1
|
Pross B, Münz S, Nitsche MA, Padberg F, Strube W, Papazova I, Falkai P, Hasan A. Smoking status ameliorates cholinergic impairments in cortical inhibition in patients with schizophrenia. Brain Res 2023; 1812:148380. [PMID: 37121425 DOI: 10.1016/j.brainres.2023.148380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/02/2023]
Abstract
Rationale Modulation of cortical excitability, in particular inhibition, is impaired in patients with schizophrenia. Chronic nicotine consumption, which is prevalent in this group, has been shown to alter cortical excitability in healthy individuals and to increase inhibitory activity. Thus, beneficial effects of smoking on impaired cortical excitability in patients with schizophrenia have been proposed, though direct experimental evidence is still lacking. OBJECTIVES We aimed to explore the effect of chronic smoking on cortical excitability by comparing smoking and non-smoking patients with schizophrenia. METHOD Twenty-six smoking and 19 non-smoking patients diagnosed with schizophrenia were included. Transcranial magnetic stimulation (TMS) applied to the primary motor cortex served as experimental paradigm for measuring corticospinal and intracortical excitability as follows: Resting motor threshold (RMT) and the input/output curve (I/O curve) were obtained to assess corticospinal excitability. Intracortical excitability was explored using paired-pulse TMS techniques (intracortical facilitation (ICF), short-latency intracortical inhibition (SICI) and short-latency afferent inhibition (SAI)). RESULTS A significantly stronger inhibition in the cholinergically driven SAI protocol was observed in smokers compared to non-smokers. All other measures did not show significant differences between groups. CONCLUSION Our results suggest an increased inhibition within cholinergic circuits due to chronic nicotine consumption in schizophrenia. This increase may compensate impaired cholinergic neurotransmission and could explain the high rate of smokers in schizophrenia.
Collapse
Affiliation(s)
- Benjamin Pross
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany.
| | - Susanne Münz
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, Dept. Psychology and Neurosciences, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang Strube
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| | - Irina Papazova
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry, Psychotherapy, and Psychosomatic Medicine, Faculty of Medicine, University of Augsburg, Bezirkskrankenhaus Augsburg, Geschwister-Schönert-Str. 1, 86156 Augsburg, Germany
| |
Collapse
|
2
|
Varani AP, Pedrón VT, Aon AJ, Canero EM, Balerio GN. GABA B receptors blockage modulates somatic and aversive manifestations induced by nicotine withdrawal. Biomed Pharmacother 2021; 140:111786. [PMID: 34144406 DOI: 10.1016/j.biopha.2021.111786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022] Open
Abstract
There is substantial evidence that GABAB agonist, baclofen, prevents somatic and motivational responses induced by nicotine withdrawal and may target drug cue vulnerabilities in humans. In this context, we explored different aspects associated with the possible mechanisms whereby the GABAB receptors might influence nicotine withdrawal. Male mice received nicotine (2.5 mg/kg, s.c.) 4 times daily, for 7 consecutive days. Nicotine-treated mice received the nicotinic acetylcholine receptor antagonist, mecamylamine (MEC, 2 or 3.5 mg/kg, s.c.), to precipitate the withdrawal state. A second group of dependent mice received 2-hydroxysaclofen (GABAB receptor antagonist, 1 mg/kg, s.c.) before MEC-precipitated abstinence. Somatic signs of nicotine withdrawal were measured for 30 min. Anxiogenic-like response associated to nicotine withdrawal was assessed by the elevated plus maze test. The dysphoric/aversive effect induced by nicotine withdrawal was evaluated using conditioned place aversion paradigm. Dopamine, serotonin and its metabolites concentrations were determined by HPLC in the striatum, cortex and hippocampus. Finally, α4β2 nicotinic acetylcholine receptor density was determined in several brain regions using autoradiography assays. The results showed that MEC-precipitated nicotine withdrawal induced somatic manifestations, anxiogenic-like response and dysphoric/aversive effect, and 2-hydroxysaclofen potentiated these behavioral responses. Additionally, 2-hydroxysaclofen was able to change striatal dopamine levels and α4β2 nicotinic acetylcholine receptor density, both altered by MEC-precipitated nicotine withdrawal. These findings provide important contributions to elucidate neurobiological mechanisms implicated in nicotine withdrawal. We suggest that GABAB receptor activity is necessary to control alterations induced by nicotine withdrawal, which supports the idea of targeting GABAB receptors to treat tobacco addiction in humans.
Collapse
Affiliation(s)
- A P Varani
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - V T Pedrón
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - A J Aon
- CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - E M Canero
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica (FFYB), Cátedra de Farmacología, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina; CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - G N Balerio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica (FFYB), Cátedra de Farmacología, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina; CONICET, Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones Farmacológicas (ININFA-UBA-CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
3
|
Turco CV, Arsalan SO, Nelson AJ. The Influence of Recreational Substance Use in TMS Research. Brain Sci 2020; 10:E751. [PMID: 33080965 PMCID: PMC7603156 DOI: 10.3390/brainsci10100751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/30/2022] Open
Abstract
(1) Background: Transcranial magnetic stimulation (TMS) approaches are widely used to study cortical and corticospinal function. However, responses to TMS are subject to significant intra-and inter-individual variability. Acute and chronic exposure to recreational substances alters the excitability of the sensorimotor system and may contribute to the variability in TMS outcome measures. The increasing prevalence of recreational substance use poses a significant challenge for executing TMS studies, but there is a lack of clarity regarding the influence of these substances on sensorimotor function. (2) Methods: The literature investigating the influence of alcohol, nicotine, caffeine and cannabis on TMS outcome measures of corticospinal, intracortical and interhemispheric excitability was reviewed. (3) Results: Both acute and chronic use of recreational substances modulates TMS measures of excitability. Despite the abundance of research in this field, we identify knowledge gaps that should be addressed in future studies to better understand the influence of these substances on TMS outcomes. (4) Conclusions: This review highlights the need for TMS studies to take into consideration the history of participant substance use and to control for acute substance use prior to testing.
Collapse
Affiliation(s)
| | | | - Aimee J. Nelson
- Department of Kinesiology, McMaster University, Hamilton, ON L8S 4L8, Canada; (C.V.T.); (S.O.A.)
| |
Collapse
|
4
|
Khedr EM, Tony AA, Abdelwarith A, Safwat M. Effect of chronic nicotine consumption on motor cortical excitability: A transcranial magnetic stimulation study. Neurophysiol Clin 2020; 50:33-39. [DOI: 10.1016/j.neucli.2019.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
|
5
|
Scott D, Taylor JR. Chronic nicotine attenuates phencyclidine-induced impulsivity in a mouse serial reaction time task. Behav Brain Res 2013; 259:164-73. [PMID: 24239695 DOI: 10.1016/j.bbr.2013.11.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/16/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a disorder characterized by positive, negative, and cognitive symptoms. While positive symptoms can be effectively treated with typical antipsychotic medication, which generally affects the dopaminergic system, negative and cognitive symptoms, including attentional deficits and impulsive behavior, are less sensitive to standard treatments. It has further been well documented that schizophrenic patients use tobacco products at a rate much higher than the general population, and this persists despite treatment. It has been argued this behavior may be a form of self-medication, to alleviate some symptoms of schizophrenia. It has further been posited that prefrontal glutamatergic hypofunction may underlie some aspects of schizophrenia, and in accordance with this model, systemic phencyclidine has been used to model the disease. We employed a modified 5-choice serial reaction time test, a paradigm that is often used to investigate many of the treatment-resistant symptoms of schizophrenia including impulsivity, selective attention, and sustained attention/cognitive vigilance, to determine the medicinal effects of nicotine. We demonstrate that chronic oral, but not acute injections of nicotine can selectively attenuate phencyclidine-induced increases in impulsivity without affecting other measures of attention. This suggests that nicotine use by schizophrenics may provide some relief of distinct symptoms that involve impulsive behaviors.
Collapse
Affiliation(s)
- Daniel Scott
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT, United States
| | - Jane R Taylor
- Department of Psychiatry, Division of Molecular Psychiatry, Yale University, New Haven, CT, United States.
| |
Collapse
|
6
|
Koranda JL, Cone JJ, McGehee DS, Roitman MF, Beeler JA, Zhuang X. Nicotinic receptors regulate the dynamic range of dopamine release in vivo. J Neurophysiol 2013; 111:103-11. [PMID: 24089398 DOI: 10.1152/jn.00269.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are expressed presynaptically on dopamine axon terminals, and their activation by endogenous acetylcholine from striatal cholinergic interneurons enhances dopamine release both independently of and in concert with dopamine neuron activity. Acute nAChR inactivation is believed to enhance the contrast between low- and high-frequency dopamine cell activity. Although these studies reveal a key role for acute activation and inactivation of nAChRs in striatal microcircuitry, it remains unknown if chronic inactivation/desensitization of nAChRs can alter dopamine release dynamics. Using in vivo cyclic voltammetry in anaesthetized mice, we examined whether chronic inactivation of nAChRs modulates dopamine release across a parametric range of stimulation, varying both frequency and pulse number. Deletion of β2*nAChRs and chronic nicotine exposure greatly diminished dopamine release across the entire range of stimulation parameters. In addition, we observed a facilitation of dopamine release at low frequency and pulse number in wild-type mice that is absent in the β2* knockout and chronic nicotine mice. These data suggest that deletion or chronic desensitization of nAChRs reduces the dynamic range of dopamine release in response to dopamine cell activity, decreasing rather than increasing contrast between high and low dopamine activity.
Collapse
|
7
|
Grundey J, Freznosa S, Klinker F, Lang N, Paulus W, Nitsche MA. Cortical excitability in smoking and not smoking individuals with and without nicotine. Psychopharmacology (Berl) 2013; 229:653-64. [PMID: 23644914 DOI: 10.1007/s00213-013-3125-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/15/2013] [Indexed: 11/29/2022]
Abstract
RATIONAL Activation of nicotinic acetylcholine receptors has a major neuromodulatory impact on central nervous system function. Beyond acute activation, chronic nicotine intake has long-lasting effects on cortical excitability in animal experiments, caused by receptor up- or down-regulation. Knowledge about the impact of nicotine on cortical excitability in humans, however, is limited. OBJECTIVES We therefore aimed to explore the effect of nicotine intake on cortical excitability in healthy human smokers and non-smokers. METHODS The primary motor cortex served as model, and cortical excitability was monitored via transcranial magnetic stimulation (TMS). Corticospinal excitability and intracortical excitability were recorded before and after application of nicotine patch in both groups. Corticospinal excitability was explored by motor threshold and input/output curve (I/O curve), and intracortical excitability was explored by means of paired-pulse TMS techniques (intracortical facilitation (ICF), short-latency intracortical inhibition (SICI), I-wave facilitation and short-latency afferent inhibition (SAI)). RESULTS The results show that smokers during nicotine withdrawal display increased corticospinal excitability with regard to the I/O curve (TMS intensity 150 % of resting motor threshold) compared to non-smokers and furthermore enhanced SAI and diminished ICF at the intracortical circuit level. After administration of nicotine, intracortical facilitation in smokers increased, while in non-smokers, inhibition (SICI, SAI) was enhanced. CONCLUSION Our results show that chronic nicotine consumption in smokers alters cortical excitability independent from acute nicotine consumption and that acute nicotine has different effects on motor cortical excitability in both groups.
Collapse
Affiliation(s)
- J Grundey
- Department of Clinical Neurophysiology, Georg-August-University, Robert-Koch-Str. 40, 37075, Göttingen, Germany,
| | | | | | | | | | | |
Collapse
|
8
|
Varani AP, Antonelli MC, Balerio GN. Mecamylamine-precipitated nicotine withdrawal syndrome and its prevention with baclofen: an autoradiographic study of α4β2 nicotinic acetylcholine receptors in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:217-25. [PMID: 23500668 DOI: 10.1016/j.pnpbp.2013.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 02/13/2013] [Accepted: 02/27/2013] [Indexed: 11/26/2022]
Abstract
A previous study from our laboratory showed that baclofen (BAC, GABAB receptor agonist) was able to prevent the behavioral expression of nicotine (NIC) withdrawal syndrome. To further investigate the mechanisms underlying this effect, we conducted this study, with the aims of analyzing α4β2 nicotinic receptor density during NIC withdrawal and, in case we found any changes, of determining whether they could be prevented by pretreatment with BAC. Swiss Webster albino mice received NIC (2.5 mg/kg, s.c.) 4 times daily, for 7 days. On the 8th day, NIC-treated mice received the nicotinic antagonist mecamylamine (MEC; 2 mg/kg, i.p.) 1 h after the last dose of NIC. A second group of NIC-treated mice received BAC (2 mg/kg, i.p.) prior to MEC administration. Thirty minutes after MEC, mice were sacrificed and brain autoradiography with [(3)H]epibatidine was carried out at five different anatomical levels. Autoradiographic mapping showed a significant increase of α4β2 nicotinic receptor labeling during NIC withdrawal in the nucleus accumbens shell (AcbSh), medial habenular nucleus (HbM), thalamic nuclei, dorsal lateral geniculate (DLG) nucleus, fasciculus retroflexus (fr), ventral tegmental area, interpeduncular nucleus and superior colliculus. BAC pretreatment prevented the increased α4β2 nicotinic receptor binding sites in the AcbSh, MHb, thalamic nuclei, DLG nucleus and fr. The present results suggest a relationship between BAC's preventive effect of the expression of NIC withdrawal signs, and its ability to restore the changes in α4β2 nicotinic receptor labeling, evidenced in specific brain areas in NIC withdrawn animals.
Collapse
Affiliation(s)
- Andrés P Varani
- Instituto de Investigaciones Farmacológicas (UBA-CONICET), Junín 956, 5° Piso, C1113AAD, Buenos Aires, Argentina
| | | | | |
Collapse
|
9
|
Pubill D, Garcia-Ratés S, Camarasa J, Escubedo E. 3,4-Methylenedioxy-methamphetamine induces in vivo regional up-regulation of central nicotinic receptors in rats and potentiates the regulatory effects of nicotine on these receptors. Neurotoxicology 2012; 35:41-9. [PMID: 23261423 DOI: 10.1016/j.neuro.2012.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/19/2012] [Accepted: 11/22/2012] [Indexed: 12/01/2022]
Abstract
Nicotine (NIC), the main psychostimulant compound of smoked tobacco, exerts its effects through activation of central nicotinic acetylcholine receptors (nAChR), which become up-regulated after chronic administration. Recent work has demonstrated that the recreational drug 3,4-methylenedioxy-methamphetamine (MDMA) has affinity for nAChR and also induces up-regulation of nAChR in PC 12 cells. Tobacco and MDMA are often consumed together. In the present work we studied the in vivo effect of a classic chronic dosing schedule of MDMA in rats, alone or combined with a chronic schedule of NIC, on the density of nAChR and on serotonin reuptake transporters. MDMA induced significant decreases in [(3)H]paroxetine binding in the cortex and hippocampus measured 24h after the last dose and these decreases were not modified by the association with NIC. In the prefrontal cortex, NIC and MDMA each induced significant increases in [(3)H]epibatidine binding (29.5 and 34.6%, respectively) with respect to saline-treated rats, and these increases were significantly potentiated (up to 72.1%) when the two drugs were associated. Also in this area, [(3)H]methyllycaconitine binding was increased a 42.1% with NIC+MDMA but not when they were given alone. In the hippocampus, MDMA potentiated the α7 regulatory effects of NIC (raising a 25.5% increase to 52.5%) but alone was devoid of effect. MDMA had no effect on heteromeric nAChR in striatum and a coronal section of the midbrain containing superior colliculi, geniculate nuclei, substantia nigra and ventral tegmental area. Specific immunoprecipitation of solubilised receptors suggests that the up-regulated heteromeric nAChRs contain α4 and β2 subunits. Western blots with specific α4 and α7 antibodies showed no significant differences between the groups, indicating that, as reported for nicotine, up-regulation caused by MDMA is due to post-translational events rather than increased receptor synthesis.
Collapse
Affiliation(s)
- David Pubill
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Nucli Universitari de Pedralbes, Universitat de Barcelona, Institut de Biomedicina de la UB (IBUB), 08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
10
|
Metaxas A, Bailey A, Barbano MF, Galeote L, Maldonado R, Kitchen I. Differential region-specific regulation of α4β2* nAChRs by self-administered and non-contingent nicotine in C57BL/6J mice. Addict Biol 2010; 15:464-79. [PMID: 20731631 DOI: 10.1111/j.1369-1600.2010.00246.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuronal nAChR upregulation is the hallmark of chronic nicotine exposure. Neuroplasticity to abused drugs, however, depends on whether their administration is forced by the experimenter or is under the control of the experimental animal. Neuroadaptation to chronic nicotine self-administration was examined with a yoked-control paradigm, using nose-poking as the operating procedure. Freely moving C57BL/6J mice that responded for 0.03 mg/kg/infusion of intravenous nicotine under a continuous schedule of reinforcement (FR-1), had control over the rate and amount of drug intake that a yoked littermate passively received (n = 11). The impact of response dependency on neurobiological changes in nicotinic and dopaminergic systems was subsequently assessed using quantitative autoradiography. Cytisine-sensitive [(125)I]epibatidine binding, [³H]SCH23390, [³H]raclopride and [³H]mazindol were used to label nAChRs with α4β2* subtype properties, D1 and D2 dopaminergic receptors, and dopamine transporters, respectively. During a period of 12 days, self-administration was reliably initiated and maintained in animals receiving response-contingent nicotine. Region specific changes in the density of α4β2* nAChRs were found to be dependent on the contingency of nicotine treatment. Higher levels of α4β2* receptor binding were observed in the dorsal lateral geniculate nucleus and the ventral tegmental area of self-administering mice, compared to non-contingent animals. Moreover, response-independent increases in D2 binding were observed following chronic nicotine administration. No change in D1 and DAT binding was observed among groups. These findings indicate regional specific alterations in the regulation of the nicotinic cholinergic system following contingent and non-contingent nicotine exposure, and underline the importance of response dependency on the development of nicotine addiction.
Collapse
Affiliation(s)
- Athanasios Metaxas
- Faculty of Health & Medical Sciences, Division of Biochemical Sciences, University of Surrey, UK.
| | | | | | | | | | | |
Collapse
|
11
|
Chapman MA. Does smoking reduce the risk of Parkinson's disease through stimulation of the ubiquitin-proteasome system? Med Hypotheses 2009; 73:887-91. [PMID: 19540050 DOI: 10.1016/j.mehy.2009.03.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 03/24/2009] [Accepted: 03/28/2009] [Indexed: 01/03/2023]
Abstract
Parkinson's disease is a neurodegenerative condition characterized by tremor, rigidity, bradykinesia, and postural instability. Smoking is an inverse risk factor for Parkinson's disease, although the mechanism for this apparent neuroprotection is not definitively established. Smoking consistently upregulates nicotinic acetylcholine receptor levels in various brain regions known to be involved in Parkinson's disease. The ubiquitin-proteasome system--the system that tags and removes unwanted, misfolded, or damaged proteins from cells--regulates nicotinic receptor levels. The ubiquitin-proteasome system has also been implicated in Parkinson's disease, with aberrant activity identified in both sporadic and familial forms of the disease. The involvement of the ubiquitin-proteasome system in nicotinic receptor regulation and Parkinson's disease pathology suggests a link between the two, which forms the basis of the present hypothesis. Specifically, this paper considers the hypothesis that smoking reduces the risk of Parkinson's disease through the upregulation of nicotinic cholinergic receptors in key brain regions involved in Parkinson's disease. This receptor upregulation is hypothesized to increase activity of the ubiquitin-proteasome system, which is believed to prevent neurodegeneration caused by the accumulation of misfolded or damaged proteins or other consequences of inadequate protein sequestration and/or degradation. This hypothesis is supported by evidence documenting the upregulation of nicotinic receptors in the brains of smokers, neuroprotective effects of nicotine, reduced activity of the ubiquitin-proteasome in Parkinson's disease, and increased activity of the ubiquitin-proteasome system in animals exposed to chronic nicotine. Additional research is needed to test several predictions of the hypothesis, including increased activity of the ubiquitin-proteasome system in key brain regions of smokers.
Collapse
|
12
|
Grailhe R, Cardona A, Even N, Seif I, Changeux JP, Cloëz-Tayarani I. Regional changes in the cholinergic system in mice lacking monoamine oxidase A. Brain Res Bull 2008; 78:283-9. [PMID: 19111597 DOI: 10.1016/j.brainresbull.2008.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 11/27/2008] [Accepted: 12/02/2008] [Indexed: 12/29/2022]
Abstract
Elevated brain monoamine concentrations resulting from monoamine oxidase A genetic ablation (MAOA knock-out mice) lead to changes in other neurotransmitter systems. To investigate the consequences of MAOA deficiency on the cholinergic system, we measured ligand binding to the high-affinity choline transporter (CHT1) and to muscarinic and nicotinic receptors in brain sections of MAOA knock-out (KO) and wild-type mice. A twofold increase in [(3)H]-hemicholinium-3 ([(3)H]-HC-3) binding to CHT1 was observed in the caudate putamen, nucleus accumbens, and motor cortex in MAOA KO mice as compared with wild-type (WT) mice. There was no difference in [(3)H]-HC-3 labeling in the hippocampus (dentate gyrus) between the two genotypes. Binding of [(125)I]-epibatidine ([(125)I]-Epi), [(125)I]-alpha-bungarotoxin ([(125)I]-BGT), [(3)H]-pirenzepine ([(3)H]-PZR), and [(3)H]-AFDX-384 ([(3)H]-AFX), which respectively label high- and low-affinity nicotinic receptors, M1 and M2 muscarinic cholinergic receptors, was not modified in the caudate putamen, nucleus accumbens, and motor cortex. A small but significant decrease of 19% in M1 binding densities was observed in the hippocampus (CA1 field) of KO mice. Next, we tested acetylcholinesterase activity and found that it was decreased by 25% in the striatum of KO mice as compared with WT mice. Our data suggest that genetic deficiency in MAOA enzyme is associated with changes in cholinergic activity, which may account for some of the behavioral alterations observed in mice and humans lacking MAOA.
Collapse
Affiliation(s)
- Régis Grailhe
- Institut Pasteur URA CNRS D 2182, 28 rue du Docteur Roux, 75015 Paris, France.
| | | | | | | | | | | |
Collapse
|