, the expression levels of several inhibitory immune checkpoints in GBM (CD276, VTCN1, CD47, PVR, TNFRSF14, CD200, LGALS9, NECTIN2 and CD48) were characterized in order to evaluate their potential as prognostic and eventually, therapeutic targets. Among the investigated immune checkpoints, TNFRSF14 and NECTIN2 were identified as the most promising targets in GBM. In particular, a higher TNFRSF14 expression was associated with worse overall survival and disease-free survival, and with a lower Th1 response.
Collapse
Affiliation(s)
- Salvo Danilo Lombardo
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | | | - Rosella Ciurleo
- IRCCS Centro Neurolesi Bonino Pulejo, I-98124 Messina, Italy
| | | | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Rita Bella
- Department of Medical Sciences, Surgery and Advanced Technologies, University of Catania, I-95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | | | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, I-95123 Catania, Italy
| |
Collapse
|
7
|
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) is the most prevalent primary brain tumor. In spite of the rigorous multimodal treatment involving surgery and radiochemotherapy, GBM has a dismal prognosis and rapid relapsing potential. Hence, search for novel therapeutic agents still continues. Neoantigens are the tumor-specific antigens which arise due to somatic mutations in the tumor genome. In recent years, personalized vaccine approach targeting neoantigens has been explored widely in cancer immunotherapy and several efforts have also been made to revolutionize the immunotherapy of cold tumors such as GBM using neoantigen targeted vaccines. AREAS COVERED In this review, we discuss the clinical application of personalized neoantigen targeted vaccine strategy in GBM immunotherapy. While discussing this strategy, we brief about the current challenges faced in GBM treatment by the novel immunotherapeutics. EXPERT OPINION To date, very few vaccines developed for GBM have reached till phase III clinical development. Early-phase clinical trials of GBM neoantigen vaccines have shown promising clinical outcomes and therefore, its rapid clinical development is warranted. Advent of newer and faster techniques such as next-generation sequencing will drive the faster clinical development of multiplex neoantigen vaccines and hence, increase in the clinical trials is expected.
Collapse
Affiliation(s)
- Vaishali Y Londhe
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS University , Mumbai, India
| | - Varada Date
- Shobhaben Pratapbhai Patel School of Pharmacy &, Technology Management, SVKM's NMIMS University , Mumbai, India
| |
Collapse
|
8
|
Di Tacchio M, Macas J, Weissenberger J, Sommer K, Bähr O, Steinbach JP, Senft C, Seifert V, Glas M, Herrlinger U, Krex D, Meinhardt M, Weyerbrock A, Timmer M, Goldbrunner R, Deckert M, Scheel AH, Büttner R, Grauer OM, Schittenhelm J, Tabatabai G, Harter PN, Günther S, Devraj K, Plate KH, Reiss Y. Tumor Vessel Normalization, Immunostimulatory Reprogramming, and Improved Survival in Glioblastoma with Combined Inhibition of PD-1, Angiopoietin-2, and VEGF. Cancer Immunol Res 2019; 7:1910-1927. [PMID: 31597643 DOI: 10.1158/2326-6066.cir-18-0865] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/25/2019] [Accepted: 10/01/2019] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is a non-T-cell-inflamed cancer characterized by an immunosuppressive microenvironment that impedes dendritic cell maturation and T-cell cytotoxicity. Proangiogenic cytokines such as VEGF and angiopoietin-2 (Ang-2) have high expression in glioblastoma in a cell-specific manner and not only drive tumor angiogenesis and vascular permeability but also negatively regulate T-lymphocyte and innate immune cell responses. Consequently, the alleviation of immunosuppression might be a prerequisite for successful immune checkpoint therapy in GBM. We here combined antiangiogenic and immune checkpoint therapy and demonstrated improved therapeutic efficacy in syngeneic, orthotopic GBM models. We observed that blockade of VEGF, Ang-2, and programmed cell death protein-1 (PD-1) significantly extended survival compared with vascular targeting alone. In the GBM microenvironment, triple therapy increased the numbers of CTLs, which inversely correlated with myeloid-derived suppressor cells and regulatory T cells. Transcriptome analysis of GBM microvessels indicated a global vascular normalization that was highest after triple therapy. Our results propose a rationale to overcome tumor immunosuppression and the current limitations of VEGF monotherapy by integrating the synergistic effects of VEGF/Ang-2 and PD-1 blockade to reinforce antitumor immunity through a normalized vasculature.
Collapse
Affiliation(s)
- Mariangela Di Tacchio
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jadranka Macas
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Jakob Weissenberger
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Kathleen Sommer
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Oliver Bähr
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany.,Senckenberg Institute of Neurooncology, University Hospital, Goethe University, Frankfurt, Germany
| | - Joachim P Steinbach
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany.,Senckenberg Institute of Neurooncology, University Hospital, Goethe University, Frankfurt, Germany
| | - Christian Senft
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Volker Seifert
- German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, University Hospital, Goethe University, Frankfurt, Germany
| | - Martin Glas
- Department of Neurology, Division of Clinical Neurooncology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Essen, Germany.,DKFZ-Division Translational Neurooncology at the West German Cancer Center (WTZ), University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulrich Herrlinger
- Department of Neurology, Division of Clinical Neurooncology, University of Bonn Medical Centre, Bonn, Germany
| | - Dietmar Krex
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, Dresden University of Technology, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
| | - Matthias Meinhardt
- Institute of Pathology, Dresden University of Technology, Dresden, Germany
| | - Astrid Weyerbrock
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Marco Timmer
- Center for Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Roland Goldbrunner
- Center for Neurosurgery, University Hospital of Cologne, Cologne, Germany
| | - Martina Deckert
- Institute of Neuropathology, University Hospital of Cologne, Cologne, Germany
| | - Andreas H Scheel
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - Oliver M Grauer
- Department of Neurology with Institute of Translational Neurology, University Hospital of Muenster, Muenster, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, Eberhard-Karls University Tuebingen, Tuebingen, Germany
| | - Ghazaleh Tabatabai
- German Cancer Research Center (DKFZ), Heidelberg, Germany.,Departments of Neurology & Neurosurgery, Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Center for CNS Tumors, Comprehensive Cancer Center, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany.,German Cancer Consortium (DKTK), Partner Site Tübingen, Tübingen, Germany
| | - Patrick N Harter
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Bioinformatics and Deep Sequencing Platform, Bad Nauheim, Germany
| | - Kavi Devraj
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Karl H Plate
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| | - Yvonne Reiss
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University, Frankfurt, Germany. .,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Frankfurt, Germany
| |
Collapse
|
9
|
Chiocca EA, Yu JS, Lukas RV, Solomon IH, Ligon KL, Nakashima H, Triggs DA, Reardon DA, Wen P, Stopa BM, Naik A, Rudnick J, Hu JL, Kumthekar P, Yamini B, Buck JY, Demars N, Barrett JA, Gelb AB, Zhou J, Lebel F, Cooper LJN. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: Results of a phase 1 trial. Sci Transl Med 2019; 11:eaaw5680. [PMID: 31413142 PMCID: PMC7286430 DOI: 10.1126/scitranslmed.aaw5680] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 07/01/2019] [Indexed: 12/22/2022]
Abstract
Human interleukin-12 (hIL-12) is a cytokine with anticancer activity, but its systemic application is limited by toxic inflammatory responses. We assessed the safety and biological effects of an hIL-12 gene, transcriptionally regulated by an oral activator. A multicenter phase 1 dose-escalation trial (NCT02026271) treated 31 patients undergoing resection of recurrent high-grade glioma. Resection cavity walls were injected (day 0) with a fixed dose of the hIL-12 vector (Ad-RTS-hIL-12). The oral activator for hIL-12, veledimex (VDX), was administered preoperatively (assaying blood-brain barrier penetration) and postoperatively (measuring hIL-12 transcriptional regulation). Cohorts received 10 to 40 mg of VDX before and after Ad-RTS-hIL-12. Dose-related increases in VDX, IL-12, and interferon-γ (IFN-γ) were observed in peripheral blood, with about 40% VDX tumor penetration. Frequency and severity of adverse events, including cytokine release syndrome, correlated with VDX dose, reversing promptly upon discontinuation. VDX (20 mg) had superior drug compliance and 12.7 months median overall survival (mOS) at mean follow-up of 13.1 months. Concurrent corticosteroids negatively affected survival: In patients cumulatively receiving >20 mg versus ≤20 mg of dexamethasone (days 0 to 14), mOS was 6.4 and 16.7 months, respectively, in all patients and 6.4 and 17.8 months, respectively, in the 20-mg VDX cohort. Re-resection in five of five patients with suspected recurrence after Ad-RTS-hIL-12 revealed mostly pseudoprogression with increased tumor-infiltrating lymphocytes producing IFN-γ and programmed cell death protein 1 (PD-1). These inflammatory infiltrates support an immunological antitumor effect of hIL-12. This phase 1 trial showed acceptable tolerability of regulated hIL-12 with encouraging preliminary results.
Collapse
Affiliation(s)
- E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - John S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rimas V Lukas
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- University of Chicago, Chicago, IL 60637, USA
| | - Isaac H Solomon
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Keith L Ligon
- Division of Neuropathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hiroshi Nakashima
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A Triggs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Patrick Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Brittany M Stopa
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ajay Naik
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy Rudnick
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jethro L Hu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Priya Kumthekar
- Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | | - Jill Y Buck
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Nathan Demars
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - John A Barrett
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Arnold B Gelb
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - John Zhou
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Francois Lebel
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
| | - Laurence J N Cooper
- Ziopharm Oncology, Inc., One First Avenue, Parris Building 34, Navy Yard Plaza, Charlestown, Boston, MA 02129, USA
- MD Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| |
Collapse
|
10
|
Yelton CJ, Ray SK. Histone deacetylase enzymes and selective histone deacetylase inhibitors for antitumor effects and enhancement of antitumor immunity in glioblastoma. ACTA ACUST UNITED AC 2018; 5. [PMID: 30701185 PMCID: PMC6348296 DOI: 10.20517/2347-8659.2018.58] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Glioblastoma multiforme (GBM), which is the most common primary central nervous system malignancy in adults, has long presented a formidable challenge to researchers and clinicians alike. Dismal 5-year survival rates of the patients with these tumors and the ability of the recurrent tumors to evade primary treatment strategies have prompted a need for alternative therapies in the treatment of GBM. Histone deacetylase (HDAC) inhibitors are currently a potential epigenetic therapy modality under investigation for use in GBM with mixed results. While these agents show promise through a variety of proposed mechanisms in the pre-clinical realm, only several of these agents have shown this same promise when translated into the clinical arena, either as monotherapy or for use in combination regimens. This review will examine the current state of use of HDAC inhibitors in GBM, the mechanistic rationale for use of HDAC inhibitors in GBM, and then examine an exciting new mechanistic revelation of certain HDAC inhibitors that promote antitumor immunity in GBM. The details of this antitumor immunity will be discussed with an emphasis on application of this antitumor immunity towards developing alternative therapies for treatment of GBM. The final section of this article will provide an overview of the current state of immunotherapy targeted specifically to GBM.
Collapse
Affiliation(s)
- Caleb J Yelton
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|
11
|
Mangano K, Mazzon E, Basile MS, Di Marco R, Bramanti P, Mammana S, Petralia MC, Fagone P, Nicoletti F. Pathogenic role for macrophage migration inhibitory factor in glioblastoma and its targeting with specific inhibitors as novel tailored therapeutic approach. Oncotarget 2018; 9:17951-17970. [PMID: 29707160 PMCID: PMC5915168 DOI: 10.18632/oncotarget.24885] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/08/2018] [Indexed: 12/21/2022] Open
Abstract
Macrophage Migration Inhibitory Factor (MIF) is a pro-inflammatory cytokine expressed by a variety of cell types. Although MIF has been primarily studied for its role in the pathogenesis of autoimmune diseases, it has also been shown to promote tumorigenesis and it is over expressed in various malignant tumors. MIF is able to induce angiogenesis, cell cycle progression, and to block apoptosis. As tailored therapeutic approaches for the inhibition of endogenous MIF are being developed, it is important to evaluate the role of MIF in individual neoplastic conditions that may benefit from specific MIF inhibitors. Along with this line, in this paper, we have reviewed the evidence of the involvement of MIF in the etiopathogenesis and progression of glioblastoma and the preclinical data suggesting the possible use of specific MIF inhibition as a potential novel therapeutic strategy for brain tumors.
Collapse
Affiliation(s)
- Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Maria Sofia Basile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | | | - Santa Mammana
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Messina, Italy
| | - Maria Cristina Petralia
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Department of Formative Processes, University of Catania, Catania, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
12
|
Mehta S, Lo Cascio C. Developmentally regulated signaling pathways in glioma invasion. Cell Mol Life Sci 2018; 75:385-402. [PMID: 28821904 PMCID: PMC5765207 DOI: 10.1007/s00018-017-2608-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 01/06/2023]
Abstract
Malignant gliomas are the most common, infiltrative, and lethal primary brain tumors affecting the adult population. The grim prognosis for this disease is due to a combination of the presence of highly invasive tumor cells that escape surgical resection and the presence of a population of therapy-resistant cancer stem cells found within these tumors. Several studies suggest that glioma cells have cleverly hijacked the normal developmental program of neural progenitor cells, including their transcriptional programs, to enhance gliomagenesis. In this review, we summarize the role of developmentally regulated signaling pathways that have been found to facilitate glioma growth and invasion. Furthermore, we discuss how the microenvironment and treatment-induced perturbations of these highly interconnected signaling networks can trigger a shift in cellular phenotype and tumor subtype.
Collapse
Affiliation(s)
- Shwetal Mehta
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA.
| | - Costanza Lo Cascio
- Division of Neurobiology, Barrow Brain Tumor Research Center, Barrow Neurological Institute, Phoenix, AZ, 85013, USA
| |
Collapse
|
13
|
Sim HW, Morgan ER, Mason WP. Contemporary management of high-grade gliomas. CNS Oncol 2018; 7:51-65. [PMID: 29241354 PMCID: PMC6001673 DOI: 10.2217/cns-2017-0026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/02/2017] [Indexed: 01/01/2023] Open
Abstract
High-grade gliomas, including glioblastoma, are the most common malignant brain tumors in adults. Despite intensive efforts to develop new therapies for these diseases, treatment options remain limited and prognosis is poor. Recently, there have been important advances in our understanding of the molecular basis of glioma, leading to refinements in our diagnostic and management approach. There is new evidence to guide the treatment of elderly patients. A multitude of new agents have been investigated, including targeted therapies, immunotherapeutics and tumor-treating fields. This review summarizes the key findings from this research, and presents a perspective on future opportunities to advance the field.
Collapse
Affiliation(s)
- Hao-Wen Sim
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Erin R Morgan
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| | - Warren P Mason
- Princess Margaret Cancer Centre, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
14
|
Massara M, Persico P, Bonavita O, Mollica Poeta V, Locati M, Simonelli M, Bonecchi R. Neutrophils in Gliomas. Front Immunol 2017; 8:1349. [PMID: 29123517 PMCID: PMC5662581 DOI: 10.3389/fimmu.2017.01349] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022] Open
Abstract
Neutrophils are the most abundant white blood cells and are the first recruited to inflammatory sites. Neutrophils are an important component of the tumor stroma and can exert both anti-tumoral and pro-tumoral activities, depending on their maturation and activation state. In human gliomas, the number of circulating and infiltrating neutrophils correlates with the severity of the disease, indicating a prognostic and possible pro-tumoral role for these leukocytes. In glioma preclinical models, neutrophils promote tumor growth and orchestrate the resistance to anti-angiogenic therapies. Nevertheless, recent data indicate that neutrophils can be activated to directly kill tumor cells or to orchestrate the anti-tumoral response. Here, we review current knowledge about the role of neutrophils in glioma and their possible involvement in new strategies to improve current cancer therapies.
Collapse
Affiliation(s)
- Matteo Massara
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | | | - Ornella Bonavita
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Valeria Mollica Poeta
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | - Massimo Locati
- Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Matteo Simonelli
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| | - Raffaella Bonecchi
- Humanitas Clinical and Research Center, Rozzano, Italy.,Humanitas University, Rozzano, Italy
| |
Collapse
|
15
|
Morgan E, Mason W. What are the prospects for combination therapy for glioblastoma? Expert Rev Neurother 2017; 17:947-949. [PMID: 28678557 DOI: 10.1080/14737175.2017.1351300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Personalized Therapeutics and Pharmacogenomics: Integral to Personalized Health Care. Pharm Res 2017; 34:1535-1538. [DOI: 10.1007/s11095-017-2170-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 11/25/2022]
|