1
|
Dissaux N, Neyme P, Kim-Dufor DH, Lavenne-Collot N, Marsh JJ, Berrouiguet S, Walter M, Lemey C. Psychosis Caused by a Somatic Condition: How to Make the Diagnosis? A Systematic Literature Review. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1439. [PMID: 37761400 PMCID: PMC10529854 DOI: 10.3390/children10091439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND First episode of psychosis (FEP) is a clinical condition that usually occurs during adolescence or early adulthood and is often a sign of a future psychiatric disease. However, these symptoms are not specific, and psychosis can be caused by a physical disease in at least 5% of cases. Timely detection of these diseases, the first signs of which may appear in childhood, is of particular importance, as a curable treatment exists in most cases. However, there is no consensus in academic societies to offer recommendations for a comprehensive medical assessment to eliminate somatic causes. METHODS We conducted a systematic literature search using a two-fold research strategy to: (1) identify physical diseases that can be differentially diagnosed for psychosis; and (2) determine the paraclinical exams allowing us to exclude these pathologies. RESULTS We identified 85 articles describing the autoimmune, metabolic, neurologic, infectious, and genetic differential diagnoses of psychosis. Clinical presentations are described, and a complete list of laboratory and imaging features required to identify and confirm these diseases is provided. CONCLUSION This systematic review shows that most differential diagnoses of psychosis should be considered in the case of a FEP and could be identified by providing a systematic checkup with a laboratory test that includes ammonemia, antinuclear and anti-NMDA antibodies, and HIV testing; brain magnetic resonance imaging and lumbar puncture should be considered according to the clinical presentation. Genetic research could be of interest to patients presenting with physical or developmental symptoms associated with psychiatric manifestations.
Collapse
Affiliation(s)
- Nolwenn Dissaux
- Centre Hospitalier Régional et Universitaire de Brest, 2 Avenue Foch, 29200 Brest, France
- Unité de Recherche EA 7479 SPURBO, Université de Bretagne Occidentale, 29200 Brest, France
| | - Pierre Neyme
- Fondation du Bon Sauveur d’Alby, 30 Avenue du Colonel Teyssier, 81000 Albi, France
| | - Deok-Hee Kim-Dufor
- Centre Hospitalier Régional et Universitaire de Brest, 2 Avenue Foch, 29200 Brest, France
| | - Nathalie Lavenne-Collot
- Centre Hospitalier Régional et Universitaire de Brest, 2 Avenue Foch, 29200 Brest, France
- Laboratoire du Traitement de l’Information Médicale, Inserm U1101, 29200 Brest, France
| | - Jonathan J. Marsh
- Graduate School of Social Service, Fordham University, 113 West 60th Street, New York, NY 10023, USA
| | - Sofian Berrouiguet
- Centre Hospitalier Régional et Universitaire de Brest, 2 Avenue Foch, 29200 Brest, France
- Unité de Recherche EA 7479 SPURBO, Université de Bretagne Occidentale, 29200 Brest, France
| | - Michel Walter
- Centre Hospitalier Régional et Universitaire de Brest, 2 Avenue Foch, 29200 Brest, France
- Unité de Recherche EA 7479 SPURBO, Université de Bretagne Occidentale, 29200 Brest, France
| | - Christophe Lemey
- Centre Hospitalier Régional et Universitaire de Brest, 2 Avenue Foch, 29200 Brest, France
- Unité de Recherche EA 7479 SPURBO, Université de Bretagne Occidentale, 29200 Brest, France
| |
Collapse
|
2
|
Brain microstructural abnormalities in 22q11.2 deletion syndrome: A systematic review of diffusion tensor imaging studies. Eur Neuropsychopharmacol 2021; 52:96-135. [PMID: 34358796 DOI: 10.1016/j.euroneuro.2021.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/06/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023]
Abstract
22q11.2 deletion syndrome (22q11DS) is a severe genetic syndrome characterized by cognitive deficits and neuropsychiatric disorders, particularly schizophrenia. Neuroimaging alterations have been extensively reported in 22q11DS, both in gray and white matter structures. However, a considerable variability among the results affects the generalizability of the findings to date. Herein, we reviewed diffusion tensor imaging (DTI) findings in 22q11DS, their association with psychosis and cognition, and the implications of DTI studies on neurodevelopment in 22q11DS. We also investigated differences between 22q11DS and schizophrenic patients without 22q11DS. Using an online search of PubMed and Embase, we identified studies investigating DTI findings in 22q11DS. After selecting eligible studies in accordance with the preferred reporting items for systematic reviews and meta-analyses guideline, we included thirty-one studies. Overall, 22q11DS patients show altered structural connectivity and disrupted microstructural organization of most cortical and subcortical structures and white matter tracts. Moreover, despite a significant heterogeneity in the results, reduced diffusivity measures and elevated fractional anisotropy were observed. However controversial, compared to typically developing children, 22q11DS patients reached the peak of fractional anisotropy (FA) and the trough of radial diffusivity (RD) at an older age, which shows neurodevelopmental delay. DTI measures were also associated with psychotic symptoms and cognitive deficits. In conclusion, this study provides a comprehensive review of microstructural alterations in 22q11DS. Future larger investigations on this syndrome could potentially lead to the detection of early diagnostic imaging markers for genetically induced schizophrenia, thus improving the treatment and, ultimately, the outcome.
Collapse
|
3
|
Gur RE, Roalf DR, Alexander-Bloch A, McDonald-McGinn DM, Gur RC. Pathways to understanding psychosis through rare - 22q11.2DS - and common variants. Curr Opin Genet Dev 2021; 68:35-40. [PMID: 33571729 PMCID: PMC8728946 DOI: 10.1016/j.gde.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 12/17/2022]
Abstract
The 22q11.2 Deletion Syndrome has significant impact on brain and behavior, with about 25% of individuals developing schizophrenia. The condition offers a model for prospective studies on the emergence of psychosis and advancing mechanistic hypotheses on gene-environment interactions, with magnified power for examining genome-phenome association. Here, we highlight findings that build on the International 22q11.2 Brain and Behavior Consortium and relate to several key domains in the study of psychosis-risk and schizophrenia. We examine neurocognition, olfaction and neuroimaging data that indicate similar impairment patterns in this rare syndrome and idiopathic presentation of schizophrenia. We conclude that the converging paradigms, studying psychosis dimensionally in rare and common variants samples, provide complementary approaches that will propel precision medicine in psychiatry.
Collapse
Affiliation(s)
- Raquel E Gur
- Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, the Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - David R Roalf
- Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, the Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aaron Alexander-Bloch
- Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, the Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Donna M McDonald-McGinn
- Division of Human Genetics and 22q and You Center, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Lifespan Brain Institute, Penn Medicine and Children's Hospital of Philadelphia, the Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, and the Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
4
|
Lago SG, Tomasik J, van Rees GF, Steeb H, Cox DA, Rustogi N, Ramsey JM, Bishop JA, Petryshen T, Haggarty SJ, Vázquez-Bourgon J, Papiol S, Suarez-Pinilla P, Crespo-Facorro B, van Beveren NJ, Bahn S. Drug discovery for psychiatric disorders using high-content single-cell screening of signaling network responses ex vivo. SCIENCE ADVANCES 2019; 5:eaau9093. [PMID: 31086815 PMCID: PMC6506238 DOI: 10.1126/sciadv.aau9093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 04/01/2019] [Indexed: 05/07/2023]
Abstract
There is a paucity of efficacious new compounds to treat neuropsychiatric disorders. We present a novel approach to neuropsychiatric drug discovery based on high-content characterization of druggable signaling network responses at the single-cell level in patient-derived lymphocytes ex vivo. Primary T lymphocytes showed functional responses encompassing neuropsychiatric medications and central nervous system ligands at established (e.g., GSK-3β) and emerging (e.g., CrkL) drug targets. Clinical application of the platform to schizophrenia patients over the course of antipsychotic treatment revealed therapeutic targets within the phospholipase Cγ1-calcium signaling pathway. Compound library screening against the target phenotype identified subsets of L-type calcium channel blockers and corticosteroids as novel therapeutically relevant drug classes with corresponding activity in neuronal cells. The screening results were validated by predicting in vivo efficacy in an independent schizophrenia cohort. The approach has the potential to discern new drug targets and accelerate drug discovery and personalized medicine for neuropsychiatric conditions.
Collapse
Affiliation(s)
- Santiago G. Lago
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jakub Tomasik
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Geertje F. van Rees
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Hannah Steeb
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - David A. Cox
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Nitin Rustogi
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Jordan M. Ramsey
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Joshua A. Bishop
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephen J. Haggarty
- Chemical Neurobiology Laboratory, Departments of Neurology and Psychiatry, Massachusetts General Hospital, Center for Genomic Medicine, Harvard Medical School, Boston, MA, USA
| | - Javier Vázquez-Bourgon
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Sergi Papiol
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University, Munich, Germany
| | - Paula Suarez-Pinilla
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, Marqués de Valdecilla University Hospital, IDIVAL, School of Medicine, University of Cantabria, Santander, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Santander, Spain
- IDIVAL, Valdecilla Biomedical Research Institute, Santander, Spain
| | - Nico J. van Beveren
- Department of Neuroscience, Erasmus Medical Centre, Rotterdam, Netherlands
- Department of Psychiatry, Erasmus Medical Centre, Rotterdam, Netherlands
- Department “Nieuwe Kennis,” Delta Centre for Mental Health Care, Rotterdam, Netherlands
| | - Sabine Bahn
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- Corresponding author.
| |
Collapse
|