1
|
Gomes GRF, Mariano TC, Braga VLL, Ribeiro EM, Guimarães IP, Pereira KSAF, Nóbrega PR, Pessoa ALS. Bailey-Bloch Congenital Myopathy in Brazilian Patients: A Very Rare Myopathy with Malignant Hyperthermia Susceptibility. Brain Sci 2023; 13:1184. [PMID: 37626540 PMCID: PMC10452826 DOI: 10.3390/brainsci13081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Congenital myopathy-13 (CMYP13), also known as Bailey-Bloch congenital myopathy and Native American myopathy (NAM), is a condition caused by biallelic missense pathogenic variants in STAC3, which encodes an important protein necessary for the excitation-relaxation coupling machinery in the muscle. Patients with biallelic pathogenic variants in STAC3 often present with congenital weakness and arthrogryposis, cleft palate, ptosis, myopathic facies, short stature, kyphoscoliosis, and susceptibility to malignant hyperthermia provoked by anesthesia. We present two unrelated cases of Bailey-Bloch congenital myopathy descendants of non-consanguineous parents, which were investigated for delayed psychomotor development and generalized weakness. To the best of our knowledge, these are the first descriptions of CMYP13 in Brazil. In both patients, we found the previously described pathogenic missense variant p.Trp284Ser in homozygosity. CONCLUSION We seek to highlight the need for screening for CMYP13 in patients expressing the typical phenotype of the disease even in the absence of Lumbee Native American ancestry, and to raise awareness to possible complications like malignant hyperthermia in Bailey-Bloch congenital myopathy.
Collapse
Affiliation(s)
| | - Tamiris Carneiro Mariano
- Albert Sabin Pediatric Hospital (HIAS), Fortaleza 60410-794, Brazil; (T.C.M.); (V.L.L.B.); (E.M.R.)
| | - Vitor Lucas Lopes Braga
- Albert Sabin Pediatric Hospital (HIAS), Fortaleza 60410-794, Brazil; (T.C.M.); (V.L.L.B.); (E.M.R.)
| | - Erlane Marques Ribeiro
- Albert Sabin Pediatric Hospital (HIAS), Fortaleza 60410-794, Brazil; (T.C.M.); (V.L.L.B.); (E.M.R.)
- Faculty of Medicine, Unichristus University, Fortaleza 60160-196, Brazil;
| | - Ingred Pimentel Guimarães
- Faculty of Medicine, Ceará State University, Fortaleza 60714-903, Brazil; (G.R.F.G.); (I.P.G.); (K.S.A.F.P.)
| | | | - Paulo Ribeiro Nóbrega
- Faculty of Medicine, Unichristus University, Fortaleza 60160-196, Brazil;
- Division of Neurology, Department of Clinical Medicine, Federal University of Ceará, Fortaleza 60430-372, Brazil
| | - André Luiz Santos Pessoa
- Faculty of Medicine, Ceará State University, Fortaleza 60714-903, Brazil; (G.R.F.G.); (I.P.G.); (K.S.A.F.P.)
- Albert Sabin Pediatric Hospital (HIAS), Fortaleza 60410-794, Brazil; (T.C.M.); (V.L.L.B.); (E.M.R.)
| |
Collapse
|
2
|
Kiani AK, Amato B, Maitz S, Nodari S, Benedetti S, Agostini F, Lorusso L, Capelli E, Dautaj A, Bertelli M. Genetic test for Mendelian fatigue and muscle weakness syndromes. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020001. [PMID: 33170160 PMCID: PMC8023128 DOI: 10.23750/abm.v91i13-s.10642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/23/2022]
Abstract
Several inherited disorders involve chronic fatigue, muscle weakness and pain. These conditions can depend on muscle, nerve, brain, metabolic and mitochondrial defects. A major trigger of muscle weakness and fatigue is exercise. The amount of exercise that triggers symptoms and the frequency of symptoms are highly variable. In this review, the genetic causes and molecular pathways involved in these disorders are discussed along with the diagnostic and treatment options available, with the aim of fostering understanding of the disease and exploring therapeutic options. (www.actabiomedica.it)
Collapse
Affiliation(s)
| | - Bruno Amato
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy.
| | - Silvia Maitz
- Department of Pediatrics, San Gerardo Hospital, Monza, Italy.
| | - Savina Nodari
- Department of Cardiology, University of Brescia and ASST "Spedali Civili" Hospital, Brescia.
| | | | | | | | - Enrica Capelli
- Department of Earth and Environmental Sciences and Centre for Health Technologies, University of Pavia, Pavia, Italy.
| | | | - Matteo Bertelli
- MAGI EUREGIO, Bolzano, Italy; MAGI'S LAB, Rovereto (TN), Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
3
|
Chagovetz AA, Klatt Shaw D, Ritchie E, Hoshijima K, Grunwald DJ. Interactions among ryanodine receptor isotypes contribute to muscle fiber type development and function. Dis Model Mech 2019; 13:dmm.038844. [PMID: 31383689 PMCID: PMC6906632 DOI: 10.1242/dmm.038844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Mutations affecting ryanodine receptor (RyR) calcium release channels commonly underlie congenital myopathies. Although these channels are known principally for their essential roles in muscle contractility, mutations in the human RYR1 gene result in a broad spectrum of phenotypes, including muscle weakness, altered proportions of fiber types, anomalous muscle fibers with cores or centrally placed nuclei, and dysmorphic craniofacial features. Currently, it is unknown which phenotypes directly reflect requirements for RyRs and which result secondarily to aberrant muscle function. To identify biological processes requiring RyR function, skeletal muscle development was analyzed in zebrafish embryos harboring protein-null mutations. RyR channels contribute to both muscle fiber development and function. Loss of some RyRs had modest effects, altering muscle fiber-type specification in the embryo without compromising viability. In addition, each RyR-encoding gene contributed to normal swimming behavior and muscle function. The RyR channels do not function in a simple additive manner. For example, although isoform RyR1a is sufficient for muscle contraction in the absence of RyR1b, RyR1a normally attenuates the activity of the co-expressed RyR1b channel in slow muscle. RyR3 also acts to modify the functions of other RyR channels. Furthermore, diminished RyR-dependent contractility affects both muscle fiber maturation and craniofacial development. These findings help to explain some of the heterogeneity of phenotypes that accompany RyR1 mutations in humans.
Collapse
Affiliation(s)
- Alexis A Chagovetz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Erin Ritchie
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - David J Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
4
|
RYR1 Sequence Variants in Myopathies: Expression and Functional Studies in Two Families. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7638946. [PMID: 31165076 PMCID: PMC6500691 DOI: 10.1155/2019/7638946] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The skeletal muscle ryanodine receptor (RyR1), i.e., the Ca2+ channel of the sarco/endoplasmic reticulum (S/ER), and the voltage-dependent calcium channel Cav1.1 are the principal channels involved in excitation-contraction coupling in skeletal muscle. RYR1 gene variants are linked to distinct skeletal muscle disorders, including malignant hyperthermia susceptibility and central core disease (CCD), mainly with autosomal dominant inheritance, and autosomal recessive myopathies with a broad phenotypic and histopathological spectrum. The age at onset of RYR1-related myopathies varies from infancy to adulthood. We report the identification of four RYR1 variants in two Italian families: one with myopathy and variants c.4003C>T (p.R1335C) and c.7035C>A (p.S2345R), and another with CCD and variants c.9293G>T (p.S3098I) and c.14771_14772insTAGACAGGGTGTTGCTCTGTTGCCCTTCTT (p.F4924_V4925insRQGVALLPFF). We demonstrate that, in patient-specific lymphoblastoid cells, the c.4003C>T (p.R1335C) variant is not expressed and the in-frame 30-nucleotide insertion variant is expressed at a low level. Moreover, Ca2+ release in response to the RyR1 agonist 4-chloro-m-cresol and to thapsigargin showed that the c.7035C>A (p.S2345R) variant causes depletion of S/ER Ca2+ stores and that the compound heterozygosity for variant c.9293G>T (p.S3098I) and the 30-nucleotide insertion increases RyR1-dependent Ca2+ release without affecting ER Ca2+ stores. In conclusion, we detected and functionally characterized disease-causing variants of the RyR1 channel in patient-specific lymphoblastoid cells. This paper is dedicated to the memory and contribution of Luigi Del Vecchio.
Collapse
|
5
|
Mercuri E, Pera MC, Brogna C. Neonatal hypotonia and neuromuscular conditions. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:435-448. [PMID: 31324324 DOI: 10.1016/b978-0-444-64029-1.00021-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The differential diagnosis of neonatal hypotonia is a complex task, as in newborns hypotonia can be the presenting sign of different underlying causes, including peripheral and central nervous system involvement and genetic and metabolic diseases. This chapter describes how a combined approach, based on the combination of clinical signs and new genetic techniques, can help not only to establish when the hypotonia is related to peripheral involvement but also to achieve an accurate and early diagnosis of the specific neuromuscular diseases with neonatal onset. The early identification of such disorders is important, as this allows early intervention with disease-specific standards of care and, more importantly, because of the possibility to treat some of them, such as spinal muscular atrophy, with therapeutic approaches that have recently become available.
Collapse
Affiliation(s)
- Eugenio Mercuri
- Department of Pediatric Neurology, Catholic University, Rome, Italy.
| | | | - Claudia Brogna
- Department of Pediatric Neurology, Catholic University, Rome, Italy
| |
Collapse
|
6
|
Sewry CA, Wallgren-Pettersson C. Myopathology in congenital myopathies. Neuropathol Appl Neurobiol 2018; 43:5-23. [PMID: 27976420 DOI: 10.1111/nan.12369] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022]
Abstract
Congenital myopathies are clinically and genetically a heterogeneous group of early onset neuromuscular disorders, characterized by hypotonia and muscle weakness. Clinical severity and age of onset are variable. Many patients are severely affected at birth while others have a milder, moderately progressive or nonprogressive phenotype. Respiratory weakness is a major clinical aspect that requires regular monitoring. Causative mutations in several genes have been identified that are inherited in a dominant, recessive or X-linked manner, or arise de novo. Muscle biopsies show characteristic pathological features such as nemaline rods/bodies, cores, central nuclei or caps. Small type 1 fibres expressing slow myosin are a common feature and may sometimes be the only abnormality. Small cores (minicores) devoid of mitochondria and areas showing variable myofibrillar disruption occur in several neuromuscular disorders including several forms of congenital myopathy. Muscle biopsies can also show more than one structural defect. There is considerable clinical, pathological and genetic overlap with mutations in one gene resulting in more than one pathological feature, and the same pathological feature being associated with defects in more than one gene. Increasing application of whole exome sequencing is broadening the clinical and pathological spectra in congenital myopathies, but pathology still has a role in clarifying the pathogenicity of gene variants as well as directing molecular analysis.
Collapse
Affiliation(s)
- C A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital for Children, London, UK.,Wolfson Centre for Inherited Neuromuscular Diseases, RJAH Orthopaedic Hospital, Oswestry, UK
| | - C Wallgren-Pettersson
- The Folkhälsan Institute of Genetics and the Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Jeong HN, Park HJ, Lee JH, Shin HY, Kim SH, Kim SM, Choi YC. Clinical and Pathologic Findings of Korean Patients with RYR1-Related Congenital Myopathy. J Clin Neurol 2018; 14:58-65. [PMID: 29629541 PMCID: PMC5765257 DOI: 10.3988/jcn.2018.14.1.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/10/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022] Open
Abstract
Background and Purpose This study was designed to investigate clinical and pathologic characteristics of five Korean patients with RYR1-related congenital myopathy (CM). Methods Five patients from unrelated families were diagnosed with RYR1-related CM via direct or targeted sequencing of RYR1. Their clinical, mutational, and pathologic findings were then analyzed. Results Seven different mutations were identified, including two novel mutations: c.5915A>T and c.12250C>T. All of the patients presented at infancy with proximal dominant weakness and delayed motor milestones. Other clinical findings were scoliosis in three patients, winged scapula in two, hip dislocation in one, and pectus excavatum in one. Ophthalmoplegia was observed in one patient with a novel recessive mutation. Two of three muscle specimens revealed a myopathic pattern with core. Conclusions We have identified a novel compound heterozygous RYR1 mutation and demonstrated clinical and pathologic findings in five Korean patients with RYR1-related CM.
Collapse
Affiliation(s)
- Ha Neul Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jun Park
- Department of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Korea
| | - Jung Hwan Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Seung Min Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Young Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.,Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
8
|
Abstract
Arthrogryposis multiplex congenital (AMC) is a descriptive term for a group of conditions that all share the characteristic of congenital contractures. There are an estimated 400 discrete diagnoses that can lead to a child being born with arthrogryposis. The 2 biggest categories of conditions are amyoplasia and distal arthrogryposis, which combined make up ∼50% to 65% of all diagnoses within the AMC subset. Amyoplasia, the most common AMC condition, seems to be a nongenetic syndrome, leading to very characteristic upper and lower limb contractures. The distal arthrogryposes, in contrast, have an underlying genetic abnormality, which in many cases seems to target the fast twitch muscles of the developing fetus. Classifying AMC is a difficult task, given the broad range of conditions represented. Four different classification schemes are presented.
Collapse
Affiliation(s)
- Judith G Hall
- *Departments of Medical Genetics and Pediatrics, University of British Columbia †British Columbia Children's Hospital, Child and Family Research Institute, Vancouver, BC, Canada ‡Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, Gothenburg, Sweden §Department of Orthopaedic Surgery, Shriners Hospital for Children, Philadelphia, PA
| | | | | |
Collapse
|
9
|
Bachmann C, Jungbluth H, Muntoni F, Manzur AY, Zorzato F, Treves S. Cellular, biochemical and molecular changes in muscles from patients with X-linked myotubular myopathy due to MTM1 mutations. Hum Mol Genet 2017; 26:320-332. [PMID: 28007904 DOI: 10.1093/hmg/ddw388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/07/2016] [Indexed: 01/07/2023] Open
Abstract
Centronuclear myopathies are early-onset muscle diseases caused by mutations in several genes including MTM1, DNM2, BIN1, RYR1 and TTN. The most severe and often fatal X-linked form of myotubular myopathy (XLMTM) is caused by mutations in the gene encoding the ubiquitous lipid phosphatase myotubularin, an enzyme specifically dephosphorylating phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate. Because XLMTM patients have a predominantly muscle-specific phenotype a number of pathogenic mechanisms have been proposed, including a direct effect of the accumulated lipid on the skeletal muscle calcium channel ryanodine receptor 1, a negative effect on the structure of intracellular organelles and defective autophagy. Animal models knocked out for MTM1 show severe reduction of ryanodine receptor 1 mediated calcium release but, since knocking out genes in animal models does not necessarily replicate the human phenotype, we considered it important to study directly the effect of MTM1 mutations on patient muscle cells. The results of the present study show that at the level of myotubes MTM1 mutations do not dramatically affect calcium homeostasis and calcium release mediated through the ryanodine receptor 1, though they do affect myotube size and nuclear content. On the other hand, mature muscles such as those obtained from patient muscle biopsies exhibit a significant decrease in expression of the ryanodine receptor 1, a decrease in muscle-specific microRNAs and a considerable up-regulation of histone deacetylase-4. We hypothesize that the latter events consequent to the primary genetic mutation, are the cause of the severe decrease in muscle strength that characterizes these patients.
Collapse
Affiliation(s)
- Christoph Bachmann
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Basel University, Basel, Switzerland
| | - Heinz Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina Children's Hospital, St Thomas' Hospital, London, UK.,Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London, UK.,Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, King's College, London, UK
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, Institute of Child Health, London, UK
| | - Adnan Y Manzur
- Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Diseases, Institute of Child Health, London, UK
| | - Francesco Zorzato
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Basel University, Basel, Switzerland.,Department of Life Sciences, General Pathology section, University of Ferrara, Ferrara, Italy
| | - Susan Treves
- Departments of Biomedicine and Anesthesia, Basel University Hospital, Basel University, Basel, Switzerland.,Department of Life Sciences, General Pathology section, University of Ferrara, Ferrara, Italy
| |
Collapse
|
10
|
Nishikawa A, Mitsuhashi S, Miyata N, Nishino I. Targeted massively parallel sequencing and histological assessment of skeletal muscles for the molecular diagnosis of inherited muscle disorders. J Med Genet 2016; 54:104-110. [DOI: 10.1136/jmedgenet-2016-104073] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 01/04/2023]
|
11
|
Natera-de Benito D, Nascimento A, Abicht A, Ortez C, Jou C, Müller JS, Evangelista T, Töpf A, Thompson R, Jimenez-Mallebrera C, Colomer J, Lochmüller H. KLHL40-related nemaline myopathy with a sustained, positive response to treatment with acetylcholinesterase inhibitors. J Neurol 2016; 263:517-23. [DOI: 10.1007/s00415-015-8015-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/26/2015] [Accepted: 12/28/2015] [Indexed: 11/28/2022]
|
12
|
Watne L, Yang ML. Clinical course of growth in patients with congenital neuromuscular disease in a single multidisciplinary neuromuscular clinic. J Pediatr Rehabil Med 2016; 9:13-21. [PMID: 26966796 DOI: 10.3233/prm-160357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To assess the effect of nutritional interventions on growth and on respiratory status in patients with congenital myopathy (CM), congenital muscular dystrophy (CMD), and congenital myasthenic syndrome (CMS). METHODS Retrospective cohort study based on case-note review of 18 patients affected by CM, CMD, and CMS, followed at a single pediatric neuromuscular center, between 2006 and 2014. RESULTS Seventy-two percent of patients required placement of a gastrostomy tube for bulbar weakness or for growth failure. Of those patients, 10 had 1 year follow up anthropometric data and 6 had 2 year follow up anthropometric data. Height percentiles and z-scores were significantly improved in patients after 1 year, while weight and BMI percentiles and z-scores were not. Weight and height percentiles and z-scores were significantly improved in patients at 2 year follow up, while BMI percentiles and z-scores were not. The number of respiratory illnesses was not significantly different before or after placement of the feeding tube. Of the patients who did not have placement of a gastrostomy tube, 4 had 1 year follow up anthropometric data and 3 had 2 year follow up anthropometric data. Gastrostomy tube fed patients had significantly higher mean weight percentiles and z-scores compared to orally fed patients. There was no significant difference in height or BMI between the gastrostomy fed and orally fed groups. Individual growth curves highlight the effect of intervention on weight and height. CONCLUSIONS This is a single multidisciplinary center experience describing the effect of nutritional interventions on growth in patients with congenital neuromuscular disorders. While the number of patients and their data in this report are limited, it highlights that the growth in this group of patients is unique but that the low weight and short stature respond to nutritional interventions with changes typically seen after 2 years of intervention.
Collapse
Affiliation(s)
- Laura Watne
- Children's Hospital Colorado, Aurora, CO, USA
| | - Michele L Yang
- Department of Pediatrics, University of Colorado Denver School of Medicine, Aurora, CO, USA
| |
Collapse
|
13
|
Zaharieva IT, Thor MG, Oates EC, van Karnebeek C, Hendson G, Blom E, Witting N, Rasmussen M, Gabbett MT, Ravenscroft G, Sframeli M, Suetterlin K, Sarkozy A, D'Argenzio L, Hartley L, Matthews E, Pitt M, Vissing J, Ballegaard M, Krarup C, Slørdahl A, Halvorsen H, Ye XC, Zhang LH, Løkken N, Werlauff U, Abdelsayed M, Davis MR, Feng L, Phadke R, Sewry CA, Morgan JE, Laing NG, Vallance H, Ruben P, Hanna MG, Lewis S, Kamsteeg EJ, Männikkö R, Muntoni F. Loss-of-function mutations in SCN4A cause severe foetal hypokinesia or 'classical' congenital myopathy. Brain 2015; 139:674-91. [PMID: 26700687 PMCID: PMC4766374 DOI: 10.1093/brain/awv352] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/13/2015] [Indexed: 11/15/2022] Open
Abstract
See Cannon (doi:
10.1093/brain/awv400
) for a scientific commentary on this article.
Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in
in utero
or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders.
SCN4A
encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Na
v
1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant
SCN4A
gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous
SCN4A
mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed
in utero
- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia.
In vitro
functional assessment in HEK293 cells of the impact of the identified
SCN4A
mutations showed loss-of-function of the mutant Na
v
1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Na
v
1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function
SCN4A
mutations should be considered in patients with a congenital myopathy.
Collapse
Affiliation(s)
- Irina T Zaharieva
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Michael G Thor
- 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Emily C Oates
- 3 Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, 2145, Australia 4 Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Clara van Karnebeek
- 5 Department of Pediatrics, Child and Family Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada
| | - Glenda Hendson
- 4 Discipline of Paediatrics and Child Health, Faculty of Medicine, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Eveline Blom
- 5 Department of Pediatrics, Child and Family Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada
| | - Nanna Witting
- 8 Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, DK2100 Copenhagen, Denmark
| | - Magnhild Rasmussen
- 9 Department of Clinical Neuroscience for Children, Oslo University Hospital, 0424, Oslo, Norway 10 Unit for Hereditary Neuromuscular Disorders, Oslo University Hospital, 0424, Oslo, Norway
| | - Michael T Gabbett
- 11 Genetic Health Queensland, Royal Brisbane & Women's Hospital & Griffith University, Brisbane, Australia
| | - Gianina Ravenscroft
- 12 The Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Maria Sframeli
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Karen Suetterlin
- 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Anna Sarkozy
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Luigi D'Argenzio
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Louise Hartley
- 13 Department of Child Health, University Hospital Wales, Cardiff, CF14 4XW, UK
| | - Emma Matthews
- 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Matthew Pitt
- 14 Neurophysiology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, Great Ormond Street, London WC1N 3JH, UK
| | - John Vissing
- 8 Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, DK2100 Copenhagen, Denmark
| | - Martin Ballegaard
- 15 Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, DK2100 Copenhagen, Denmark
| | - Christian Krarup
- 15 Department of Clinical Neurophysiology, Rigshospitalet, University of Copenhagen, DK2100 Copenhagen, Denmark
| | - Andreas Slørdahl
- 16 Children's Clinic, St.Olavs hospital, Trondheim University Hospital, 7006 Trondheim, Norway
| | - Hanne Halvorsen
- 17 Department of Pathology, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Xin Cynthia Ye
- 5 Department of Pediatrics, Child and Family Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada
| | - Lin-Hua Zhang
- 5 Department of Pediatrics, Child and Family Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada
| | - Nicoline Løkken
- 8 Copenhagen Neuromuscular Center, Rigshospitalet, University of Copenhagen, DK2100 Copenhagen, Denmark
| | - Ulla Werlauff
- 18 The Danish National Rehabilitation Center for Neuromuscular Diseases, Aarhus, 8000 Denmark
| | - Mena Abdelsayed
- 19 Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Mark R Davis
- 20 Department Molecular Genetics, Pathwest, QEII Medical Centre, Nedlands 6009, Western Australia, Australia
| | - Lucy Feng
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Rahul Phadke
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Caroline A Sewry
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Jennifer E Morgan
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Nigel G Laing
- 12 The Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Perth, 6009, Western Australia, Australia
| | - Hilary Vallance
- 5 Department of Pediatrics, Child and Family Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada
| | - Peter Ruben
- 19 Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, V5A 1S6, Canada
| | - Michael G Hanna
- 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Suzanne Lewis
- 5 Department of Pediatrics, Child and Family Research Institute, Centre for Molecular Medicine and Therapeutics, University of British Columbia, 4480 Oak Street, Vancouver, B.C. V6H 3V4, Canada
| | - Erik-Jan Kamsteeg
- 21 Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6500HB, The Netherlands
| | - Roope Männikkö
- 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Francesco Muntoni
- 1 Dubowitz Neuromuscular Centre, UCL Institute of Child Health, London, WC1N 1EH, UK 2 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
14
|
Abstract
Arthrogryposis multiplex congenita (AMC) is a heterogeneous condition defined as multiple congenital joint contractures in two or more body areas. The common pathogenesis is impaired fetal movements. Amyoplasia, the most frequent form, is a sporadically occurring condition with hypoplastic muscles and joint contractures. Distal arthrogryposis (DA) syndromes are often hereditary, and joint involvement is predominantly in the hands and feet. In a Swedish study, 131 patients with arthrogryposis were investigated. The most frequent diagnoses were amyoplasia and DA. In amyoplasia, muscle strength was found to be more important than joint range of motion (ROM) for motor function. In DA, muscle weakness was present in 44 % of investigated patients. The clinical findings were found to be highly variable between families and also within families with DA. Fetal myopathy due to sarcomeric protein dysfunction can cause DA. An early multidisciplinary team evaluation of the child with arthrogryposis for specific diagnosis and planning of treatment is recommended. Attention should be directed at the development of muscle strength with early stimulation of active movements. Immobilization should be minimized.
Collapse
Affiliation(s)
- Eva Kimber
- Department of Pediatrics, Institute of Clinical Sciences at Sahlgrenska Academy, The Queen Silvia Children´s Hospital, Gothenburg, Sweden
| |
Collapse
|
15
|
Ravenscroft G, Laing NG, Bönnemann CG. Pathophysiological concepts in the congenital myopathies: blurring the boundaries, sharpening the focus. ACTA ACUST UNITED AC 2014; 138:246-68. [PMID: 25552303 DOI: 10.1093/brain/awu368] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The congenital myopathies are a diverse group of genetic skeletal muscle diseases, which typically present at birth or in early infancy. There are multiple modes of inheritance and degrees of severity (ranging from foetal akinesia, through lethality in the newborn period to milder early and later onset cases). Classically, the congenital myopathies are defined by skeletal muscle dysfunction and a non-dystrophic muscle biopsy with the presence of one or more characteristic histological features. However, mutations in multiple different genes can cause the same pathology and mutations in the same gene can cause multiple different pathologies. This is becoming ever more apparent now that, with the increasing use of next generation sequencing, a genetic diagnosis is achieved for a greater number of patients. Thus, considerable genetic and pathological overlap is emerging, blurring the classically established boundaries. At the same time, some of the pathophysiological concepts underlying the congenital myopathies are moving into sharper focus. Here we explore whether our emerging understanding of disease pathogenesis and underlying pathophysiological mechanisms, rather than a strictly gene-centric approach, will provide grounds for a different and perhaps complementary grouping of the congenital myopathies, that at the same time could help instil the development of shared potential therapeutic approaches. Stemming from recent advances in the congenital myopathy field, five key pathophysiology themes have emerged: defects in (i) sarcolemmal and intracellular membrane remodelling and excitation-contraction coupling; (ii) mitochondrial distribution and function; (iii) myofibrillar force generation; (iv) atrophy; and (v) autophagy. Based on numerous emerging lines of evidence from recent studies in cell lines and patient tissues, mouse models and zebrafish highlighting these unifying pathophysiological themes, here we review the congenital myopathies in relation to these emerging pathophysiological concepts, highlighting both areas of overlap between established entities, as well as areas of distinction within single gene disorders.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Nigel G Laing
- 1 Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carsten G Bönnemann
- 2 National Institute of Neurological Disorders and Stroke/NIH, Porter Neuroscience Research Centre, Bethesda, MD, USA
| |
Collapse
|
16
|
Colombo I, Scoto M, Manzur AY, Robb SA, Maggi L, Gowda V, Cullup T, Yau M, Phadke R, Sewry C, Jungbluth H, Muntoni F. Congenital myopathies: Natural history of a large pediatric cohort. Neurology 2014; 84:28-35. [PMID: 25428687 DOI: 10.1212/wnl.0000000000001110] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE To assess the natural history of congenital myopathies (CMs) due to different genotypes. METHODS Retrospective cross-sectional study based on case-note review of 125 patients affected by CM, followed at a single pediatric neuromuscular center, between 1984 and 2012. RESULTS Genetic characterization was achieved in 99 of 125 cases (79.2%), with RYR1 most frequently implicated (44/125). Neonatal/infantile onset was observed in 76%. At birth, 30.4% required respiratory support, and 25.2% nasogastric feeding. Twelve percent died, mainly within the first year, associated with mutations in ACTA1, MTM1, or KLHL40. All RYR1-mutated cases survived and did not require long-term ventilator support including those with severe neonatal onset; however, recessive cases were more likely to require gastrostomy insertion (p = 0.0028) compared with dominant cases. Independent ambulation was achieved in 74.1% of all patients; 62.9% were late walkers. Among ambulant patients, 9% eventually became wheelchair-dependent. Scoliosis of variable severity was reported in 40%, with 1/3 of (both ambulant and nonambulant) patients requiring surgery. Bulbar involvement was present in 46.4% and required gastrostomy placement in 28.8% (at a mean age of 2.7 years). Respiratory impairment of variable severity was a feature in 64.1%; approximately half of these patients required nocturnal noninvasive ventilation due to respiratory failure (at a mean age of 8.5 years). CONCLUSIONS We describe the long-term outcome of a large cohort of patients with CMs. While overall course is stable, we demonstrate a wide clinical spectrum with motor deterioration in a subset of cases. Severity in the neonatal/infantile period is critical for survival, with clear genotype-phenotype correlations that may inform future counseling.
Collapse
Affiliation(s)
- Irene Colombo
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Mariacristina Scoto
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Adnan Y Manzur
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Stephanie A Robb
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Lorenzo Maggi
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Vasantha Gowda
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Thomas Cullup
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Michael Yau
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Rahul Phadke
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Caroline Sewry
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Heinz Jungbluth
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK
| | - Francesco Muntoni
- From the Dubowitz Neuromuscular Centre and MRC Centre for Neuromuscular Disorders (I.C., M.S., A.Y.M., S.A.R., V.G., C.S., F.M.), University College London Institute of Child Health and Great Ormond Street Hospital for Children, London, UK; Neuromuscular Unit (I.C.), Department of Neurological Sciences, IRCCS Foundation Cà Granda, Ospedale Maggiore Policlinico, Dino Ferrari Centre, Milan, University of Milan; Muscle Pathology and Neuroimmunology Unit (L.M.), Foundation IRCCS Neurological Institute C. Besta, Milan, Italy; DNA Laboratory (T.C., M.Y.), GSTS Pathology, Guy's Hospital, London; University College London Department of Neurology (R.P.), National Hospital for Neurology and Neurosurgery, London; Wolfson Centre for Inherited Neuromuscular Diseases RJAH (C.S.), Oswestry; Department of Paediatric Neurology (H.J.), Evelina Children's Hospital, London; Randall Division for Cell and Molecular Biophysics (H.J.), Muscle Signalling Section, King's College, London; and Clinical Neuroscience Division (H.J.), IoP, London, UK.
| |
Collapse
|
17
|
Smith BK, Goddard M, Childers MK. Respiratory assessment in centronuclear myopathies. Muscle Nerve 2014; 50:315-26. [PMID: 24668768 DOI: 10.1002/mus.24249] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2014] [Indexed: 12/23/2022]
Abstract
The centronuclear myopathies (CNMs) are a group of inherited neuromuscular disorders classified as congenital myopathies. While several causative genes have been identified, some patients do not harbor any of the currently known mutations. These diverse disorders have common histological features, which include a high proportion of centrally nucleated muscle fibers, and clinical attributes of muscle weakness and respiratory insufficiency. Respiratory problems in CNMs may manifest initially during sleep, but daytime symptoms, ineffective airway clearance, and hypoventilation predominate as more severe respiratory muscle dysfunction evolves. Respiratory muscle capacity can be evaluated using a variety of clinical tests selected with consideration for the age and baseline motor function of the patient. Similar clinical tests of respiratory function can also be incorporated into preclinical CNM canine models to offer insight for clinical trials. Because respiratory problems account for significant morbidity in patients, routine assessments of respiratory muscle function are discussed.
Collapse
Affiliation(s)
- Barbara K Smith
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | | | | |
Collapse
|
18
|
Katsetos CD, Koutzaki S, Melvin JJ. Mitochondrial dysfunction in neuromuscular disorders. Semin Pediatr Neurol 2013; 20:202-15. [PMID: 24331362 DOI: 10.1016/j.spen.2013.10.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review deciphers aspects of mitochondrial (mt) dysfunction among nosologically, pathologically, and genetically diverse diseases of the skeletal muscle, lower motor neuron, and peripheral nerve, which fall outside the traditional realm of mt cytopathies. Special emphasis is given to well-characterized mt abnormalities in collagen VI myopathies (Ullrich congenital muscular dystrophy and Bethlem myopathy), megaconial congenital muscular dystrophy, limb-girdle muscular dystrophy type 2 (calpainopathy), centronuclear myopathies, core myopathies, inflammatory myopathies, spinal muscular atrophy, Charcot-Marie-Tooth neuropathy type 2, and drug-induced peripheral neuropathies. Among inflammatory myopathies, mt abnormalities are more prominent in inclusion body myositis and a subset of polymyositis with mt pathology, both of which are refractory to corticosteroid treatment. Awareness is raised about instances of phenotypic mimicry between cases harboring primary mtDNA depletion, in the context of mtDNA depletion syndrome, and established neuromuscular disorders such as spinal muscular atrophy. A substantial body of experimental work, derived from animal models, attests to a major role of mitochondria (mt) in the early process of muscle degeneration. Common mechanisms of mt-related cell injury include dysregulation of the mt permeability transition pore opening and defective autophagy. The therapeutic use of mt permeability transition pore modifiers holds promise in various neuromuscular disorders, including muscular dystrophies.
Collapse
Affiliation(s)
- Christos D Katsetos
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA.
| | - Sirma Koutzaki
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA
| | - Joseph J Melvin
- Department of Pediatrics, Drexel University College of Medicine, St. Christopher's Hospital for Children, Philadelphia, PA; Department of Neurology, Drexel University College of Medicine, Philadelphia, PA
| |
Collapse
|
19
|
Distinct underlying mechanisms of limb and respiratory muscle fiber weaknesses in nemaline myopathy. J Neuropathol Exp Neurol 2013; 72:472-81. [PMID: 23656990 DOI: 10.1097/nen.0b013e318293b1cc] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Nemaline myopathy is the most common congenital myopathy and is caused by mutations in various genes such as ACTA1 (encoding skeletal α-actin). It is associated with limb and respiratory muscle weakness. Despite increasing clinical and scientific interest, the molecular and cellular events leading to such weakness remain unknown, which prevents the development of specific therapeutic interventions. To unravel the potential mechanisms involved, we dissected lower limb and diaphragm muscles from a knock-in mouse model of severe nemaline myopathy expressing the ACTA1 His40Tyr actin mutation found in human patients. We then studied a broad range of structural and functional characteristics assessing single-myofiber contraction, protein expression, and electron microscopy. One of the major findings in the diaphragm was the presence of numerous noncontractile areas (including disrupted sarcomeric structures and nemaline bodies). This greatly reduced the number of functional sarcomeres, decreased the force generation capacity at the muscle fiber level, and likely would contribute to respiratory weakness. In limb muscle, by contrast, there were fewer noncontractile areas and they did not seem to have a major role in the pathogenesis of weakness. These divergent muscle-specific results provide new important insights into the pathophysiology of severe nemaline myopathy and crucial information for future development of therapeutic strategies.
Collapse
|
20
|
Davidson AE, Siddiqui FM, Lopez MA, Lunt P, Carlson HA, Moore BE, Love S, Born DE, Roper H, Majumdar A, Jayadev S, Underhill HR, Smith CO, von der Hagen M, Hubner A, Jardine P, Merrison A, Curtis E, Cullup T, Jungbluth H, Cox MO, Winder TL, Abdel Salam H, Li JZ, Moore SA, Dowling JJ. Novel deletion of lysine 7 expands the clinical, histopathological and genetic spectrum of TPM2-related myopathies. ACTA ACUST UNITED AC 2013; 136:508-21. [PMID: 23413262 DOI: 10.1093/brain/aws344] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The β-tropomyosin gene encodes a component of the sarcomeric thin filament. Rod-shaped dimers of tropomyosin regulate actin-myosin interactions and β-tropomyosin mutations have been associated with nemaline myopathy, cap myopathy, Escobar syndrome and distal arthrogryposis types 1A and 2B. In this study, we expand the allelic spectrum of β-tropomyosin-related myopathies through the identification of a novel β-tropomyosin mutation in two clinical contexts not previously associated with β-tropomyosin. The first clinical phenotype is core-rod myopathy, with a β-tropomyosin mutation uncovered by whole exome sequencing in a family with autosomal dominant distal myopathy and muscle biopsy features of both minicores and nemaline rods. The second phenotype, observed in four unrelated families, is autosomal dominant trismus-pseudocamptodactyly syndrome (distal arthrogryposis type 7; previously associated exclusively with myosin heavy chain 8 mutations). In all four families, the mutation identified was a novel 3-bp in-frame deletion (c.20_22del) that results in deletion of a conserved lysine at the seventh amino acid position (p.K7del). This is the first mutation identified in the extreme N-terminus of β-tropomyosin. To understand the potential pathogenic mechanism(s) underlying this mutation, we performed both computational analysis and in vivo modelling. Our theoretical model predicts that the mutation disrupts the N-terminus of the α-helices of dimeric β-tropomyosin, a change predicted to alter protein-protein binding between β-tropomyosin and other molecules and to disturb head-to-tail polymerization of β-tropomyosin dimers. To create an in vivo model, we expressed wild-type or p.K7del β-tropomyosin in the developing zebrafish. p.K7del β-tropomyosin fails to localize properly within the thin filament compartment and its expression alters sarcomere length, suggesting that the mutation interferes with head-to-tail β-tropomyosin polymerization and with overall sarcomeric structure. We describe a novel β-tropomyosin mutation, two clinical-histopathological phenotypes not previously associated with β-tropomyosin and pathogenic data from the first animal model of β-tropomyosin-related myopathies.
Collapse
Affiliation(s)
- Ann E Davidson
- Department of Paediatrics, University of Michigan Medical Centre, Ann Arbor, MI 48109-2200, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Horstick EJ, Linsley JW, Dowling JJ, Hauser MA, McDonald KK, Ashley-Koch A, Saint-Amant L, Satish A, Cui WW, Zhou W, Sprague SM, Stamm DS, Powell CM, Speer MC, Franzini-Armstrong C, Hirata H, Kuwada JY. Stac3 is a component of the excitation-contraction coupling machinery and mutated in Native American myopathy. Nat Commun 2013; 4:1952. [PMID: 23736855 PMCID: PMC4056023 DOI: 10.1038/ncomms2952] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 04/30/2013] [Indexed: 11/09/2022] Open
Abstract
Excitation-contraction coupling, the process that regulates contractions by skeletal muscles, transduces changes in membrane voltage by activating release of Ca(2+) from internal stores to initiate muscle contraction. Defects in excitation-contraction coupling are associated with muscle diseases. Here we identify Stac3 as a novel component of the excitation-contraction coupling machinery. Using a zebrafish genetic screen, we generate a locomotor mutation that is mapped to stac3. We provide electrophysiological, Ca(2+) imaging, immunocytochemical and biochemical evidence that Stac3 participates in excitation-contraction coupling in muscles. Furthermore, we reveal that a mutation in human STAC3 is the genetic basis of the debilitating Native American myopathy (NAM). Analysis of NAM stac3 in zebrafish shows that the NAM mutation decreases excitation-contraction coupling. These findings enhance our understanding of both excitation-contraction coupling and the pathology of myopathies.
Collapse
Affiliation(s)
- Eric J. Horstick
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeremy W. Linsley
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - James J. Dowling
- Department of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USA
| | - Michael A. Hauser
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristin K. McDonald
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Allison Ashley-Koch
- Departments of Medicine and Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | - Louis Saint-Amant
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Departement de Pathologie et Biologie Cellulaire, Universite de Montreal, Montreal, Canada H3T 1J4
| | - Akhila Satish
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wilson W. Cui
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weibin Zhou
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Life Science Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawn M. Sprague
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Demetra S. Stamm
- Department of Internal Medicine, University of California, Davis, Sacramento, CA 95817, USA
| | - Cynthia M. Powell
- Departments of Pediatrics and Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcy C. Speer
- Center for Human Genetics, Duke University, Durham, NC 27710, USA
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Hiromi Hirata
- National Institute of Genetics, Mishima 411-8540, Japan
| | - John Y. Kuwada
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Cell and Molecular Biology Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
22
|
Skeletal muscle α-actin diseases (actinopathies): pathology and mechanisms. Acta Neuropathol 2013; 125:19-32. [PMID: 22825594 DOI: 10.1007/s00401-012-1019-z] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/12/2012] [Indexed: 01/18/2023]
Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of congenital myopathies characterised by muscle weakness and specific skeletal muscle structural lesions. Actin accumulations, nemaline and intranuclear bodies, fibre-type disproportion, cores, caps, dystrophic features and zebra bodies have all been seen in biopsies from patients with ACTA1 disease, with patients frequently presenting with multiple pathologies. Therefore increasingly it is considered that these entities may represent a continuum of structural abnormalities arising due to ACTA1 mutations. Recently an ACTA1 mutation has also been associated with a hypertonic clinical presentation with nemaline bodies. Whilst multiple genes are known to cause many of the pathologies associated with ACTA1 mutations, to date actin aggregates, intranuclear rods and zebra bodies have solely been attributed to ACTA1 mutations. Approximately 200 different ACTA1 mutations have been identified, with 90 % resulting in dominant disease and 10 % resulting in recessive disease. Despite extensive research into normal actin function and the functional consequences of ACTA1 mutations in cell culture, animal models and patient tissue, the mechanisms underlying muscle weakness and the formation of structural lesions remains largely unknown. Whilst precise mechanisms are being grappled with, headway is being made in terms of developing therapeutics for ACTA1 disease, with gene therapy (specifically reducing the proportion of mutant skeletal muscle α-actin protein) and pharmacological agents showing promising results in animal models and patient muscle. The use of small molecules to sensitise the contractile apparatus to Ca(2+) is a promising therapeutic for patients with various neuromuscular disorders, including ACTA1 disease.
Collapse
|
23
|
Volk T. Positioning nuclei within the cytoplasm of striated muscle fiber: cooperation between microtubules and KASH proteins. Nucleus 2012; 4:18-22. [PMID: 23211643 DOI: 10.4161/nucl.23086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Striated muscles contain a tightly ordered cytoplasm in which the shape and size of the nuclei are comparable and nuclear distribution is uniform. These features were recently shown to be essential for muscle function. In an attempt to elucidate mechanisms regulating the position and shape of myonuclei, we analyzed the function of the two KASH proteins that are uniquely present in the Drosophila genome, MSP‑300 and Klarsicht, both expressed in striated muscles. We demonstrated that both KASH proteins cooperate to construct a unique ring composed of MSP‑300 protein that surrounds and attached to the nuclear envelope. The MSP‑300 nuclear ring structure recruits and associates with a network of polarized astral microtubules that enables the dynamic movement and uniform spacing between the nuclei in each muscle fiber.
Collapse
Affiliation(s)
- Talila Volk
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
24
|
Abstract
Heterozygous mutations in dynamin 2 (DNM2) have been linked to dominant Charcot-Marie-Tooth neuropathy and centronuclear myopathy. We report the first homozygous mutation in the DNM2 protein p.Phe379Val, in three consanguineous patients with a lethal congenital syndrome associating akinesia, joint contractures, hypotonia, skeletal abnormalities, and brain and retinal hemorrhages. In vitro membrane tubulation, trafficking and GTPase assays are consistent with an impact of the DNM2p.Phe379Val mutation on endocytosis. Although DNM2 has been previously implicated in axonal and muscle maintenance, the clinical manifestation in our patients taken together with our expression analysis profile during mouse embryogenesis and knockdown approaches in zebrafish resulting in defects in muscle organization and angiogenesis support a pleiotropic role for DNM2 during fetal development in vertebrates and humans.
Collapse
|
25
|
Abstract
Neuromuscular disorders affect the peripheral nervous system and muscle. The principle effect of neuromuscular disorders is therefore on the ability to perform voluntary movements. Neuromuscular disorders cause significant incapacity, including, at the most extreme, almost complete paralysis. Neuromuscular diseases include some of the most devastating disorders that afflict mankind, for example motor neuron disease. Neuromuscular diseases have onset any time from in utero until old age. They are most often genetic. The last 25 years has been the golden age of genetics, with the disease genes responsible for many genetic neuromuscular disorders now identified. Neuromuscular disorders may be inherited as autosomal dominant, autosomal recessive, or X-linked traits. They may also result from mutations in mitochondrial DNA or from de novo mutations not present in the peripheral blood DNA of either parent. The high incidence of de novo mutation has been one of the surprises of the recent increase in information about the genetics of neuromuscular disorders. The disease burden imposed on families is enormous including decision making in relation to presymptomatic diagnosis for late onset neurodegenerative disorders and reproductive choices. Diagnostic molecular neurogenetics laboratories have been faced with an ever-increasing range of disease genes that could be tested for and usually a finite budget with which to perform the possible testing. Neurogenetics has moved from one known disease gene, the Duchenne muscular dystrophy gene in July 1987, to hundreds of disease genes in 2011. It can be anticipated that with the advent of next generation sequencing (NGS), most, if not all, causative genes will be identified in the next few years. Any type of mutation possible in human DNA has been shown to cause genetic neuromuscular disorders, including point mutations, small insertions and deletions, large deletions and duplications, repeat expansions or contraction and somatic mosaicism. The diagnostic laboratory therefore has to be capable of a large number of techniques in order to identify the different mutation types and requires highly skilled staff. Mutations causing neuromuscular disorders affect the largest human proteins for example titin and nebulin. Successful molecular diagnosis can make invasive and expensive diagnostic procedures such as muscle biopsy unnecessary. Molecular diagnosis is currently largely based on Sanger sequencing, which at most can sequence a small number of exons in one gene at a time. NGS techniques will facilitate molecular diagnostics, but not for all types of mutations. For example, NGS is not good at identifying repeat expansions or copy number variations. Currently, diagnostic molecular neurogenetics is focused on identifying the causative mutation(s) in a patient. In the future, the focus might move to prevention, by identifying carriers of recessive diseases before they have affected children. The pathobiology of many of the diseases remains obscure, as do factors affecting disease severity. The aim of this review is to describe molecular diagnosis of genetic neuromuscular disorders in the past, the present and speculate on the future.
Collapse
Affiliation(s)
- Nigel G Laing
- Centre for Medical Research, University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Western Australia, Australia.
| |
Collapse
|
26
|
Abstract
Muscle weakness in childhood can be caused by a lesion at any point extending from the motor cortex, brainstem and spinal cord to the anterior horn cell, peripheral nerve, neuromuscular junction and muscle. A comprehensive history and physical examination is essential to aid classification of the neuromuscular disorder and direct gene testing. The more common disorders such as spinal muscular atrophy, Duchenne muscular dystrophy, myotonic dystrophy and facioscapulohumeral dystrophy may be diagnosed on direct gene testing based on the history and clinical examination. The congenital myopathies are classified based on structural abnormalities on muscle biopsy, while protein abnormalities on immunohistochemistry and immunoblotting aid classification of the muscular dystrophies. In this review, we provide an approach to diagnosis of a child with weakness, with a focus on the inherited neuromuscular disorders, and the features on history, examination and investigation that help to distinguish between them.
Collapse
Affiliation(s)
- Manoj P Menezes
- Institute for Neuroscience and Muscle Research, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | | |
Collapse
|
27
|
Klein A, Lillis S, Munteanu I, Scoto M, Zhou H, Quinlivan R, Straub V, Manzur AY, Roper H, Jeannet PY, Rakowicz W, Jones DH, Jensen UB, Wraige E, Trump N, Schara U, Lochmuller H, Sarkozy A, Kingston H, Norwood F, Damian M, Kirschner J, Longman C, Roberts M, Auer-Grumbach M, Hughes I, Bushby K, Sewry C, Robb S, Abbs S, Jungbluth H, Muntoni F. Clinical and genetic findings in a large cohort of patients with ryanodine receptor 1 gene-associated myopathies. Hum Mutat 2012; 33:981-8. [PMID: 22473935 DOI: 10.1002/humu.22056] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 02/07/2012] [Indexed: 11/12/2022]
Abstract
Ryanodine receptor 1 (RYR1) mutations are a common cause of congenital myopathies associated with both dominant and recessive inheritance. Histopathological findings frequently feature central cores or multi-minicores, more rarely, type 1 predominance/uniformity, fiber-type disproportion, increased internal nucleation, and fatty and connective tissue. We describe 71 families, 35 associated with dominant RYR1 mutations and 36 with recessive inheritance. Five of the dominant mutations and 35 of the 55 recessive mutations have not been previously reported. Dominant mutations, typically missense, were frequently located in recognized mutational hotspot regions, while recessive mutations were distributed throughout the entire coding sequence. Recessive mutations included nonsense and splice mutations expected to result in reduced RyR1 protein. There was wide clinical variability. As a group, dominant mutations were associated with milder phenotypes; patients with recessive inheritance had earlier onset, more weakness, and functional limitations. Extraocular and bulbar muscle involvement was almost exclusively observed in the recessive group. In conclusion, our study reports a large number of novel RYR1 mutations and indicates that recessive variants are at least as frequent as the dominant ones. Assigning pathogenicity to novel mutations is often difficult, and interpretation of genetic results in the context of clinical, histological, and muscle magnetic resonance imaging findings is essential.
Collapse
Affiliation(s)
- Andrea Klein
- Paediatric Neurology, University Children's Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Amburgey K, McNamara N, Bennett LR, McCormick ME, Acsadi G, Dowling JJ. Prevalence of congenital myopathies in a representative pediatric united states population. Ann Neurol 2011; 70:662-5. [DOI: 10.1002/ana.22510] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
29
|
Nemaline myopathy and non-fatal hypertrophic cardiomyopathy caused by a novel ACTA1 E239K mutation. J Neurol Sci 2011; 307:171-3. [PMID: 21570694 DOI: 10.1016/j.jns.2011.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 04/13/2011] [Accepted: 04/22/2011] [Indexed: 11/22/2022]
Abstract
A twenty-year old male presented with diffuse limb muscle weakness and exertional dyspnea since childhood. The diagnosis of nemaline myopathy was given based on the muscle pathology findings that revealed nemaline rods on light and electron microscopy and discovery of a novel mutation, E239K, in ACTA1. Incidentally, the patient had hypertrophic cardiomyopathy (HCM) as shown by echocardiography. In nemaline myopathy, a few cases of HCM have been reported, albeit rarely and always fatal, but only one patient had ACTA1 mutation. This present report describes an infantile onset of nemaline myopathy with a milder clinical course and non-fatal HCM as compared with previous cases, showing clinical diversity in skeletal and cardiac manifestations of conditions associated with ACTA1 mutations.
Collapse
|
30
|
Baloh RH. Genetic Evaluation of Inherited Muscle Diseases. Continuum (Minneap Minn) 2011; 17:280-93. [DOI: 10.1212/01.con.0000396962.75069.2f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Quan D. Muscular dystrophies and neurologic diseases that present as myopathy. Rheum Dis Clin North Am 2011; 37:233-44, vi. [PMID: 21444022 DOI: 10.1016/j.rdc.2011.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Chronic muscle weakness is a common complaint among patients seen in rheumatology and neuromuscular specialty clinics. This article focuses on adult-onset muscular dystrophies, select hereditary myopathies, and other neuromuscular conditions that must be distinguished from acquired causes of inflammatory muscle disease such as polymyositis. A few organizing principles help to focus the evaluation and narrow the differential diagnosis.
Collapse
Affiliation(s)
- Dianna Quan
- Electromyography Laboratory, Department of Neurology, University of Colorado Denver, Academic office 1 - MS B-185, 12631 East 17th Avenue, Room 5121, Aurora, CO 80045, USA.
| |
Collapse
|
32
|
Ravenscroft G, Jackaman C, Bringans S, Papadimitriou JM, Griffiths LM, McNamara E, Bakker AJ, Davies KE, Laing NG, Nowak KJ. Mouse models of dominant ACTA1 disease recapitulate human disease and provide insight into therapies. ACTA ACUST UNITED AC 2011; 134:1101-15. [PMID: 21303860 DOI: 10.1093/brain/awr004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mutations in the skeletal muscle α-actin gene (ACTA1) cause a range of pathologically defined congenital myopathies. Most patients have dominant mutations and experience severe skeletal muscle weakness, dying within one year of birth. To determine mutant ACTA1 pathobiology, transgenic mice expressing ACTA1(D286G) were created. These Tg(ACTA1)(D286G) mice were less active than wild-type individuals. Their skeletal muscles were significantly weaker by in vitro analyses and showed various pathological lesions reminiscent of human patients, however they had a normal lifespan. Mass spectrometry revealed skeletal muscles from Tg(ACTA1)(D286G) mice contained ∼25% ACTA1(D286G) protein. Tg(ACTA1)(D286G) mice were crossed with hemizygous Acta1(+/-) knock-out mice to generate Tg(ACTA1)(D286G)(+/+).Acta1(+/-) offspring that were homozygous for the transgene and hemizygous for the endogenous skeletal muscle α-actin gene. Akin to most human patients, skeletal muscles from these offspring contained approximately equal proportions of ACTA1(D286G) and wild-type actin. Strikingly, the majority of these mice presented with severe immobility between postnatal Days 8 and 17, requiring euthanasia. Their skeletal muscles contained extensive structural abnormalities as identified in severely affected human patients, including nemaline bodies, actin accumulations and widespread sarcomeric disarray. Therefore we have created valuable mouse models, one of mild dominant ACTA1 disease [Tg(ACTA1)(D286G)], and the other of severe disease, with a dramatically shortened lifespan [Tg(ACTA1)(D286G)(+/+).Acta1(+/-)]. The correlation between mutant ACTA1 protein load and disease severity parallels effects in ACTA1 families and suggests altering this ratio in patient muscle may be a therapy for patients with dominant ACTA1 disease. Furthermore, ringbinden fibres were observed in these mouse models. The presence of such features suggests that perhaps patients with ringbinden of unknown genetic origin should be considered for ACTA1 mutation screening. This is the first experimental, as opposed to observational, evidence that mutant protein load determines the severity of ACTA1 disease.
Collapse
Affiliation(s)
- Gianina Ravenscroft
- Centre for Medical Research, The University of Western Australia, Western Australian Institute for Medical Research, Nedlands, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ravenscroft G, Wilmshurst JM, Pillay K, Sivadorai P, Wallefeld W, Nowak KJ, Laing NG. A novel ACTA1 mutation resulting in a severe congenital myopathy with nemaline bodies, intranuclear rods and type I fibre predominance. Neuromuscul Disord 2011; 21:31-6. [DOI: 10.1016/j.nmd.2010.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/30/2010] [Accepted: 08/23/2010] [Indexed: 01/27/2023]
|
34
|
Morgan JE, Zammit PS. Direct effects of the pathogenic mutation on satellite cell function in muscular dystrophy. Exp Cell Res 2010; 316:3100-8. [DOI: 10.1016/j.yexcr.2010.05.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/03/2010] [Indexed: 12/14/2022]
|
35
|
Muscular dystrophies: an update on pathology and diagnosis. Acta Neuropathol 2010; 120:343-58. [PMID: 20652576 DOI: 10.1007/s00401-010-0727-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/09/2010] [Accepted: 07/12/2010] [Indexed: 12/31/2022]
Abstract
Muscular dystrophies are clinically, genetically, and molecularly a heterogeneous group of neuromuscular disorders. Considerable advances have been made in recent years in the identification of causative genes, the differentiation of the different forms and in broadening the understanding of pathogenesis. Muscle pathology has an important role in these aspects, but correlation of the pathology with clinical phenotype is essential. Immunohistochemistry has a major role in differential diagnosis, particularly in recessive forms where an absence or reduction in protein expression can be detected. Several muscular dystrophies are caused by defects in genes encoding sarcolemmal proteins, several of which are known to interact. Others are caused by defects in nuclear membrane proteins or enzymes. Assessment of both primary and secondary abnormalities in protein expression is useful, in particular the hypoglycosylation of alpha-dystroglycan. In dominantly inherited muscular dystrophies it is rarely possible to detect a change in the expression of the primary defective protein; an exception to this is caveolin-3.
Collapse
|
36
|
Myopathies in the elderly: A hospital-based study. Neuromuscul Disord 2010; 20:443-7. [DOI: 10.1016/j.nmd.2010.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
|
37
|
Etard C, Roostalu U, Strähle U. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos. ACTA ACUST UNITED AC 2010; 189:527-39. [PMID: 20440001 PMCID: PMC2867308 DOI: 10.1083/jcb.200912125] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Apo2 proteins interact with chaperone Unc45b (but not Hsp90) and are required for correct zebrafish skeletal musculature and heart function. The chaperones Unc45b and Hsp90a are essential for folding of myosin in organisms ranging from worms to humans. We show here that zebrafish Unc45b, but not Hsp90a, binds to the putative cytidine deaminase Apobec2 (Apo2) in an interaction that requires the Unc45/Cro1p/She4p-related (UCS) and central domains of Unc45b. Morpholino oligonucleotide-mediated knockdown of the two related proteins Apo2a and Apo2b causes a dystrophic phenotype in the zebrafish skeletal musculature and impairs heart function. These phenotypic traits are shared with mutants of unc45b, but not with hsp90a mutants. Apo2a and -2b act nonredundantly and bind to each other in vitro, which suggests a heteromeric functional complex. Our results demonstrate that Unc45b and Apo2 proteins act in a Hsp90a-independent pathway that is required for integrity of the myosepta and myofiber attachment. Because the only known function of Unc45b is that of a chaperone, Apo2 proteins may be clients of Unc45b but other yet unidentified processes cannot be excluded.
Collapse
Affiliation(s)
- Christelle Etard
- Institute of Toxicology and Genetics, Forschungszentrum Karlsruhe in the Helmholtz Association, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | | | | |
Collapse
|
38
|
Rhodes RH, Sharer LR. I-Z-I complexes in congenital myopathy. Muscle Nerve 2010; 41:715-23. [PMID: 20229580 DOI: 10.1002/mus.21575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A 3-month-old boy with hypotonia at birth succumbed to a congenital myopathy. The major finding in his muscle biopsy corresponded to I-Z-I complexes described previously in embryonic skeletal muscle. A few previous myopathy cases have described findings suggestive of I-Z-I-like complexes. A mutation affecting mononuclear myoblasts or early myotubes was suspected, although an acquired lesion could not be ruled out. The findings may also have been altered by secondary events in this unusual case.
Collapse
Affiliation(s)
- Roy H Rhodes
- Department of Pathology, MEB 212, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, 1 Robert Wood Johnson Place, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
39
|
Markert CD, Meaney MP, Voelker KA, Grange RW, Dalley HW, Cann JK, Ahmed M, Bishwokarma B, Walker SJ, Yu SX, Brown M, Lawlor MW, Beggs AH, Childers MK. Functional muscle analysis of the Tcap knockout mouse. Hum Mol Genet 2010; 19:2268-83. [PMID: 20233748 DOI: 10.1093/hmg/ddq105] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Autosomal recessive limb-girdle muscular dystrophy type 2G (LGMD2G) is an adult-onset myopathy characterized by distal lower limb weakness, calf hypertrophy and progressive decline in ambulation. The disease is caused by mutations in Tcap, a z-disc protein of skeletal muscle, although the precise mechanisms resulting in clinical symptoms are unknown. To provide a model for preclinical trials and for mechanistic studies, we generated knockout (KO) mice carrying a null mutation in the Tcap gene. Here we present the first report of a Tcap KO mouse model for LGMD2G and the results of an investigation into the effects of Tcap deficiency on skeletal muscle function in 4- and 12-month-old mice. Muscle histology of Tcap-null mice revealed abnormal myofiber size variation with central nucleation, similar to findings in the muscles of LGMD2G patients. An analysis of a Tcap binding protein, myostatin, showed that deletion of Tcap was accompanied by increased protein levels of myostatin. Our Tcap-null mice exhibited a decline in the ability to maintain balance on a rotating rod, relative to wild-type controls. No differences were detected in force or fatigue assays of isolated extensor digitorum longus (EDL) and soleus (SOL) muscles. Finally, a mechanical investigation of EDL and SOL indicated an increase in muscle stiffness in KO animals. We are the first to establish a viable KO mouse model of Tcap deficiency and our model mice demonstrate a dystrophic phenotype comparable to humans with LGMD2G.
Collapse
Affiliation(s)
- C D Markert
- Department of Neurology, Wake Forest University, Winston-Salem, NC 27101, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Current world literature. Curr Opin Rheumatol 2009; 21:656-65. [PMID: 20009876 DOI: 10.1097/bor.0b013e3283328098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the role of muscle biopsy in the current age of genetic testing. RECENT FINDINGS The diagnostic approach to patients with suspected genetically determined myopathies has been altered by recent advances in molecular diagnostic technologies and by the increased number of conditions for which the genetic alterations have been identified. Myopathological aspects can narrow down the differential diagnosis when the clinical phenotype is not informative enough and can help guide the molecular investigation. SUMMARY Here, we review genetic and myopathological aspects of selected genetically determined myopathies.
Collapse
|
42
|
Ca2+ dysregulation in Ryr1(I4895T/wt) mice causes congenital myopathy with progressive formation of minicores, cores, and nemaline rods. Proc Natl Acad Sci U S A 2009; 106:21813-8. [PMID: 19959667 DOI: 10.1073/pnas.0912126106] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ryr1(I4895T/wt) (IT/+) mice express a knockin mutation corresponding to the human I4898T EC-uncoupling mutation in the type 1 ryanodine receptor/Ca(2+) release channel (RyR1), which causes a severe form of central core disease (CCD). IT/+ mice exhibit a slowly progressive congenital myopathy, with neonatal respiratory stress, skeletal muscle weakness, impaired mobility, dorsal kyphosis, and hind limb paralysis. Lesions observed in myofibers from diseased mice undergo age-dependent transformation from minicores to cores and nemaline rods. Early ultrastructural abnormalities include sarcomeric misalignment, Z-line streaming, focal loss of cross-striations, and myofibrillar splitting and intermingling that may arise from defective myofibrillogenesis. However, manifestation of the disease phenotype is highly variable on a Sv129 genomic background. Quantitative RT-PCR shows an equimolar ratio of WT and mutant Ryr1 transcripts within IT/+ myofibers and total RyR1 protein expression levels are normal. We propose a unifying theory in which the cause of core formation lies in functional heterogeneity among RyR1 tetramers. Random combinations of normal and either leaky or EC-uncoupled RyR subunits would lead to spatial differences in Ca(2+) transients; the resulting heterogeneity of contraction among myofibrils would lead to focal, irreversible tearing and shearing, which would, over time, enlarge to form minicores, cores, and nemaline rods. The IT/+ mouse line is proposed to be a valid model of RyR1-related congenital myopathy, offering high potential for elucidation of the pathogenesis of skeletal muscle disorders arising from impaired EC coupling.
Collapse
|
43
|
Current world literature. Curr Opin Neurol 2009; 22:554-61. [PMID: 19755870 DOI: 10.1097/wco.0b013e3283313b14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
44
|
Kongenitale Strukturmyopathien. MED GENET-BERLIN 2009. [DOI: 10.1007/s11825-009-0181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zusammenfassung
Bei den kongenitalen Strukturmyopathien handelt es sich um eine heterogene Gruppe seltener erblicher Myopathien, die durch charakteristische licht- oder elektronenmikroskopisch sichtbare morphologische Einschlüsse oder Umlagerungen von Zellorganellen in der Muskelfaser der quergestreiften Muskulatur gekennzeichnet sind. Die ersten Symptome werden in der Regel bereits bei der Geburt und/oder im Kindesalter, seltener mit einer milderen Symptomatik im Erwachsenenalter manifest. Der Verlauf ist in der Regel nur langsam progredient, sehr selten rasch fortschreitend. Die kongenitalen Strukturmyopathien werden derzeit nach histologischen, immunhistologischen, ultrastrukturellen und auch molekulargenetischen Gesichtspunkten eingeteilt. Eine wachsende Zahl von Gendefekten wird für die Muskelveränderungen verantwortlich gemacht, wobei sowohl die phänotypische Variabilität bei Mutationen im gleichen Gen als auch die genetische Heterogenität bei ähnlichem Phänotyp zu berücksichtigen sind. Zu den häufigsten Formen gehören die nemaline Myopathie, die Core-Myopathien, die zentronukleären Myopathien sowie die kongenitale Fasertypendisproportion.
Collapse
|
45
|
Vattemi G, Tonin P, Neri M, Marini M, Gualandi F, Guglielmi V, Ferlini A, Tomelleri G. Calpain 3 deficiency presenting as fibre type disproportion. Neuropathol Appl Neurobiol 2009; 35:614-7. [PMID: 19490426 DOI: 10.1111/j.1365-2990.2009.01028.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Sewry CA. Pathological defects in congenital myopathies. J Muscle Res Cell Motil 2008; 29:231-8. [PMID: 19115049 DOI: 10.1007/s10974-008-9155-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 11/26/2008] [Indexed: 01/13/2023]
Abstract
Congenital myopathies are a molecularly, pathologically and clinically heterogenous group of disorders defined by hypotonia and muscle weakness, that usually present at birth or early childhood, in association with a characteristic morphological defect. The most common morphological defects are nemaline rods, cores of varying size, central nuclei, and type I fibre hypotrophy, with or without an additional abnormality. The defective genes responsible for many of the congenital myopathies are known, but there is considerable clinico-pathological overlap. In particular, defects in more than one gene are associated with the presence of the same pathological feature, while defects in the same gene can result in more than one pathological feature. Understanding the complexities of these spectra is paramount to the elucidation of pathogenesis, and to the development of therapies.
Collapse
Affiliation(s)
- Caroline A Sewry
- Dubowitz Neuromuscular Centre, Institute of Child Health and Great Ormond Street Hospital, London, WC1N 1EH, UK.
| |
Collapse
|
47
|
Morvan D, Leroy-Willig A, Malgouyres A, Cuenod CA, Jehenson P, Syrota A. Simultaneous temperature and regional blood volume measurements in human muscle using an MRI fast diffusion technique. Magn Reson Med 1993; 26:1220-4. [PMID: 8450745 DOI: 10.1002/nbm.2938] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/30/2012] [Accepted: 02/11/2013] [Indexed: 04/17/2023]
Abstract
The thermal dependence of the translational diffusion coefficient and of the regional blood volume was investigated in vivo by using a special MR pulsed gradient technique with reduced sensitivity to bulk tissue motion. Measurements were done at 0.5 T, using a small gradient insert. The diffusion coefficient of muscle water was calibrated against thermocouple-measured temperature in vitro, both with the muscle fibers parallel and perpendicular to the diffusion gradient. The maximum muscle temperature variation obtained by percutaneous conduction was -8.8 +/- 1.6 degrees C under cooling and +3.7 +/- 1.6 degrees C under heating, from basal state. Simultaneously the fractional regional blood volume decreased by a factor of 3.5 under cooling and increased by a factor of 2.7 under heating. Due to the interdependence of microcirculation and tissue temperature, this technique may be used to follow heat production or deposition in living tissue (muscle exercise, electromagnetic irradiation, etc.).
Collapse
Affiliation(s)
- D Morvan
- Service Hospitalier Frédéric Joliot, C.E.A., Orsay, France
| | | | | | | | | | | |
Collapse
|