1
|
Zhan X, Asmara H, Pfaffinger P, Turner RW. Calcium-Dependent Regulation of Neuronal Excitability Is Rescued in Fragile X Syndrome by a Tat-Conjugated N-Terminal Fragment of FMRP. J Neurosci 2024; 44:e0136242024. [PMID: 38664011 PMCID: PMC11112635 DOI: 10.1523/jneurosci.0136-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual-specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS.
Collapse
Affiliation(s)
- Xiaoqin Zhan
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Hadhimulya Asmara
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
| | - Paul Pfaffinger
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Ray W Turner
- Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030
- Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030
- Department Clinical Neurosciences, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
2
|
Wakuda T, Benner S, Uemura Y, Nishimura T, Kojima M, Kuroda M, Matsumoto K, Kanai C, Inada N, Harada T, Kameno Y, Munesue T, Inoue J, Umemura K, Yamauchi A, Ogawa N, Kushima I, Suyama S, Saito T, Hamada J, Kano Y, Honda N, Kikuchi S, Seto M, Tomita H, Miyoshi N, Matsumoto M, Kawaguchi Y, Kanai K, Ikeda M, Nakamura I, Isomura S, Hirano Y, Onitsuka T, Ozaki N, Kosaka H, Okada T, Kuwabara H, Yamasue H. Oxytocin-induced increases in cytokines and clinical effect on the core social features of autism: Analyses of RCT datasets. Brain Behav Immun 2024; 118:398-407. [PMID: 38461957 DOI: 10.1016/j.bbi.2024.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/08/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024] Open
Abstract
Although oxytocin may provide a novel therapeutics for the core features of autism spectrum disorder (ASD), previous results regarding the efficacy of repeated or higher dose oxytocin are controversial, and the underlying mechanisms remain unclear. The current study is aimed to clarify whether repeated oxytocin alter plasma cytokine levels in relation to clinical changes of autism social core feature. Here we analyzed cytokine concentrations using comprehensive proteomics of plasmas of 207 adult males with high-functioning ASD collected from two independent multi-center large-scale randomized controlled trials (RCTs): Testing effects of 4-week intranasal administrations of TTA-121 (A novel oxytocin spray with enhanced bioavailability: 3U, 6U, 10U, or 20U/day) and placebo in the crossover discovery RCT; 48U/day Syntocinon or placebo in the parallel-group verification RCT. Among the successfully quantified 17 cytokines, 4 weeks TTA-121 6U (the peak dose for clinical effects) significantly elevated IL-7 (9.74, 95 % confidence interval [CI] 3.59 to 15.90, False discovery rate corrected P (PFDR) < 0.001), IL-9 (56.64, 20.46 to 92.82, PFDR < 0.001) and MIP-1b (18.27, 4.96 to 31.57, PFDR < 0.001) compared with placebo. Inverted U-shape dose-response relationships peaking at TTA-121 6U were consistently observed for all these cytokines (IL-7: P < 0.001; IL-9: P < 0.001; MIP-1b: P = 0.002). Increased IL-7 and IL-9 in participants with ASD after 4 weeks TTA-121 6U administration compared with placebo was verified in the confirmatory analyses in the dataset before crossover (PFDR < 0.001). Furthermore, the changes in all these cytokines during 4 weeks of TTA-121 10U administration revealed associations with changes in reciprocity score, the original primary outcome, observed during the same period (IL-7: Coefficient = -0.05, -0.10 to 0.003, P = 0.067; IL-9: -0.01, -0.02 to -0.003, P = 0.005; MIP-1b: -0.02, -0.04 to -0.007, P = 0.005). These findings provide the first evidence for a role of interaction between oxytocin and neuroinflammation in the change of ASD core social features, and support the potential role of this interaction as a novel therapeutic seed. Trial registration: UMIN000015264, NCT03466671/UMIN000031412.
Collapse
Affiliation(s)
- Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Yukari Uemura
- Biostatistics Section, Department of Data Science, Center for Clinical Science, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Tomoko Nishimura
- Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Miho Kuroda
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kaori Matsumoto
- Graduate School of Psychology, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan
| | - Chieko Kanai
- Child Development and Education, Faculty of Humanities, Wayo Women's University, 2-3-1 Konodai, Ichikawa, Chiba 272-8533, Japan
| | - Naoko Inada
- Department of Psychology, Faculty of Liberal Arts, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Taeko Harada
- Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa 920-8640, Japan
| | - Jun Inoue
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Aya Yamauchi
- Department of Medical Technique, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Satoshi Suyama
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Takuya Saito
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido 060-8648, Japan
| | - Junko Hamada
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukiko Kano
- Department of Child Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Nami Honda
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Saya Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Moe Seto
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8574, Japan
| | - Noriko Miyoshi
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Megumi Matsumoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuko Kawaguchi
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koji Kanai
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan; United Graduate School of Child Development, Osaka University, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Shuichi Isomura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan; Department of Psychiatry, Division of Clinical Neuroscience, Faculty of Medicine, University of Miyazaki, 5200 Kiyotake-cho, Kihara, Miyazaki, Miyazaki 889-1692, Japan
| | - Toshiaki Onitsuka
- National Hospital Organization Sakakibara Hospital, 777 Sakakibara-cho, Tsu, Mie 514-1292, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka, Shimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan; Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
3
|
Coulson RL, Frattini V, Moyer CE, Hodges J, Walter P, Mourrain P, Zuo Y, Wang GX. Translational modulator ISRIB alleviates synaptic and behavioral phenotypes in Fragile X syndrome. iScience 2024; 27:109259. [PMID: 38510125 PMCID: PMC10951902 DOI: 10.1016/j.isci.2024.109259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/31/2023] [Accepted: 02/13/2024] [Indexed: 03/22/2024] Open
Abstract
Fragile X syndrome (FXS) is caused by the loss of fragile X messenger ribonucleoprotein (FMRP), a translational regulator that binds the transcripts of proteins involved in synaptic function and plasticity. Dysregulated protein synthesis is a central effect of FMRP loss, however, direct translational modulation has not been leveraged in the treatment of FXS. Thus, we examined the effect of the translational modulator integrated stress response inhibitor (ISRIB) in treating synaptic and behavioral symptoms of FXS. We show that FMRP loss dysregulates synaptic protein abundance, stabilizing dendritic spines through increased PSD-95 levels while preventing spine maturation through reduced glutamate receptor accumulation, thus leading to the formation of dense, immature dendritic spines, characteristic of FXS patients and Fmr1 knockout (KO) mice. ISRIB rescues these deficits and improves social recognition in Fmr1 KO mice. These findings highlight the therapeutic potential of targeting core translational mechanisms in FXS and neurodevelopmental disorders more broadly.
Collapse
Affiliation(s)
- Rochelle L. Coulson
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Valentina Frattini
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Caitlin E. Moyer
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Hodges
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143, USA
| | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- INSERM 1024, Ecole Normale Supérieure, Paris, France
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gordon X. Wang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Shen M, Sirois CL, Guo Y, Li M, Dong Q, Méndez-Albelo NM, Gao Y, Khullar S, Kissel L, Sandoval SO, Wolkoff NE, Huang SX, Xu Z, Bryan JE, Contractor AM, Korabelnikov T, Glass IA, Doherty D, Levine JE, Sousa AMM, Chang Q, Bhattacharyya A, Wang D, Werling DM, Zhao X. Species-specific FMRP regulation of RACK1 is critical for prenatal cortical development. Neuron 2023; 111:3988-4005.e11. [PMID: 37820724 PMCID: PMC10841112 DOI: 10.1016/j.neuron.2023.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/20/2023] [Accepted: 09/13/2023] [Indexed: 10/13/2023]
Abstract
Fragile X messenger ribonucleoprotein 1 protein (FMRP) deficiency leads to fragile X syndrome (FXS), an autism spectrum disorder. The role of FMRP in prenatal human brain development remains unclear. Here, we show that FMRP is important for human and macaque prenatal brain development. Both FMRP-deficient neurons in human fetal cortical slices and FXS patient stem cell-derived neurons exhibit mitochondrial dysfunctions and hyperexcitability. Using multiomics analyses, we have identified both FMRP-bound mRNAs and FMRP-interacting proteins in human neurons and unveiled a previously unknown role of FMRP in regulating essential genes during human prenatal development. We demonstrate that FMRP interaction with CNOT1 maintains the levels of receptor for activated C kinase 1 (RACK1), a species-specific FMRP target. Genetic reduction of RACK1 leads to both mitochondrial dysfunctions and hyperexcitability, resembling FXS neurons. Finally, enhancing mitochondrial functions rescues deficits of FMRP-deficient cortical neurons during prenatal development, demonstrating targeting mitochondrial dysfunction as a potential treatment.
Collapse
Affiliation(s)
- Minjie Shen
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Carissa L Sirois
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Guo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiping Dong
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yu Gao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Saniya Khullar
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Lee Kissel
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalie E Wolkoff
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sabrina X Huang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Graduate Program in Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jonathan E Bryan
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Amaya M Contractor
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tomer Korabelnikov
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ian A Glass
- Birth Defects Research Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Dan Doherty
- Birth Defects Research Laboratory, University of Washington, Seattle, WA 98195, USA
| | - Jon E Levine
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - André M M Sousa
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Qiang Chang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neurology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daifeng Wang
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Departments of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Donna M Werling
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA.
| |
Collapse
|
5
|
Wang Z, Qiao D, Chen H, Zhang S, Zhang B, Zhang J, Hu X, Wang C, Cui H, Wang X, Li S. Effects of Fmr1 Gene Mutations on Sex Differences in Autism-Like Behavior and Dendritic Spine Development in Mice and Transcriptomic Studies. Neuroscience 2023; 534:16-28. [PMID: 37852411 DOI: 10.1016/j.neuroscience.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/20/2023]
Abstract
Fragile X syndrome (FXS) is the most common single gene disorder contributing to autism spectrum disorder (ASD). Although significant sex differences are observed in FXS, few studies have focused on the phenotypic characteristics as well as the differences in brain pathological changes and gene expression in FXS by sex. Therefore, we analyzed sex differences in autism-like behavior and dendritic spine development in two-month-old male and female Fmr1 KO and C57 mice and evaluated the mechanisms at transcriptome level. Results suggest that Fmr1 KO mice display sex differences in autism-like behavior and dendritic spine density. Compared to females, male had more severe effects on anxiety, repetitive stereotype-like behaviors, and socializing, with higher dendritic spine density. Furthermore, two male-biased and five female-biased expressed genes were screened based on KEGG pathway enrichment and protein-protein interaction (PPI) analyses. In conclusion, our findings show mutations in the Fmr1 gene lead to aberrant expression of related genes and affect the sex-differentiated behavioral phenotypes of Fmr1 KO mice by affecting brain development and functional architecture, and suggest future studies should focus on including female subjects to comprehensively reflect the differentiation of FXS in both sexes and develop more precise and effective therapeutic strategies.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Dan Qiao
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Huan Chen
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Shihua Zhang
- Grade 2018, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Bohan Zhang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Jingbao Zhang
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiangting Hu
- Grade 2020, Basic Medicine, Hebei Medical University, Shijiazhuang, China
| | - Chang Wang
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China
| | - Xia Wang
- Child Health (Psychological Behavior) Department, Children's Hospital of Hebei Province, Shijiazhuang, China.
| | - Sha Li
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China; Neuroscience Research Center, Hebei Medical University, Shijiazhuang, China; Hebei Key Laboratory of Neurodegenerative Disease Mechanism, Shijiazhuang, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
6
|
Sharma SD, Reddy BK, Pal R, Ritakari TE, Cooper JD, Selvaraj BT, Kind PC, Chandran S, Wyllie DJA, Chattarji S. Astrocytes mediate cell non-autonomous correction of aberrant firing in human FXS neurons. Cell Rep 2023; 42:112344. [PMID: 37018073 PMCID: PMC10157295 DOI: 10.1016/j.celrep.2023.112344] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/12/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
Pre-clinical studies of fragile X syndrome (FXS) have focused on neurons, with the role of glia remaining largely underexplored. We examined the astrocytic regulation of aberrant firing of FXS neurons derived from human pluripotent stem cells. Human FXS cortical neurons, co-cultured with human FXS astrocytes, fired frequent short-duration spontaneous bursts of action potentials compared with less frequent, longer-duration bursts of control neurons co-cultured with control astrocytes. Intriguingly, bursts fired by FXS neurons co-cultured with control astrocytes are indistinguishable from control neurons. Conversely, control neurons exhibit aberrant firing in the presence of FXS astrocytes. Thus, the astrocyte genotype determines the neuronal firing phenotype. Strikingly, astrocytic-conditioned medium, and not the physical presence of astrocytes, is capable of determining the firing phenotype. The mechanistic basis of this effect indicates that the astroglial-derived protein, S100β, restores normal firing by reversing the suppression of a persistent sodium current in FXS neurons.
Collapse
Affiliation(s)
- Shreya Das Sharma
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; University of Trans-Disciplinary Health Science and Technology, Bangalore 560064, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Bharath Kumar Reddy
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Rakhi Pal
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India
| | - Tuula E Ritakari
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - James D Cooper
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK
| | - Peter C Kind
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - Siddharthan Chandran
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh EH16 4SB, UK; UK Dementia Research Institute at the University of Edinburgh, Edinburgh Medical School, Chancellor's Building, Edinburgh EH16 4SB, UK; Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK
| | - David J A Wyllie
- Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| | - Sumantra Chattarji
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India; Centre for Brain Development and Repair, Institute for Stem Cell Biology and Regenerative Medicine, Bangalore 560065, India; Patrick Wild Centre, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, Edinburgh EH8 9XD, UK.
| |
Collapse
|
7
|
Pharmacotherapy of Disruptive Behaviors in Children with Intellectual Disabilities. Paediatr Drugs 2022; 24:465-482. [PMID: 35781194 DOI: 10.1007/s40272-022-00517-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 10/17/2022]
Abstract
Disruptive behaviors are a class of predominantly externalizing behaviors that include physical aggression, property destruction, temper outbursts, verbal aggression, and some forms of self-injurious behaviors. Externalizing behaviors are also major components of disruptive, impulse-control and conduct disorders, disruptive mood dysregulation disorder, trauma-related and stressor-related disorders, intermittent explosive disorder, personality disorders, and other neuropsychiatric and neurodevelopmental disorders. Disruptive behaviors and associated disorders are among the most frequent reasons for child behavioral health referrals and are the most common reason for referrals among children with intellectual disabilities. The focus of this paper is on the adjunctive role of integrated psychopharmacological treatment in the management of children with disruptive behaviors and co-occurring intellectual disabilities. The decision-making process for adding pharmacotherapy to a comprehensive treatment plan incorporates not only a working knowledge of basic behavioral neurobiology of disruptive behaviors but also an understanding of the strengths and weaknesses of various pharmacotherapies. Importantly, there is little evidence to support the use of psychopharmacologic agents in managing difficult behaviors in children with intellectual disabilities, but with that said, risperidone has the strongest evidence base for its use.
Collapse
|
8
|
Habbas K, Cakil O, Zámbó B, Tabet R, Riet F, Dembele D, Mandel JL, Hocquemiller M, Laufer R, Piguet F, Moine H. AAV-delivered diacylglycerol kinase DGKk achieves long-term rescue of fragile X syndrome mouse model. EMBO Mol Med 2022; 14:e14649. [PMID: 35373916 PMCID: PMC9081908 DOI: 10.15252/emmm.202114649] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/09/2022] Open
Abstract
Fragile X syndrome (FXS) is the most frequent form of familial intellectual disability. FXS results from the lack of the RNA-binding protein FMRP and is associated with the deregulation of signaling pathways downstream of mGluRI receptors and upstream of mRNA translation. We previously found that diacylglycerol kinase kappa (DGKk), a main mRNA target of FMRP in cortical neurons and a master regulator of lipid signaling, is downregulated in the absence of FMRP in the brain of Fmr1-KO mouse model. Here we show that adeno-associated viral vector delivery of a modified and FMRP-independent form of DGKk corrects abnormal cerebral diacylglycerol/phosphatidic acid homeostasis and FXS-relevant behavioral phenotypes in the Fmr1-KO mouse. Our data suggest that DGKk is an important factor in FXS pathogenesis and provide preclinical proof of concept that its replacement could be a viable therapeutic strategy in FXS.
Collapse
Affiliation(s)
- Karima Habbas
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Oktay Cakil
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Boglárka Zámbó
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Ricardos Tabet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Fabrice Riet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), PHENOMIN-ICS, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| | | | | | - Françoise Piguet
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, AP-HP, University Hospital Pitié-Salpêtrière, Paris, France
| | - Hervé Moine
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Médecine Translationelle et Neurogénétique, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg, Illkirch, France
| |
Collapse
|
9
|
Yamasue H, Kojima M, Kuwabara H, Kuroda M, Matsumoto K, Kanai C, Inada N, Owada K, Ochi K, Ono N, Benner S, Wakuda T, Kameno Y, Inoue J, Harada T, Tsuchiya K, Umemura K, Yamauchi A, Ogawa N, Kushima I, Ozaki N, Suyama S, Saito T, Uemura Y, Hamada J, Kano Y, Honda N, Kikuchi S, Seto M, Tomita H, Miyoshi N, Matsumoto M, Kawaguchi Y, Kanai K, Ikeda M, Nakamura I, Isomura S, Hirano Y, Onitsuka T, Kosaka H, Okada T. Effect of a novel nasal oxytocin spray with enhanced bioavailability on autism: a randomized trial. Brain 2022; 145:490-499. [DOI: 10.1093/brain/awab291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 07/14/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract
Although intranasal oxytocin is expected to be a novel therapy for the core symptoms of autism spectrum disorder, which has currently no approved medication, the efficacy of repeated administrations was inconsistent, suggesting that the optimal dose for a single administration of oxytocin is not optimal for repeated administration.
The current double-blind, placebo-controlled, multicentre, crossover trial (ClinicalTrials.gov Identifier: NCT03466671) was aimed to test the effect of TTA-121, a new formulation of intranasal oxytocin spray with an enhanced bioavailability (3.6 times higher than Syntocinon® spray, as assessed by area under the concentration–time curve in rabbit brains), which enabled us to test a wide range of multiple doses, on autism spectrum disorder core symptoms and to determine the dose–response relationship. Four-week administrations of TTA-121, at low dose once per day (3 U/day), low dose twice per day (6 U/day), high dose once per day (10 U/day), or high dose twice per day (20 U/day), and 4-week placebo were administered in a crossover manner. The primary outcome was the mean difference in the reciprocity score (range: 0–14, higher values represent worse outcomes) on the Autism Diagnostic Observation Schedule between the baseline and end point of each administration period. This trial with two administration periods and eight groups was conducted at seven university hospitals in Japan, enrolling adult males with high-functioning autism spectrum disorder. Enrolment began from June 2018 and ended December 2019. Follow-up ended March 2020.
Of 109 males with high-functioning autism spectrum disorder who were randomized, 103 completed the trial. The smallest P-value, judged as the dose–response relationship, was the contrast with the peak at TTA-121 6 U/day, with inverted U-shape for both the full analysis set (P = 0.182) and per protocol set (P = 0.073). The Autism Diagnostic Observation Schedule reciprocity score, the primary outcome, was reduced in the TTA-121 6 U/day administration period compared with the placebo (full analysis set: P = 0.118, mean difference = −0.5; 95% CI: −1.1 to 0.1; per protocol set: P = 0.012, mean difference = −0.8; 95% CI: −1.3 to −0.2). The per protocol set was the analysis target population, consisting of all full analysis set participants except those who deviated from the protocol. Most dropouts from the full analysis set to the per protocol set occurred because of poor adherence to the test drug (9 of 12 in the first period and 8 of 15 in the second period). None of the secondary clinical and behavioural outcomes were significantly improved with the TTA-121 compared with the placebo in the full analysis set.
A novel intranasal spray of oxytocin with enhanced bioavailability enabled us to test a wide range of multiple doses, revealing an inverted U-shape dose–response curve, with the peak at a dose that was lower than expected from previous studies. The efficacy of TTA-121 shown in the current exploratory study should be verified in a future large-scale, parallel-group trial.
Collapse
Affiliation(s)
- Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan
- Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashiku, Hamamatsu 431-3192, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan
- Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashiku, Hamamatsu 431-3192, Japan
| | - Miho Kuroda
- Department of Psychology, Faculty of Liberal Arts, Teikyo University, Tokyo, Japan
| | - Kaori Matsumoto
- Graduate School of Psychology, Kanazawa Institute of Technology, 7-1 Ohgigaoka, Nonoichi 921-8054, Japan
| | - Chieko Kanai
- Child Development and Education, Faculty of Humanities, Wayo Women’s University, Konodai 2-3-1, Ichikawa, Chiba 272-0827, Japan
| | - Naoko Inada
- Department of Psychology, Faculty of Liberal Arts, Teikyo University, Tokyo, Japan
| | - Keiho Owada
- Department of Pediatrics, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Keiko Ochi
- School of Media Science, Tokyo University of Technology, Hachioji, Japan
| | - Nobutaka Ono
- Department of Computer Science, Graduate School of Systems Design, Tokyo Metropolitan University, Hino, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan
| | - Jun Inoue
- Department of Child and Adolescent Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan
| | - Taeko Harada
- Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashiku, Hamamatsu 431-3192, Japan
| | - Kenji Tsuchiya
- Department of Child Development, United Graduate School of Child Development at Hamamatsu, 1-20-1 Handayama, Higashiku, Hamamatsu 431-3192, Japan
| | - Kazuo Umemura
- Department of Pharmacology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City 431-3192, Japan
| | - Aya Yamauchi
- Department of Medical Technique, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8560, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Satoshi Suyama
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Takuya Saito
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Yukari Uemura
- Biostatistics Section, Department of Data Science, Center for Clinical Science, National Center for Global Health and Medicine, Shinjyu-ku, Tokyo 162-8655, Japan
| | - Junko Hamada
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yukiko Kano
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Nami Honda
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Saya Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Moe Seto
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Noriko Miyoshi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Megumi Matsumoto
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuko Kawaguchi
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Koji Kanai
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Manabu Ikeda
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Itta Nakamura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shuichi Isomura
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Onitsuka
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui 910-1193, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
10
|
Hunt JFV, Li M, Risgaard R, Ananiev GE, Wildman S, Zhang F, Bugni TS, Zhao X, Bhattacharyya A. High Throughput Small Molecule Screen for Reactivation of FMR1 in Fragile X Syndrome Human Neural Cells. Cells 2021; 11:cells11010069. [PMID: 35011630 PMCID: PMC8750025 DOI: 10.3390/cells11010069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of autism and intellectual disability. The majority of FXS cases are caused by transcriptional repression of the FMR1 gene due to epigenetic changes that are not recapitulated in current animal disease models. FXS patient induced pluripotent stem cell (iPSC)-derived gene edited reporter cell lines enable novel strategies to discover reactivators of FMR1 expression in human cells on a much larger scale than previously possible. Here, we describe the workflow using FXS iPSC-derived neural cell lines to conduct a massive, unbiased screen for small molecule activators of the FMR1 gene. The proof-of-principle methodology demonstrates the utility of human stem-cell-based methodology for the untargeted discovery of reactivators of the human FMR1 gene that can be applied to other diseases.
Collapse
Affiliation(s)
- Jack F. V. Hunt
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
| | - Meng Li
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Ryan Risgaard
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
| | - Gene E. Ananiev
- Carbone Cancer Center Drug Discovery Core, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.E.A.); (S.W.)
| | - Scott Wildman
- Carbone Cancer Center Drug Discovery Core, University of Wisconsin-Madison, Madison, WI 53705, USA; (G.E.A.); (S.W.)
| | - Fan Zhang
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (F.Z.); (T.S.B.)
| | - Tim S. Bugni
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA; (F.Z.); (T.S.B.)
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (X.Z.); (A.B.); Tel.: +1-(608)-263-9906 (X.Z.); +1-(608)-265-6142 (A.B.)
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA; (J.F.V.H.); (M.L.); (R.R.)
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Correspondence: (X.Z.); (A.B.); Tel.: +1-(608)-263-9906 (X.Z.); +1-(608)-265-6142 (A.B.)
| |
Collapse
|
11
|
Razak KA, Binder DK, Ethell IM. Neural Correlates of Auditory Hypersensitivity in Fragile X Syndrome. Front Psychiatry 2021; 12:720752. [PMID: 34690832 PMCID: PMC8529206 DOI: 10.3389/fpsyt.2021.720752] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 01/20/2023] Open
Abstract
The mechanisms underlying the common association between autism spectrum disorders (ASD) and sensory processing disorders (SPD) are unclear, and treatment options to reduce atypical sensory processing are limited. Fragile X Syndrome (FXS) is a leading genetic cause of intellectual disability and ASD behaviors. As in most children with ASD, atypical sensory processing is a common symptom in FXS, frequently manifesting as sensory hypersensitivity. Auditory hypersensitivity is a highly debilitating condition in FXS that may lead to language delays, social anxiety and ritualized repetitive behaviors. Animal models of FXS, including Fmr1 knock out (KO) mouse, also show auditory hypersensitivity, providing a translation relevant platform to study underlying pathophysiological mechanisms. The focus of this review is to summarize recent studies in the Fmr1 KO mouse that identified neural correlates of auditory hypersensitivity. We review results of electroencephalography (EEG) recordings in the Fmr1 KO mice and highlight EEG phenotypes that are remarkably similar to EEG findings in humans with FXS. The EEG phenotypes associated with the loss of FMRP include enhanced resting EEG gamma band power, reduced cross frequency coupling, reduced sound-evoked synchrony of neural responses at gamma band frequencies, increased event-related potential amplitudes, reduced habituation of neural responses and increased non-phase locked power. In addition, we highlight the postnatal period when the EEG phenotypes develop and show a strong association of the phenotypes with enhanced matrix-metalloproteinase-9 (MMP-9) activity, abnormal development of parvalbumin (PV)-expressing inhibitory interneurons and reduced formation of specialized extracellular matrix structures called perineuronal nets (PNNs). Finally, we discuss how dysfunctions of inhibitory PV interneurons may contribute to cortical hyperexcitability and EEG abnormalities observed in FXS. Taken together, the studies reviewed here indicate that EEG recordings can be utilized in both pre-clinical studies and clinical trials, while at the same time, used to identify cellular and circuit mechanisms of dysfunction in FXS. New therapeutic approaches that reduce MMP-9 activity and restore functions of PV interneurons may succeed in reducing FXS sensory symptoms. Future studies should examine long-lasting benefits of developmental vs. adult interventions on sensory phenotypes.
Collapse
Affiliation(s)
- Khaleel A. Razak
- Department of Psychology, University of California, Riverside, Riverside, CA, United States
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
| | - Devin K. Binder
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- Division of Biomedical Sciences and Graduate Biomedical Sciences Program, School of Medicine, University of California, Riverside, Riverside, CA, United States
| | - Iryna M. Ethell
- Graduate Neuroscience Program, University of California, Riverside, Riverside, CA, United States
- Division of Biomedical Sciences and Graduate Biomedical Sciences Program, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
12
|
Abstract
GABAB receptors are implicated in numerous central nervous system-based behaviours and mechanisms, including cognitive processing in preclinical animal models. Homeostatic changes in the expression and function of these receptors across brain structures have been found to affect cognitive processing. Numerous preclinical studies have focused on the role of GABAB receptors in learning, memory and cognition per se with some interesting, although sometimes contradictory, findings. The majority of the existing clinical literature focuses on alterations in GABAB receptor function in conditions and disorders whose main symptomatology includes deficits in cognitive processing. The aim of this chapter is to delineate the role of GABAB receptors in cognitive processes in health and disease of animal models and human clinical populations. More specifically, this review aims to present literature on the role of GABAB receptors in animal models with cognitive deficits, especially those of learning and memory. Further, it aims to capture the progress and advances of research studies on the effects of GABAB receptor compounds in neurodevelopmental and neurodegenerative conditions with cognitive dysfunctions. The neurodevelopmental conditions covered include autism spectrum disorders, fragile X syndrome and Down's syndrome and the neurodegenerative conditions discussed are Alzheimer's disease, epilepsy and autoimmune anti-GABAB encephalitis. Although some findings are contradictory, results indicate a possible therapeutic role of GABAB receptor compounds for the treatment of cognitive dysfunction and learning/memory impairments for some of these conditions, especially in neurodegeneration. Moreover, future research efforts should aim to develop selective GABAB receptor compounds with minimal, if any, side effects.
Collapse
|
13
|
Christensen KM, Hojlo M, Milliken A, Baumer NT. Parent Attitudes Toward Enhancing Cognition and Clinical Research Trials in Down Syndrome: A Mixed Methods Study. J Dev Behav Pediatr 2021; 42:380-388. [PMID: 34110307 DOI: 10.1097/dbp.0000000000000900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE As understanding of the neurobiological basis of cognitive impairment in Down syndrome (DS) advances and new pharmaceutical interventions targeting neurodevelopment become available, an in-depth understanding of the family perspective is essential to inform research efforts. A mixed methods study was conducted with parents of individuals with DS to learn about attitudes toward pharmacological interventions to enhance cognition, participation in clinical research trials in DS, and the relationship between child/family-specific factors and parent attitudes. METHOD Parents completed an online survey (N = 37) assessing family/child sociodemographic factors and to capture thoughts on cognitive enhancement and participation in clinical drug trials. A subset of interested parents participated in a follow-up phone interview (N = 21) or focus group (N = 3; 1 FG). Double-blind thematic analysis was used to analyze qualitative data. RESULTS Parents' attitudes toward improving cognition, reversing intellectual disability, and participation in clinical trials correlated with each other and were informed by specific parent and child factors (e.g., child attention-deficit hyperactivity disorder/behavioral diagnosis and parent education). Qualitative themes included advantages, disadvantages, and ethical implications of enhancing cognition. In addition, themes emerged regarding the need to understand the mechanism and potential side effects of experimental drugs, logistical factors relating to willingness to participate in clinical trials, and the evolution of parents' attitudes over time. CONCLUSION The findings highlight the complexity of issues and implications of clinical trials for enhancing cognition in DS. Child-specific factors, logistical and safety considerations, and personal belief systems all inform parent attitudes and decision making. The findings reflect the importance of incorporating parent perspectives and values in research direction and design.
Collapse
Affiliation(s)
| | - Margaret Hojlo
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Anna Milliken
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA
| | - Nicole T Baumer
- Division of Developmental Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA
- Department of Neurology, Boston Children's Hospital, Boston, MA
| |
Collapse
|
14
|
Kato Y, Kuwabara H, Okada T, Munesue T, Benner S, Kuroda M, Kojima M, Yassin W, Eriguchi Y, Kameno Y, Murayama C, Nishimura T, Tsuchiya K, Kasai K, Ozaki N, Kosaka H, Yamasue H. Oxytocin-induced increase in N,N-dimethylglycine and time course of changes in oxytocin efficacy for autism social core symptoms. Mol Autism 2021; 12:15. [PMID: 33622389 PMCID: PMC7903697 DOI: 10.1186/s13229-021-00423-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/12/2021] [Indexed: 11/12/2022] Open
Abstract
Background Oxytocin is expected as a novel therapeutic agent for autism spectrum disorder (ASD) core symptoms. However, previous results on the efficacy of repeated administrations of oxytocin are controversial. Recently, we reported time-course changes in the efficacy of the neuropeptide underlying the controversial effects of repeated administration; however, the underlying mechanisms remained unknown. Methods The current study explored metabolites representing the molecular mechanisms of oxytocin’s efficacy using high-throughput metabolomics analysis on plasma collected before and after 6-week repeated intranasal administration of oxytocin (48 IU/day) or placebo in adult males with ASD (N = 106) who participated in a multi-center, parallel-group, double-blind, placebo-controlled, randomized controlled trial. Results Among the 35 metabolites measured, a significant increase in N,N-dimethylglycine was detected in the subjects administered oxytocin compared with those given placebo at a medium effect size (false discovery rate (FDR) corrected P = 0.043, d = 0.74, N = 83). Furthermore, subgroup analyses of the participants displaying a prominent time-course change in oxytocin efficacy revealed a significant effect of oxytocin on N,N-dimethylglycine levels with a large effect size (PFDR = 0.004, d = 1.13, N = 60). The increase in N,N-dimethylglycine was significantly correlated with oxytocin-induced clinical changes, assessed as changes in quantifiable characteristics of autistic facial expression, including both of improvements between baseline and 2 weeks (PFDR = 0.006, r = − 0.485, N = 43) and deteriorations between 2 and 4 weeks (PFDR = 0.032, r = 0.415, N = 37). Limitations The metabolites changes caused by oxytocin administration were quantified using peripheral blood and therefore may not directly reflect central nervous system changes. Conclusion Our findings demonstrate an association of N,N-dimethylglycine upregulation with the time-course change in the efficacy of oxytocin on autistic social deficits. Furthermore, the current findings support the involvement of the N-methyl-D-aspartate receptor and neural plasticity to the time-course change in oxytocin’s efficacy. Trial registration: A multi-center, parallel-group, placebo-controlled, double-blind, confirmatory trial of intranasal oxytocin in participants with autism spectrum disorders (the date registered: 30 October 2014; UMIN Clinical Trials Registry: https://upload.umin.ac.jp/cgi-open-bin/ctr_e/ctr_view.cgi?recptno=R000017703) (UMIN000015264).
Collapse
Affiliation(s)
- Yasuhiko Kato
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan
| | - Seico Benner
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Miho Kuroda
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masaki Kojima
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Walid Yassin
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Eriguchi
- Department of Child Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Yosuke Kameno
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Chihiro Murayama
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan
| | - Tomoko Nishimura
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Kenji Tsuchiya
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Eiheiji, Fukui, 910-1193, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu City, 431-3192, Japan. .,United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka/Kanazawa/Hamamatsu/Chiba/Fukui, Japan.
| |
Collapse
|
15
|
Salcedo-Arellano MJ, Cabal-Herrera AM, Punatar RH, Clark CJ, Romney CA, Hagerman RJ. Overlapping Molecular Pathways Leading to Autism Spectrum Disorders, Fragile X Syndrome, and Targeted Treatments. Neurotherapeutics 2021; 18:265-283. [PMID: 33215285 PMCID: PMC8116395 DOI: 10.1007/s13311-020-00968-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
Autism spectrum disorders (ASD) are subdivided into idiopathic (unknown) etiology and secondary, based on known etiology. There are hundreds of causes of ASD and most of them are genetic in origin or related to the interplay of genetic etiology and environmental toxicology. Approximately 30 to 50% of the etiologies can be identified when using a combination of available genetic testing. Many of these gene mutations are either core components of the Wnt signaling pathway or their modulators. The full mutation of the fragile X mental retardation 1 (FMR1) gene leads to fragile X syndrome (FXS), the most common cause of monogenic origin of ASD, accounting for ~ 2% of the cases. There is an overlap of molecular mechanisms in those with idiopathic ASD and those with FXS, an interaction between various signaling pathways is suggested during the development of the autistic brain. This review summarizes the cross talk between neurobiological pathways found in ASD and FXS. These signaling pathways are currently under evaluation to target specific treatments in search of the reversal of the molecular abnormalities found in both idiopathic ASD and FXS.
Collapse
Affiliation(s)
- Maria Jimena Salcedo-Arellano
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| | - Ana Maria Cabal-Herrera
- Group on Congenital Malformations and Dysmorphology, Faculty of Health, Universidad del Valle, Cali, 00000, Colombia
| | - Ruchi Harendra Punatar
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Courtney Jessica Clark
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Christopher Allen Romney
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA
| | - Randi J Hagerman
- Department of Pediatrics, University of California Davis School of Medicine, Sacramento, CA, 95817, USA.
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute UCDHS, University of California Davis, 2825 50th Street, Sacramento, CA, 95817, USA.
| |
Collapse
|
16
|
Gregory KJ, Goudet C. International Union of Basic and Clinical Pharmacology. CXI. Pharmacology, Signaling, and Physiology of Metabotropic Glutamate Receptors. Pharmacol Rev 2020; 73:521-569. [PMID: 33361406 DOI: 10.1124/pr.119.019133] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Metabotropic glutamate (mGlu) receptors respond to glutamate, the major excitatory neurotransmitter in the mammalian brain, mediating a modulatory role that is critical for higher-order brain functions such as learning and memory. Since the first mGlu receptor was cloned in 1992, eight subtypes have been identified along with many isoforms and splice variants. The mGlu receptors are transmembrane-spanning proteins belonging to the class C G protein-coupled receptor family and represent attractive targets for a multitude of central nervous system disorders. Concerted drug discovery efforts over the past three decades have yielded a wealth of pharmacological tools including subtype-selective agents that competitively block or mimic the actions of glutamate or act allosterically via distinct sites to enhance or inhibit receptor activity. Herein, we review the physiologic and pathophysiological roles for individual mGlu receptor subtypes including the pleiotropic nature of intracellular signal transduction arising from each. We provide a comprehensive analysis of the in vitro and in vivo pharmacological properties of prototypical and commercially available orthosteric agonists and antagonists as well as allosteric modulators, including ligands that have entered clinical trials. Finally, we highlight emerging areas of research that hold promise to facilitate rational design of highly selective mGlu receptor-targeting therapeutics in the future. SIGNIFICANCE STATEMENT: The metabotropic glutamate receptors are attractive therapeutic targets for a range of psychiatric and neurological disorders. Over the past three decades, intense discovery efforts have yielded diverse pharmacological tools acting either competitively or allosterically, which have enabled dissection of fundamental biological process modulated by metabotropic glutamate receptors and established proof of concept for many therapeutic indications. We review metabotropic glutamate receptor molecular pharmacology and highlight emerging areas that are offering new avenues to selectively modulate neurotransmission.
Collapse
Affiliation(s)
- Karen J Gregory
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| | - Cyril Goudet
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria, Australia (K.J.G.) and Institut de Génomique Fonctionnelle (IGF), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut National de la Sante et de la Recherche Medicale (INSERM), Montpellier, France (C.G.)
| |
Collapse
|
17
|
Rescue of oxytocin response and social behaviour in a mouse model of autism. Nature 2020; 584:252-256. [PMID: 32760004 PMCID: PMC7116741 DOI: 10.1038/s41586-020-2563-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/25/2020] [Indexed: 01/22/2023]
Abstract
One of the most fundamental challenges in developing treatments for autism-spectrum disorders is the heterogeneity of the condition. More than one hundred genetic mutations confer high risk for autism, with each individual mutation accounting for only a small fraction of autism cases1–3. Subsets of risk genes can be grouped into functionally-related pathways, most prominently synaptic proteins, translational regulation, and chromatin modifications. To possibly circumvent this genetic complexity, recent therapeutic strategies have focused on the neuropeptides oxytocin and vasopressin4–6 which regulate aspects of social behavior in mammals7. However, whether genetic risk factors might predispose to autism due to modification of oxytocinergic signaling remains largely unknown. Here, we report that an autism-associated mutation in the synaptic adhesion molecule neuroligin-3 (Nlgn3) results in impaired oxytocin signaling in dopaminergic neurons and in altered social novelty responses in mice. Surprisingly, loss of Nlgn3 is accompanied by a disruption of translation homeostasis in the ventral tegmental area. Treatment of Nlgn3KO mice with a novel, highly specific, brain-penetrant inhibitor of MAP-kinase interacting kinases resets mRNA translation and restores oxytocin and social novelty responses. Thus, this work identifies an unexpected convergence between the genetic autism risk factor Nlgn3, translational regulation, and oxytocinergic signaling. Focus on such common core plasticity elements might provide a pragmatic approach to reduce the heterogeneity of autism. Ultimately, this would allow for mechanism-based stratification of patient populations to increase the success of therapeutic interventions.
Collapse
|
18
|
Thurman AJ, Potter LA, Kim K, Tassone F, Banasik A, Potter SN, Bullard L, Nguyen V, McDuffie A, Hagerman R, Abbeduto L. Controlled trial of lovastatin combined with an open-label treatment of a parent-implemented language intervention in youth with fragile X syndrome. J Neurodev Disord 2020; 12:12. [PMID: 32316911 PMCID: PMC7175541 DOI: 10.1186/s11689-020-09315-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/27/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The purpose of this study was to conduct a 20-week controlled trial of lovastatin (10 to 40 mg/day) in youth with fragile X syndrome (FXS) ages 10 to 17 years, combined with an open-label treatment of a parent-implemented language intervention (PILI), delivered via distance video teleconferencing to both treatment groups, lovastatin and placebo. METHOD A randomized, double-blind trial was conducted at one site in the Sacramento, California, metropolitan area. Fourteen participants were assigned to the lovastatin group; two participants terminated early from the study. Sixteen participants were assigned to the placebo group. Lovastatin or placebo was administered orally in a capsule form, starting at 10 mg and increasing weekly or as tolerated by 10 mg increments, up to a maximum dose of 40 mg daily. A PILI was delivered to both groups for 12 weeks, with 4 activities per week, through video teleconferencing by an American Speech-Language Association-certified Speech-Language Pathologist, in collaboration with a Board-Certified Behavior Analyst. Parents were taught to use a set of language facilitation strategies while interacting with their children during a shared storytelling activity. The main outcome measures included absolute change from baseline to final visit in the means for youth total number of story-related utterances, youth number of different word roots, and parent total number of story-related utterances. RESULTS Significant increases in all primary outcome measures were observed in both treatment groups. Significant improvements were also observed in parent reports of the severity of spoken language and social impairments in both treatment groups. In all cases, the amount of change observed did not differ across the two treatment groups. Although gains in parental use of the PILI-targeted intervention strategies were observed in both treatment groups, parental use of the PILI strategies was correlated with youth gains in the placebo group and not in the lovastatin group. CONCLUSION Participants in both groups demonstrated significant changes in the primary outcome measures. The magnitude of change observed across the two groups was comparable, providing additional support for the efficacy of the use of PILI in youth with FXS. TRIAL REGISTRATION US National Institutes of Health (ClinicalTrials.gov), NCT02642653. Registered 12/30/2015.
Collapse
Affiliation(s)
- Angela John Thurman
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA.
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA.
| | - Laura A Potter
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, USA
| | - Kyoungmi Kim
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Public Health Sciences, University of California Davis Health, Sacramento, USA
| | - Flora Tassone
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Biochemistry and Molecular Medicine, University of California Davis Health, Sacramento, USA
| | - Amy Banasik
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| | - Sarah Nelson Potter
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Human Ecology, University of California Davis, Davis, USA
| | - Lauren Bullard
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Human Ecology, University of California Davis, Davis, USA
| | - Vivian Nguyen
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| | - Andrea McDuffie
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| | - Randi Hagerman
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Pediatrics, University of California Davis Health, Sacramento, USA
| | - Leonard Abbeduto
- MIND Institute, University of California Davis Health, 2825 50th Street, Room 2335, Sacramento, CA, 95817, USA
- Department of Psychiatry and Behavioral Sciences, University of California Davis Health, Sacramento, USA
| |
Collapse
|
19
|
Armstrong JL, Casey AB, Saraf TS, Mukherjee M, Booth RG, Canal CE. ( S)-5-(2'-Fluorophenyl)- N, N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine, a Serotonin Receptor Modulator, Possesses Anticonvulsant, Prosocial, and Anxiolytic-like Properties in an Fmr1 Knockout Mouse Model of Fragile X Syndrome and Autism Spectrum Disorder. ACS Pharmacol Transl Sci 2020; 3:509-523. [PMID: 32566916 DOI: 10.1021/acsptsci.9b00101] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Indexed: 12/12/2022]
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by intellectual disabilities and a plethora of neuropsychiatric symptoms. FXS is the leading monogenic cause of autism spectrum disorder (ASD), which is defined clinically by repetitive and/or restrictive patterns of behavior and social communication deficits. Epilepsy and anxiety are also common in FXS and ASD. Serotonergic neurons directly innervate and modulate the activity of neurobiological circuits altered in both disorders, providing a rationale for investigating serotonin receptors (5-HTRs) as targets for FXS and ASD drug discovery. Previously we unveiled an orally active aminotetralin, (S)-5-(2'-fluorophenyl)-N,N-dimethyl-1,2,3,4-tetrahydronaphthalen-2-amine (FPT), that exhibits partial agonist activity at 5-HT1ARs, 5-HT2CRs, and 5-HT7Rs and that reduces repetitive behaviors and increases social approach behavior in wild-type mice. Here we report that in an Fmr1 knockout mouse model of FXS and ASD, FPT is prophylactic for audiogenic seizures. No FPT-treated mice displayed audiogenic seizures, compared to 73% of vehicle-treated mice. FPT also exhibits anxiolytic-like effects in several assays and increases social interactions in both Fmr1 knockout and wild-type mice. Furthermore, FPT increases c-Fos expression in the basolateral amygdala, which is a preclinical effect produced by anxiolytic medications. Receptor pharmacology assays show that FPT binds competitively and possesses rapid association and dissociation kinetics at 5-HT1ARs and 5-HT7Rs, yet has slow association and rapid dissociation kinetics at 5-HT2CRs. Finally, we reassessed and report FPT's affinity and function at 5-HT1ARs, 5-HT2CRs, and 5-HT7Rs. Collectively, these observations provide mounting support for further development of FPT as a pharmacotherapy for common neuropsychiatric symptoms in FXS and ASD.
Collapse
Affiliation(s)
- Jessica L Armstrong
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Austen B Casey
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Tanishka S Saraf
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| | - Munmun Mukherjee
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Raymond G Booth
- Center for Drug Discovery, Department of Pharmaceutical Sciences, and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02131, United States
| | - Clinton E Canal
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, 3001 Mercer University Drive, Atlanta, Georgia 30341, United States
| |
Collapse
|
20
|
Jong YJI, Harmon SK, O’Malley KL. Location and Cell-Type-Specific Bias of Metabotropic Glutamate Receptor, mGlu 5, Negative Allosteric Modulators. ACS Chem Neurosci 2019; 10:4558-4570. [PMID: 31609579 DOI: 10.1021/acschemneuro.9b00415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Emerging data indicate that G-protein coupled receptor (GPCR) signaling is determined by not only the agonist and a given receptor but also a variety of cell-type-specific factors that can influence a receptor's response. For example, the metabotropic glutamate receptor, mGlu5, which is implicated in a number of neuropsychiatric disorders such as depression, anxiety, and autism, also signals from inside the cell which leads to sustained Ca2+ mobilization versus rapid transient responses. Because mGlu5 is an important drug target, many negative allosteric modulators (NAMs) have been generated to modulate its activity. Here we show that NAMs such as AFQ056, AZD2066, and RG7090 elicit very different end points when tested in postnatal neuronal cultures expressing endogenous mGlu5 receptors. For example, AFQ056 fails to block intracellular mGlu5-mediated Ca2+ increases whereas RG7090 is very effective. These differences are not due to differential receptor levels, since about the same number of mGlu5 receptors are present on neurons from the cortex, hippocampus, and striatum based on pharmacological, biochemical, and molecular data. Moreover, biotinylation studies reveal that more than 90% of the receptor is intracellular in these neurons. Taken together, these data indicate that the tested NAMs exhibit both location-dependent and cell type specific bias for mGlu5-mediated Ca2+ mobilization which may affect clinical outcomes.
Collapse
Affiliation(s)
- Yuh-Jiin Ivy Jong
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Steven K. Harmon
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| | - Karen L. O’Malley
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, Missouri 63110, United States
| |
Collapse
|
21
|
Bankaitis VA, Xie Z. The neural stem cell/carnitine malnutrition hypothesis: new prospects for effective reduction of autism risk? J Biol Chem 2019; 294:19424-19435. [PMID: 31699893 DOI: 10.1074/jbc.aw119.008137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorders (ASDs) are developmental neuropsychiatric disorders with heterogeneous etiologies. As the incidence of these disorders is rising, such disorders represent a major human health problem with escalating social cost. Although recent years witnessed advances in our understanding of the genetic basis of some dysmorphic ASDs, little progress has been made in translating the improved understanding into effective strategies for ASD management or minimization of general ASD risk. Here we explore the idea, described in terms of the neural stem cell (NSC)/carnitine malnutrition hypothesis, that an unappreciated risk factor for ASD is diminished capacity for carnitine-dependent long-chain fatty acid β-oxidation in neural stem cells of the developing mammalian brain. The basic premise is that fetal carnitine status is a significant metabolic component in determining NSC vulnerability to derangements in their self-renewal program and, therefore, to fetal ASD risk. As fetal carnitine status exhibits a genetic component that relates to de novo carnitine biosynthesis and is sensitive to environmental and behavioral factors that affect maternal circulating carnitine levels, to which the fetus is exposed, we propose that reduced carnitine availability during gestation is a common risk factor that lurks beneath the genetically complex ASD horizon. One major prediction of the NSC/carnitine malnutrition hypothesis is that a significant component of ASD risk might be effectively managed from a public policy perspective by implementing a carnitine surveillance and dietary supplementation strategy for women planning pregnancies and for women in their first trimester of pregnancy. We argue that this prediction deserves serious clinical interrogation.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843-1114 .,Department of Biochemistry and Biophysics, Texas A&M University Health Science Center, College Station, Texas 77843-1114.,Department of Chemistry, Texas A&M University Health Science Center, College Station, Texas 77843-1114
| | - Zhigang Xie
- Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center, College Station, Texas 77843-1114
| |
Collapse
|