1
|
Grijseels DM, Prendergast BJ, Gorman JC, Miller CT. The neurobiology of vocal communication in marmosets. Ann N Y Acad Sci 2023; 1528:13-28. [PMID: 37615212 PMCID: PMC10592205 DOI: 10.1111/nyas.15057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
An increasingly popular animal model for studying the neural basis of social behavior, cognition, and communication is the common marmoset (Callithrix jacchus). Interest in this New World primate across neuroscience is now being driven by their proclivity for prosociality across their repertoire, high volubility, and rapid development, as well as their amenability to naturalistic testing paradigms and freely moving neural recording and imaging technologies. The complement of these characteristics set marmosets up to be a powerful model of the primate social brain in the years to come. Here, we focus on vocal communication because it is the area that has both made the most progress and illustrates the prodigious potential of this species. We review the current state of the field with a focus on the various brain areas and networks involved in vocal perception and production, comparing the findings from marmosets to other animals, including humans.
Collapse
Affiliation(s)
- Dori M Grijseels
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Brendan J Prendergast
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
| | - Julia C Gorman
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California, San Diego, La Jolla, California, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Voytenko S, Shanbhag S, Wenstrup J, Galazyuk A. Intracellular recordings reveal integrative function of the basolateral amygdala in acoustic communication. J Neurophysiol 2023; 129:1334-1343. [PMID: 37098994 PMCID: PMC10202475 DOI: 10.1152/jn.00103.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 04/27/2023] Open
Abstract
The amygdala, a brain center of emotional expression, contributes to appropriate behavior responses during acoustic communication. In support of that role, the basolateral amygdala (BLA) analyzes the meaning of vocalizations through the integration of multiple acoustic inputs with information from other senses and an animal's internal state. The mechanisms underlying this integration are poorly understood. This study focuses on the integration of vocalization-related inputs to the BLA from auditory centers during this processing. We used intracellular recordings of BLA neurons in unanesthetized big brown bats that rely heavily on a complex vocal repertoire during social interactions. Postsynaptic and spiking responses of BLA neurons were recorded to three vocal sequences that are closely related to distinct behaviors (appeasement, low-level aggression, and high-level aggression) and have different emotional valence. Our novel findings are that most BLA neurons showed postsynaptic responses to one or more vocalizations (31 of 46) but that many fewer neurons showed spiking responses (8 of 46). The spiking responses were more selective than postsynaptic potential (PSP) responses. Furthermore, vocal stimuli associated with either positive or negative valence were similarly effective in eliciting excitatory postsynaptic potentials (EPSPs), inhibitory postsynaptic potentials (IPSPs), and spiking responses. This indicates that BLA neurons process both positive- and negative-valence vocal stimuli. The greater selectivity of spiking responses than PSP responses suggests an integrative role for processing within the BLA to enhance response specificity in acoustic communication.NEW & NOTEWORTHY The amygdala plays an important role in social communication by sound, but little is known about how it integrates diverse auditory inputs to form selective responses to social vocalizations. We show that BLA neurons receive inputs that are responsive to both negative- and positive-affect vocalizations but their spiking outputs are fewer and highly selective for vocalization type. Our work demonstrates that BLA neurons perform an integrative function in shaping appropriate behavioral responses to social vocalizations.
Collapse
Affiliation(s)
- Sergiy Voytenko
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States
| | - Sharad Shanbhag
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States
| | - Jeffrey Wenstrup
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States
| | - Alexander Galazyuk
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, United States
- Brain Health Research Institute, Kent State University, Kent, Ohio, United States
| |
Collapse
|
3
|
Michael V, Goffinet J, Pearson J, Wang F, Tschida K, Mooney R. Circuit and synaptic organization of forebrain-to-midbrain pathways that promote and suppress vocalization. eLife 2020; 9:e63493. [PMID: 33372655 PMCID: PMC7793624 DOI: 10.7554/elife.63493] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Animals vocalize only in certain behavioral contexts, but the circuits and synapses through which forebrain neurons trigger or suppress vocalization remain unknown. Here, we used transsynaptic tracing to identify two populations of inhibitory neurons that lie upstream of neurons in the periaqueductal gray (PAG) that gate the production of ultrasonic vocalizations (USVs) in mice (i.e. PAG-USV neurons). Activating PAG-projecting neurons in the preoptic area of the hypothalamus (POAPAG neurons) elicited USV production in the absence of social cues. In contrast, activating PAG-projecting neurons in the central-medial boundary zone of the amygdala (AmgC/M-PAG neurons) transiently suppressed USV production without disrupting non-vocal social behavior. Optogenetics-assisted circuit mapping in brain slices revealed that POAPAG neurons directly inhibit PAG interneurons, which in turn inhibit PAG-USV neurons, whereas AmgC/M-PAG neurons directly inhibit PAG-USV neurons. These experiments identify two major forebrain inputs to the PAG that trigger and suppress vocalization, respectively, while also establishing the synaptic mechanisms through which these neurons exert opposing behavioral effects.
Collapse
Affiliation(s)
- Valerie Michael
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | - Jack Goffinet
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | - John Pearson
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
- Department of Biostatistics & Bioinformatics, Duke University Medical CenterDurhamUnited States
| | - Fan Wang
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| | | | - Richard Mooney
- Department of Neurobiology, Duke University Medical CenterDurhamUnited States
| |
Collapse
|
4
|
Cai H, Dent ML. Best sensitivity of temporal modulation transfer functions in laboratory mice matches the amplitude modulation embedded in vocalizations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2020; 147:337. [PMID: 32006990 PMCID: PMC7043865 DOI: 10.1121/10.0000583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
The perception of spectrotemporal changes is crucial for distinguishing between acoustic signals, including vocalizations. Temporal modulation transfer functions (TMTFs) have been measured in many species and reveal that the discrimination of amplitude modulation suffers at rapid modulation frequencies. TMTFs were measured in six CBA/CaJ mice in an operant conditioning procedure, where mice were trained to discriminate an 800 ms amplitude modulated white noise target from a continuous noise background. TMTFs of mice show a bandpass characteristic, with an upper limit cutoff frequency of around 567 Hz. Within the measured modulation frequencies ranging from 5 Hz to 1280 Hz, the mice show a best sensitivity for amplitude modulation at around 160 Hz. To look for a possible parallel evolution between sound perception and production in living organisms, we also analyzed the components of amplitude modulations embedded in natural ultrasonic vocalizations (USVs) emitted by this strain. We found that the cutoff frequency of amplitude modulation in most of the individual USVs is around their most sensitive range obtained from the psychoacoustic experiments. Further analyses of the duration and modulation frequency ranges of USVs indicated that the broader the frequency ranges of amplitude modulation in natural USVs, the shorter the durations of the USVs.
Collapse
Affiliation(s)
- Huaizhen Cai
- Department of Psychology, University at Buffalo-SUNY, Buffalo, New York 14260, USA
| | - Micheal L Dent
- Department of Psychology, University at Buffalo-SUNY, Buffalo, New York 14260, USA
| |
Collapse
|
5
|
Matsumoto YK, Okanoya K. Mice modulate ultrasonic calling bouts according to sociosexual context. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180378. [PMID: 30110406 PMCID: PMC6030292 DOI: 10.1098/rsos.180378] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Mice produce various sounds within the ultrasonic range in social contexts. Although these sounds are often used as an index of sociability in biomedical research, their biological significance remains poorly understood. We previously showed that mice repeatedly produced calls in a sequence (i.e. calling bout), which can vary in their structure, such as Simple, Complex or Harmonics. In this study, we investigated the use of the three types of calling bouts in different sociosexual interactions, including both same- and opposite-sex contexts. In same-sex contexts, males typically produced a Simple calling bout, whereas females mostly produced a Complex one. By contrast, in the opposite-sex context, they produced all the three types of calling bouts, but the use of each calling type varied according to the progress and mode of sociosexual interaction (e.g. Harmonic calling bout was specifically produced during reproductive behaviour). These results indicate that mice change the structure of calling bout according to sociosexual contexts, suggesting the presence of multiple functional signals in their ultrasonic communication.
Collapse
Affiliation(s)
- Yui K. Matsumoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
- Department of Functional Brain Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
|
7
|
Schmidt M, Lapert F, Brandwein C, Deuschle M, Kasperk C, Grimsley JM, Gass P. Prenatal stress changes courtship vocalizations and bone mineral density in mice. Psychoneuroendocrinology 2017; 75:203-212. [PMID: 27838514 DOI: 10.1016/j.psyneuen.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 02/03/2023]
Abstract
Stress during the prenatal period has various effects on social and sexual behavior in both human and animal offspring. The present study examines the effects of chronic restraint stress in the second vs third trimester in pregnancy and glucocorticoid receptor (GR) heterozygous mutation on C57BL/6N male offspring's vocal courtship behavior in adulthood by applying a novel analyzing method. Finally, corticosterone and testosterone levels as well as bone mineral density were measured. Prenatal stress in the third, but not in the second trimester caused a significant qualitative change in males' courtship vocalizations, independent of their GR genotype. Bone mineral density was decreased also by prenatal stress exclusively in the third trimester in GR mutant and wildtype mice and - in contrast to corticosterone and testosterone - highly correlated with courtship vocalizations. In Gr+/- males corticosterone serum levels were significantly increased in animals that had experienced prenatal stress in the third trimester. Testosterone serum levels were overall increased in Gr+/- males in comparison to wildtypes as a tendency - whereas prenatal stress had no influence. Prenatal stress alters adult males' courtship vocalizations exclusively when applied in the third trimester, with closely related changes in bone mineral density. Bone mineral density seems to reflect best the complex neuroendocrine mechanisms underlying the production of courtship vocalizations. Besides, we demonstrated for the first time elevated basal corticosterone levels in Gr+/- males after prenatal stress which suggests that the Gr+/- mouse model of depression might also serve as a model of prenatal stress in male offspring.
Collapse
Affiliation(s)
- Michaela Schmidt
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany.
| | - Florian Lapert
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Christiane Brandwein
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Michael Deuschle
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| | - Christian Kasperk
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Jasmine M Grimsley
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Peter Gass
- Central Institute of Mental Health Mannheim (ZI), Medical Faculty of Mannheim, University of Heidelberg, J5, D-68159 Mannheim, Germany
| |
Collapse
|
8
|
Matsumoto YK, Okanoya K. Phase-Specific Vocalizations of Male Mice at the Initial Encounter during the Courtship Sequence. PLoS One 2016; 11:e0147102. [PMID: 26841117 PMCID: PMC4739514 DOI: 10.1371/journal.pone.0147102] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 12/29/2015] [Indexed: 12/11/2022] Open
Abstract
Mice produce ultrasonic vocalizations featuring a variety of syllables. Vocalizations are observed during social interactions. In particular, males produce numerous syllables during courtship. Previous studies have shown that vocalizations change according to sexual behavior, suggesting that males vary their vocalizations depending on the phase of the courtship sequence. To examine this process, we recorded large sets of mouse vocalizations during male-female interactions and acoustically categorized these sounds into 12 vocal types. We found that males emitted predominantly short syllables during the first minute of interaction, more long syllables in the later phases, and mainly harmonic sounds during mounting. These context- and time-dependent changes in vocalization indicate that vocal communication during courtship in mice consists of at least three stages and imply that each vocalization type has a specific role in a phase of the courtship sequence. Our findings suggest that recording for a sufficiently long time and taking the phase of courtship into consideration could provide more insights into the role of vocalization in mouse courtship behavior in future study.
Collapse
Affiliation(s)
- Yui K. Matsumoto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo,153–8902, Japan
| | - Kazuo Okanoya
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo,153–8902, Japan
- * E-mail:
| |
Collapse
|
9
|
Egnor SR, Seagraves KM. The contribution of ultrasonic vocalizations to mouse courtship. Curr Opin Neurobiol 2016; 38:1-5. [PMID: 26789140 DOI: 10.1016/j.conb.2015.12.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/21/2015] [Accepted: 12/23/2015] [Indexed: 12/17/2022]
Abstract
Vocalizations transmit information to social partners, and mice use these signals to exchange information during courtship. Ultrasonic vocalizations from adult males are tightly associated with their interactions with females, and vary as a function of male quality. Work in the last decade has established that the spectrotemporal features of male vocalizations are not learned, but that female attention toward specific vocal features is modified by social experience. Additionally, progress has been made on elucidating how mouse vocalizations are encoded in the auditory system, and on the olfactory circuits that trigger their production. Together these findings provide us with important insights into how vocal communication can contribute to social interactions.
Collapse
Affiliation(s)
- Se Roian Egnor
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Kelly M Seagraves
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
10
|
Semple BD, Noble-Haeusslein LJ, Jun Kwon Y, Sam PN, Gibson AM, Grissom S, Brown S, Adahman Z, Hollingsworth CA, Kwakye A, Gimlin K, Wilde EA, Hanten G, Levin HS, Schenk AK. Sociosexual and communication deficits after traumatic injury to the developing murine brain. PLoS One 2014; 9:e103386. [PMID: 25106033 PMCID: PMC4126664 DOI: 10.1371/journal.pone.0103386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/10/2014] [Indexed: 12/19/2022] Open
Abstract
Despite the life-long implications of social and communication dysfunction after pediatric traumatic brain injury, there is a poor understanding of these deficits in terms of their developmental trajectory and underlying mechanisms. In a well-characterized murine model of pediatric brain injury, we recently demonstrated that pronounced deficits in social interactions emerge across maturation to adulthood after injury at postnatal day (p) 21, approximating a toddler-aged child. Extending these findings, we here hypothesized that these social deficits are dependent upon brain maturation at the time of injury, and coincide with abnormal sociosexual behaviors and communication. Age-dependent vulnerability of the developing brain to social deficits was addressed by comparing behavioral and neuroanatomical outcomes in mice injured at either a pediatric age (p21) or during adolescence (p35). Sociosexual behaviors including social investigation and mounting were evaluated in a resident-intruder paradigm at adulthood. These outcomes were complemented by assays of urine scent marking and ultrasonic vocalizations as indices of social communication. We provide evidence of sociosexual deficits after brain injury at p21, which manifest as reduced mounting behavior and scent marking towards an unfamiliar female at adulthood. In contrast, with the exception of the loss of social recognition in a three-chamber social approach task, mice that received TBI at adolescence were remarkably resilient to social deficits at adulthood. Increased emission of ultrasonic vocalizations (USVs) as well as preferential emission of high frequency USVs after injury was dependent upon both the stimulus and prior social experience. Contrary to the hypothesis that changes in white matter volume may underlie social dysfunction, injury at both p21 and p35 resulted in a similar degree of atrophy of the corpus callosum by adulthood. However, loss of hippocampal tissue was greater after p21 compared to p35 injury, suggesting that a longer period of lesion progression or differences in the kinetics of secondary pathogenesis after p21 injury may contribute to observed behavioral differences. Together, these findings indicate vulnerability of the developing brain to social dysfunction, and suggest that a younger age-at-insult results in poorer social and sociosexual outcomes.
Collapse
Affiliation(s)
- Bridgette D. Semple
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine (Royal Melbourne Hospital), Melbourne Brain Centre, University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Linda J. Noble-Haeusslein
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Physical Therapy and Rehabilitation, University of California San Francisco, San Francisco, California, United States of America
| | - Yong Jun Kwon
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| | - Pingdewinde N. Sam
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
- San Francisco State University, San Francisco, California, United States of America
| | - A. Matt Gibson
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| | - Sarah Grissom
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| | - Sienna Brown
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| | - Zahra Adahman
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| | | | - Alexander Kwakye
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| | - Kayleen Gimlin
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, United States of America
| | - Elisabeth A. Wilde
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas, United States of America
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - Gerri Hanten
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas, United States of America
| | - Harvey S. Levin
- Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas, United States of America
- Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas, United States of America
| | - A. Katrin Schenk
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| |
Collapse
|