1
|
Zhao W, Meng H. Effects of genetic polymorphism of drug-metabolizing enzymes on the plasma concentrations of antiepileptic drugs in Chinese population. Bioengineered 2022; 13:7709-7745. [PMID: 35290166 PMCID: PMC9278974 DOI: 10.1080/21655979.2022.2036916] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a chronic brain disease, epilepsy affects ~50 million people worldwide. The traditional antiepileptic drugs (AEDs) are widely applied but showing various problems. Although the new AEDs have partially solved the problems of traditional AEDs, the current clinical application of traditional AEDs are not completely replaced by new drugs, particularly due to the large individual differences in drug plasma concentrations and narrow therapeutic windows among patients. Therefore, it is still clinically important to continue to treat patients using traditional AEDs with individualized therapeutic plans. To date, our understanding of the molecular and genetic mechanisms regulating plasma concentrations of AEDs has advanced rapidly, expanding the knowledge on the effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of AEDs. It is increasingly imperative to summarize and conceptualize the clinical significance of recent studies on individualized therapeutic regimens. In this review, we extensively summarize the critical effects of genetic polymorphisms of genes encoding drug-metabolizing enzymes on the plasma concentrations of several commonly used AEDs as well as the clinical significance of testing genotypes related to drug metabolism on individualized drug dosage. Our review provides solid experimental evidence and clinical guidance for the therapeutic applications of these AEDs.
Collapse
Affiliation(s)
- Weixuan Zhao
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology, the First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhang ML, Chen XL, Bai ZF, Zhao X, Li WX, Wang XY, Zhang H, Chen XF, Zhang SQ, Tang JF, Xiao XH, Zhao YL. ABCB1 c.3435C > T and EPHX1 c.416A > G polymorphisms influence plasma carbamazepine concentration, metabolism, and pharmacoresistance in epileptic patients. Gene 2021; 805:145907. [PMID: 34411648 DOI: 10.1016/j.gene.2021.145907] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/27/2021] [Accepted: 08/13/2021] [Indexed: 12/09/2022]
Abstract
The gene polymorphisms of ABCB1, EPHX1, and SCN1A were found to influence carbamazepine (CBZ) metabolism and resistance in epilepsy patients, but the relevance remains controversial. To reveal the relationships among the gene polymorphisms of ABCB1, EPHX1, SCN1A and the metabolism and resistance of CBZ, the databases of PubMed, EMBASE, Cochrane Library, Chinese National Knowledge Infrastructure, Chinese Science and Technique Journals, China Biology medicine disc and Wan Fang were retrieved for suitable studies up to April 2021. 18 studies containing 3293 epilepsy patients were included. The result revealed the gene polymorphism of ABCB1 c.3435C > T is significantly associated with altered concentration-dose ratios of CBZ (CDRCBZ) (CC vs. CT, OR = 0.25 (95% CI: 0.08-0.42), P = 0.004), and EPHX c.416A > G gene polymorphism may also significantly adjusted the concentration-dose ratios of carbamazepine-10, 11-trans dihydrodiol (CDRCBZD) (AA vs. GG, OR = 0.48 (95% CI: 0.01-0.96), P = 0.045; AG vs. GG, OR = 0.68 (95% CI: 0.16-1.20), P = 0.010, respectively) and the ratio of CBZD:carbamazepine-10,11-epoxide (CBZE) (CDRCBZD:CDRCBZE) (AG vs GG, OR = 0.83 (95% CI: 0.31-1.36), P = 0.002). Furthermore, ABCB1 c.3435C > T polymorphism was also observed to be significantly influenced CBZ resistance (CC vs TT, OR = 1.78 (95% CI: 1.17-2.72), P = 0.008; CT vs TT, OR = 1.60 (95% CI: 1.12-2.30), P = 0.01; CC + CT vs TT, OR = 1.61 (95% CI: 1.15-2.26), P = 0.006, respectively). Therefore, CBZ metabolism and resistance in patients with epilepsy may be adjusted by the gene polymorphisms of ABCB1 c.3435C > T and EPHX1 c.416A > G which provides the further scientific basis for clinical individualized therapy of epilepsy. However, larger sample size studies are still needed to provide further conclusive evidence.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xiao-Long Chen
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450046, China
| | - Zhao-Fang Bai
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Xu Zhao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China
| | - Wei-Xia Li
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou 450046, China
| | - Xiao-Yan Wang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou 450046, China
| | - Hui Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou 450046, China
| | - Xiao-Fei Chen
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shu-Qi Zhang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Jin-Fa Tang
- Department of Pharmacy, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, Zhengzhou 450046, China; School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China.
| | - Xiao-He Xiao
- Department of Hepatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100039, China.
| | - Yan-Ling Zhao
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
3
|
Fricke-Galindo I, Jung-Cook H, Martínez-Juárez IE, Monroy-Jaramillo N, Ortega-Vázquez A, Rojas-Tomé IS, Dorado P, Peñas-Lledó E, Llerena A, López-López M. Relevance of NR1I2 variants on carbamazepine therapy in Mexican Mestizos with epilepsy at a tertiary-care hospital. Pharmacogenomics 2021; 22:983-996. [PMID: 34612084 DOI: 10.2217/pgs-2021-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: We evaluated the potential influence of genetic (CYP3A5, EPHX1, NR1I2, HNF4A, ABCC2, RALBP1, SCN1A, SCN2A and GABRA1) and nongenetic factors on carbamazepine (CBZ) response, adverse drug reactions and CBZ plasma concentrations in 126 Mexican Mestizos (MM) with epilepsy. Subjects & methods: Patients were genotyped for 27 variants using TaqMan® assays. Results: CBZ response was associated with NR1I2 variants and lamotrigine cotreatment. CBZ-induced adverse drug reactions were related to antiepileptic polytherapy and SCN1A rs2298771/rs3812718 haplotype. CBZ plasma concentrations were influenced by NR1I2-rs2276707 and -rs3814058, and by phenytoin cotreatment. CBZ daily dose was also influenced by NR1I2-rs3814055 and EPHX1-rs1051740. Conclusion: Interindividual variability in CBZ treatment was partly explained by NR1I2, EPHX1 and SCN1A variants, as well as antiepileptic cotreatment in MM with epilepsy.
Collapse
Affiliation(s)
- Ingrid Fricke-Galindo
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| | - Helgi Jung-Cook
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico.,National Autonomous University of Mexico, Mexico City, Mexico, Av. Universidad 3000, C.U., 04510, Coyoacán, Mexico City, Mexico
| | - Iris E Martínez-Juárez
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Nancy Monroy-Jaramillo
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Alberto Ortega-Vázquez
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| | - Irma S Rojas-Tomé
- National Institute of Neurology & Neurosurgery, Manuel Velasco Suárez, Insurgentes Sur 3877, La Fama, 14269, Tlalpan, Mexico City, Mexico
| | - Pedro Dorado
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Department of Medical-Surgery Therapeutics, University of Extremadura, Avda. Virgen del Puerto, Plasencia, 10600, Spain
| | - Eva Peñas-Lledó
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Faculty of Medicine, University of Extremadura, Av. de Elvas, s/n, Badajoz, 06006, Spain
| | - Adrián Llerena
- Biosanitary Research Institute, INUBE Extremadura University, Avda. de Elvas, Badajoz, 06006, Spain.,Faculty of Medicine, University of Extremadura, Av. de Elvas, s/n, Badajoz, 06006, Spain.,CICAB Clinical Research Center, Extremadura University Hospital, Campus Universitario, Av. de Elvas, s/n, Badajoz, 06080, Spain
| | - Marisol López-López
- Metropolitan Autonomous University, Campus Xochimilco, Calzada del Hueso 1100, Villa Quietud, 04960, Coyoacán, Mexico City, Mexico
| |
Collapse
|
4
|
Hu T, Zeng X, Tian T, Liu J. Association of EPHX1 polymorphisms with plasma concentration of carbamazepine in epileptic patients: Systematic review and meta-analysis. J Clin Neurosci 2021; 91:159-171. [PMID: 34373022 DOI: 10.1016/j.jocn.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/07/2020] [Accepted: 07/05/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Carbamazepine (CBZ) is a wildly used anti-epileptic drug (AED). Increasing evidence suggested that polymorphisms in Epoxide Hydrolase1 (EPHX1) gene are associated with the pharmacokinetics (PK) and pharmacodynamics (PD) of CBZ, albeit the results were inconsistent. METHODS A literature search on PubMed, Embase, and Cochrane Library was conducted to identify eligible studies published between 1974 and 2020. A meta-analysis was performed and the standardized mean difference (SMD) and 95% confidence interval (95% CI) were estimated using a random-effects model. The heterogeneity and leave-one-study-out sensitivity analyses of each article and the publication bias were also performed. All the statistical analyses were performed using STATA 14.0. RESULTS A total of 6 articles with 1746 subjects were included in this meta-analysis. A significant correlation was detected between EPHX1 rs1051740 T > C polymorphisms and decreased plasma concentration of CBZ (TT vs CC: SMD = 0.34, P < 0.001; TC vs CC: SMD = 0.35, P = 0.009). However, similar results were not detected in the comparison of TT vs. TC in the EPHX1 rs1051740 T > C variation (P = 0.637), while subgroup analyses showed an association with plasma CBZ concentration in the non-Asian group (P < 0.001, I2 = 0.0%, Ph = 0.400). Although the association of EPHX1 rs2234922 A > G polymorphisms with plasma CBZ concentration was not detected (AA vs GG:SMD = 0.54, P = 0.102; AA vs AG:SMD = -0.05, P = 0.670; AG vs GG: SMD = 0.86, P = 0.107), subgroup analyses showed that the GG genotype EPHX1 rs2234922 was associated with increased plasma CBZ concentration in the Asian group (P = 0.005, I2 = 48.6%, Ph = 0.143). CONCLUSION EPHX1 rs1051740 T > C and rs2234922 A > G are important genetic variants associated with plasma CBZ concentration. The role of EPHX1 polymorphisms in the interindividual variability of plasma CBZ concentration varied significantly among different ethnic groups, which should be considered during clinical validation and in future studies.
Collapse
Affiliation(s)
- Ting Hu
- Department of Obstetrics & Gynecologic, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoxi Zeng
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, China; West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Tian Tian
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China; Department of Diagnostic Ultrasound, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jinping Liu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, China.
| |
Collapse
|
5
|
Zhao GX, Zhang Z, Cai WK, Shen ML, Wang P, He GH. Associations between CYP3A4, CYP3A5 and SCN1A polymorphisms and carbamazepine metabolism in epilepsy: A meta-analysis. Epilepsy Res 2021; 173:106615. [PMID: 33756436 DOI: 10.1016/j.eplepsyres.2021.106615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 03/10/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND AND OBJECTIVE CYP3A4 (rs2242480), CYP3A5 (rs776746) and SCN1A (rs3812718 and rs2298771) gene polymorphisms were previously indicated to be associated with carbamazepine (CBZ) metabolism and resistance in epilepsy. However, previous studies regarding the effects of these polymorphisms still remain controversial. Therefore, we performed a meta-analysis to evaluate whether the four polymorphisms are associated with CBZ metabolism and resistance. METHODS The PubMed, EMBASE, Cochrane library, Chinese National Knowledge Infrastructure, Chinese Science and Technique Journals Database, China Biology Medicine disc and Wan Fang Database were searched up to January 2021 for appropriate studies regarding the association of rs2242480, rs776746, rs3812718 and rs2234922 polymorphisms with CBZ metabolism and resistance. The meta-analysis was conducted by Review Manager 5.3 software. RESULTS Eighteen studies involving 2546 related epilepsy patients were included. We found that the G allele of CYP3A4 rs2242480 markedly decreased the plasma CBZ concentration in epilepsy. For CYP3A5 rs776746 polymorphism, the GG genotype (homozygote codominant model: GG vs. AA) and GG + GA genotype (dominant model: GG + GA vs. AA and recessive model: GG vs. GA + AA) were respectively found to be significantly associated with increased CBZ plasma concentration. Additionally, it was also found that the SCN1A rs3812718 A allele was significantly associated with decreased CBZ plasma concentration and increased CBZ resistance. However, no association was observed between SCN1A rs2298771 polymorphism and CBZ metabolism and resistance. CONCLUSION The CYP3A4 rs2242480, CYP3A5 rs776746 and SCN1A rs3812718 polymorphisms may play important roles in CBZ metabolism and resistance, while SCN1A rs2298771 polymorphism is not associated with CBZ in epilepsy. These findings would improve the individualized therapy of epileptic patients in clinics.
Collapse
Affiliation(s)
- Gui-Xin Zhao
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China; Kunming Medical University, Kunming, 650500, China; Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, China
| | - Zheng Zhang
- Medical Engineering Section, The 306th Hospital of PLA, Beijing, 100101, China
| | - Wen-Ke Cai
- Department of Cardio-Thoracic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Ming-Li Shen
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Ping Wang
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China
| | - Gong-Hao He
- Department of Pharmacy, 920th Hospital of Joint Logistics Support Force, Kunming, 650032, China; Research Center of Clinical Pharmacology, Yunnan Provincial Hospital of Traditional Chinese Medicine, Kunming, 650021, China.
| |
Collapse
|
6
|
Iannaccone T, Sellitto C, Manzo V, Colucci F, Giudice V, Stefanelli B, Iuliano A, Corrivetti G, Filippelli A. Pharmacogenetics of Carbamazepine and Valproate: Focus on Polymorphisms of Drug Metabolizing Enzymes and Transporters. Pharmaceuticals (Basel) 2021; 14:204. [PMID: 33804537 PMCID: PMC8001195 DOI: 10.3390/ph14030204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022] Open
Abstract
Pharmacogenomics can identify polymorphisms in genes involved in drug pharmacokinetics and pharmacodynamics determining differences in efficacy and safety and causing inter-individual variability in drug response. Therefore, pharmacogenomics can help clinicians in optimizing therapy based on patient's genotype, also in psychiatric and neurological settings. However, pharmacogenetic screenings for psychotropic drugs are not routinely employed in diagnosis and monitoring of patients treated with mood stabilizers, such as carbamazepine and valproate, because their benefit in clinical practice is still controversial. In this review, we summarize the current knowledge on pharmacogenetic biomarkers of these anticonvulsant drugs.
Collapse
Affiliation(s)
- Teresa Iannaccone
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Carmine Sellitto
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Valentina Manzo
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| | - Francesca Colucci
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Valentina Giudice
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Berenice Stefanelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Antonio Iuliano
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
| | - Giulio Corrivetti
- European Biomedical Research Institute of Salerno (EBRIS), 84125 Salerno, Italy;
| | - Amelia Filippelli
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi, Italy; (T.I.); (V.M.); (F.C.); (V.G.); (B.S.); (A.I.); (A.F.)
- Clinical Pharmacology and Pharmacogenetics Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, 84131 Salerno, Italy
| |
Collapse
|
7
|
Zhao GX, Shen ML, Zhang Z, Wang P, Xie CX, He GH. Association between EPHX1 polymorphisms and carbamazepine metabolism in epilepsy: a meta-analysis. Int J Clin Pharm 2019; 41:1414-1428. [DOI: 10.1007/s11096-019-00919-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/09/2019] [Indexed: 01/17/2023]
|
8
|
Lv Y, Zheng X, Shi M, Wang Z, Cui L. Different EPHX1 methylation levels in promoter area between carbamazepine-resistant epilepsy group and carbamazepine-sensitive epilepsy group in Chinese population. BMC Neurol 2019; 19:114. [PMID: 31164100 PMCID: PMC6549255 DOI: 10.1186/s12883-019-1308-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/18/2019] [Indexed: 12/13/2022] Open
Abstract
Background Epigenetics underlying refractory epilepsy is poorly understood. DNA methylation may affect gene expression in epilepsy patients without affecting DNA sequences. Herein, we investigated the association between Carbamazepine-resistant (CBZ-resistant) epilepsy and EPHX1 methylation in a northern Han Chinese population, and conducted an analysis of clinical risk factors for CBZ-resistant epilepsy. Methods Seventy-five northern Han Chinese patients participated in this research. 25 cases were CBZ-resistant epilepsy, 25 cases were CBZ-sensitive epilepsy and the remaining 25 cases were controls. Using a CpG searcher was to make a prediction of CpG islands; bisulfite sequencing PCR (BSP) was applied to test the methylation of EPHX1. We then did statistical analysis between clinical parameters and EPHX1 methylation. Results There was no difference between CBZ-resistant patients, CBZ-sensitive patients and healthy controls in matched age and gender. However, a significant difference of methylation levels located in NC_000001.11 (225,806,929.....225807108) of the EPHX1 promoter was found in CBZ-resistant patients, which was much higher than CBZ-sensitive and controls. Additionally, there was a significant positive correlation between seizure frequency, disease course and EPHX1 methylation in CBZ-resistant group. Conclusion Methylation levels in EPHX1 promoter associated with CBZ-resistant epilepsy significantly. EPHX1 methylation may be the potential marker for CBZ resistance prior to the CBZ therapy and potential target for treatments.
Collapse
Affiliation(s)
- Yudan Lv
- Department of Neurology, The First hospital of Jilin University, 71-Xinmin Street, Changchun, People's Republic of China
| | - Xiangyu Zheng
- Department of Neurology, The First hospital of Jilin University, 71-Xinmin Street, Changchun, People's Republic of China
| | - Mingchao Shi
- Department of Neurology, The First hospital of Jilin University, 71-Xinmin Street, Changchun, People's Republic of China
| | - Zan Wang
- Department of Neurology, The First hospital of Jilin University, 71-Xinmin Street, Changchun, People's Republic of China
| | - Li Cui
- Department of Neurology, The First hospital of Jilin University, 71-Xinmin Street, Changchun, People's Republic of China.
| |
Collapse
|
9
|
Chbili C, Fathallah N, Laouani A, Nouira M, Hassine A, Ben Amor S, Ben Ammou S, Ben Salem C, Saguem S. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J Neurogenet 2017; 30:16-21. [PMID: 27276192 DOI: 10.3109/01677063.2016.1155571] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to evaluate the impact of polymorphisms in the EPHX1 (c.416A > G, c.337T > C) and CYP3A4*22 genes involved in carbamazepine (CBZ) metabolism and pharmacoresistance among 118 Tunisian patients with epilepsy under maintenance dose of CBZ. These genetic polymorphisms were analyzed by PCR-RFLP. Associations between plasma CBZ concentration, CBZ-E concentration, maintenance doses and metabolic ratio (CBZ-E:CBZ, CBZ-D:CBZ-E) were analyzed with each polymorphism. Both variants of EPHX1 c.416A > G and c.337T > C are significantly associated with higher metabolic ratio CBZ-E:CBZ and seem to decrease the activity of the epoxide hydrolase. The CYP3A4*22 variant allele is significantly associated with lower CBZ-D:CBZ-E ratio and seems also to be associated with less activity of the cytochrome. Our data suggest that certain polymorphisms of metabolizing enzyme genes could influence inter-individual variability of CBZ metabolism.
Collapse
Affiliation(s)
- Chahra Chbili
- a Metabolic Biophysics, Professional Toxicology and Applied Environmental Laboratory, Department of Biophysics, Medicine Faculty of Sousse , Sousse University , Sousse , Tunisia
| | - Neila Fathallah
- b Department of Pharmacovigilance, Faculty of Medicine of Sousse , Sousse University , Sousse , Tunisia
| | - Aicha Laouani
- a Metabolic Biophysics, Professional Toxicology and Applied Environmental Laboratory, Department of Biophysics, Medicine Faculty of Sousse , Sousse University , Sousse , Tunisia
| | - Manel Nouira
- a Metabolic Biophysics, Professional Toxicology and Applied Environmental Laboratory, Department of Biophysics, Medicine Faculty of Sousse , Sousse University , Sousse , Tunisia
| | - Anis Hassine
- c Neurology Department , Central Hospital University (CHU), Sousse University , Sousse , Tunisia
| | - Sana Ben Amor
- c Neurology Department , Central Hospital University (CHU), Sousse University , Sousse , Tunisia
| | - Sofiene Ben Ammou
- c Neurology Department , Central Hospital University (CHU), Sousse University , Sousse , Tunisia
| | - Chaker Ben Salem
- b Department of Pharmacovigilance, Faculty of Medicine of Sousse , Sousse University , Sousse , Tunisia
| | - Saad Saguem
- a Metabolic Biophysics, Professional Toxicology and Applied Environmental Laboratory, Department of Biophysics, Medicine Faculty of Sousse , Sousse University , Sousse , Tunisia
| |
Collapse
|
10
|
Lopez-Gongora M, Miralles M, Martinez-Domeño A, Vidal N, Espadaler J, Escartin A. Polymorphisms in ABCB1 and EPHX1 genes influence drug effectiveness in refractory epilepsy: a retrospective study. FUTURE NEUROLOGY 2017. [DOI: 10.2217/fnl-2016-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: Thirty percent of epileptic patients are refractory to treatment. We investigated the association between the number of seizures in refractory epileptic patients and potential interactions between their antiepileptic medications (AEDs) and single nucleotide polymorphisms in genes ABCB1, CYP2C9 and EPHX1. Methods: Thirty-three adult patients were included and tested for genetic variations using the Neuropharmagen® test. Retrospective data on AED therapy and number of seizures during the 12 months before inclusion were extracted from clinical records. Results: Patients displaying potential single nucleotide polymorphisms × AED interactions had a median of 14.5 seizures during the previous 12 months (IQR 5.5–105.0), compared to a median of 7.0 seizures (IQR 4.0–12.0) in patients without these interactions (univariate p = 0.051, adjusted p = 0.034). Conclusion: Refractory patients carrying genetic variations potentially affecting their AED medication experienced a significantly higher number of seizures. Thus, genotyping could help to better control epilepsy in some refractory patients.
Collapse
Affiliation(s)
- Mariana Lopez-Gongora
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, 08026 Barcelona, Spain
| | - Marta Miralles
- AB-Biotics SA, Eureka Building, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Alejandro Martinez-Domeño
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, 08026 Barcelona, Spain
| | - Nuria Vidal
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, 08026 Barcelona, Spain
| | - Jordi Espadaler
- AB-Biotics SA, Eureka Building, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain
| | - Antonio Escartin
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, 08026 Barcelona, Spain
| |
Collapse
|
11
|
Chbili C, Hassine A, Laouani A, Amor SB, Nouira M, Ammou SB, Saguem S. The relationship between pharmacokinetic parameters of carbamazepine and therapeutic response in epileptic patients. Arch Med Sci 2017; 13:353-360. [PMID: 28261288 PMCID: PMC5332445 DOI: 10.5114/aoms.2016.60090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/24/2015] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION The prescribed dose and carbamazepine plasma concentration to achieve the optimal therapeutic efficacy are highly variable from one patient to the other. Our study aimed to determine whether biological parameters may be used as plasma markers that can individually adjust the carbamazepine dose necessary to optimize therapeutic efficacy. MATERIAL AND METHODS Ninety-four epileptic patients under carbamazepine monotherapy and who have never used combination therapy were recruited from the consecutive admissions at the Department of Neurology "CHU Sahloul" of Sousse Central Hospital in Tunisia from February 2010 to April 2011. The patients were monitored for epilepsy for three years on average. Carbamazepine and 10,11-epoxide-carbamazepine concentrations were analyzed through high-performance liquid chromatography. Simultaneously, therapeutic efficacy was assessed through the annual number of seizures in each patient. RESULTS Our results showed the absence of any significant correlations between specific dose (mg/kg/day), carbamazepine plasma concentrations and therapeutic efficacy (r = 0.0025, p = 0.30; r = 0.1584, p = 0.38 respectively), whereas both plasma 10,11-epoxide-carbamazepine concentration and 10,11-epoxide-carbamazepine to plasma carbamazepine ratio were closely correlated with therapeutic efficacy (r = 0.34, p = 0.03; r = 0.45, p = 0.008 respectively). The optimum therapeutic response was observed among patients who simultaneously had a plasma concentration of 0.8 μg/ml of metabolite and 5.5 μg/ml of carbamazepine. CONCLUSIONS The results suggest that plasma levels of both carbamazepine and of 10,11-epoxide-carbamazepine must be set to achieve an optimum therapeutic response.
Collapse
Affiliation(s)
- Chahra Chbili
- Metabolic Biophysics, Professional and Applied Toxicology Environmental Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse, Tunisia
| | - Anis Hassine
- Neurology Department of Central Hospital University (CHU), Sousse University, Sousse, Tunisia
| | - Aicha Laouani
- Metabolic Biophysics, Professional and Applied Toxicology Environmental Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse, Tunisia
| | - Sana Ben Amor
- Neurology Department of Central Hospital University (CHU), Sousse University, Sousse, Tunisia
| | - Manel Nouira
- Metabolic Biophysics, Professional and Applied Toxicology Environmental Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse, Tunisia
| | - Sofiène Ben Ammou
- Neurology Department of Central Hospital University (CHU), Sousse University, Sousse, Tunisia
| | - Saad Saguem
- Metabolic Biophysics, Professional and Applied Toxicology Environmental Laboratory, Department of Biophysics, Faculty of Medicine Sousse, Sousse University, Sousse, Tunisia
| |
Collapse
|
12
|
Pharmacogenomic incidental findings in 308 families: The NIH Undiagnosed Diseases Program experience. Genet Med 2016; 18:1303-1307. [PMID: 27253732 PMCID: PMC5133159 DOI: 10.1038/gim.2016.47] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 03/08/2016] [Indexed: 01/14/2023] Open
Abstract
PURPOSE Using SNP chip and exome sequence data from individuals participating in the NIH Undiagnosed Diseases Program (UDP), we evaluated the number and therapeutic informativeness of incidental pharmacogenetic variants. METHODS Pharmacogenomics Knowledgebase (PharmGKB) annotated sequence variants were identified in 1,101 individuals. Medication records of participants were used to identify individuals prescribed medications for which a genetic variant might alter efficacy. RESULTS 395 sequence variants, including 19 PharmGKB 1A and 1B variants, were identified in SNP chip sequence data and 388 variants, including 21 PharmGKB 1A and 1B variants, were identified in the exome sequence data. Nine participants had incidental pharmacogenetic variants associated with altered efficacy of a prescribed medication. CONCLUSIONS Despite the small size of the NIH UDP patient cohort, we identified pharmacogenetic incidental findings potentially useful for guiding therapy. Consequently, groups conducting clinical genomic studies might consider reporting of pharmacogenetic incidental findings.
Collapse
|
13
|
Abstract
The goal of pharmacogenetic research is to assist clinicians in predicting patient response to medications when genetic variations are identified. The pharmacogenetic variation of antiepileptic drug response and side effects has yielded findings that have been included in drug labeling and guidelines. The goal of this review is to provide a brief overview of the pharmacogenetic research on antiepileptic drugs. It will focus on findings that have been included in drug labeling, guidelines, and candidate pharmacogenetic variation. Overall, several genes have been included in guidelines by national and international organizations; however, much work is needed to implement and evaluate their use in clinical settings.
Collapse
Affiliation(s)
- D Parker
- Associate Professor, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - E J Sanders
- Research Assistant, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan
| | - K J Burghardt
- Assistant Professor, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan,
| |
Collapse
|
14
|
Abstract
This chapter includes the aspects of carbamazepine. The drug is synthesized by the use of 5H-dibenz[b,f]azepine and phosgene followed by subsequent reaction with ammonia. Carbamazepine is generally used for the treatment of seizure disorders and neuropathic pain, it is also important as off-label for a second-line treatment for bipolar disorder and in combination with an antipsychotic in some cases of schizophrenia when treatment with a conventional antipsychotic alone has failed. Other uses may include attention deficit hyperactivity disorder, schizophrenia, phantom limb syndrome, complex regional pain syndrome, borderline personality disorder, and posttraumatic stress disorder. The chapter discusses the drug metabolism and pharmacokinetics and presents various methods of analysis of this drug such electrochemical analysis, spectroscopic analysis, and chromatographic techniques of separation. It also discusses its physical properties such as solubility characteristics, X-ray powder diffraction pattern, and thermal methods of analysis. The chapter is concluded with a discussion on its biological properties such as activity, toxicity, and safety.
Collapse
|
15
|
Daci A, Beretta G, Vllasaliu D, Shala A, Govori V, Norata GD, Krasniqi S. Polymorphic Variants of SCN1A and EPHX1 Influence Plasma Carbamazepine Concentration, Metabolism and Pharmacoresistance in a Population of Kosovar Albanian Epileptic Patients. PLoS One 2015; 10:e0142408. [PMID: 26555147 PMCID: PMC4640545 DOI: 10.1371/journal.pone.0142408] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 10/20/2015] [Indexed: 12/24/2022] Open
Abstract
Aim The present study aimed to evaluate the effects of gene variants in key genes influencing pharmacokinetic and pharmacodynamic of carbamazepine (CBZ) on the response in patients with epilepsy. Materials & Methods Five SNPs in two candidate genes influencing CBZ transport and metabolism, namely ABCB1 or EPHX1, and CBZ response SCN1A (sodium channel) were genotyped in 145 epileptic patients treated with CBZ as monotherapy and 100 age and sex matched healthy controls. Plasma concentrations of CBZ, carbamazepine-10,11-epoxide (CBZE) and carbamazepine-10,11-trans dihydrodiol (CBZD) were determined by HPLC-UV-DAD and adjusted for CBZ dosage/kg of body weight. Results The presence of the SCN1A IVS5-91G>A variant allele is associated with increased epilepsy susceptibility. Furthermore, carriers of the SCN1A IVS5-91G>A variant or of EPHX1 c.337T>C variant presented significantly lower levels of plasma CBZ compared to carriers of the common alleles (0.71±0.28 vs 1.11±0.69 μg/mL per mg/Kg for SCN1A IVS5-91 AA vs GG and 0.76±0.16 vs 0.94±0.49 μg/mL per mg/Kg for EPHX1 c.337 CC vs TT; P<0.05 for both). Carriers of the EPHX1 c.416A>G showed a reduced microsomal epoxide hydrolase activity as reflected by a significantly decreased ratio of CBZD to CBZ (0.13±0.08 to 0.26±0.17, p<0.05) also of CBZD to CBZE (1.74±1.06 to 3.08±2.90; P<0.05) and CDRCBZD (0.13±0.08 vs 0.24±0.19 μg/mL per mg/Kg; P<0.05). ABCB1 3455C>T SNP and SCN1A 3148A>G variants were not associated with significant changes in CBZ pharmacokinetic. Patients resistant to CBZ treatment showed increased dosage of CBZ (657±285 vs 489±231 mg/day; P<0.001) but also increased plasma levels of CBZ (9.84±4.37 vs 7.41±3.43 μg/mL; P<0.001) compared to patients responsive to CBZ treatment. CBZ resistance was not related to any of the SNPs investigated. Conclusions The SCN1A IVS5-91G>A SNP is associated with susceptibility to epilepsy. SNPs in EPHX1 gene are influencing CBZ metabolism and disposition. CBZ plasma levels are not an indicator of resistance to the therapy.
Collapse
Affiliation(s)
- Armond Daci
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Institute of Pharmacology and Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giangiacomo Beretta
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Driton Vllasaliu
- University of Lincoln, School of Pharmacy, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, United Kingdom
| | - Aida Shala
- Department of Pharmacy, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Valbona Govori
- Neurology Clinic, University Clinical Center of Kosova, Prishtina, Kosovo
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
- Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Shaip Krasniqi
- Institute of Pharmacology and Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
- * E-mail:
| |
Collapse
|
16
|
Zhu X, Yun W, Sun X, Qiu F, Zhao L, Guo Y. Effects of major transporter and metabolizing enzyme gene polymorphisms on carbamazepine metabolism in Chinese patients with epilepsy. Pharmacogenomics 2015; 15:1867-79. [PMID: 25495409 DOI: 10.2217/pgs.14.142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
AIM The present study aimed to evaluate the effects of SNPs of major transporter and metabolizing enzyme genes on carbamazepine (CBZ) metabolism in Chinese patients with epilepsy. MATERIALS & METHODS For 210 epileptic patients treated with CBZ as monotherapy, nine SNPs in candidate genes ABCB1, CYP3A4, CYP3A5, POR and EPHX1 were analyzed by PCR-RFLP or direct sequencing. Serum concentrations of CBZ, carbamazepine-10,11-epoxide (CBZE) and carbamazepine-10,11-trans dihydrodiol (CBZD) were determined by HPLC. Dose-adjusted concentrations of CBZ (CDRCBZ), CBZE (CDRCBZE), CBZD (CDRCBZ D) and CBZD:CBZE ratio were used as evaluation parameters for CBZ metabolism. RESULTS The ABCB1 c.3435C>T was significantly associated with the CDR of CBZ and its major metabolites. CYP3A4*1G and CYP3A5*3 could influence CBZ metabolism, while POR*28 had no effect on it. The EPHX1 c.416A>G and c.128G>C variants were significantly associated with CBZD:CBZE ratio. CONCLUSION Our data suggest that certain polymorphisms of major transporter and metabolizing enzyme genes could in part influence interindividual variability of CBZ metabolism in Chinese patients with epilepsy.
Collapse
Affiliation(s)
- Xu Zhu
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | | | | | | | | | | |
Collapse
|
17
|
Ma CL, Jiao Z, Wu XY, Hong Z, Wu ZY, Zhong MK. Association between PK/PD-involved gene polymorphisms and carbamazepine-individualized therapy. Pharmacogenomics 2015; 16:1499-512. [PMID: 26314341 DOI: 10.2217/pgs.15.94] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aim: To evaluate the association between the major genetic variants involved in the pharmacokinetic/pharmacodynamic (PK/PD) properties of carbamazepine (CBZ) and its maintenance doses and concentrations. Patients & methods: The genotypes of 166 patients receiving CBZ monotherapy were detected using high-resolution melting curve (HRM) and TaqMan methods. Results: Both univariate and multiple regression analyses revealed that carriers of the SCN1A IVS5–91G>A or EPHX1 c.337T>C allele tended to require a higher CBZ dose and a lower CBZ natural logarithmic concentration–dose ratio (lnCDR) than noncarriers (p < 0.05). Furthermore, two interactions between these genes were associated with the lnCDR and the maintenance dosage of CBZ, respectively. Conclusion: SCN1A IVS5–91G>A gene polymorphism is potential genetic biomarker associated with the PK of CBZ.
Collapse
Affiliation(s)
- Chun-Lai Ma
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Zheng Jiao
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Xun-Yi Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Hong
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhi-Yuan Wu
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Kang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Mann M, Chhun S, Pons G. Farmacogenetica dei farmaci antiepilettici. Neurologia 2014. [DOI: 10.1016/s1634-7072(14)68868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
19
|
Caruso A, Bellia C, Pivetti A, Agnello L, Bazza F, Scazzone C, Bivona G, Lo Sasso B, Ciaccio M. Effects of EPHX1 and CYP3A4 polymorphisms on carbamazepine metabolism in epileptic patients. Pharmgenomics Pers Med 2014; 7:117-20. [PMID: 24817818 PMCID: PMC4012346 DOI: 10.2147/pgpm.s55548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the effect of two genetic polymorphisms in the coding regions (exon 3 and exon 4) of the EPHX1 gene, ie, 337T>C and 416A>G, respectively, on the metabolism of carbamazepine (CBZ) 10,11-epoxide (the active metabolite of CBZ) by evaluating the variation in serum CBZ 10,11-epoxide levels 4 hours after administration of the drug. Moreover, we reported the genotype frequencies of the CYP3A4*22 (rs 35599367, C>T) variant and its influence on the metabolism of CBZ. METHODS The analysis was performed in 50 patients receiving CBZ as monotherapy. DNA was extracted from leukocytes using a commercially available kit. Serum CBZ 10,11-epoxide levels were measured by high-performance liquid chromatography. Allelic discrimination was performed using polymerase chain reaction-restriction fragment length polymorphism. Statistical analysis of the difference in mean values for CBZ 10,11-epoxide levels according to genotype was performed using the Student's t-test with Statistical Package for the Social Sciences version 13 software. RESULTS Fourteen percent of the study group were CC, 42% were CT, and 44% were TT for the EPHX1 337T>C variant. No GG homozygote was identified for the EPHX1 416A>G variant; 64% were AA and 36% were AG. When we compared serum CBZ 10,11-epoxide levels 4 hours after drug administration, we found no statistically significant difference between the 337 CC, CT, and TT genotypes. Similarly, no difference in serum CBZ 10,11-epoxide levels was found between 416A>G AA and AG. Genotype frequencies for the CYP3A4*22 (rs 35599367 C>T) allelic variant were 94% for CC and 6% for CT, with no statistically significant difference in serum CBZ 10,11-epoxide levels between these genotypes 4 hours after administration of the drug (2.6±1.3 μg/μL and 2.5±1.2 μg/μL, respectively). CONCLUSION Although there is some evidence of involvement of these polymorphisms in enzyme activity in vitro, we found no interference with CBZ metabolism in vivo.
Collapse
Affiliation(s)
- Antonietta Caruso
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Chiara Bellia
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Alessia Pivetti
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Luisa Agnello
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Federica Bazza
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Concetta Scazzone
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Giulia Bivona
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Marcello Ciaccio
- Department of Biopathology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| |
Collapse
|
20
|
Abstract
The identification of valid biomarkers for outcome prediction of diseases and improvement of drug response, as well as avoidance of side effects is an emerging field of interest in medicine. The concept of individualized therapy is becoming increasingly important in the treatment of patients with epilepsy, as predictive markers for disease prognosis and treatment outcome are still limited. Currently, the clinical decision process for selection of an antiepileptic drug (AED) is predominately based on the patient's epileptic syndrome and side effect profiles of the AEDs, but not on effectiveness data. Although standard dosages of AEDs are used, supplemented, in part, by therapeutic monitoring, the response of an individual patient to a specific AED is generally unpredictable, and the standard care of patients in antiepileptic treatment is more or less based on trial and error. Therefore, there is an urgent need for valid predictive biomarkers to guide patient-tailored individualized treatment strategies in epilepsy, a research area that is still in its infancy. This review focuses on genomic factors as part of an individual concept for AED therapy summarizing examples that influence the prognosis of the disease and the response to AEDs, including side effects.
Collapse
Affiliation(s)
- Yvonne G. Weber
- />Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Anne T. Nies
- />Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
| | - Matthias Schwab
- />Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- />Department of Clinical Pharmacology, University Hospital, Tübingen, Germany
| | - Holger Lerche
- />Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Baghel R, Jajodia A, Grover S, Kukreti R. Research Highlights: Highlights from the latest articles focusing on a new gene set for better drug response prediction of epilepsy patients. Pharmacogenomics 2014; 15:581-6. [DOI: 10.2217/pgs.14.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ruchi Baghel
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), Mall Road, Delhi 110 007, India
| | - Ajay Jajodia
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), Mall Road, Delhi 110 007, India
| | - Sandeep Grover
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), Mall Road, Delhi 110 007, India
| | - Ritushree Kukreti
- Genomics & Molecular Medicine Unit, Institute of Genomics & Integrative Biology (IGIB), Council of Scientific & Industrial Research (CSIR), Mall Road, Delhi 110 007, India
| |
Collapse
|
22
|
Piana C, Antunes NDJ, Della Pasqua O. Implications of pharmacogenetics for the therapeutic use of antiepileptic drugs. Expert Opin Drug Metab Toxicol 2014; 10:341-58. [PMID: 24460510 DOI: 10.1517/17425255.2014.872630] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Epilepsy is a chronic neurological disease manifesting as recurrent seizures. Despite the availability of numerous antiepileptic drugs (AEDs), one-third of the patients are not responsive to treatment. Such inter-individual variability in the response to AEDs may be partly explained by genetic differences. This review summarizes the pharmacogenetics (PGx) of AEDs. In addition, a model-based approach is presented that enables the integration of PGx data with other relevant sources of variability, such as demographic characteristics and co-medications. AREAS COVERED A comprehensive overview is provided of the data available in the literature on the evidence for correlations between genetic mutations and pharmacokinetic (PK) and/or pharmacodynamics (PD) of AEDs. This information is then used in an integrated manner in the second part, where PGx differences are parameterized as covariates in PK and PKPD models. EXPERT OPINION Polymorphisms are profuse in the PK and PD of AEDs. However, understanding of their clinical implication remains limited due to the lack of methodologies that discriminate the contribution of other sources of variability in CNS exposure to drugs. A model-based approach, in which other intrinsic (e.g., demographic covariates) and extrinsic (e.g., drug-drug interactions) factors are evaluated concurrently is needed to ensure optimization and individualization of treatment in epileptic patients.
Collapse
Affiliation(s)
- Chiara Piana
- Leiden University, LACDR, Division of Pharmacology , Leiden , The Netherlands
| | | | | |
Collapse
|
23
|
Jaramillo NM, Galindo IF, Vázquez AO, Cook HJ, LLerena A, López ML. Pharmacogenetic potential biomarkers for carbamazepine adverse drug reactions and clinical response. ACTA ACUST UNITED AC 2014; 29:67-79. [DOI: 10.1515/dmdi-2013-0046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 11/15/2022]
|
24
|
Effects of EPHX1, SCN1A and CYP3A4 genetic polymorphisms on plasma carbamazepine concentrations and pharmacoresistance in Chinese patients with epilepsy. Epilepsy Res 2013; 107:231-7. [DOI: 10.1016/j.eplepsyres.2013.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Revised: 08/24/2013] [Accepted: 09/17/2013] [Indexed: 11/22/2022]
|
25
|
Puranik YG, Birnbaum AK, Marino SE, Ahmed G, Cloyd JC, Remmel RP, Leppik IE, Lamba JK. Association of carbamazepine major metabolism and transport pathway gene polymorphisms and pharmacokinetics in patients with epilepsy. Pharmacogenomics 2013; 14:35-45. [PMID: 23252947 PMCID: PMC3570048 DOI: 10.2217/pgs.12.180] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM The aim of this study was to evaluate the association of genetic variants in the major genes involved in carbamazepine (CBZ) metabolism and transport with its pharmacokinetics in epilepsy patients. MATERIALS & METHODS Twenty-five SNPs within seven CBZ pathway genes, namely CYP3A4, CYP3A5, EPHX1, NR1I2, UGT2B7, ABCB1 and ABCC2, were analyzed for association with CBZ pharmacokinetics in 90 epilepsy patients. RESULTS The CYP3A4*1B SNP was significantly associated with CBZ clearance. Significant association of EPHX1 SNPs was observed with greater carbamazepine-10,11-trans dihydrodiol:carbamazepine 10-11 epoxide ratios. Among drug transporters, ABCB1 and ABCC2 SNPs were significantly associated with altered CBZ clearance. CONCLUSION SNPs within CBZ pathway genes contribute to interpatient variation in CBZ pharmacokinetics and might contribute to pharmacoresistant epilepsy. Although our results need further clinical validation in a larger patient cohort, they indicate that genetic variation in CBZ pathway genes could influence its pharmacokinetics, and hence would have clinical significance.
Collapse
Affiliation(s)
- Yogita Ghodke Puranik
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Angela K Birnbaum
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Center for Clinical & Cognitive Neuropharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Susan E Marino
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Center for Clinical & Cognitive Neuropharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Ghada Ahmed
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - James C Cloyd
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Center for Orphan Drug Research, University of Minnesota, Minneapolis MN, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Ilo E Leppik
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, USA
- MINCEP Epilepsy Care, Minneapolis, MN, USA
| | - Jatinder K Lamba
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- PUMA-Institute of Personalized Medicine, Minneapolis, MN, USA
| |
Collapse
|
26
|
Abstract
The purpose of this review is to discuss the clinical application of pharmacogenomics for select drug therapies (eg, proton pump inhibitors [PPIs], codeine, and carbamazepine) and to highlight limitations and challenges that preclude implementation of pharmacogenomics into clinical practice. Genetic polymorphisms of cytochrome P450 (CYP) enzymes and the presence of the human leukocyte antigen ( HLA) -B*1502 allele influence drug disposition and/or response. A portion of PPI pharmacokinetic and pharmacodynamic variability can be explained by CYP2C19 genotype. However, conflicting evidence exists related to Helicobacter pylori cure rates based on CYP2C19 genotype. For codeine, adverse drug reactions in neonates through breast-feeding from CYP2D6 ultra-rapid metabolizers have been reported. However, there is lack of conclusive evidence regarding the overall influence of CYP2D6 polymorphisms on codeine efficacy and toxicity. Although CYP2C19 and CYP2D6 genotyping tests are available, clinical utility remains low. The presence of the HLA-B*1502 allele is associated with carbamazepine-induced Stevens-Johnson syndrome (SJS) and/or toxic epidermal necrolysis (TEN). Pharmacogenomic testing is required prior to initiating carbamazepine in high-risk patients. Lack of sufficient resources, provider knowledge, and ethical, legal, and social issues are several limitations and challenges to implementing pharmacogenomic testing in clinical practice.
Collapse
Affiliation(s)
- Joseph D. Ma
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kelly C. Lee
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Grace M. Kuo
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Hung CC, Chang WL, Ho JL, Tai JJ, Hsieh TJ, Huang HC, Hsieh YW, Liou HH. Association of polymorphisms in EPHX1, UGT2B7, ABCB1, ABCC2, SCN1A and SCN2A genes with carbamazepine therapy optimization. Pharmacogenomics 2011; 13:159-69. [PMID: 22188362 DOI: 10.2217/pgs.11.141] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM Carbamazepine (CBZ) is one of the most widely used antiepileptic drugs. The aim of the present study is to investigate the impacts of polymorphisms in genes related to pharmacokinetic and pharmacodynamic pathways of CBZ on the large interindividual variability in dosages and concentrations. METHODS & RESULTS Genetic polymorphisms in the candidate genes were detected in 234 epileptic patients under maintenance CBZ monotherapy by real-time PCR and PCR-RFLP. Results of statistical analysis demonstrated that carriers of the variant SCN1A IVS5-91G>A and EPHX1 c.337T>C allele tended to require higher CBZ dosages and lower ln(concentration-dose ratios) than noncarriers (p < 0.0001) and the homozygous carriers also seemed to require higher CBZ dosages and lower ln(concentration-dose ratios) (p < 0.0001). In addition, the multiple regression model of concentration-dose ratio of CBZ also revealed that genetic variants in SCN1A, EPHX1 and UGT2B7 genes interactively affect the concentration-dose ratio of CBZ (adjusted r(2) = 55%). CONCLUSION The present study identified genetic factors associated with CBZ therapy optimization and provided useful information for individualized CBZ therapy in epileptic patients. Further studies in larger populations are needed to confirm our results.
Collapse
Affiliation(s)
- Chin-Chuan Hung
- Department of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Cavalleri GL, McCormack M, Alhusaini S, Chaila E, Delanty N. Pharmacogenomics and epilepsy: the road ahead. Pharmacogenomics 2011; 12:1429-47. [DOI: 10.2217/pgs.11.85] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epilepsy is one of the most common, serious neurological disorders, affecting an estimated 50 million people worldwide. The condition is typically treated using antiepileptic drugs of which there are 16 in widespread use. However, there are many different syndrome and seizure types within epilepsy and information guiding clinicians on the most effective drug and dose for individual patients is lacking. Further, all of the antiepileptic drugs have associated adverse reactions, some of which are severe and life-threatening. Here, we review the pharmacogenomic work to date in the context of these issues and comment on key aspects of study design that are required to speed up the identification of clinically relevant genetic factors.
Collapse
Affiliation(s)
| | - Mark McCormack
- Molecular & Cellular Therapeutics, the Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Saud Alhusaini
- Molecular & Cellular Therapeutics, the Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Elijah Chaila
- The Division of Neurology, Beaumont Hospital, Dublin, Ireland
| | - Norman Delanty
- Molecular & Cellular Therapeutics, the Royal College of Surgeons in Ireland, Dublin, Ireland
- The Division of Neurology, Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
29
|
Hung CC, Ho JL, Chang WL, Tai JJ, Hsieh TJ, Hsieh YW, Liou HH. Association of genetic variants in six candidate genes with valproic acid therapy optimization. Pharmacogenomics 2011; 12:1107-17. [PMID: 21806385 DOI: 10.2217/pgs.11.64] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
30
|
Chen L, Liu F, Yoshida S, Kaneko S. Is breast-feeding of infants advisable for epileptic mothers taking antiepileptic drugs? Psychiatry Clin Neurosci 2010; 64:460-8. [PMID: 20923425 DOI: 10.1111/j.1440-1819.2010.02126.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epilepsy is a relatively common maternal complication affecting 0.3-0.5% of pregnant women. For most mothers with epilepsy, the use of antiepileptic drugs (AED) is unavoidable, even during pregnancy and lactation. Therefore, the fetus is indirectly exposed to AED via the placenta and breast milk. AED are also prescribed for female patients with other diseases, such as bipolar disorders. In clinical settings, physicians are frequently questioned whether or not women patients taking AED should breast-feed their offspring. Thus, it is necessary to establish an optimum AED regimen for women taking AED, in particular for those with epilepsy during pregnancy and lactation. In this article, we critically review the effects of AED on infants via breast milk and attempt to provide suggestions for clinicians regarding these effects during breast-feeding, based on the data of transplacental passage of AED, breast milk concentration/maternal serum concentration ratios, AED metabolism in infants and the effects of AED in breast milk on infants.
Collapse
Affiliation(s)
- Lei Chen
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | | | | | | |
Collapse
|
31
|
Saruwatari J, Ishitsu T, Nakagawa K. Update on the Genetic Polymorphisms of Drug-Metabolizing Enzymes in Antiepileptic Drug Therapy. Pharmaceuticals (Basel) 2010; 3:2709-2732. [PMID: 27713373 PMCID: PMC4033946 DOI: 10.3390/ph3082709] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/30/2022] Open
Abstract
Genetic polymorphisms in the genes that encode drug-metabolizing enzymes are implicated in the inter-individual variability in the pharmacokinetics and pharmaco-dynamics of antiepileptic drugs (AEDs). However, the clinical impact of these polymorphisms on AED therapy still remains controversial. The defective alleles of cytochrome P450 (CYP) 2C9 and/or CYP2C19 could affect not only the pharmacokinetics, but also the pharmacodynamics of phenytoin therapy. CYP2C19 deficient genotypes were associated with the higher serum concentration of an active metabolite of clobazam, N-desmethylclobazam, and with the higher clinical efficacy of clobazam therapy than the other CYP2C19 genotypes. The defective alleles of CYP2C9 and/or CYP2C19 were also found to have clinically significant effects on the inter-individual variabilities in the population pharmacokinetics of phenobarbital, valproic acid and zonisamide. EPHX1 polymorphisms may be associated with the pharmacokinetics of carbamazepine and the risk of phenytoin-induced congenital malformations. Similarly, the UDP-glucuronosyltransferase 2B7 genotype may affect the pharmacokinetics of lamotrigine. Gluthatione S-transferase null genotypes are implicated in an increased risk of hepatotoxicity caused by carbamazepine and valproic acid. This article summarizes the state of research on the effects of mutations of drug-metabolizing enzymes on the pharmacokinetics and pharmacodynamics of AED therapies. Future directions for the dose-adjustment of AED are discussed.
Collapse
Affiliation(s)
- Junji Saruwatari
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
| | - Takateru Ishitsu
- Kumamoto Saishunso National Hospital, Kumamoto, Suya 2659, Koshi, Japan.
| | - Kazuko Nakagawa
- Division of Pharmacology and Therapeutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, Kumamoto University, Oe-honmachi 5-1, Kumamoto 862-0973, Japan.
| |
Collapse
|