1
|
Li C, Wong Y, Langhammer B, Huang F, Du X, Wang Y, Zhang H, Zhang T. A study of dynamic hand orthosis combined with unilateral task-oriented training in subacute stroke: A functional near-infrared spectroscopy case series. Front Neurol 2022; 13:907186. [PMID: 36034313 PMCID: PMC9410701 DOI: 10.3389/fneur.2022.907186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022] Open
Abstract
Background Motor dysfunction in the upper extremities after stroke prohibits people with stroke from being independent in daily living. The application of fNIRS to explore brain activity under rehabilitation intervention is a research focus on neurorehabilitation. Objective The purpose of this study was to explore, using a grip-release ring motor task, the activated changes of regions of interest and changes in motor function utilizing fNIRS technology and test scales on persons with stroke who received unilateral task-oriented therapy with a hand orthosis in the early subacute stroke period before and after intervention. The study aimed to find a sensitive motor task and region of interest first, then to evaluate the feasibility and mechanism of this rehabilitation method by utilizing fNIRS technology in the next randomized controlled trial. Methods In this case series, eight right-handed, right hemiplegia subacute stroke persons (6 males,2 females from age 47 to 72) were enrolled. They received 30 min of unilateral task-oriented therapy without orthosis and 30 min of unilateral task-oriented therapy with orthosis (5 days/week) for 4 weeks. Activated channel numbers and beta values based on oxygenated hemoglobin concentration change using a grip-release ring motor task were estimated with fNIRS. Clinical outcome measures, including grip strength evaluation, action research arm test, and Fugl-Meyer assessment of the arm, were evaluated at the same time. Results Individual activation analysis showed that, after intervention, Subjects 1, 2, 6, 7, and 8 had the maximum mean beta value located in the left premotor cortex, while Subjects 4 and 5 had the maximum mean beta value located in the left sensorimotor cortex. The activation analysis of Subject 3 showed the maximum mean beta value located in the right premotor cortex. Deactivations of left sensorimotor cortex, left premotor cortex, and bilateral prefrontal cortex were observed after intervention which were different from other cases. Group activation analysis showed that bilateral cerebral hemispheres were activated in all eight participants, with right hemisphere and right supplementary motor cortex activated dominantly. After the intervention, the activation of bilateral hemispheres decreased but in different brain regions; there was a trend that the activation intensity of left sensorimotor cortex, right premotor cortex, and right prefrontal cortex decreased while activation intensity of left premotor cortex and left prefrontal cortex increased. Each participant demonstrated improvements in all the clinical test scales after intervention. Conclusions Left premotor cortex, left sensorimotor cortex, and right supplementary motor cortex may be the primary regions of interest. Grasp-release ring task was not appropriate to achieve our fNIRS research objective and a more sensitive motor task or more sensitive evaluating indicator should be used in further studies.
Collapse
Affiliation(s)
- ChaoJinZi Li
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - Yih Wong
- Department of Research, Sunnaas Rehabilitation Hospital, Bjornemyr, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Birgitta Langhammer
- Department of Research, Sunnaas Rehabilitation Hospital, Bjornemyr, Norway
- Department of Physiotherapy, Faculty of Health Science, OsloMet-Oslo Metropolitan University, Oslo, Norway
| | - FuBiao Huang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Occupational Therapy, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - XiaoXia Du
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - YunLei Wang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
| | - HaoJie Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Tong Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Neurological Rehabilitation, Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, China
- *Correspondence: Tong Zhang
| |
Collapse
|
2
|
Ueda K, Kim S, Greene DJ, Black KJ. Correlates and clinical implications of tic suppressibility. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2021; 8:112-120. [PMID: 34178574 DOI: 10.1007/s40474-021-00230-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Purpose of review Tic disorders are common in the pediatric population and are differentiated from other movement disorders by tic suppressibility. Understanding the mechanism of tic suppression may provide new insights to the pathophysiology of tic disorders. This article highlights clinical phenomenology and neuronal correlates of tic suppressibility. Recent findings Recent studies suggest that tic suppressibility exists in children shortly after onset of their tics. Moreover, those who are better able to suppress their tics have better tic outcomes. Interoceptive awareness and automatic action inhibition may be involved in tic suppression. Summary We illustrate a possible underlying mechanism of tic suppressibility and its clinical correlations and implications. New concepts such as interoceptive awareness and action inhibition may help explain tic disorders. Further study will be useful to fill remaining knowledge gaps.
Collapse
Affiliation(s)
- Keisuke Ueda
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Soyoung Kim
- Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA
| | - Kevin J Black
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA.,Department of Radiology, Washington University School of Medicine, St Louis, MO, USA.,Department of Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
3
|
Al Harrach M, Pretzel P, Groeschel S, Rousseau F, Dhollander T, Hertz-Pannier L, Lefevre J, Chabrier S, Dinomais M. A connectome-based approach to assess motor outcome after neonatal arterial ischemic stroke. Ann Clin Transl Neurol 2021; 8:1024-1037. [PMID: 33787079 PMCID: PMC8108427 DOI: 10.1002/acn3.51292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Objective Studies of motor outcome after Neonatal Arterial Ischemic Stroke (NAIS) often rely on lesion mapping using MRI. However, clinical measurements indicate that motor deficit can be different than what would solely be anticipated by the lesion extent and location. Because this may be explained by the cortical disconnections between motor areas due to necrosis following the stroke, the investigation of the motor network can help in the understanding of visual inspection and outcome discrepancy. In this study, we propose to examine the structural connectivity between motor areas in NAIS patients compared to healthy controls in order to define the cortical and subcortical connections that can reflect the motor outcome. Methods Thirty healthy controls and 32 NAIS patients with and without Cerebral Palsy (CP) underwent MRI acquisition and manual assessment. The connectome of all participants was obtained from T1‐weighted and diffusion‐weighted imaging. Results Significant disconnections in the lesioned and contra‐lesioned hemispheres of patients were found. Furthermore, significant correlations were detected between the structural connectivity metric of specific motor areas and manuality assessed by the Box and Block Test (BBT) scores in patients. Interpretation Using the connectivity measures of these links, the BBT score can be estimated using a multiple linear regression model. In addition, the presence or not of CP can also be predicted using the KNN classification algorithm. According to our results, the structural connectome can be an asset in the estimation of gross manual dexterity and can help uncover structural changes between brain regions related to NAIS.
Collapse
Affiliation(s)
- Mariam Al Harrach
- Université d'Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) EA7315, Angers, 49000, France.,Université de Rennes 1, Laboratoire Traitement du Signal et de l'Image (LTSI), INSERM U1099, Rennes, F-35000, France
| | - Pablo Pretzel
- Experimental Paediatric Neuroimaging, Department of Child Neurology, University Hospital Tübingen, Tübingen, Germany
| | - Samuel Groeschel
- Experimental Paediatric Neuroimaging, Department of Child Neurology, University Hospital Tübingen, Tübingen, Germany
| | | | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Lucie Hertz-Pannier
- UNIACT, Neurospin, Institut Joliot, CEA-Paris Saclay, Inserm U114, Université de Paris, Gif sur Yvette, F-91191, France
| | - Julien Lefevre
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université, CNRS, Marseille, 13385, France
| | - Stéphane Chabrier
- INSERM, UMR1059 Sainbiose, Univ Saint-Étienne, Univ Lyon, Saint-Étienne, F-42023, France.,Paediatric Physical and Rehabilitation Medicine Department, CHU Saint-Étienne, French Centre for Paediatric Stroke, INSERM, CIC 1408, Saint-Étienne, F-42055, France
| | - Mickael Dinomais
- Université d'Angers, Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) EA7315, Angers, 49000, France.,Département de Médecine Physique et de Réadaptions and LUNAM, CHU Angers, Angers, France
| | | |
Collapse
|
4
|
Executive Function in High-Functioning Autism Spectrum Disorder: A Meta-analysis of fMRI Studies. J Autism Dev Disord 2021; 50:4022-4038. [PMID: 32200468 DOI: 10.1007/s10803-020-04461-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abnormalities in executive function (EF) are clinical markers for autism spectrum disorder (ASD). However, the neural mechanisms underlying abnormal EF in ASD remain unclear. This meta-analysis investigated the construct, abnormalities, and age-related changes of EF in ASD. Thirty-three fMRI studies of inhibition, updating, and switching in individuals with high-functioning ASD were included (n = 1114; age range 7-57 years). The results revealed that the EF construct in ASD could be unitary (i.e., common EF) in children/adolescents, but unitary and diverse (i.e., common EF and inhibition) in adults. Abnormalities in this EF construct were found across development in individuals with ASD in comparison with typically developing individuals. Implications and recommendations are discussed for EF theory and for practice in ASD.
Collapse
|
5
|
Xia J, Fan J, Liu W, Du H, Zhu J, Yi J, Tan C, Zhu X. Functional connectivity within the salience network differentiates autogenous- from reactive-type obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 98:109813. [PMID: 31785320 DOI: 10.1016/j.pnpbp.2019.109813] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. To better understand and treat patients, symptomatology of OCD has been categorized into more homogenous symptom dimensions. The autogenous-reactive classification model has proven helpful in the elucidation of the neurobiological substrates for clinical heterogeneity in OCD. The purpose of the current study was to systematically compare regional and network functional alterations between OCD subtypes based on the autogenous-reactive model. METHODS Autogenous-type OCD patients (OCD-AO, n = 40), reactive-type patients (OCD-RO, n = 42), and healthy controls (HC, n = 70) underwent functional magnetic resonance imaging (fMRI) scans. The amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) were compared among subjects. Areas of abnormal local spontaneous brain activity that differentiated OCD-AO and OCD-RO patients were identified and entered as seeds in functional connectivity (FC) analysis. RESULTS Compared to OCD-RO patients and HC participants, OCD-AO patients showed increased ALFF in the left anterior insula (AI), increased ReHo in the right AI, and hyperconnectivity between bilateral AI and anterior cingulate cortex (ACC). Both OCD-AO and OCD-RO patients shared regional function deficits in several areas within the prefrontal cortex, and stronger FC between bilateral AI and major nodes of the default mode network (DMN) compared to healthy controls. CONCLUSION The current results suggest that aberrant functional interaction between the salience network (SN) and the DMN may represent a common substrate in the pathophysiology of OCD, while impaired functional coupling within the SN is distinct to autogenous-type OCD patients. These findings provide further neurobiological evidence to support the autogenous-reactive classification model and contribute to the understanding of the neurobiological basis for clinical heterogeneity in OCD.
Collapse
Affiliation(s)
- Jie Xia
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China
| | - Jie Fan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Wanting Liu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongyu Du
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jiang Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Jinyao Yi
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Xiongzhao Zhu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Medical Psychological Institute of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
6
|
Fečíková A, Jech R, Čejka V, Čapek V, Šťastná D, Štětkářová I, Mueller K, Schroeter ML, Růžička F, Urgošík D. Benefits of pallidal stimulation in dystonia are linked to cerebellar volume and cortical inhibition. Sci Rep 2018; 8:17218. [PMID: 30464181 PMCID: PMC6249276 DOI: 10.1038/s41598-018-34880-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022] Open
Abstract
Clinical benefits of pallidal deep brain stimulation (GPi DBS) in dystonia increase relatively slowly suggesting slow plastic processes in the motor network. Twenty-two patients with dystonia of various distribution and etiology treated by chronic GPi DBS and 22 healthy subjects were examined for short-latency intracortical inhibition of the motor cortex elicited by paired transcranial magnetic stimulation. The relationships between grey matter volume and intracortical inhibition considering the long-term clinical outcome and states of the GPi DBS were analysed. The acute effects of GPi DBS were associated with a shortening of the motor response whereas the grey matter of chronically treated patients with a better clinical outcome showed hypertrophy of the supplementary motor area and cerebellar vermis. In addition, the volume of the cerebellar hemispheres of patients correlated with the improvement of intracortical inhibition which was generally less effective in patients than in controls regardless of the DBS states. Importantly, good responders to GPi DBS showed a similar level of short-latency intracortical inhibition in the motor cortex as healthy controls whereas non-responders were unable to increase it. All these results support the multilevel impact of effective DBS on the motor networks in dystonia and suggest potential biomarkers of responsiveness to this treatment.
Collapse
Affiliation(s)
- Anna Fečíková
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Robert Jech
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.
| | - Václav Čejka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic.,Faculty of Biomedical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Václav Čapek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Daniela Šťastná
- Department of Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| | - Ivana Štětkářová
- Department of Neurology, Third Faculty of Medicine, Charles University and Faculty Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Clinic for Cognitive Neurology, University Hospital, Leipzig, Germany
| | - Filip Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Dušan Urgošík
- Department of Stereotactic and Radiation Neurosurgery, Na Homolce Hospital, Prague, Czech Republic
| |
Collapse
|
7
|
Lyo JK, Arevalo-Perez J, Petrovich Brennan N, Peck KK, Holodny AI. Pre-operative fMRI localization of the supplementary motor area and its relationship with postoperative speech deficits. Neuroradiol J 2015; 28:281-8. [PMID: 26246097 DOI: 10.1177/1971400915589681] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Neurosurgery of the supplementary motor area (SMA) is associated with transient speech defects. We investigated whether SMA laterality correlates with postoperative speech defects. MATERIALS AND METHODS The authors reviewed 17 patients with SMA-area lesion resection and preoperative language fMRI. SMA laterality was calculated by comparison of voxel activation in paired SMAs by hand-drawn regions of interest (ROIs) (drawn by a neuroradiologist), and compared with qualitative assessment by two neuroradiologists. Postoperative speech defects before and after surgery were assessed by chart review. RESULTS Six patients developed new speech defects that resolved within several months. Two of the patients had a pre-existing speech defect that had developed after prior SMA-area surgery. All these patients had left-sided lesions, while none of the four patients with a right-sided lesion developed a speech defect. Neuroradiologists' assessment of SMA laterality agreed with ROI calculation for the SMAs that were lateralized. However, for the SMAs in the "codominant" range by ROI, the neuroradiologists felt that all but one of the cases clearly lateralized, with the exception deemed indeterminate or codominant. No correlation between laterality of SMA and speech defect was identified. Twelve patients showed lateralization contralateral to the lesion. CONCLUSIONS fMRI lateralization does not correlate with transient speech defects that developed from SMA-area surgery. Qualitative/visual assessment of SMA laterality was superior to ROI calculation because of the close proximity and possible overlap of signal from midline SMA. A majority of patients showed SMA lateralization contralateral to the SMA lesion.
Collapse
Affiliation(s)
- John K Lyo
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, USA
| | | | - Nicole Petrovich Brennan
- Functional MRI Laboratory of the Department of Radiology, Memorial Sloan-Kettering Cancer Center, USA
| | - Kyung K Peck
- Functional MRI Laboratory of the Department of Radiology, Memorial Sloan-Kettering Cancer Center, USA Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, USA
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, USA Functional MRI Laboratory of the Department of Radiology, Memorial Sloan-Kettering Cancer Center, USA
| |
Collapse
|
8
|
Knowing when not to swing: EEG evidence that enhanced perception-action coupling underlies baseball batter expertise. Neuroimage 2015; 123:1-10. [PMID: 26299795 DOI: 10.1016/j.neuroimage.2015.08.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 07/24/2015] [Accepted: 08/13/2015] [Indexed: 11/21/2022] Open
Abstract
Given a decision that requires less than half a second for evaluating the characteristics of the incoming pitch and generating a motor response, hitting a baseball potentially requires unique perception-action coupling to achieve high performance. We designed a rapid perceptual decision-making experiment modeled as a Go/No-Go task yet tailored to reflect a real scenario confronted by a baseball hitter. For groups of experts (Division I baseball players) and novices (non-players), we recorded electroencephalography (EEG) while they performed the task. We analyzed evoked EEG single-trial variability, contingent negative variation (CNV), and pre-stimulus alpha power with respect to the expert vs. novice groups. We found strong evidence for differences in inhibitory processes between the two groups, specifically differential activity in supplementary motor areas (SMA), indicative of enhanced inhibitory control in the expert (baseball player) group. We also found selective activity in the fusiform gyrus (FG) and orbital gyrus in the expert group, suggesting an enhanced perception-action coupling in baseball players that differentiates them from matched controls. In sum, our results show that EEG correlates of decision formation can be used to identify neural markers of high-performance athletes.
Collapse
|
9
|
Banich MT, Mackiewicz Seghete KL, Depue BE, Burgess GC. Multiple modes of clearing one's mind of current thoughts: overlapping and distinct neural systems. Neuropsychologia 2015; 69:105-17. [PMID: 25637772 PMCID: PMC4378864 DOI: 10.1016/j.neuropsychologia.2015.01.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 01/21/2015] [Accepted: 01/27/2015] [Indexed: 10/24/2022]
Abstract
This study used the power of neuroimaging to identify the neural systems that remove information from working memory, a thorny issue to examine because it is difficult to confirm that individuals have actually modified their thoughts. To overcome this problem, brain activation as measured via fMRI was assessed when individuals had to clear their mind of all thought (global clear), clear their mind of a particular thought (targeted clear), or replace the current thought (replace), relative to maintaining an item in working memory. The pattern of activity in posterior sensory regions across these conditions confirmed compliance with task demands. A hierarchy of brain regions involved in cognitive control, including parietal, dorsolateral prefrontal and frontopolar regions, were engaged to varying degrees depending on the manner in which information was removed from working memory. In addition, individuals with greater difficulty in controlling internal thoughts exhibited greater activity in prefrontal brain regions associated with cognitive control, as well as in left lateral prefrontal areas including Broca's area, which is associated with inner speech.
Collapse
Affiliation(s)
- Marie T Banich
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA.
| | | | - Brendan E Depue
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Gregory C Burgess
- Department of Anatomy & Neurobiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Cwik JC, Sartory G, Schürholt B, Knuppertz H, Seitz RJ. Posterior Midline Activation during Symptom Provocation in Acute Stress Disorder: An fMRI Study. Front Psychiatry 2014; 5:49. [PMID: 24847285 PMCID: PMC4021128 DOI: 10.3389/fpsyt.2014.00049] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022] Open
Abstract
Functional imaging studies of patients with post-traumatic stress disorder showed wide-spread activation of midline cortical areas during symptom provocation, i.e., exposure to trauma-related cues. The present study aimed at investigating neural activation during exposure to trauma-related pictures in patients with acute stress disorder (ASD) shortly after the traumatic event. Nineteen ASD patients and 19 healthy control participants were presented with individualized pictures of the traumatic event and emotionally neutral control pictures during the acquisition of whole-brain data with a 3-T fMRI scanner. Compared to the control group and to control pictures, ASD patients showed significant activation in midline cortical areas in response to trauma-related pictures including precuneus, cuneus, postcentral gyrus, and pre-supplementary motor area. The results suggest that the trauma-related pictures evoke emotionally salient self-referential processing in ASD patients.
Collapse
Affiliation(s)
- Jan C Cwik
- Department of Clinical Psychology and Psychotherapy, University of Wuppertal , Wuppertal , Germany ; Mental Health Research and Treatment Center, Department of Clinical Psychology and Psychotherapy, University of Bochum , Bochum , Germany
| | - Gudrun Sartory
- Department of Clinical Psychology and Psychotherapy, University of Wuppertal , Wuppertal , Germany
| | - Benjamin Schürholt
- Department of Clinical Psychology and Psychotherapy, University of Wuppertal , Wuppertal , Germany
| | - Helge Knuppertz
- Department of Clinical Psychology and Psychotherapy, University of Wuppertal , Wuppertal , Germany
| | - Rüdiger J Seitz
- Department of Neurology, University of Düsseldorf , Düsseldorf , Germany
| |
Collapse
|
11
|
How are the motor system activity and functional connectivity between the cognitive and sensorimotor systems modulated by athletic expertise? Brain Res 2013; 1540:21-41. [PMID: 24099840 DOI: 10.1016/j.brainres.2013.09.048] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/24/2013] [Accepted: 09/28/2013] [Indexed: 11/23/2022]
Abstract
Expertise offers a unique insight into how our brain functions. The purpose of this experiment was to determine if motor system activity and functional connectivity between the cognitive system and sensorimotor system is differentially modulated by an individual's level of expertise. This goal was achieved through the acquisition of functional neuroimaging data in 10 expert volleyball players and 10 novice individuals who were presented with a series of sentences describing possible technical volleyball-specific motor acts and acts that cannot be performed as positive ("Do …!") or negative ("Don't …") commands, while they were silently reading them and deciding whether the actions were technically feasible or not. Compared with novices, experts' activity in the left primary motor cortex hand area (M1) and in the left premotor cortex (Pm) was decreased by impossible actions presented as positive commands. Sensorimotor activation in response to action-related stimuli is not that automatic as held since we found that these areas were deactivated during the task, and their functional connectivity to the primary visual cortex was strengthened for possible actions presented as positive commands, reflecting the neural processes underlying the interaction between motor and visual imagery. These results suggest that the neural activity within the key areas implicitly triggered by motor simulation is a function of the expertise, action feasibility, and context.
Collapse
|
12
|
Dinomais M, Chinier E, Lignon G, Richard I, Ter Minassian A, Tich SNT. The effect of video-guidance on passive movement in patients with cerebral palsy: fMRI study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:3487-3496. [PMID: 23927991 DOI: 10.1016/j.ridd.2013.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 07/06/2013] [Accepted: 07/09/2013] [Indexed: 06/02/2023]
Abstract
In patients with cerebral palsy (CP), neuroimaging studies have demonstrated that passive movement and action-observation tasks have in common to share neuronal activation in all or part of areas involved in motor system. Action observation with simultaneous congruent passive movements may have additional effects in the recruitment of brain motor areas. The aim of this functional magnetic resonance imaging (fMRI) study was to examine brain activation in patients with unilateral CP during passive movement with and without simultaneous observation of simple hand movement. Eighteen patients with unilateral CP (fourteen male, mean age 14 years and 2 months) participated in the study. Using fMRI block design, brain activation following passive simple opening-closing hand movement of either the paretic or nonparetic hand with and without simultaneous observation of a similar movement performed by either the left or right hand of an actor was compared. Passive movement of the paretic hand performed simultaneously to the observation of congruent movement activated more "higher motor areas" including contralesional pre-supplementary motor area, superior frontal gyrus (extending to premotor cortex), and superior and inferior parietal regions than nonvideo-guided passive movement of the paretic hand. Passive movement of the paretic hand recruited more ipsilesional sensorimotor areas compared to passive movement of the nonparetic hand. Our study showed that the combination of observation of congruent hand movement simultaneously to passive movement of the paretic hand recruits more motor areas, giving neuronal substrate to propose video-guided passive movement of paretic hand in CP rehabilitation.
Collapse
Affiliation(s)
- Mickael Dinomais
- LUNAM, Université d'Angers, Laboratoire d'Ingénierie des Systèmes Automatisés (LISA) - EA4094, F-49000, France; LUNAM, Université d'Angers, CHU Angers, Département de Médecine Physique et de Réadaptation, F-49933, France.
| | | | | | | | | | | |
Collapse
|
13
|
Mazzola V, Vuilleumier P, Latorre V, Petito A, Gallese V, Popolizio T, Arciero G, Bondolfi G. Effects of emotional contexts on cerebello-thalamo-cortical activity during action observation. PLoS One 2013; 8:e75912. [PMID: 24086664 PMCID: PMC3784399 DOI: 10.1371/journal.pone.0075912] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/16/2013] [Indexed: 11/27/2022] Open
Abstract
Several studies investigated the neural and functional mechanisms underlying action observation in contexts with objects. However, actions seen in everyday life are often embedded in emotional contexts. The neural systems integrating emotion cues in action observation are still poorly understood. Previous findings suggest that the processing of both action and emotion information recruits motor control areas within the cerebello-thalamo-cortical pathways. It is therefore hard to determine whether social emotional contexts influence action processing via a direct modulation of motor representations coding for the observed action or via the affective state and implicit motor preparedness elicited in observers in response to emotional contexts. Here we designed a novel fMRI task to identify neural networks engaged by the affective appraisal of a grasping action seen in two different emotional contexts, while keeping the action kinematics constant. Results confirmed that observing the same acts of grasping but in different emotional contexts modulated activity in supplementary motor area, ventrolateral thalamus, anterior cerebellum. Moreover, changes in functional connectivity between left supplementary motor area and parahippocampus in different emotional contexts suggested a direct neural pathway through which emotional contexts may drive the neural motor system. Taken together, these findings shed new light on the malleability of motor system as a function of emotional contexts.
Collapse
Affiliation(s)
- Viridiana Mazzola
- Swiss Center for Affective Sciences (CISA), University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neurology, University Hospital & Department of Neuroscience, Medical School University of Geneva, Geneva, Switzerland
| | - Valeria Latorre
- Institute of Post-Rationalist Psychology (IPRA), Rome, Italy
| | - Annamaria Petito
- Institute of Psychiatry and Clinical Psychology, Department of Medical Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Gallese
- Department of Neuroscience, Section of Physiology University of Parma & Italian Institute of Technology (IIT) Brain Center for Social and Motor Cognition, Parma, Italy
| | - Teresa Popolizio
- Department of Neuroradiology, “Casa Sollievo della Sofferenza” IRCCSS, San Giovanni Rotondo (FG), Foggia, Italy
| | - Giampiero Arciero
- Institute of Post-Rationalist Psychology (IPRA), Rome, Italy
- Institute of Psychiatry and Clinical Psychology, Department of Medical Sciences, University of Foggia, Foggia, Italy
- Department of Neuroscience, Section of Physiology University of Parma & Italian Institute of Technology (IIT) Brain Center for Social and Motor Cognition, Parma, Italy
- Department of Neuroradiology, “Casa Sollievo della Sofferenza” IRCCSS, San Giovanni Rotondo (FG), Foggia, Italy
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - Guido Bondolfi
- Department of Mental Health and Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| |
Collapse
|
14
|
Anodal tDCS over SMA decreases the probability of withholding an anticipated action. Behav Brain Res 2013; 257:208-14. [PMID: 24064279 DOI: 10.1016/j.bbr.2013.09.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/09/2013] [Accepted: 09/14/2013] [Indexed: 01/06/2023]
Abstract
Previous research has shown that the supplementary motor area (SMA) is critical in movement inhibition. Recently it was shown that applying transcranial direct current stimulation (tDCS) over SMA affected participants' ability to inhibit their movement in a stop-signal reaction time task (Hsu et al. [11]). Of interest in the current study was whether modulating SMA excitability using tDCS would have similar effects in an anticipation-timing stop-signal task. Participants performed 2 sessions each consisting of a pre- and post-tDCS block of 160 trials in which they were instructed to extend their wrist concurrently with the arrival of a pointer to a target (i.e., a clock hand reaching a set position). In 20% of trials (stop trials) the pointer stopped 80, 110, 140, 170, or 200 ms prior to the target, and on these trials participants were instructed to inhibit their movement if possible. Anodal and cathodal tDCS (separated by at least 48 h) was applied for each participant between the pre- and post-tDCS blocks. No change in the proportion of successfully inhibited movements on stop trials was found following cathodal tDCS (p>.05). However, anodal tDCS resulted in a decreased proportion of successfully inhibited movements on stop trials (p=002), and an earlier movement onset on control trials (p<.01). This suggests that the SMA may be more involved in initiation than in inhibition of anticipatory movements. Furthermore these data suggest that differences in initiation and inhibitory processes exist between stop-signal reaction time and anticipation-timing stop-signal tasks.
Collapse
|
15
|
Dinomais M, Lignon G, Chinier E, Richard I, Ter Minassian A, Tich SNT. Effect of observation of simple hand movement on brain activations in patients with unilateral cerebral palsy: an fMRI study. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:1928-1937. [PMID: 23584173 DOI: 10.1016/j.ridd.2013.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 03/15/2013] [Accepted: 03/17/2013] [Indexed: 06/02/2023]
Abstract
The aim of this functional magnetic resonance imaging (fMRI) study was to examine and compare brain activation in patients with unilateral cerebral palsy (CP) during observation of simple hand movement performed by the paretic and nonparetic hand. Nineteen patients with clinical unilateral CP (14 male, mean age 14 years, 7-21 years) participated in the study. Hand motor impairment was assessed using the sequential finger opposition task. Using fMRI block design, brain activation was examined following observation at rest of a simple opening-closing hand movement, performed by either the left or right hand of an actor. Eighteen fMRI dataset were analyzed. Observing hand movement produced large bilateral activations in temporo-parieto-fronto-occipital network, comprising most of the nodes of the well described action-observation network. For either side, observing hand movements recruits the primary motor cortex (M1), contralateral to the viewed hand, as would be expected in healthy persons. Viewing movement performed by an actor's hand representing the paretic side of patients activated more strongly ipsilesional M1 than viewing movement performed by an actor's hand representing the nonparetic side of patients. Observation of hand movement in patients with CP engaged the motor execution network regardless of the degree of motor impairment.
Collapse
Affiliation(s)
- Mickael Dinomais
- LUNAM, Université d'Angers, Laboratoire d'Ingénierie des Systèmes Automatisés (LISA) - EA4094, F-49000, France.
| | | | | | | | | | | |
Collapse
|
16
|
Laviolette L, Niérat MC, Hudson AL, Raux M, Allard É, Similowski T. The supplementary motor area exerts a tonic excitatory influence on corticospinal projections to phrenic motoneurons in awake humans. PLoS One 2013; 8:e62258. [PMID: 23614046 PMCID: PMC3628339 DOI: 10.1371/journal.pone.0062258] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/19/2013] [Indexed: 11/18/2022] Open
Abstract
Introduction In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe"). Methods The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory) and 5 Hz conventional rTMS (5 Hz, excitatory). The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs) to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3") up to 15 minutes following conditioning of the SMA. Results cTBS reduced the amplitude of DiMEPs from 327.5±159.8 µV at baseline to 243.3±118.7 µV, 217.8±102.9 µV and 240.6±123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002). 5 Hz conditioning increased the amplitude of DiMEPs from 184.7±96.5 µV at baseline to 270.7±135.4 µV at post 3 (F = 4.844, p = 0.009). Conclusions The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe.
Collapse
Affiliation(s)
| | | | - Anna L. Hudson
- Université Paris 6, ER10UPMC, Paris, France
- Neuroscience Research Australia and University of New South Wales, Sydney, Australia
| | | | | | - Thomas Similowski
- Université Paris 6, ER10UPMC, Paris, France
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Service de Pneumologie et Réanimation Médicale, Paris, France
- * E-mail:
| |
Collapse
|
17
|
Macuga KL, Frey SH. Neural representations involved in observed, imagined, and imitated actions are dissociable and hierarchically organized. Neuroimage 2011; 59:2798-807. [PMID: 22005592 DOI: 10.1016/j.neuroimage.2011.09.083] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022] Open
Abstract
The fact that action observation, motor imagery and execution are associated with partially overlapping increases in parieto-frontal areas has been interpreted as evidence for reliance of these behaviors on a common system of motor representations. However, studies that include all three conditions within a single paradigm are rare, and consequently, there is a dearth of knowledge concerning the distinct mechanisms involved in these functions. Here we report key differences in neural representations subserving observation, imagery, and synchronous imitation of a repetitive bimanual finger-tapping task using fMRI under conditions in which visual stimulation is carefully controlled. Relative to rest, observation, imagery, and synchronous imitation are all associated with widespread increases in cortical activity. Importantly, when effects of visual stimulation are properly controlled, each of these conditions is found to have its own unique neural signature. Relative to observation or imagery, synchronous imitation shows increased bilateral activity along the central sulcus (extending into precentral and postcentral gyri), in the cerebellum, supplementary motor area (SMA), parietal operculum, and several motor-related subcortical areas. No areas show greater increases for imagery vs. synchronous imitation; however, relative to synchronous imitation, observation is associated with greater increases in caudal SMA activity than synchronous imitation. Compared to observation, imagery increases activation in pre-SMA and left inferior frontal cortex, while no areas show the inverse effect. Region-of-interest (ROI) analyses reveal that areas involved in bimanual open-loop movements respond most to synchronous imitation (primary sensorimotor, classic SMA, and cerebellum), and less vigorously to imagery and observation. The differential activity between conditions suggests an alternative hierarchical model in which these behaviors all rely on partially independent mechanisms.
Collapse
Affiliation(s)
- Kristen L Macuga
- Department of Psychology, University of Oregon, Eugene, OR 97403, USA.
| | | |
Collapse
|
18
|
Havránková P, Walker ND, Operto G, Sieger T, Vymazal J, Jech R. Cortical pattern of complex but not simple movements is affected in writer's cramp: a parametric event-related fMRI study. Clin Neurophysiol 2011; 123:755-63. [PMID: 21903460 DOI: 10.1016/j.clinph.2011.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 07/20/2011] [Accepted: 08/02/2011] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Patients with writer's cramp (WC) were studied for differences in cortical activation during movements likely to induce WC (complex movements) and movements which rarely lead to dystonia (simple movements). METHODS Eleven WC patients (10F, 1M, mean age 41.5 ± (SD)7.2 years) and eleven age matched controls were examined for Blood oxygenation-level dependent (BOLD) 1.5 T fMRI. The complex task consisted of writing a single letter or random drawing using an especially adapted joystick with the line of trajectory visualized or hidden. The simple task consisted of self-initiated fingers flexion/extension using the affected hand. RESULTS Unlike the controls, WC patients performing complex movements exhibited a lower BOLD signal in the primary sensorimotor cortex and in the posterior parietal cortex bilaterally. A hypoactivation was also observed in the right secondary somatosensory area, in the right anterior insula and in the left premotor cortex (p < 0.05 corrected). No significant inter-group differences were found for simple movements. CONCLUSIONS Although WC patients' complex movements during fMRI were never associated with dystonic cramp, they exhibited an abnormally low cortical activity. This phenomenon was not observed in simple movements and was unrelated to the character of handwriting or to visual feedback. SIGNIFICANCE Our results support the dualistic behavior in the sensorimotor system in WC.
Collapse
Affiliation(s)
- Petra Havránková
- Dept. of Neurology and Center of Clinical Neuroscience, Charles University in Prague, 1st Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|