1
|
Rizzi R, Bidelman GM. Functional benefits of continuous vs. categorical listening strategies on the neural encoding and perception of noise-degraded speech. Brain Res 2024; 1844:149166. [PMID: 39151718 PMCID: PMC11399885 DOI: 10.1016/j.brainres.2024.149166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Acoustic information in speech changes continuously, yet listeners form discrete perceptual categories to ease the demands of perception. Being a more continuous/gradient as opposed to a more discrete/categorical listener may be further advantageous for understanding speech in noise by increasing perceptual flexibility and resolving ambiguity. The degree to which a listener's responses to a continuum of speech sounds are categorical versus continuous can be quantified using visual analog scaling (VAS) during speech labeling tasks. Here, we recorded event-related brain potentials (ERPs) to vowels along an acoustic-phonetic continuum (/u/ to /a/) while listeners categorized phonemes in both clean and noise conditions. Behavior was assessed using standard two alternative forced choice (2AFC) and VAS paradigms to evaluate categorization under task structures that promote discrete vs. continuous hearing, respectively. Behaviorally, identification curves were steeper under 2AFC vs. VAS categorization but were relatively immune to noise, suggesting robust access to abstract, phonetic categories even under signal degradation. Behavioral slopes were correlated with listeners' QuickSIN scores; shallower slopes corresponded with better speech in noise performance, suggesting a perceptual advantage to noise degraded speech comprehension conferred by a more gradient listening strategy. At the neural level, P2 amplitudes and latencies of the ERPs were modulated by task and noise; VAS responses were larger and showed greater noise-related latency delays than 2AFC responses. More gradient responders had smaller shifts in ERP latency with noise, suggesting their neural encoding of speech was more resilient to noise degradation. Interestingly, source-resolved ERPs showed that more gradient listening was also correlated with stronger neural responses in left superior temporal gyrus. Our results demonstrate that listening strategy modulates the categorical organization of speech and behavioral success, with more continuous/gradient listening being advantageous to sentential speech in noise perception.
Collapse
Affiliation(s)
- Rose Rizzi
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
2
|
Manippa V, Nitsche MA, Filardi M, Vilella D, Scianatico G, Logroscino G, Rivolta D. Temporal gamma tACS and auditory stimulation affect verbal memory in healthy adults. Psychophysiology 2024; 61:e14653. [PMID: 39014532 DOI: 10.1111/psyp.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/09/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
Research suggests a potential of gamma oscillation entrainment for enhancing memory in Alzheimer's disease and healthy subjects. Gamma entrainment can be accomplished with oscillatory electrical, but also sensory stimulation. However, comparative studies between sensory stimulation and transcranial alternating current stimulation (tACS) effects on memory processes are lacking. This study examined the effects of rhythmic gamma auditory stimulation (rAS) and temporal gamma-tACS on verbal long-term memory (LTM) and working memory (WM) in 74 healthy individuals. Participants were assigned to two groups according to the stimulation techniques (rAS or tACS). Memory was assessed in three experimental blocks, in which each participant was administered with control, 40, and 60 Hz stimulation in counterbalanced order. All interventions were well-tolerated, and participants reported mostly comparable side effects between real stimulation (40 and 60 Hz) and the control condition. LTM immediate and delayed recall remained unaffected by stimulations, while immediate recall intrusions decreased during 60 Hz stimulation. Notably, 40 Hz interventions improved WM compared to control stimulations. These results highlight the potential of 60 and 40 Hz temporal cortex stimulation for reducing immediate LTM recall intrusions and improving WM performance, respectively, probably due to the entrainment of specific gamma oscillations in the auditory cortex. The results also shed light on the comparative effects of these neuromodulation tools on memory functions, and their potential applications for cognitive enhancement and in clinical trials.
Collapse
Affiliation(s)
- Valerio Manippa
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
- German Center for Mental Health (DZPG), Bochum, Germany
- University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Marco Filardi
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Vilella
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
| | - Gaetano Scianatico
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro at Pia Fondazione "Cardinale G. Panico", Lecce, Italy
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Davide Rivolta
- Department of Education, Psychology and Communication, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
He D, Buder EH, Bidelman GM. Cross-linguistic and acoustic-driven effects on multiscale neural synchrony to stress rhythms. BRAIN AND LANGUAGE 2024; 256:105463. [PMID: 39243486 PMCID: PMC11422791 DOI: 10.1016/j.bandl.2024.105463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
We investigated how neural oscillations code the hierarchical nature of stress rhythms in speech and how stress processing varies with language experience. By measuring phase synchrony of multilevel EEG-acoustic tracking and intra-brain cross-frequency coupling, we show the encoding of stress involves different neural signatures (delta rhythms = stress foot rate; theta rhythms = syllable rate), is stronger for amplitude vs. duration stress cues, and induces nested delta-theta coherence mirroring the stress-syllable hierarchy in speech. Only native English, but not Mandarin, speakers exhibited enhanced neural entrainment at central stress (2 Hz) and syllable (4 Hz) rates intrinsic to natural English. English individuals with superior cortical-stress tracking capabilities also displayed stronger neural hierarchical coherence, highlighting a nuanced interplay between internal nesting of brain rhythms and external entrainment rooted in language-specific speech rhythms. Our cross-language findings reveal brain-speech synchronization is not purely a "bottom-up" but benefits from "top-down" processing from listeners' language-specific experience.
Collapse
Affiliation(s)
- Deling He
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Eugene H Buder
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
4
|
Rizzi R, Bidelman GM. Functional benefits of continuous vs. categorical listening strategies on the neural encoding and perception of noise-degraded speech. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594387. [PMID: 38798410 PMCID: PMC11118460 DOI: 10.1101/2024.05.15.594387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Acoustic information in speech changes continuously, yet listeners form discrete perceptual categories to ease the demands of perception. Being a more continuous/gradient as opposed to a discrete/categorical listener may be further advantageous for understanding speech in noise by increasing perceptual flexibility and resolving ambiguity. The degree to which a listener's responses to a continuum of speech sounds are categorical versus continuous can be quantified using visual analog scaling (VAS) during speech labeling tasks. Here, we recorded event-related brain potentials (ERPs) to vowels along an acoustic-phonetic continuum (/u/ to /a/) while listeners categorized phonemes in both clean and noise conditions. Behavior was assessed using standard two alternative forced choice (2AFC) and VAS paradigms to evaluate categorization under task structures that promote discrete (2AFC) vs. continuous (VAS) hearing, respectively. Behaviorally, identification curves were steeper under 2AFC vs. VAS categorization but were relatively immune to noise, suggesting robust access to abstract, phonetic categories even under signal degradation. Behavioral slopes were positively correlated with listeners' QuickSIN scores, suggesting a behavioral advantage for speech in noise comprehension conferred by gradient listening strategy. At the neural level, electrode level data revealed P2 peak amplitudes of the ERPs were modulated by task and noise; responses were larger under VAS vs. 2AFC categorization and showed larger noise-related delay in latency in the VAS vs. 2AFC condition. More gradient responders also had smaller shifts in ERP latency with noise, suggesting their neural encoding of speech was more resilient to noise degradation. Interestingly, source-resolved ERPs showed that more gradient listening was also correlated with stronger neural responses in left superior temporal gyrus. Our results demonstrate that listening strategy (i.e., being a discrete vs. continuous listener) modulates the categorical organization of speech and behavioral success, with continuous/gradient listening being more advantageous to speech in noise perception.
Collapse
|
5
|
Yu X, Li J, Zhu H, Tian X, Lau E. Electrophysiological hallmarks for event relations and event roles in working memory. Front Neurosci 2024; 17:1282869. [PMID: 38328555 PMCID: PMC10847304 DOI: 10.3389/fnins.2023.1282869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024] Open
Abstract
The ability to maintain events (i.e., interactions between/among objects) in working memory is crucial for our everyday cognition, yet the format of this representation is poorly understood. The current ERP study was designed to answer two questions: How is maintaining events (e.g., the tiger hit the lion) neurally different from maintaining item coordinations (e.g., the tiger and the lion)? That is, how is the event relation (present in events but not coordinations) represented? And how is the agent, or initiator of the event encoded differently from the patient, or receiver of the event during maintenance? We used a novel picture-sentence match-across-delay approach in which the working memory representation was "pinged" during the delay, replicated across two ERP experiments with Chinese and English materials. We found that maintenance of events elicited a long-lasting late sustained difference in posterior-occipital electrodes relative to non-events. This effect resembled the negative slow wave reported in previous studies of working memory, suggesting that the maintenance of events in working memory may impose a higher cost compared to coordinations. Although we did not observe significant ERP differences associated with pinging the agent vs. the patient during the delay, we did find that the ping appeared to dampen the ongoing sustained difference, suggesting a shift from sustained activity to activity silent mechanisms. These results suggest a new method by which ERPs can be used to elucidate the format of neural representation for events in working memory.
Collapse
Affiliation(s)
- Xinchi Yu
- Program of Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
- Department of Linguistics, University of Maryland, College Park, MD, United States
| | - Jialu Li
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Hao Zhu
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Xing Tian
- Division of Arts and Sciences, New York University Shanghai, Shanghai, China
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai, China
| | - Ellen Lau
- Program of Neuroscience and Cognitive Science, University of Maryland, College Park, MD, United States
- Department of Linguistics, University of Maryland, College Park, MD, United States
| |
Collapse
|
6
|
Maki H, Mori-Yoshimura M, Matsuda H, Hashimoto Y, Ota M, Kimura Y, Shigemoto Y, Ishihara N, Kan H, Chiba E, Arizono E, Yoshida S, Takahashi Y, Sato N. Brain Abnormalities in Becker Muscular Dystrophy: Evaluation by Voxel-Based DTI and Morphometric Analysis. AJNR Am J Neuroradiol 2023; 44:1405-1410. [PMID: 37945525 PMCID: PMC10714854 DOI: 10.3174/ajnr.a8041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/28/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND AND PURPOSE Although various neuropsychological problems in Becker muscular dystrophy have attracted attention, there have been few related neuroimaging studies. We investigated brain abnormalities in patients with Becker muscular dystrophy using 3D T1WI and DTI. MATERIALS AND METHODS MR images were obtained for 30 male patients and 30 age-matched healthy male controls. We classified patients into Dp140+ and Dp140- subgroups based on their predicted dystrophin Dp140 isoform expression and performed voxel-based comparisons of gray and white matter volumes and DTI metrics among the patients, patient subgroups, and controls. ROI-based DTI analyses were also performed. RESULTS Significantly decreased fractional anisotropy was observed in the left planum temporale and right superior parietal lobule compared between the Becker muscular dystrophy and control groups. In the Dp140- subgroup, decreased fractional anisotropy was observed in the left planum temporale, but no significant changes were seen in the Dp140+ subgroup. The ROI-based analysis obtained the same results. No significant differences were evident in the gray or white matter volumes or the DTI metrics other than fractional anisotropy between the groups. CONCLUSIONS A DTI metric analysis is useful to detect white-matter microstructural abnormalities in Becker muscular dystrophy that may be affected by the Dp140 isoform expression.
Collapse
Affiliation(s)
- Hiroyuki Maki
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology (M.M.-Y., Y.T.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroshi Matsuda
- Department of Biofunctional Imaging (H. Matsuda), Fukushima Medical University, Fukushima, Japan
| | - Yasumasa Hashimoto
- Department of Neurology (Y.H.), Kansai Medical University, Osaka, Japan
- Department of Molecular Therapy (Y.H.), National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Miho Ota
- Department of Neuropsychiatry (M.O.), University of Tsukuba, Ibaraki, Japan
| | - Yukio Kimura
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yoko Shigemoto
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Naoko Ishihara
- Medical Genome Center (N.I., S.Y.), National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hirohito Kan
- Department of Integrated Health Sciences (H.K.), Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Emiko Chiba
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Elly Arizono
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Sumiko Yoshida
- Medical Genome Center (N.I., S.Y.), National Center of Neurology and Psychiatry, Tokyo, Japan
- Department of Psychiatric Rehabilitation (S.Y.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuji Takahashi
- Department of Neurology (M.M.-Y., Y.T.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Noriko Sato
- From the Department of Radiology (H. Maki, Y.K., Y.S., E.C., E.A., N.S.), National Center Hospital, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
7
|
He D, Buder EH, Bidelman GM. Cross-linguistic and acoustic-driven effects on multiscale neural synchrony to stress rhythms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.570012. [PMID: 38106017 PMCID: PMC10723321 DOI: 10.1101/2023.12.04.570012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
We investigated how neural oscillations code the hierarchical nature of stress rhythms in speech and how stress processing varies with language experience. By measuring phase synchrony of multilevel EEG-acoustic tracking and intra-brain cross-frequency coupling, we show the encoding of stress involves different neural signatures (delta rhythms = stress foot rate; theta rhythms = syllable rate), is stronger for amplitude vs. duration stress cues, and induces nested delta-theta coherence mirroring the stress-syllable hierarchy in speech. Only native English, but not Mandarin, speakers exhibited enhanced neural entrainment at central stress (2 Hz) and syllable (4 Hz) rates intrinsic to natural English. English individuals with superior cortical-stress tracking capabilities also displayed stronger neural hierarchical coherence, highlighting a nuanced interplay between internal nesting of brain rhythms and external entrainment rooted in language-specific speech rhythms. Our cross-language findings reveal brain-speech synchronization is not purely a "bottom-up" but benefits from "top-down" processing from listeners' language-specific experience.
Collapse
Affiliation(s)
- Deling He
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Eugene H. Buder
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
8
|
You S, Lv T, Qin R, Hu Z, Ke Z, Yao W, Zhao H, Bai F. Neuro-Navigated rTMS Improves Sleep and Cognitive Impairment via Regulating Sleep-Related Networks' Spontaneous Activity in AD Spectrum Patients. Clin Interv Aging 2023; 18:1333-1349. [PMID: 37601952 PMCID: PMC10439779 DOI: 10.2147/cia.s416992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Study Objectives By examining spontaneous activity changes of sleep-related networks in patients with the Alzheimer's disease (AD) spectrum with or without insomnia disorder (ID) over time via neuro-navigated repetitive transcranial magnetic stimulation (rTMS), we revealed the effect and mechanism of rTMS targeting the left-angular gyrus in improving the comorbidity symptoms of the AD spectrum with ID. Methods A total of 34 AD spectrum patients were recruited in this study, including 18 patients with ID and the remaining 16 patients without ID. All of them were measured for cognitive function and sleep by using the cognitive and sleep subscales of the neuropsychiatric inventory. The amplitude of low-frequency fluctuation changes in sleep-related networks was revealed before and after neuro-navigated rTMS treatment between these two groups, and the behavioral significance was further explored. Results Affective auditory processing and sensory-motor collaborative sleep-related networks with hypo-spontaneous activity were observed at baseline in the AD spectrum with ID group, while substantial increases in activity were evident at follow-up in these subjects. In addition, longitudinal affective auditory processing, sensory-motor and default mode collaborative sleep-related networks with hyper-spontaneous activity were also revealed at follow-up in the AD spectrum with ID group. In particular, longitudinal changes in sleep-related networks were associated with improvements in sleep quality and episodic memory scores in AD spectrum with ID patients. Conclusion We speculated that left angular gyrus-navigated rTMS therapy may enhance the memory function of AD spectrum patients by regulating the spontaneous activity of sleep-related networks, and it was associated with memory consolidation in the hippocampus-cortical circuit during sleep. Clinical Trial Registration The study was registered at the Chinese Clinical Trial Registry, registration ID: ChiCTR2100050496, China.
Collapse
Affiliation(s)
- Shengqi You
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Tingyu Lv
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Ruomeng Qin
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Zheqi Hu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Zhihong Ke
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Weina Yao
- Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
| | - Hui Zhao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Feng Bai
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Geriatric Medicine Center, Taikang Xianlin Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
9
|
He D, Buder EH, Bidelman GM. Effects of Syllable Rate on Neuro-Behavioral Synchronization Across Modalities: Brain Oscillations and Speech Productions. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:344-360. [PMID: 37229510 PMCID: PMC10205147 DOI: 10.1162/nol_a_00102] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/25/2023] [Indexed: 05/27/2023]
Abstract
Considerable work suggests the dominant syllable rhythm of the acoustic envelope is remarkably similar across languages (∼4-5 Hz) and that oscillatory brain activity tracks these quasiperiodic rhythms to facilitate speech processing. However, whether this fundamental periodicity represents a common organizing principle in both auditory and motor systems involved in speech has not been explicitly tested. To evaluate relations between entrainment in the perceptual and production domains, we measured individuals' (i) neuroacoustic tracking of the EEG to speech trains and their (ii) simultaneous and non-simultaneous productions synchronized to syllable rates between 2.5 and 8.5 Hz. Productions made without concurrent auditory presentation isolated motor speech functions more purely. We show that neural synchronization flexibly adapts to the heard stimuli in a rate-dependent manner, but that phase locking is boosted near ∼4.5 Hz, the purported dominant rate of speech. Cued speech productions (recruit sensorimotor interaction) were optimal between 2.5 and 4.5 Hz, suggesting a low-frequency constraint on motor output and/or sensorimotor integration. In contrast, "pure" motor productions (without concurrent sound cues) were most precisely generated at rates of 4.5 and 5.5 Hz, paralleling the neuroacoustic data. Correlations further revealed strong links between receptive (EEG) and production synchronization abilities; individuals with stronger auditory-perceptual entrainment better matched speech rhythms motorically. Together, our findings support an intimate link between exogenous and endogenous rhythmic processing that is optimized at 4-5 Hz in both auditory and motor systems. Parallels across modalities could result from dynamics of the speech motor system coupled with experience-dependent tuning of the perceptual system via the sensorimotor interface.
Collapse
Affiliation(s)
- Deling He
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Eugene H. Buder
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
| |
Collapse
|
10
|
Dimakopoulos V, Mégevand P, Stieglitz LH, Imbach L, Sarnthein J. Information flows from hippocampus to auditory cortex during replay of verbal working memory items. eLife 2022; 11:78677. [PMID: 35960169 PMCID: PMC9374435 DOI: 10.7554/elife.78677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023] Open
Abstract
The maintenance of items in working memory (WM) relies on a widespread network of cortical areas and hippocampus where synchronization between electrophysiological recordings reflects functional coupling. We investigated the direction of information flow between auditory cortex and hippocampus while participants heard and then mentally replayed strings of letters in WM by activating their phonological loop. We recorded local field potentials from the hippocampus, reconstructed beamforming sources of scalp EEG, and – additionally in four participants – recorded from subdural cortical electrodes. When analyzing Granger causality, the information flow was from auditory cortex to hippocampus with a peak in the [4 8] Hz range while participants heard the letters. This flow was subsequently reversed during maintenance while participants maintained the letters in memory. The functional interaction between hippocampus and the cortex and the reversal of information flow provide a physiological basis for the encoding of memory items and their active replay during maintenance. Every day, the brain’s ability to temporarily store and recall information – called working memory – enables us to reason, solve complex problems or to speak. Holding pieces of information in working memory for short periods of times is a skill that relies on communication between neural circuits that span several areas of the brain. The hippocampus, a seahorse-shaped area at the centre of the brain, is well-known for its role in learning and memory. Less clear, however, is how brain regions that process sensory inputs, including visual stimuli and sounds, contribute to working memory. To investigate, Dimakopoulos et al. studied the flow of information between the hippocampus and the auditory cortex, which processes sound. To do so, various types of electrodes were placed on the scalp or surgically implanted in the brains of people with drug-resistant epilepsy. These electrodes measured the brain activity of participants as they read, heard and then mentally replayed strings of up to 8 letters. The electrical signals analysed reflected the flow of information between brain areas. When participants read and heard the sequence of letters, brain signals flowed from the auditory cortex to the hippocampus. The flow of electrical activity was reversed while participants recalled the letters. This pattern was found only in the left side of the brain, as expected for a language related task, and only if participants recalled the letters correctly. This work by Dimakopoulos et al. provides the first evidence of bidirectional communication between brain areas that are active when people memorise and recall information from their working memory. In doing so, it provides a physiological basis for how the brain encodes and replays information stored in working memory, which evidently relies on the interplay between the hippocampus and sensory cortex.
Collapse
Affiliation(s)
- Vasileios Dimakopoulos
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
| | - Pierre Mégevand
- Département des neurosciences fondamentales, Faculté de médecine, Université de Genève, Genève, Switzerland.,Service de neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland, Genève, Switzerland
| | - Lennart H Stieglitz
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland
| | - Lukas Imbach
- Schweizerisches Epilepsie Zentrum, Klinik Lengg AG, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zuric, Zurich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zurich, Switzerland.,Neuroscience Center Zurich, ETH Zuric, Zurich, Switzerland
| |
Collapse
|
11
|
Neurophysiological Verbal Working Memory Patterns in Children: Searching for a Benchmark of Modality Differences in Audio/Video Stimuli Processing. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2021; 2021:4158580. [PMID: 34966418 PMCID: PMC8712130 DOI: 10.1155/2021/4158580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/02/2021] [Indexed: 12/02/2022]
Abstract
Exploration of specific brain areas involved in verbal working memory (VWM) is a powerful but not widely used tool for the study of different sensory modalities, especially in children. In this study, for the first time, we used electroencephalography (EEG) to investigate neurophysiological similarities and differences in response to the same verbal stimuli, expressed in the auditory and visual modality during the n-back task with varying memory load in children. Since VWM plays an important role in learning ability, we wanted to investigate whether children elaborated the verbal input from auditory and visual stimuli through the same neural patterns and if performance varies depending on the sensory modality. Performance in terms of reaction times was better in visual than auditory modality (p = 0.008) and worse as memory load increased regardless of the modality (p < 0.001). EEG activation was proportionally influenced by task level and was evidenced in theta band over the prefrontal cortex (p = 0.021), along the midline (p = 0.003), and on the left hemisphere (p = 0.003). Differences in the effects of the two modalities were seen only in gamma band in the parietal cortices (p = 0.009). The values of a brainwave-based engagement index, innovatively used here to test children in a dual-modality VWM paradigm, varied depending on n-back task level (p = 0.001) and negatively correlated (p = 0.002) with performance, suggesting its computational effectiveness in detecting changes in mental state during memory tasks involving children. Overall, our findings suggest that auditory and visual VWM involved the same brain cortical areas (frontal, parietal, occipital, and midline) and that the significant differences in cortical activation in theta band were more related to memory load than sensory modality, suggesting that VWM function in the child's brain involves a cross-modal processing pattern.
Collapse
|