1
|
Ho DM, Shaban M, Mahmood F, Ganguly P, Todeschini L, Van Vactor D, Artavanis-Tsakonas S. cAMP/PKA signaling regulates TDP-43 aggregation and mislocalization. Proc Natl Acad Sci U S A 2024; 121:e2400732121. [PMID: 38838021 PMCID: PMC11181030 DOI: 10.1073/pnas.2400732121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Cytoplasmic mislocalization and aggregation of TDP-43 protein are hallmarks of amyotrophic lateral sclerosis (ALS) and are observed in the vast majority of both familial and sporadic cases. How these two interconnected processes are regulated on a molecular level, however, remains enigmatic. Genome-wide screens for modifiers of the ALS-associated genes TDP-43 and FUS have identified the phospholipase D (Pld) pathway as a key regulator of ALS-related phenotypes in the fruit fly Drosophila melanogaster [M. W. Kankel et al., Genetics 215, 747-766 (2020)]. Here, we report the results of our search for downstream targets of the enzymatic product of Pld, phosphatidic acid. We identify two conserved negative regulators of the cAMP/PKA signaling pathway, the phosphodiesterase dunce and the inhibitory subunit PKA-R2, as modifiers of pathogenic phenotypes resulting from overexpression of the Drosophila TDP-43 ortholog TBPH. We show that knockdown of either of these genes results in a mitigation of both TBPH aggregation and mislocalization in larval motor neuron cell bodies, as well as an amelioration of adult-onset motor defects and shortened lifespan induced by TBPH. We determine that PKA kinase activity is downstream of both TBPH and Pld and that overexpression of the PKA target CrebA can rescue TBPH mislocalization. These findings suggest a model whereby increasing cAMP/PKA signaling can ameliorate the molecular and functional effects of pathological TDP-43.
Collapse
Affiliation(s)
- Diana M. Ho
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | - Muhammad Shaban
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA02115
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Faisal Mahmood
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02115
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
- Cancer Data Science Program, Dana-Farber Cancer Institute, Boston, MA02115
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Payel Ganguly
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | | | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA02115
| | | |
Collapse
|
2
|
Tsekrekou M, Giannakou M, Papanikolopoulou K, Skretas G. Protein aggregation and therapeutic strategies in SOD1- and TDP-43- linked ALS. Front Mol Biosci 2024; 11:1383453. [PMID: 38855322 PMCID: PMC11157337 DOI: 10.3389/fmolb.2024.1383453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with severe socio-economic impact. A hallmark of ALS pathology is the presence of aberrant cytoplasmic inclusions composed of misfolded and aggregated proteins, including both wild-type and mutant forms. This review highlights the critical role of misfolded protein species in ALS pathogenesis, particularly focusing on Cu/Zn superoxide dismutase (SOD1) and TAR DNA-binding protein 43 (TDP-43), and emphasizes the urgent need for innovative therapeutic strategies targeting these misfolded proteins directly. Despite significant advancements in understanding ALS mechanisms, the disease remains incurable, with current treatments offering limited clinical benefits. Through a comprehensive analysis, the review focuses on the direct modulation of the misfolded proteins and presents recent discoveries in small molecules and peptides that inhibit SOD1 and TDP-43 aggregation, underscoring their potential as effective treatments to modify disease progression and improve clinical outcomes.
Collapse
Affiliation(s)
- Maria Tsekrekou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Giannakou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina Papanikolopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
| | - Georgios Skretas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- ResQ Biotech, Patras Science Park, Rio, Greece
- Institute for Bio-innovation, Biomedical Sciences Research Centre “Alexander Fleming”, Vari, Greece
| |
Collapse
|
3
|
Van Es MA. Amyotrophic lateral sclerosis; clinical features, differential diagnosis and pathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:1-47. [PMID: 38802173 DOI: 10.1016/bs.irn.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset syndrome characterized by the progressive degeneration of both upper motor neurons (UMN) and lower motor neurons (LMN). ALS forms a clinical continuum with frontotemporal dementia (FTD), in which there are progressive language deficits or behavioral changes. The genetics and pathology underlying both ALS and FTD overlap as well, with cytoplasmatic misvocalization of TDP-43 as the hallmark. ALS is diagnosed by exclusion. Over the years several diagnostic criteria have been proposed, which in essence all require a history of slowly progressive motor symptoms, with UMN and LMN signs on neurological examination, clear spread of symptoms through the body, the exclusion of other disorder that cause similar symptoms and an EMG that it is compatible with LMN loss. ALS is heterogeneous disorder that may present in multitude ways, which makes the diagnosis challenging. Therefore, a systematic approach in the diagnostic process is required in line with the most common presentations. Subsequently, assessing whether there are cognitive and/or behavioral changes within the spectrum of FTD and lastly determining the cause is genetic. This chapter, an outline on how to navigate this 3 step process.
Collapse
Affiliation(s)
- Michael A Van Es
- Department of Neurology, Brain Center UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
4
|
Moll T, Harvey C, Alhathli E, Gornall S, O'Brien D, Cooper-Knock J. Non-coding genome contribution to ALS. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:75-86. [PMID: 38802183 DOI: 10.1016/bs.irn.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The majority of amyotrophic lateral sclerosis (ALS) is caused by a complex gene-environment interaction. Despite high estimates of heritability, the genetic basis of disease in the majority of ALS patients are unknown. This limits the development of targeted genetic therapies which require an understanding of patient-specific genetic drivers. There is good evidence that the majority of these missing genetic risk factors are likely to be found within the non-coding genome. However, a major challenge in the discovery of non-coding risk variants is determining which variants are functional in which specific CNS cell type. We summarise current discoveries of ALS-associated genetic drivers within the non-coding genome and we make the case that improved cell-specific annotation of genomic function is required to advance this field, particularly via single-cell epigenetic profiling and spatial transcriptomics. We highlight the example of TBK1 where an apparent paradox exists between pathogenic coding variants which cause loss of protein function, and protective non-coding variants which cause reduced gene expression; the paradox is resolved when it is understood that the non-coding variants are acting primarily via change in gene expression within microglia, and the effect of coding variants is most prominent in neurons. We propose that cell-specific functional annotation of ALS-associated genetic variants will accelerate discovery of the genetic architecture underpinning disease in the vast majority of patients.
Collapse
Affiliation(s)
- Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Elham Alhathli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sarah Gornall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - David O'Brien
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
5
|
Zhang S, Moll T, Rubin-Sigler J, Tu S, Li S, Yuan E, Liu M, Butt A, Harvey C, Gornall S, Alhalthli E, Shaw A, Souza CDS, Ferraiuolo L, Hornstein E, Shelkovnikova T, van Dijk CH, Timpanaro IS, Kenna KP, Zeng J, Tsao PS, Shaw PJ, Ichida JK, Cooper-Knock J, Snyder MP. Deep learning modeling of rare noncoding genetic variants in human motor neurons defines CCDC146 as a therapeutic target for ALS. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.30.24305115. [PMID: 38633814 PMCID: PMC11023684 DOI: 10.1101/2024.03.30.24305115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease caused by the selective and progressive death of motor neurons (MNs). Understanding the genetic and molecular factors influencing ALS survival is crucial for disease management and therapeutics. In this study, we introduce a deep learning-powered genetic analysis framework to link rare noncoding genetic variants to ALS survival. Using data from human induced pluripotent stem cell (iPSC)-derived MNs, this method prioritizes functional noncoding variants using deep learning, links cis-regulatory elements (CREs) to target genes using epigenomics data, and integrates these data through gene-level burden tests to identify survival-modifying variants, CREs, and genes. We apply this approach to analyze 6,715 ALS genomes, and pinpoint four novel rare noncoding variants associated with survival, including chr7:76,009,472:C>T linked to CCDC146. CRISPR-Cas9 editing of this variant increases CCDC146 expression in iPSC-derived MNs and exacerbates ALS-specific phenotypes, including TDP-43 mislocalization. Suppressing CCDC146 with an antisense oligonucleotide (ASO), showing no toxicity, completely rescues ALS-associated survival defects in neurons derived from sporadic ALS patients and from carriers of the ALS-associated G4C2-repeat expansion within C9ORF72. ASO targeting of CCDC146 may be a broadly effective therapeutic approach for ALS. Our framework provides a generic and powerful approach for studying noncoding genetics of complex human diseases.
Collapse
Affiliation(s)
- Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
- These authors contributed equally: Sai Zhang, Tobias Moll, and Jasper Rubin-Sigler
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- These authors contributed equally: Sai Zhang, Tobias Moll, and Jasper Rubin-Sigler
| | - Jasper Rubin-Sigler
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
- These authors contributed equally: Sai Zhang, Tobias Moll, and Jasper Rubin-Sigler
| | - Sharon Tu
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Shuya Li
- School of Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Enming Yuan
- Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing, China
| | - Menghui Liu
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Afreen Butt
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sarah Gornall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Elham Alhalthli
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Allan Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Eran Hornstein
- Department of Molecular Genetics and Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Tatyana Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Charlotte H. van Dijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ilia S. Timpanaro
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kevin P. Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jianyang Zeng
- School of Engineering, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Philip S. Tsao
- VA Palo Alto Healthcare System, Palo Alto, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Justin K. Ichida
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA, USA
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Michael P. Snyder
- Department of Genetics, Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
6
|
Harvey C, Weinreich M, Lee JA, Shaw AC, Ferraiuolo L, Mortiboys H, Zhang S, Hop PJ, Zwamborn RA, van Eijk K, Julian TH, Moll T, Iacoangeli A, Al Khleifat A, Quinn JP, Pfaff AL, Kõks S, Poulton J, Battle SL, Arking DE, Snyder MP, Veldink JH, Kenna KP, Shaw PJ, Cooper-Knock J. Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis. Heliyon 2024; 10:e24975. [PMID: 38317984 PMCID: PMC10839612 DOI: 10.1016/j.heliyon.2024.e24975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∼50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS.
Collapse
Affiliation(s)
- Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Marcel Weinreich
- Clinical Neurobiology, German Cancer Research Center and University Hospital Heidelberg, Germany
| | - James A.K. Lee
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Allan C. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
| | - Paul J. Hop
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ramona A.J. Zwamborn
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristel van Eijk
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas H. Julian
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Alfredo Iacoangeli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - Ahmad Al Khleifat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, Liverpool, UK
| | - Abigail L. Pfaff
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Joanna Poulton
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - Stephanie L. Battle
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael P. Snyder
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Project MinE ALS Sequencing Consortium
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
- Clinical Neurobiology, German Cancer Research Center and University Hospital Heidelberg, Germany
- Department of Epidemiology, University of Florida, Gainesville, FL, USA
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
- Division of Evolution, Infection and Genomics, School of Biological Sciences, The University of Manchester, Manchester, UK
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, London, UK
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular & Integrative Biology, Liverpool, UK
- Perron Institute for Neurological and Translational Science, Perth, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jan H. Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kevin P. Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Pamela J. Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Paris A, Lakatos A. Cell and gene therapy for amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:217-241. [PMID: 39341656 DOI: 10.1016/b978-0-323-90120-8.00017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disorder with rapidly progressive skeletal muscle weakness, which can also cause a variable cognitive deficit. Genetic causes are only identified in approximately 10% of all cases, with complex genotype-phenotype associations, making it challenging to identify treatment targets. What further hampers therapeutic development is a broad heterogeneity in mechanisms, possible targets, and disturbances across various cell types, aside from the cortical and spinal motor neurons that lie at the heart of the pathology of ALS. Over the last decade, significant progress in biotechnologic techniques, cell and ribonucleic acid (RNA) engineering, animal models, and patient-specific human stem cell and organoid models have accelerated both mechanistic and therapeutic discoveries. The growing number of clinical trials mirrors this. This chapter reviews the current state of human preclinical models supporting trial strategies as well as recent clinical cell and gene therapy approaches.
Collapse
Affiliation(s)
- Alvar Paris
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - András Lakatos
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Dey B, Kumar A, Patel AB. Pathomechanistic Networks of Motor System Injury in Amyotrophic Lateral Sclerosis. Curr Neuropharmacol 2024; 22:1778-1806. [PMID: 37622689 PMCID: PMC11284732 DOI: 10.2174/1570159x21666230824091601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/06/2023] [Indexed: 08/26/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most common, adult-onset, progressive motor neurodegenerative disorder that results in death within 3 years of the clinical diagnosis. Due to the clinicopathological heterogeneity, any reliable biomarkers for diagnosis or prognosis of ALS have not been identified till date. Moreover, the only three clinically approved treatments are not uniformly effective in slowing the disease progression. Over the last 15 years, there has been a rapid advancement in research on the complex pathomechanistic landscape of ALS that has opened up new avenues for successful clinical translation of targeted therapeutics. Multiple studies suggest that the age-dependent interaction of risk-associated genes with environmental factors and endogenous modifiers is critical to the multi-step process of ALS pathogenesis. In this review, we provide an updated discussion on the dysregulated cross-talk between intracellular homeostasis processes, the unique molecular networks across selectively vulnerable cell types, and the multisystemic nature of ALS pathomechanisms. Importantly, this work highlights the alteration in epigenetic and epitranscriptomic landscape due to gene-environment interactions, which have been largely overlooked in the context of ALS pathology. Finally, we suggest that precision medicine research in ALS will be largely benefitted from the stratification of patient groups based on the clinical phenotype, onset and progression, genome, exposome, and metabolic identities.
Collapse
Affiliation(s)
- Bedaballi Dey
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Arvind Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Anant Bahadur Patel
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500007, Telangana, India
- AcSIR-Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
9
|
Elmansy MF, Reidl CT, Rahaman M, Özdinler PH, Silverman RB. Small molecules targeting different cellular pathologies for the treatment of amyotrophic lateral sclerosis. Med Res Rev 2023; 43:2260-2302. [PMID: 37243319 PMCID: PMC10592673 DOI: 10.1002/med.21974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 02/28/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease in which the motor neuron circuitry displays progressive degeneration, affecting mostly the motor neurons in the brain and in the spinal cord. There are no effective cures, albeit three drugs, riluzole, edaravone, and AMX0035 (a combination of sodium phenylbutyrate and taurursodiol), have been approved by the Food and Drug Administration, with limited improvement in patients. There is an urgent need to build better and more effective treatment strategies for ALS. Since the disease is very heterogenous, numerous approaches have been explored, such as targeting genetic mutations, decreasing oxidative stress and excitotoxicity, enhancing mitochondrial function and protein degradation mechanisms, and inhibiting neuroinflammation. In addition, various chemical libraries or previously identified drugs have been screened for potential repurposing in the treatment of ALS. Here, we review previous drug discovery efforts targeting a variety of cellular pathologies that occur from genetic mutations that cause ALS, such as mutations in SOD1, C9orf72, FUS, and TARDP-43 genes. These mutations result in protein aggregation, which causes neuronal degeneration. Compounds used to target cellular pathologies that stem from these mutations are discussed and comparisons among different preclinical models are presented. Because the drug discovery landscape for ALS and other motor neuron diseases is changing rapidly, we also offer recommendations for a novel, more effective, direction in ALS drug discovery that could accelerate translation of effective compounds from animals to patients.
Collapse
Affiliation(s)
- Mohamed F. Elmansy
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Organometallic and Organometalloid Chemistry, National Research Centre, Cairo, Egypt
| | - Cory T. Reidl
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - Mizzanoor Rahaman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
| | - P. Hande Özdinler
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Willemse SW, Harley P, van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, van Damme P, Ingre C, van Rheenen W, Veldink JH, Kiernan MC, Al-Chalabi A, van den Berg LH, Fratta P, van Es MA. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry 2023; 94:649-656. [PMID: 36737245 PMCID: PMC10359588 DOI: 10.1136/jnnp-2022-330504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options and an incompletely understood pathophysiology. Although genomewide association studies (GWAS) have advanced our understanding of the disease, the precise manner in which risk polymorphisms contribute to disease pathogenesis remains unclear. Of relevance, GWAS have shown that a polymorphism (rs12608932) in the UNC13A gene is associated with risk for both ALS and frontotemporal dementia (FTD). Homozygosity for the C-allele at rs12608932 modifies the ALS phenotype, as these patients are more likely to have bulbar-onset disease, cognitive impairment and FTD at baseline as well as shorter survival. UNC13A is expressed in neuronal tissue and is involved in maintaining synaptic active zones, by enabling the priming and docking of synaptic vesicles. In the absence of functional TDP-43, risk variants in UNC13A lead to the inclusion of a cryptic exon in UNC13A messenger RNA, subsequently leading to nonsense mediated decay, with loss of functional protein. Depletion of UNC13A leads to impaired neurotransmission. Recent discoveries have identified UNC13A as a potential target for therapy development in ALS, with a confirmatory trial with lithium carbonate in UNC13A cases now underway and future approaches with antisense oligonucleotides currently under consideration. Considering UNC13A is a potent phenotypic modifier, it may also impact clinical trial outcomes. This present review describes the path from the initial discovery of UNC13A as a risk gene in ALS to the current therapeutic options being explored and how knowledge of its distinct phenotype needs to be taken into account in future trials.
Collapse
Affiliation(s)
- Sean W Willemse
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - Koen C Demaegd
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Philip van Damme
- Department of Neurology, KU Leuven Hospital, Leuven, Belgium
- Laboratory of Neurobiology, VIB KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
11
|
Pierri V, Borghero G, Pili F, Ercoli T, Gigante AF, Lecca LI, Vasta R, Campagna M, Chiò A, Defazio G. Impact of occupational categories on the incidence of amyotrophic lateral sclerosis in Sardinia Island, Italy. Amyotroph Lateral Scler Frontotemporal Degener 2022; 24:212-218. [PMID: 36476139 DOI: 10.1080/21678421.2022.2153606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Occupation is one of the potential risk factors for amyotrophic lateral sclerosis (ALS) for which previous controlled studies produced inconsistent results. The aim of this study is to assess the impact of several groups of occupational categories on ALS incidence. METHODS ALS patients from the southern part of Sardinia who had onset during 2012-2021 and fulfilled El Escorial revised diagnostic criteria were included. The risk of ALS was estimated in relation to the occupation held in 2011, as obtained from the 2011 Census that classified working activities in ten groups. Each occupational group was compared with a reference category represented by all other occupations, and rate ratio were calculated. Additive interaction between activity at work and age at ALS onset/sex on ALS incidence was calculated. RESULTS Employment in agriculture/breeding and in the armed forces were significantly associated with increasing ALS risk. None of the other assessed occupation groups was associated with change in the risk of ALS. Geographic analysis indicated that the effect of agriculture/breeding was particularly evident in the areas of higher risk for the general population. By contrast, an inverse pattern of spatial risk was associated with armed forces activity at work. The increased risk of ALS associated to agriculture/breeding was more evident in older people. No significant interaction was detected between working in the armed forces and older age/sex. CONCLUSIONS The significant interaction between agriculture/breeding and age suggests that the mechanisms leading to ALS are complex and involve several factors.
Collapse
Affiliation(s)
- Vincenzo Pierri
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Giuseppe Borghero
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Francesca Pili
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
| | - Tommaso Ercoli
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Luigi Isaia Lecca
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Rosario Vasta
- ALS Center, Rita Levi Montalcini Department of Neurosciences, University of Turin, Turin, Italy, and
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Adriano Chiò
- ALS Center, Rita Levi Montalcini Department of Neurosciences, University of Turin, Turin, Italy, and
| | - Giovanni Defazio
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
- Institute of Neurology, University Hospital of Cagliari, Cagliari, Italy
- Amyotrophic Lateral Sclerosis Center, University of Cagliari, Cagliari, Italy
| |
Collapse
|
12
|
Theunissen F, Anderton RS, Mastaglia FL, James I, Bedlack R, Akkari PA. Intronic NEFH variant is associated with reduced risk for sporadic ALS and later age of disease onset. Sci Rep 2022; 12:14739. [PMID: 36042248 PMCID: PMC9427846 DOI: 10.1038/s41598-022-18942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Neurofilament heavy (NEFH) is one of the critical proteins required for the formation of the neuronal cytoskeleton and polymorphisms in NEFH are reported as a rare cause of sporadic ALS (sALS). In the current study, a candidate tetranucleotide (TTTA) repeat variant in NEFH was selected using an in-silico short structural variant (SSV) evaluation algorithm and investigated in two cohorts of North American sALS patients, both separately and combined (Duke cohort n = 138, Coriell cohort n = 333; combined cohort n = 471), compared to a group of healthy controls from the Coriell Institute biobank (n = 496). Stratification according to site of disease onset revealed that the 9 TTTA allele was associated with reduced disease risk, specifically confined to spinal-onset sALS patients in the Duke cohort (p = 0.001). Furthermore, carriage of the 10 TTTA allele was associated with a 2.7 year later age of disease onset in the larger combined sALS cohort (p = 0.02). These results suggest that the 9 and 10 TTTA motif length may have a protective advantage for potentially lowering the risk of sALS and delaying the age of disease onset, however, these results need to be replicated in larger multicenter and multi-ethnic cohorts.
Collapse
Affiliation(s)
- Frances Theunissen
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia
| | - Ryan S Anderton
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia.,School of Health Sciences and Institute for Health Research, University of Notre Dame Australia, Fremantle, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia.,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia
| | - Ian James
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, WA, Australia
| | | | - P Anthony Akkari
- Perron Institute for Neurological and Translational Science, First floor, RR block, QEII Medical Centre, 8 Verdun St, Nedlands, WA, 6009, Australia. .,Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Nedlands, WA, Australia. .,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, Australia. .,Department of Neurology, Duke University, Durham, NC, USA.
| |
Collapse
|
13
|
Zhao C, Liao Y, Rahaman A, Kumar V. Towards Understanding the Relationship Between ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:892518. [PMID: 35783140 PMCID: PMC9248913 DOI: 10.3389/fnagi.2022.892518] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Biological stress due to the aberrant buildup of misfolded/unfolded proteins in the endoplasmic reticulum (ER) is considered a key reason behind many human neurodegenerative diseases. Cells adapted to ER stress through the activation of an integrated signal transduction pathway known as the unfolded protein response (UPR). Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by degeneration of the motor system. It has largely been known that ER stress plays an important role in the pathogenesis of ALS through the dysregulation of proteostasis. Moreover, accumulating evidence indicates that ER stress and UPR are important players in TDP-43 pathology. In this mini-review, the complex interplay between ER stress and the UPR in ALS and TDP-43 pathology will be explored by taking into account the studies from in vitro and in vivo models of ALS. We also discuss therapeutic strategies to control levels of ER stress and UPR signaling components that have contrasting effects on ALS pathogenesis.
Collapse
Affiliation(s)
- Chenxuan Zhao
- School of Engineering, College of Technology and Business, Guangzhou, China
| | - Yong Liao
- Center of Scientific Research, Maoming People’s Hospital, Maoming, China
- *Correspondence: Yong Liao Vijay Kumar
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences (AINN), Amity University, Noida, India
- *Correspondence: Yong Liao Vijay Kumar
| |
Collapse
|
14
|
Julian TH, Boddy S, Islam M, Kurz J, Whittaker KJ, Moll T, Harvey C, Zhang S, Snyder MP, McDermott C, Cooper-Knock J, Shaw PJ. A review of Mendelian randomization in amyotrophic lateral sclerosis. Brain 2022; 145:832-842. [PMID: 34791088 PMCID: PMC9050546 DOI: 10.1093/brain/awab420] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/02/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis is a relatively common and rapidly progressive neurodegenerative disease that, in the majority of cases, is thought to be determined by a complex gene-environment interaction. Exponential growth in the number of performed genome-wide association studies combined with the advent of Mendelian randomization is opening significant new opportunities to identify environmental exposures that increase or decrease the risk of amyotrophic lateral sclerosis. Each of these discoveries has the potential to shape new therapeutic interventions. However, to do so, rigorous methodological standards must be applied in the performance of Mendelian randomization. We have reviewed Mendelian randomization studies performed in amyotrophic lateral sclerosis to date. We identified 20 Mendelian randomization studies, including evaluation of physical exercise, adiposity, cognitive performance, immune function, blood lipids, sleep behaviours, educational attainment, alcohol consumption, smoking and type 2 diabetes mellitus. We have evaluated each study using gold standard methodology supported by the Mendelian randomization literature and the STROBE-Mendelian randomization checklist. Where discrepancies exist between Mendelian randomization studies, we suggest the underlying reasons. A number of studies conclude that there is a causal link between blood lipids and risk of amyotrophic lateral sclerosis; replication across different datasets and even different populations adds confidence. For other putative risk factors, such as smoking and immune function, Mendelian randomization studies have provided cause for doubt. We highlight the use of positive control analyses in choosing exposure single nucleotide polymorphisms (SNPs) to make up the Mendelian randomization instrument, use of SNP clumping to avoid false positive results due to SNPs in linkage and the importance of multiple testing correction. We discuss the implications of survival bias for study of late age of onset diseases such as amyotrophic lateral sclerosis and make recommendations to mitigate this potentially important confounder. For Mendelian randomization to be useful to the amyotrophic lateral sclerosis field, high methodological standards must be applied to ensure reproducibility. Mendelian randomization is already an impactful tool, but poor-quality studies will lead to incorrect interpretations by a field that includes non-statisticians, wasted resources and missed opportunities.
Collapse
Affiliation(s)
- Thomas H Julian
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sarah Boddy
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mahjabin Islam
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Julian Kurz
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Katherine J Whittaker
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Sai Zhang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher McDermott
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
15
|
Boddy S, Islam M, Moll T, Kurz J, Burrows D, McGown A, Bhargava A, Julian TH, Harvey C, Marshall JNG, Hall BPC, Allen SP, Kenna KP, Sanderson E, Zhang S, Ramesh T, Snyder MP, Shaw PJ, McDermott C, Cooper-Knock J. Unbiased metabolome screen leads to personalized medicine strategy for amyotrophic lateral sclerosis. Brain Commun 2022; 4:fcac069. [PMID: 35441136 PMCID: PMC9010771 DOI: 10.1093/braincomms/fcac069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis is a rapidly progressive neurodegenerative disease that affects 1/350 individuals in the United Kingdom. The cause of amyotrophic lateral sclerosis is unknown in the majority of cases. Two-sample Mendelian randomization enables causal inference between an exposure, such as the serum concentration of a specific metabolite, and disease risk. We obtained genome-wide association study summary statistics for serum concentrations of 566 metabolites which were population matched with a genome-wide association study of amyotrophic lateral sclerosis. For each metabolite, we performed Mendelian randomization using an inverse variance weighted estimate for significance testing. After stringent Bonferroni multiple testing correction, our unbiased screen revealed three metabolites that were significantly linked to the risk of amyotrophic lateral sclerosis: Estrone-3-sulphate and bradykinin were protective, which is consistent with literature describing a male preponderance of amyotrophic lateral sclerosis and a preventive effect of angiotensin-converting enzyme inhibitors which inhibit the breakdown of bradykinin. Serum isoleucine was positively associated with amyotrophic lateral sclerosis risk. All three metabolites were supported by robust Mendelian randomization measures and sensitivity analyses; estrone-3-sulphate and isoleucine were confirmed in a validation amyotrophic lateral sclerosis genome-wide association study. Estrone-3-sulphate is metabolized to the more active estradiol by the enzyme 17β-hydroxysteroid dehydrogenase 1; further, Mendelian randomization demonstrated a protective effect of estradiol and rare variant analysis showed that missense variants within HSD17B1, the gene encoding 17β-hydroxysteroid dehydrogenase 1, modify risk for amyotrophic lateral sclerosis. Finally, in a zebrafish model of C9ORF72-amyotrophic lateral sclerosis, we present evidence that estradiol is neuroprotective. Isoleucine is metabolized via methylmalonyl-CoA mutase encoded by the gene MMUT in a reaction that consumes vitamin B12. Multivariable Mendelian randomization revealed that the toxic effect of isoleucine is dependent on the depletion of vitamin B12; consistent with this, rare variants which reduce the function of MMUT are protective against amyotrophic lateral sclerosis. We propose that amyotrophic lateral sclerosis patients and family members with high serum isoleucine levels should be offered supplementation with vitamin B12.
Collapse
Affiliation(s)
- Sarah Boddy
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Mahjabin Islam
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Julian Kurz
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - David Burrows
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Alexander McGown
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Anushka Bhargava
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Thomas H Julian
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Calum Harvey
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Jack NG Marshall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Benjamin PC Hall
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Kevin P Kenna
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Eleanor Sanderson
- Medical Research Council (MRC) Integrative Epidemiology Unit (IEU), University of Bristol, Bristol, UK
| | - Sai Zhang
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Tennore Ramesh
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Michael P Snyder
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Christopher McDermott
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Johnathan Cooper-Knock
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
16
|
Cooper-Knock J. Implications of confirmed de novo pathogenic SOD1 mutations. J Neurol Neurosurg Psychiatry 2022; 93:118. [PMID: 34599043 DOI: 10.1136/jnnp-2021-327935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/22/2021] [Indexed: 11/03/2022]
Affiliation(s)
- Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Balmforth MR, Haigh J, Kumar V, Dai W, Tiede C, Tomlinson DC, Deuchars J, Webb ME, Turnbull WB. Piggybacking on the Cholera Toxin: Identification of a CTB-Binding Protein as an Approach for Targeted Delivery of Proteins to Motor Neurons. Bioconjug Chem 2021; 32:2205-2212. [PMID: 34565149 DOI: 10.1021/acs.bioconjchem.1c00373] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A significant unmet need exists for the delivery of biologic drugs such as polypeptides or nucleic acids to the central nervous system for the treatment and understanding of neurodegenerative diseases. Naturally occurring bacterial toxins have been considered as tools to meet this need. However, due to the complexity of tethering macromolecular drugs to toxins and the inherent dangers of working with large quantities of recombinant toxins, no such route has been successfully exploited. Developing a method where a bacterial toxin's nontoxic targeting subunit can be assembled with a drug immediately prior to in vivo administration has the potential to circumvent some of these issues. Using a phage-display screen, we identified two antibody mimetics, anticholera toxin Affimer (ACTA)-A2 and ACTA-C6 that noncovalently associate with the nonbinding face of the cholera toxin B-subunit. In a first step toward the development of a nonviral motor neuron drug-delivery vehicle, we show that Affimers can be selectively delivered to motor neurons in vivo.
Collapse
Affiliation(s)
- Matthew R Balmforth
- School of Chemistry, School of Biomedical Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Jessica Haigh
- School of Chemistry, School of Biomedical Sciences and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Vajinder Kumar
- School of Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
- Akal University, Talwandi Sabo, Punjab 151302, India
| | - Wenyue Dai
- School of Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - Christian Tiede
- School of Molecular and Cellular Biology, and Astbury Centre for Structural and Molecular Biology, University of Leeds, Faculty of Biological Sciences, Leeds LS2 9JT, U.K
| | - Darren C Tomlinson
- School of Molecular and Cellular Biology, and Astbury Centre for Structural and Molecular Biology, University of Leeds, Faculty of Biological Sciences, Leeds LS2 9JT, U.K
| | - Jim Deuchars
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Michael E Webb
- School of Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|