1
|
Abellaneda-Pérez K, Delgado-Martínez I, Salgado P, Ginés JM, Guardiola R, Vaqué-Alcázar L, Roca-Ventura A, Molist-Puigdomènech R, Manero RM, Viles-Garcia M, Medrano-Martorell S, Bartrés-Faz D, Pascual-Leone A, Pérez-Solà V, Villalba-Martínez G. Structural connectivity modifications following deep brain stimulation of the subcallosal cingulate and nucleus accumbens in severe anorexia nervosa. Acta Neurochir (Wien) 2024; 166:364. [PMID: 39261306 DOI: 10.1007/s00701-024-06258-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
PURPOSE Anorexia nervosa (AN) is a mental health disorder characterized by significant weight loss and associated medical and psychological comorbidities. Conventional treatments for severe AN have shown limited effectiveness, leading to the exploration of novel interventional strategies, including deep brain stimulation (DBS). However, the neural mechanisms driving DBS interventions, particularly in psychiatric conditions, remain uncertain. This study aims to address this knowledge gap by examining changes in structural connectivity in patients with severe AN before and after DBS. METHODS Sixteen participants, including eight patients with AN and eight controls, underwent baseline T1-weigthed and diffusion tensor imaging (DTI) acquisitions. Patients received DBS targeting either the subcallosal cingulate (DBS-SCC, N = 4) or the nucleus accumbens (DBS-NAcc, N = 4) based on psychiatric comorbidities and AN subtype. Post-DBS neuroimaging evaluation was conducted in four patients. Data analyses were performed to compare structural connectivity between patients and controls and to assess connectivity changes after DBS intervention. RESULTS Baseline findings revealed that structural connectivity is significantly reduced in patients with AN compared to controls, mainly regarding callosal and subcallosal white matter (WM) tracts. Furthermore, pre- vs. post-DBS analyses in AN identified a specific increase after the intervention in two WM tracts: the anterior thalamic radiation and the superior longitudinal fasciculus-parietal bundle. CONCLUSIONS This study supports that structural connectivity is highly compromised in severe AN. Moreover, this investigation preliminarily reveals that after DBS of the SCC and NAcc in severe AN, there are WM modifications. These microstructural plasticity adaptations may signify a mechanistic underpinning of DBS in this psychiatric disorder.
Collapse
Affiliation(s)
- Kilian Abellaneda-Pérez
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Cerdanyola del Vallès, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Ignacio Delgado-Martínez
- Human Anatomy and Embryology Unit, Department of Morphological Sciences, Faculty of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Purificación Salgado
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - José María Ginés
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - Rocío Guardiola
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
| | - Lídia Vaqué-Alcázar
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Sant Pau Memory Unit, Department of Neurology, Institut d'Investigacions Biomèdiques Sant Pau-Hospital de Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Roca-Ventura
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | | | | | | | | | - David Bartrés-Faz
- Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
- Department of Medicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Institut de Recerca Biomèdica August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Víctor Pérez-Solà
- Institut de Neuropsiquiatria i Addiccions (INAD), Hospital del Mar, Barcelona, Spain
- Grupo de Investigación en Salud Mental del Hospital del Mar Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Gloria Villalba-Martínez
- Department of Neurosurgery, Hospital del Mar, Barcelona, Spain.
- Systems Neurologic and Neurotherapeutic Group at Research Institute Hospital del Mar, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
2
|
Wang Y, Wang L, Ni X, Jiang M, Zhao L. Efficacy of repetitive transcranial magnetic stimulation with different application parameters for post-stroke cognitive impairment: a systematic review. Front Neurosci 2024; 18:1309736. [PMID: 38567284 PMCID: PMC10985147 DOI: 10.3389/fnins.2024.1309736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024] Open
Abstract
Background Cognitive impairment is a prevalent consequence of stroke, seriously affecting recovery and quality of life while imposing substantial burdens on both patients' families and society. Repetitive transcranial magnetic stimulation (rTMS) has emerged as an effective intervention for post-stroke cognitive impairment (PSCI). However, the a lack of standardized and explicit guidelines regarding rTMS application parameters. Therefore, this study systematically evaluated the efficacy of various parameters of rTMS in treating PSCI and explored its potential mechanism. Methods We conducted a comprehensive search across seven scientific databases, namely China National Knowledge Infrastructure (CNKI), Wanfang Data Knowledge Service Platform (Wanfang), China Science and Technology Journal Database (VIP), Web of Science, PubMed, Embase, and Cochrane Library, to identify randomized controlled trials (RCTs) investigating the efficacy of rTMS for PSCI. The search encompassed the period from database creation until July 28, 2023. To evaluate the risk of bias in included studies, we employed the Cochrane recommended risk of bias assessment tool. Furthermore, we extracted relevant clinical application parameters associated with rTMS and performed comparative analyses to assess their therapeutic effects under different parameter settings. Results The present study included 45 RCTs involving a total of 3,066 patients with PSCI. Both high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) and low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) demonstrated safety and efficacy, yet failed to exhibit significant differentiation in terms of cognitive improvement. Furthermore, intermittent theta burst stimulation (iTBS), although yielding positive results, did not surpass traditional rTMS in effectiveness. Combining HF-rTMS with LF-rTMS resulted in superior efficacy compared to single rTMS intervention. Moreover, the combination of rTMS with other cognitive therapies exhibited potential for enhanced benefits among patients. Conclusion rTMS can effectively and safely enhance cognitive function, improve quality of life, and enhance activities of daily living in patients with PSCI. Furthermore, the combination of rTMS with other conventional rehabilitation methods can yield additional positive effects. However, due to insufficient evidence, an optimal parameter protocol for rTMS can not be currently recommended. Future research should prioritize orthogonal experimental design methods that incorporate multiple parameters and levels to determine the optimal parameter protocol for rTMS in PSCI.
Collapse
Affiliation(s)
- Yuhan Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Linjia Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xixiu Ni
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Minjiao Jiang
- Acupuncture and Moxibustion College, Nanjing University of Traditional Chinese Medicine, Nanjing, China
| | - Ling Zhao
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture Clinical Research Center of Sichuan Province, Chengdu, China
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education, Chengdu, China
| |
Collapse
|
3
|
Fitzsimmons SMDD, Oostra E, Postma TS, van der Werf YD, van den Heuvel OA. Repetitive Transcranial Magnetic Stimulation-Induced Neuroplasticity and the Treatment of Psychiatric Disorders: State of the Evidence and Future Opportunities. Biol Psychiatry 2024; 95:592-600. [PMID: 38040046 DOI: 10.1016/j.biopsych.2023.11.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/16/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
Neuroplasticity, or activity-dependent neuronal change, is a crucial mechanism underlying the mechanisms of effect of many therapies for neuropsychiatric disorders, one of which is repetitive transcranial magnetic stimulation (rTMS). Understanding the neuroplastic effects of rTMS at different biological scales and on different timescales and how the effects at different scales interact with each other can help us understand the effects of rTMS in clinical populations and offers the potential to improve treatment outcomes. Several decades of research in the fields of neuroimaging and blood biomarkers is increasingly showing its clinical relevance, allowing measurement of the synaptic, functional, and structural changes involved in neuroplasticity in humans. In this narrative review, we describe the evidence for rTMS-induced neuroplasticity at multiple levels of the nervous system, with a focus on the treatment of psychiatric disorders. We also describe the relationship between neuroplasticity and clinical effects, discuss methods to optimize neuroplasticity, and identify future research opportunities in this area.
Collapse
Affiliation(s)
- Sophie M D D Fitzsimmons
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands.
| | - Eva Oostra
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Tjardo S Postma
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands; GGZ inGeest Mental Health Care, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Department of Psychiatry, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Department of Anatomy and Neurosciences, Amsterdam University Medical Centers, location Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Amsterdam Neuroscience, Compulsivity Impulsivity and Attention Program, Amsterdam, the Netherlands
| |
Collapse
|
4
|
He E, Liu M, Gong S, Fu X, Han Y, Deng F. White Matter Alterations in Depressive Disorder. Front Immunol 2022; 13:826812. [PMID: 35634314 PMCID: PMC9133348 DOI: 10.3389/fimmu.2022.826812] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Depressive disorder is the most prevalent affective disorder today. Depressive disorder has been linked to changes in the white matter. White matter changes in depressive disorder could be a result of impaired cerebral blood flow (CBF) and CBF self-regulation, impaired blood-brain barrier function, inflammatory factors, genes and environmental factors. Additionally, white matter changes in patients with depression are associated with clinical variables such as differential diagnosis, severity, treatment effect, and efficacy assessment. This review discusses the characteristics, possible mechanisms, clinical relevance, and potential treatment of white matter alterations caused by depressive disorders.
Collapse
|
5
|
Chen D, Lei X, Du L, Long Z. Use of machine learning in predicting the efficacy of repetitive transcranial magnetic stimulation on treating depression based on functional and structural thalamo-prefrontal connectivity: A pilot study. J Psychiatr Res 2022; 148:88-94. [PMID: 35121273 DOI: 10.1016/j.jpsychires.2022.01.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 11/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive, safe, and efficacious treatment for major depressive disorder (MDD). However, the antidepressant efficacy of rTMS greatly varies across individual patients. Thus, markers that can be used to predict the outcome of rTMS treatment at the individual level must be identified. Thalamo-cortical connectivity was abnormal in patients with MDD, and was normalized after rTMS treatment. In the current study, we investigated whether the resting-state functional and structural thalamo-cortical connectivity could be utilized to predict the rTMS treatment efficacy by employing support vector machine regression analysis. Results showed that the Hamilton Depression Scale scores of patients with MDD decreased after rTMS treatment. The functional connectivity of mediodorsal nucleus with prefrontal cortex predicted the rTMS treatment improvement, whereas the functional connectivity of other thalamic nuclei with cerebral cortex did not predict the treatment efficacy. The brain areas that contributed the most to the prediction were dorsal lateral prefrontal cortex, ventral lateral, and orbital and medial prefrontal areas. The improvement in the outcome of rTMS treatment could also be predicted by the thalamo-prefrontal structural connectivity. No statistically significantly difference in thalamo-cortical connectivity was observed between early improvers and early non-improvers. These results suggested that the thalamo-prefrontal connectivity can predict the rTMS treatment improvement. This study highlighted the crucial role of the thalamo-prefrontal connectivity as a neuroimaging marker in the treatment of depression via rTMS.
Collapse
Affiliation(s)
- Danni Chen
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China
| | - Lian Du
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China.
| | - Zhiliang Long
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, PR China; Key Laboratory of Cognition and Personality (Southwest University), Ministry of Education, Chongqing, PR China.
| |
Collapse
|
6
|
Aceves-Serrano L, Neva JL, Doudet DJ. Insight Into the Effects of Clinical Repetitive Transcranial Magnetic Stimulation on the Brain From Positron Emission Tomography and Magnetic Resonance Imaging Studies: A Narrative Review. Front Neurosci 2022; 16:787403. [PMID: 35264923 PMCID: PMC8899094 DOI: 10.3389/fnins.2022.787403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 12/14/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has been proposed as a therapeutic tool to alleviate symptoms for neurological and psychiatric diseases such as chronic pain, stroke, Parkinson’s disease, major depressive disorder, and others. Although the therapeutic potential of rTMS has been widely explored, the neurological basis of its effects is still not fully understood. Fortunately, the continuous development of imaging techniques has advanced our understanding of rTMS neurobiological underpinnings on the healthy and diseased brain. The objective of the current work is to summarize relevant findings from positron emission tomography (PET) and magnetic resonance imaging (MRI) techniques evaluating rTMS effects. We included studies that investigated the modulation of neurotransmission (evaluated with PET and magnetic resonance spectroscopy), brain activity (evaluated with PET), resting-state connectivity (evaluated with resting-state functional MRI), and microstructure (diffusion tensor imaging). Overall, results from imaging studies suggest that the effects of rTMS are complex and involve multiple neurotransmission systems, regions, and networks. The effects of stimulation seem to not only be dependent in the frequency used, but also in the participants characteristics such as disease progression. In patient populations, pre-stimulation evaluation was reported to predict responsiveness to stimulation, while post-stimulation neuroimaging measurements showed to be correlated with symptomatic improvement. These studies demonstrate the complexity of rTMS effects and highlight the relevance of imaging techniques.
Collapse
Affiliation(s)
- Lucero Aceves-Serrano
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Lucero Aceves-Serrano,
| | - Jason L. Neva
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, QC, Canada
| | - Doris J. Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Ning L, Rathi Y, Barbour T, Makris N, Camprodon JA. White matter markers and predictors for subject-specific rTMS response in major depressive disorder. J Affect Disord 2022; 299:207-214. [PMID: 34875281 PMCID: PMC8766915 DOI: 10.1016/j.jad.2021.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 10/19/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has established therapeutic efficacy for major depressive disorder (MDD). While translational research has focused primarily on understanding the mechanism of action of TMS on functional activation and connectivity, the effects on structural connectivity remain largely unknown especially when rTMS is applied using subject-specific brain targets. This study aims to use novel diffusion magnetic resonance imaging (dMRI) analysis to examine microstructural changes related to rTMS treatment response using a unique cohort of 21 patients with MDD treated using rTMS with subject-specific targets. White matter dMRI microstructural measures and clinical scores were captured before and after the full course of treatment. We defined disease-relevant fiber bundles connected to different subregions of the left prefrontal cortex and analyzed changes in diffusion properties as well as correlations between the changes of dMRI measures and the changes in Hamilton Depression Rating Scale (HAMD). No significant changes were observed in tracts connected to the TMS targets. rTMS significantly increased the extra-axonal free-water volume, fractional anisotropy and decreased the radial diffusivity in anterior-medial prefrontal fiber bundles but did not lead to raw changes in lateral prefrontal tracts. That said, the microstructural changes in the lateral prefrontal white matter were significantly correlated with treatment response. Moreover, pre-rTMS dMRI measures of the dorsal anterior cingulate cortex and lateral prefrontal cortex connections are correlated with changes in HAMD scores. Microstructural changes in the anterior-medial and lateral prefrontal white matter are potentially involved in treatment response to TMS, though further investigation is needed using larger datasets.
Collapse
Affiliation(s)
- Lipeng Ning
- Brigham and Women's Hospital, Boston, MA, United States of America; Massachusetts General Hospital, Boston, MA, United States of America; Harvard Medical School, Boston, MA, United States of America.
| | - Yogesh Rathi
- Brigham and Women’s Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Tracy Barbour
- Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Nikos Makris
- Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Joan A. Camprodon
- Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder. Brain Sci 2022; 12:brainsci12010112. [PMID: 35053856 PMCID: PMC8774216 DOI: 10.3390/brainsci12010112] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Hemispheric differences in emotional processing have been observed for over half a century, leading to multiple theories classifying differing roles for the right and left hemisphere in emotional processing. Conventional acceptance of these theories has had lasting clinical implications for the treatment of mood disorders. The theory that the left hemisphere is broadly associated with positively valenced emotions, while the right hemisphere is broadly associated with negatively valenced emotions, drove the initial application of repetitive transcranial magnetic stimulation (rTMS) for the treatment of major depressive disorder (MDD). Subsequent rTMS research has led to improved response rates while adhering to the same initial paradigm of administering excitatory rTMS to the left prefrontal cortex (PFC) and inhibitory rTMS to the right PFC. However, accumulating evidence points to greater similarities in emotional regulation between the hemispheres than previously theorized, with potential implications for how rTMS for MDD may be delivered and optimized in the near future. This review will catalog the range of measurement modalities that have been used to explore and describe hemispheric differences, and highlight evidence that updates and advances knowledge of TMS targeting and parameter selection. Future directions for research are proposed that may advance precision medicine and improve efficacy of TMS for MDD.
Collapse
|
9
|
Tateishi H, Mizoguchi Y, Monji A. Is the Therapeutic Mechanism of Repetitive Transcranial Magnetic Stimulation in Cognitive Dysfunctions of Depression Related to the Neuroinflammatory Processes in Depression? Front Psychiatry 2022; 13:834425. [PMID: 35280153 PMCID: PMC8907472 DOI: 10.3389/fpsyt.2022.834425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
The lifetime prevalence of depression is reported to be >10%, and it is an important illness that causes various disabilities over a long period of life. Neuroinflammation process is often reported to be closely linked to the pathophysiology of depression. Approximately one-third of depression is known to be treatment-resistant depression (TRD), in which the symptoms are refractory to adequate treatment. Cognitive dysfunction is one of the most important symptoms of depression that impedes the rehabilitation of patients with depression. Repetitive transcranial magnetic stimulation (rTMS) is a minimally invasive and effective treatment for TRD and is also known to be effective in cognitive dysfunction in depression. Since the details of the therapeutic mechanism of rTMS are still unknown, we have been conducting studies to clarify the therapeutic mechanism of rTMS, especially focusing on cognitive dysfunction in depression. In the present review, we present our latest results and discuss them from the standpoint of the neuroinflammation hypothesis of depression, while citing relevant literature.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
10
|
Li H, Ma J, Zhang J, Shi WY, Mei HN, Xing Y. Repetitive Transcranial Magnetic Stimulation (rTMS) Modulates Thyroid Hormones Level and Cognition in the Recovery Stage of Stroke Patients with Cognitive Dysfunction. Med Sci Monit 2021; 27:e931914. [PMID: 34686649 PMCID: PMC8549488 DOI: 10.12659/msm.931914] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background This single-center study aimed to investigate the effects of repetitive transcranial magnetic stimulation (rTMS) on modulation of thyroid hormone levels and cognition in the recovery stage of patients with cognitive dysfunction following stroke. Material/Methods Seventy post-stroke patients who had cognitive impairment were randomly assigned to either the rTMS group or the control (sham) group. Both groups were administered basic treatment, with the rTMS group receiving rTMS (1 Hz, 90% MT, 1000 pulse/20 min, once a day for 5 days, for a total of 20 times), the stimulation site was the contralateral dorsolateral prefrontal cortex (DLPFC), and the sham group receiving sham stimulation which had the same stimulation parameters and site, except that the coil plane was placed perpendicular to the surface of the scalp. Cognitive function assessment and thyroid function tests were performed before and after 4 weeks of treatment. Results Serum levels of triiodothyronine (T3), free triiodothyronine (FT3), and thyroid stimulating hormone (TSH) showed a positive correlation with Montreal Cognitive Assessment (MoCA) scale score of stroke patients in the recovery phase. The post-treatment change in the scores of MoCA and Modified Barthel Index (MBI) and scores of 3 cognitive domains (visuospatial function, memory, and attention), as well as serum T3, FT3, and TSH levels, were improved more significantly in the rTMS group, and T3 and FT3 levels significantly affected the MoCA scores within the reference range. Conclusions Serum T3, FT3, and TSH levels of stroke patients in the recovery phase were positively correlated with MoCA score. rTMS increased T3, FT3, and TSH levels and also improved MoCA and MBI of patients in the recovery phase of stroke.
Collapse
Affiliation(s)
- Hong Li
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Jiang Ma
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Jun Zhang
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Wan-Ying Shi
- Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| | - Hao-Nan Mei
- School of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, Hebei, China (mainland)
| | - Yan Xing
- Department of Rehabilitation Medicine, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
11
|
Schiena G, Franco G, Boscutti A, Delvecchio G, Maggioni E, Brambilla P. Connectivity changes in major depressive disorder after rTMS: a review of functional and structural connectivity data. Epidemiol Psychiatr Sci 2021; 30:e59. [PMCID: PMC8444152 DOI: 10.1017/s2045796021000482] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aims In the search for effective therapeutic strategies for depression, repetitive transcranial magnetic stimulation (rTMS) emerged as a non-invasive, promising treatment. This is because the antidepressant effect of rTMS might be related to neuronal plasticity mechanisms possibly reverting connectivity alterations often observed in depression. Therefore, in this review, we aimed at providing an overview of the findings reported by studies investigating functional and structural connectivity changes after rTMS in depression. Methods A bibliographic search was conducted on PubMed, including studies that used unilateral, excitatory (⩾10 Hz) rTMS treatment targeted on the left dorsolateral prefrontal cortex (DLPFC) in unipolar depressed patients. Results The majority of the results showed significant TMS-induced changes in functional connectivity (FC) between areas important for emotion regulation, including the DLPFC and the subgenual anterior cingulate cortex, and among regions that are part of the major resting-state networks, such as the Default Mode Network, the Salience Networks and the Central Executive Network. Finally, in diffusion tensor imaging studies, it has been reported that rTMS appeared to increase fractional anisotropy in the frontal lobe. Limitations The small sample size, the heterogeneity of the rTMS stimulation parameters, the concomitant use of psychotropic drugs might have limited the generalisability of the results. Conclusions Overall, rTMS treatment induces structural and FC changes in brain regions and networks implicated in the pathogenesis of unipolar depression. However, whether these changes underlie the antidepressant effect of rTMS still needs to be clarified.
Collapse
Affiliation(s)
- G. Schiena
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G. Franco
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - A. Boscutti
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - G. Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- Author for correspondence: G. Delvecchio, E-mail:
| | - E. Maggioni
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P. Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Roy C, Goyal N, Shreekantiah U, Ram D. Does single session transcranial magnetic stimulation alter fractional anisotropy in obsessive-compulsive disorder? A preliminary observation. Psychiatry Res 2021; 301:113970. [PMID: 33984823 DOI: 10.1016/j.psychres.2021.113970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 04/21/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Chandramouli Roy
- K.S. Mani Centre for Cognitive Neurosciences and fMRI Centre, Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Nishant Goyal
- K.S. Mani Centre for Cognitive Neurosciences and fMRI Centre, Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| | - Umesh Shreekantiah
- K.S. Mani Centre for Cognitive Neurosciences and fMRI Centre, Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India.
| | - Daya Ram
- K.S. Mani Centre for Cognitive Neurosciences and fMRI Centre, Central Institute of Psychiatry, Ranchi 834006, Jharkhand, India
| |
Collapse
|
13
|
Tateishi H, Nishihara M, Kawaguchi A, Matsushima J, Murakawa T, Haraguchi Y, Kunitake Y, Maekawa T, Kato TA, Asami T, Mizoguchi Y, Monji A. Improvement Of Frontal Lobe Dysfunction And White Matter Integrity By rTMS In Treatment-Resistant Depression. Neuropsychiatr Dis Treat 2019; 15:3079-3087. [PMID: 31806977 PMCID: PMC6842748 DOI: 10.2147/ndt.s228501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
AIM The impairment experienced by many individuals with depression is closely related to the cognitive symptoms of the disorder. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive brain stimulation method providing a promising technique for improving cognitive symptoms in treatment-resistant depression (TRD). In the present study, we investigated whether a relationship exists between improvements in frontal lobe dysfunction induced by rTMS and improvement of white matter integrity revealed by diffusion tensor imaging (DTI) in TRD patients receiving rTMS treatment. METHODS A total of 12 patients with TRD were enrolled in a high-frequency (10 Hz) rTMS study (August 2013-January 2019). Frontal lobe function and depressive symptoms were assessed at baseline and at the endpoint of rTMS treatment. Fractional anisotropy (FA), as a measure of white matter integrity obtained from DTI, was investigated using a region-of-interest (ROI) approach. RESULTS rTMS treatment significantly improved depressive symptom scores and some subscales of frontal lobe dysfunction. Category scores in the Word Fluency Test and scores on part 3 of the Color Stroop Test were improved independently of the improvement of depressive symptoms. In the ROI analysis, none of the FA increases in any region were correlated with improvement of any frontal lobe function (n = 12). CONCLUSION Although rTMS resulted in partial improvement of frontal lobe dysfunction as well as white matter integrity, we found no correlation between improved frontal lobe dysfunction and improved white matter integrity in TRD patients.
Collapse
Affiliation(s)
- Hiroshi Tateishi
- Department of Psychiatry, Saga University Hospital, Saga849-8501, Japan
| | - Masashi Nishihara
- Department of Radiology, Saga University Hospital, Saga849-8501, Japan
| | - Atsushi Kawaguchi
- Center of Comprehensive Community Medicine, Faculty of Medicine, Saga University, Saga849-8501, Japan
| | - Jun Matsushima
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga849-8501, Japan
| | - Toru Murakawa
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga849-8501, Japan
| | - Yoshinori Haraguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga849-8501, Japan
| | - Yutaka Kunitake
- Department of Psychiatry, Saga University Hospital, Saga849-8501, Japan
| | - Toshihiko Maekawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku, Fukuoka842-8582, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Maidashi Higashi-ku, Fukuoka842-8582, Japan
| | - Toyoko Asami
- Department of Rehabilitation Medicine, Saga University Hospital, Saga849-8501, Japan
| | - Yoshito Mizoguchi
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga849-8501, Japan
| | - Akira Monji
- Department of Psychiatry, Faculty of Medicine, Saga University, Saga849-8501, Japan
| |
Collapse
|
14
|
Kozel FA, Van Trees K, Larson V, Phillips S, Hashimie J, Gadbois B, Johnson S, Gallinati J, Barrett B, Toyinbo P, Weisman M, Centorino M, Gibson CA, Catalano G. One hertz versus ten hertz repetitive TMS treatment of PTSD: A randomized clinical trial. Psychiatry Res 2019; 273:153-162. [PMID: 30641346 DOI: 10.1016/j.psychres.2019.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 02/06/2023]
Abstract
The purpose of this trial was to test whether right prefrontal cortex 1 Hz versus 10 Hz rTMS provides a significantly greater improvement in PTSD symptoms and/or function. Veterans 18 to 50 years of age suffering from PTSD were randomized to right prefrontal 1 Hz rTMS [2400 pulses/session] versus right prefrontal 10 Hz rTMS [2400 pulses/session]. The treatments were performed 5 days a week for 6 weeks with a 3-week taper using the NeuroStar system. There were one month and three months post treatment follow-up evaluations. Forty-four participants were enrolled with 17 being randomized to 1 Hz rTMS and 18 to 10 Hz rTMS. Both groups had significant improvement in PTSD and depression scores from baseline to the end of acute treatment. The 10 Hz group but not the 1 Hz group demonstrated significant improvement in function. Although both groups demonstrated significant improvement in PTSD and depression symptoms, a significant advantage for either the 1 Hz or 10 Hz frequency group on any of the scales acquired was not demonstrated. Further work is required with larger samples sizes to test whether low or high frequency is superior or if individual differences would indicate the more effective frequency.
Collapse
Affiliation(s)
- F Andrew Kozel
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; HSR&D Center of Innovation on Disability and Rehabilitation Research (CINDRR), James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA.
| | - Kimberly Van Trees
- Nursing Services, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA
| | - Valerie Larson
- HSR&D Center of Innovation on Disability and Rehabilitation Research (CINDRR), James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA
| | - Sean Phillips
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Jaffrey Hashimie
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Brian Gadbois
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Suzanne Johnson
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA
| | - Jessica Gallinati
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA
| | - Blake Barrett
- HSR&D Center of Innovation on Disability and Rehabilitation Research (CINDRR), James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; VISN 8 Patient Safety Center of Inquiry, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA
| | - Peter Toyinbo
- HSR&D Center of Innovation on Disability and Rehabilitation Research (CINDRR), James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Mark Weisman
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Michael Centorino
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Carri-Ann Gibson
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| | - Glenn Catalano
- Mental Health and Behavioral Sciences, James A. Haley Veterans' Administration Hospital and Clinics, Tampa, FL, USA; Department of Psychiatry and Behavioral Sciences, University of South Florida, Tampa, FL, USA
| |
Collapse
|
15
|
Wang X, Qin J, Zhu J, Bi K, Zhang S, Yan R, Zhao P, Yao Z, Lu Q. Rehabilitative compensatory mechanism of hierarchical subnetworks in major depressive disorder: A longitudinal study across multi-sites. Eur Psychiatry 2019; 58:54-62. [PMID: 30822739 DOI: 10.1016/j.eurpsy.2019.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Brain structural connectome comprise of a minority of efficiently interconnected rich club nodes that are regarded as 'high-order regions'. The remission of major depressive disorder (MDD) in response to selective serotonin reuptake inhibitor (SSRI) treatment could be investigated by the hierarchical structural connectomes' alterations of subnetworks. METHODS Fifty-five MDD patients who achieved remission underwent diffusion tensors imaging (DTI) scanning from 3 cohorts before and after 8-weeks antidepressant treatment. Five hierarchical subnetworks namely, rich, local, feeder, rich-feeder and feeder-local, were constructed according to the different combinations of connections and nodes as defined by rich club architecture. The critical treatment-related subnetwork pattern was explored by multivariate pattern analysis with support vector machine to differ the pre-/post-treatment patients. Then, relationships between graph metrics of discriminative subnetworks/ nodes and clinical variables were further explored. RESULTS The feeder-local subnetwork presented the most discriminative power in differing pre-/post- treatment patients, while the rich-feeder subnetwork had the highest discriminative power when comparing pre-treatment patients and controls. Furthermore, based on the feeder connection, which indicates the information transmission between the core and non-core architectures of brain networks, its topological measures were found to be significantly correlated with the reduction rate of 17-item Hamilton Rating Scale for Depression. CONCLUSION Although pathological lesion on MDD relied on abnormal core organization, disease remission was association with the compensation from non-core organization. These results suggested that the dysfunctions arising from hierarchical subnetworks are compensated by increased information interactions between core brain regions and functionally diverse regions.
Collapse
Affiliation(s)
- Xinyi Wang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Jiaolong Qin
- The Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinlong Zhu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Kun Bi
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Siqi Zhang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China
| | - Rui Yan
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Peng Zhao
- Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zhijian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, China.
| |
Collapse
|
16
|
Philip NS, Barredo J, Aiken E, Carpenter LL. Neuroimaging Mechanisms of Therapeutic Transcranial Magnetic Stimulation for Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:211-222. [PMID: 29486862 PMCID: PMC5856477 DOI: 10.1016/j.bpsc.2017.10.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/06/2017] [Accepted: 10/29/2017] [Indexed: 01/11/2023]
Abstract
Research into therapeutic transcranial magnetic stimulation (TMS) for major depression has dramatically increased in the last decade. Understanding the mechanism of action of TMS is crucial to improve efficacy and develop the next generation of therapeutic stimulation. Early imaging research provided initial data supportive of widely held assumptions about hypothesized inhibitory or excitatory consequences of stimulation. Early work also indicated that while TMS modulated brain activity under the stimulation site, effects at deeper regions, in particular, the subgenual anterior cingulate cortex, were associated with clinical improvement. Concordant with earlier findings, functional connectivity studies also demonstrated that clinical improvements were related to changes distal, rather than proximal, to the site of stimulation. Moreover, recent work suggests that TMS modulates and potentially normalizes functional relationships between neural networks. An important observation that emerged from this review is that similar patterns of connectivity changes are observed across studies regardless of TMS parameters. Though promising, we stress that these imaging findings must be evaluated cautiously given the widespread reliance on modest sample sizes and little implementation of statistical validation. Additional limitations included use of imaging before and after a course of TMS, which provided little insight into changes that might occur during the weeks of stimulation. Furthermore, as studies to date have focused on depression, it is unclear whether our observations were related to mechanisms of action of TMS for depression or represented broader patterns of functional brain changes associated with clinical improvement.
Collapse
Affiliation(s)
- Noah S Philip
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island; Mood Disorders Research Program and Neuromodulation Research Facility, Butler Hospital, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island.
| | - Jennifer Barredo
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Emily Aiken
- Center for Neurorestoration and Neurotechnology, Providence VA Medical Center, Providence, Rhode Island
| | - Linda L Carpenter
- Mood Disorders Research Program and Neuromodulation Research Facility, Butler Hospital, Providence, Rhode Island; Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
17
|
Tang Y, Chen A, Zhu S, Yang L, Zhou J, Pan S, Shao M, Zhao L. Repetitive transcranial magnetic stimulation for depression after basal ganglia ischaemic stroke: protocol for a multicentre randomised double-blind placebo-controlled trial. BMJ Open 2018; 8:e018011. [PMID: 29431126 PMCID: PMC5829582 DOI: 10.1136/bmjopen-2017-018011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Studies suggest that repetitive transcranial magnetic stimulation (rTMS) is effective for the treatment of depression and promotes the repair of white matter. This study aims to assess the effectiveness of rTMS in treating depression after basal ganglia ischaemic stroke and to examine whether such effects are related to restoration of white matter integrity. METHODS AND ANALYSIS Sixty-six participants will be recruited from Zhujiang Hospital, Nanfang Hospital and Sichuan Bayi Rehabilitation Hospital and randomised in a 1:1 ratio to receive active rTMS treatment or sham rTMS treatment in addition to routine supportive treatments. The data will be collected at 0, 2 and 4 weeks after the commencement of treatment. The primary outcome is the measurement of 24-item Hamilton Depression Rating Scale scores, and the secondary outcomes include diffusion tensor imaging results and the results of neuropsychological tests including the National Institutes of Health Stroke Scale, Activities of Daily Living Scale, Montreal Cognitive Assessment, Clinical Global Impressions scales, Aphasia Battery in Chinese, Social Support Revalued Scale and Medical Coping Modes Questionnaire. ETHICS AND DISSEMINATION This study has been approved by the Ethics Committee of Zhujiang Hospital of Southern Medical University. The findings will be disseminated by publication in a peer-reviewed journal and by presentation at international conferences. TRIAL REGISTRATION NUMBER NCT03159351.
Collapse
Affiliation(s)
- Ying Tang
- Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Aimin Chen
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Li Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jiyuan Zhou
- School of Public Health, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Min Shao
- Department of Neurology, Sichuan Bayi Rehabilitation Center, Chengdu, China
| | - Lianxu Zhao
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
18
|
Structural-functional brain changes in depressed patients during and after electroconvulsive therapy. Acta Neuropsychiatr 2018; 30:17-28. [PMID: 27876102 DOI: 10.1017/neu.2016.62] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Electroconvulsive therapy (ECT) is a non-pharmacological treatment that is effective in treating severe and treatment-resistant depression. Although the efficacy of ECT has been demonstrated to treat major depressive disorder (MDD), the brain mechanisms underlying this process remain unclear. Structural-functional changes occur with the use of ECT as a treatment for depression based on magnetic resonance imaging (MRI). For this reason, we have tried to identify the changes that were identified by MRI to try to clarify some operating mechanisms of ECT. We focus to brain changes on MRI [structural MRI (sMRI), functional MRI (fMRI) and diffusion tensor imging (DTI)] after ECT. METHODS A systematic search of the international literature was performed using the bibliographic search engines PubMed and Embase. The research focused on papers published up to 30 September 2015. The following Medical Subject Headings (MESH) terms were used: electroconvulsive therapy AND (MRI OR fMRI OR DTI). Papers published in English were included. Four authors searched the database using a predefined strategy to identify potentially eligible studies. RESULTS There were structural changes according to the sMRI performed before and after ECT treatment. These changes do not seem to be entirely due to oedema. This investigation assessed the functional network connectivity associated with the ECT response in MDD. ECT response reverses the relationship from negative to positive between the two pairs of networks. CONCLUSION We found structural-functional changes in MRI post-ECT. Because of the currently limited MRI data on ECT in the literature, it is necessary to conduct further investigations using other MRI technology.
Collapse
|
19
|
Hayasaka S, Nakamura M, Noda Y, Izuno T, Saeki T, Iwanari H, Hirayasu Y. Lateralized hippocampal volume increase following high-frequency left prefrontal repetitive transcranial magnetic stimulation in patients with major depression. Psychiatry Clin Neurosci 2017. [PMID: 28631869 DOI: 10.1111/pcn.12547] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIM Repetitive transcranial magnetic stimulation (rTMS) has been applied as a treatment for patients with treatment-resistant depression in recent years, and a large body of evidence has demonstrated its therapeutic efficacy through stimulating neuronal plasticity. The aim of this study was to investigate structural alterations in the hippocampus (HIPP) and amygdala (AM) following conventional rTMS in patients with depression. METHODS Twenty-eight patients with depression underwent 10 daily 20-Hz left prefrontal rTMS over 2 weeks. The left dorsolateral prefrontal cortex (DLPFC) was identified using magnetic resonance imaging-guided neuronavigation prior to stimulation. Magnetic resonance imaging scans were obtained at baseline and after the completion of rTMS sessions. The therapeutic effects of rTMS were evaluated with the 17-item Hamilton Depression Rating Scale (HAM-D17 ), and the volumes of the HIPP and AM were measured by a manual tracing method. RESULTS Statistical analyses revealed a significant volume increase in the left HIPP (+3.4%) after rTMS but no significant volume change in the AM. No correlation was found between the left HIPP volume increase and clinical improvement, as measured by the HAM-D17 . CONCLUSION The present study demonstrated that conventional left prefrontal rTMS increases the HIPP volume in the stimulated side, indicating a remote neuroplastic effect through the cingulum bundle.
Collapse
Affiliation(s)
- Shunsuke Hayasaka
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan.,ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Motoaki Nakamura
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan.,ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Yoshihiro Noda
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Canada
| | - Takuji Izuno
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Psychiatry, School of Medicine, Showa University, Tokyo, Japan
| | - Takashi Saeki
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan.,Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hideo Iwanari
- Laboratory of Neuromodulation, Kanagawa Psychiatric Center, Yokohama, Japan
| | - Yoshio Hirayasu
- Department of Psychiatry, Yokohama City University School of Medicine, Yokohama, Japan
| |
Collapse
|
20
|
Jiang J, Zhao YJ, Hu XY, Du MY, Chen ZQ, Wu M, Li KM, Zhu HY, Kumar P, Gong QY. Microstructural brain abnormalities in medication-free patients with major depressive disorder: a systematic review and meta-analysis of diffusion tensor imaging. J Psychiatry Neurosci 2017; 42:150-163. [PMID: 27780031 PMCID: PMC5403660 DOI: 10.1503/jpn.150341] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Multiple meta-analyses of diffusion tensor imaging (DTI) studies have reported impaired white matter integrity in patients with major depressive disorder (MDD). However, owing to inclusion of medicated patients in these studies, it is difficult to conclude whether these reported alterations are associated with MDD or confounded by medication effects. A meta-analysis of DTI studies on medication-free (medication-naive and medication washout) patients with MDD would therefore be necessary to disentangle MDD-specific effects. METHODS We analyzed white matter alterations between medication-free patients with MDD and healthy controls using anisotropic effect size-signed differential mapping (AES-SDM). We used DTI query software for fibre tracking. RESULTS Both pooled and subgroup meta-analyses in medication washout patients showed robust fractional anisotropy (FA) reductions in white matter of the right cerebellum hemispheric lobule, body of the corpus callosum (CC) and bilateral superior longitudinal fasciculus III (SLF III), whereas FA reductions in the genu of the CC and right anterior thalamic projections were seen in only medication-naive patients. Fibre tracking showed that the main tracts with observed FA reductions included the right cerebellar tracts, body of the CC, bilateral SLF III and arcuate fascicle. LIMITATIONS The analytic techniques, patient characteristics and clinical variables of the included studies were heterogeneous; we could not exclude the effects of nondrug therapies owing to a lack of data. CONCLUSION By excluding the confounding influences of current medication status, findings from the present study may provide a better understanding of the underlying neuropathology of MDD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hong-Yan Zhu
- Correspondence to: H. Zhu or Q. Gong, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; or
| | | | - Qi-Yong Gong
- Correspondence to: H. Zhu or Q. Gong, Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, 610041, China; or
| |
Collapse
|
21
|
Shen X, Liu M, Cheng Y, Jia C, Pan X, Gou Q, Liu X, Cao H, Zhang L. Repetitive transcranial magnetic stimulation for the treatment of post-stroke depression: A systematic review and meta-analysis of randomized controlled clinical trials. J Affect Disord 2017; 211:65-74. [PMID: 28092847 DOI: 10.1016/j.jad.2016.12.058] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/05/2016] [Accepted: 12/31/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Every year, more than fifteen million people worldwide experience a stroke, nearly 30% of stroke survivors are likely to experience post-stroke depression (PSD). Repetitive transcranial magnetic stimulation (rTMS) is one of the emerging techniques which assist in targeting rehabilitation after stroke. Although deterioration of PSD greatly affects the recovery and quality of life of stroke sufferers, the effect of rTMS therapy has not been systematically studied. OBJECTIVE A systematic review and meta-analysis was conducted to determine the effect of rTMS on PSD. METHODS We carried out a systematic review and meta-analysis of randomized controlled trials (RCTs) of rTMS for the treatment of PSD. Primary outcome was severity of depression measured by the Hamilton Depression Rating Scale (HAMD). Secondary outcomes were response rates, remission rates, stroke severity and ability to perform daily activities. RESULTS 22 RCTs studies (n=1764 patients) were included. The results demonstrated that rTMS was beneficial on PSD using three scales: HAMD (MD=-6.09, 95% CI: -7.74, -4.45, P<0.001); response rates (OR=3.46, 95% CI: 2.52, 4.76, P<0.00001); remission rates (OR 0.99, 95% CI: 0.56, 1.75, P<0.00001); National Institutes of Health Stroke Scale (NIHSS) (MD=-2.74, 95% CI: -3.33, -2.15, P<0.001); Activities of daily living (ADL) (SMD=-1.20, 95% CI: 0.68, 1.72, P<0.001); Montgomery-Asberg Depression Scale (MARDE) (MD=-6.21; 95% CI: -9.34, -3.08; P=0.0001); CONCLUSION: In present meta-analysis, the positive findings suggest rTMS has beneficial effects on PSD. However, those findings should be treated with caution because of heterogeneity and potential biases.
Collapse
Affiliation(s)
- XinYi Shen
- Department of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China.
| | - MingYi Liu
- Department of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China.
| | - Yu Cheng
- Department of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China.
| | - Cui Jia
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, China.
| | - XinYue Pan
- Department of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China.
| | - QingYun Gou
- Department of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China.
| | - XinLian Liu
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, China.
| | - Hui Cao
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, China.
| | - LuShun Zhang
- Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu 610500, China; Development and Regeneration Key Laboratory of Sichuan Province, Department of Neurobiology, Chengdu Medical College, Chengdu 610500, China.
| |
Collapse
|
22
|
Repetitive transcranial magnetic stimulation for treatment resistant depression: Re-establishing connections. Clin Neurophysiol 2016; 127:3394-3405. [PMID: 27672727 DOI: 10.1016/j.clinph.2016.08.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/28/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a relatively recent addition to the neurostimulation armamentarium for treating individuals suffering from treatment refractory depression and has demonstrated efficacy in clinical trials. One of the proposed mechanisms of action underlying the therapeutic effects of rTMS for depression involves the modulation of depression-associated dysfunctional activity in distributed brain networks involving frontal cortical and subcortical limbic regions, via changes to aberrant functional and structural connectivity. Although there is currently a paucity of published data, we review changes to functional and structural connectivity following rTMS for depression. Current evidence suggests an rTMS-induced normalisation of depression-associated dysfunction within and between large scale functional networks, including the default mode, central executive and salience networks, associated with an amelioration of depressive symptoms. Additionally, changes to measures of white matter microstructure, primarily in the dorsolateral prefrontal cortex, have also been reported following rTMS for depression, possibly reversing depression-associated abnormalities. We argue that measures of functional and structural connectivity can be used to optimise rTMS targeting within the dorsolateral prefrontal cortex and also to explore novel rTMS targets for depression. Finally, we discuss the utility of measures of brain connectivity as predictive biomarkers of rTMS treatment response in guiding therapeutic decisions.
Collapse
|
23
|
Noda Y, Silverstein WK, Barr MS, Vila-Rodriguez F, Downar J, Rajji TK, Fitzgerald PB, Mulsant BH, Vigod SN, Daskalakis ZJ, Blumberger DM. Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review. Psychol Med 2015; 45:3411-3432. [PMID: 26349810 DOI: 10.1017/s0033291715001609] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Depression is one of the most prevalent mental illnesses worldwide and a leading cause of disability, especially in the setting of treatment resistance. In recent years, repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising alternative strategy for treatment-resistant depression and its clinical efficacy has been investigated intensively across the world. However, the underlying neurobiological mechanisms of the antidepressant effect of rTMS are still not fully understood. This review aims to systematically synthesize the literature on the neurobiological mechanisms of treatment response to rTMS in patients with depression. Medline (1996-2014), Embase (1980-2014) and PsycINFO (1806-2014) were searched under set terms. Three authors reviewed each article and came to consensus on the inclusion and exclusion criteria. All eligible studies were reviewed, duplicates were removed, and data were extracted individually. Of 1647 articles identified, 66 studies met both inclusion and exclusion criteria. rTMS affects various biological factors that can be measured by current biological techniques. Although a number of studies have explored the neurobiological mechanisms of rTMS, a large variety of rTMS protocols and parameters limits the ability to synthesize these findings into a coherent understanding. However, a convergence of findings suggest that rTMS exerts its therapeutic effects by altering levels of various neurochemicals, electrophysiology as well as blood flow and activity in the brain in a frequency-dependent manner. More research is needed to delineate the neurobiological mechanisms of the antidepressant effect of rTMS. The incorporation of biological assessments into future rTMS clinical trials will help in this regard.
Collapse
Affiliation(s)
- Y Noda
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - W K Silverstein
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - M S Barr
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - F Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies Laboratory,Department of Psychiatry,Faculty of Medicine,University of British Columbia,Vancouver,British Columbia,Canada
| | - J Downar
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - T K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre,The Alfred and Monash University Central Clinical School,Melbourne,Victoria,Australia
| | - B H Mulsant
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - S N Vigod
- Department of Psychiatry,University of Toronto,Toronto,Ontario,Canada
| | - Z J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| | - D M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health,Toronto,Ontario,Canada
| |
Collapse
|
24
|
RETRACTED ARTICLE: Effects of Repetitive Transcranial Magnetic Stimulation on Cognitive Impairment in Stroke Patients: A Meta-Analysis. Mol Neurobiol 2015. [DOI: 10.1007/s12035-014-8895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Brunoni AR, Sampaio-Junior B, Moffa AH, Borrione L, Nogueira BS, Aparício LVM, Veronezi B, Moreno M, Fernandes RA, Tavares D, Bueno PVS, Seibt O, Bikson M, Fraguas R, Benseñor IM. The Escitalopram versus Electric Current Therapy for Treating Depression Clinical Study (ELECT-TDCS): rationale and study design of a non-inferiority, triple-arm, placebo-controlled clinical trial. SAO PAULO MED J 2015; 133:252-63. [PMID: 26176930 PMCID: PMC10876376 DOI: 10.1590/1516-3180.2014.00351712] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 11/24/2014] [Accepted: 12/17/2014] [Indexed: 12/28/2022] Open
Abstract
CONTEXT AND OBJECTIVE Major depressive disorder (MDD) is a common psychiatric condition, mostly treated with antidepressant drugs, which are limited due to refractoriness and adverse effects. We describe the study rationale and design of ELECT-TDCS (Escitalopram versus Electric Current Therapy for Treating Depression Clinical Study), which is investigating a non-pharmacological treatment known as transcranial direct current stimulation (tDCS). DESIGN AND SETTING Phase-III, randomized, non-inferiority, triple-arm, placebo-controlled study, ongoing in São Paulo, Brazil. METHODS ELECT-TDCS compares the efficacy of active tDCS/placebo pill, sham tDCS/escitalopram 20 mg/day and sham tDCS/placebo pill, for ten weeks, randomizing 240 patients in a 3:3:2 ratio, respectively. Our primary aim is to show that tDCS is not inferior to escitalopram with a non-inferiority margin of at least 50% of the escitalopram effect, in relation to placebo. As secondary aims, we investigate several biomarkers such as genetic polymorphisms, neurotrophin serum markers, motor cortical excitability, heart rate variability and neuroimaging. RESULTS Proving that tDCS is similarly effective to antidepressants would have a tremendous impact on clinical psychiatry, since tDCS is virtually devoid of adverse effects. Its ease of use, portability and low price are further compelling characteristics for its use in primary and secondary healthcare. Multimodal investigation of biomarkers will also contribute towards understanding the antidepressant mechanisms of action of tDCS. CONCLUSION Our results have the potential to introduce a novel technique to the therapeutic arsenal of treatments for depression.
Collapse
Affiliation(s)
- André Russowsky Brunoni
- MD, PhD. Attending Physician, Interdisciplinary Neuromodulation Service, Interdisciplinary Center for Applied Neuromodulation, Hospital Universitário (HU), and Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Universidade de São Paulo (USP), São Paulo, Brazil.
| | - Bernardo Sampaio-Junior
- MD. Interdisciplinary Neuromodulation Service, Interdisciplinary Center for Applied Neuromodulation, HU, and Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, USP, São Paulo, Brazil.
| | - Adriano Henrique Moffa
- BA, MSc. Interdisciplinary Center for Applied Neuromodulation, HU, USP, São Paulo, Brazil.
| | - Lucas Borrione
- MD, MSc. Interdisciplinary Center for Applied Neuromodulation, HU and Department and Institute of Psychiatry, USP, São Paulo, Brazil.
| | | | | | - Beatriz Veronezi
- Psychology Student, Interdisciplinary Center for Applied Neuromodulation, HU, USP, São Paulo, Brazil.
| | - Marina Moreno
- Psychology Student, Interdisciplinary Center for Applied Neuromodulation, HU, USP, São Paulo, Brazil.
| | - Raquel Albano Fernandes
- Psychology Student, Interdisciplinary Center for Applied Neuromodulation, HU, USP, São Paulo, Brazil.
| | - Diego Tavares
- MD. Medical Resident and Student, Interdisciplinary Neuromodulation Service, Interdisciplinary Center for Applied Neuromodulation, HU and Department and Institute of Psychiatry, USP, São Paulo, Brazil.
| | - Priscila Vilela Silveira Bueno
- MD. Medical Resident and Student, Interdisciplinary Neuromodulation Service, Interdisciplinary Center for Applied Neuromodulation, HU and Department and Institute of Psychiatry, USP, São Paulo, Brazil.
| | - Ole Seibt
- MSc. Researcher, Department of Biomedical Engineering, City College of City University of New York, New York, USA.
| | - Marom Bikson
- PhD. Head, Department of Biomedical Engineering, City College of City University of New York, New York, USA.
| | - Renerio Fraguas
- MD, PhD. Assistant Professor, HU and Department and Institute of Psychiatry, USP, São Paulo, Brazil.
| | | |
Collapse
|
26
|
Taylor JJ, Williams NR, George MS. Beyond neural cubism: promoting a multidimensional view of brain disorders by enhancing the integration of neurology and psychiatry in education. ACADEMIC MEDICINE : JOURNAL OF THE ASSOCIATION OF AMERICAN MEDICAL COLLEGES 2015; 90:581-6. [PMID: 25340364 PMCID: PMC4405399 DOI: 10.1097/acm.0000000000000530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Cubism was an influential early-20th-century art movement characterized by angular, disjointed imagery. The two-dimensional appearance of Cubist figures and objects is created through juxtaposition of angles. The authors posit that the constrained perspectives found in Cubism may also be found in the clinical classification of brain disorders. Neurological disorders are often separated from psychiatric disorders as if they stemmed from different organ systems. Maintaining two isolated clinical disciplines fractionalizes the brain in the same way that Pablo Picasso fractionalized figures and objects in his Cubist art. This Neural Cubism perpetuates a clinical divide that does not reflect the scope and depth of neuroscience. All brain disorders are complex and multidimensional, with aberrant circuitry and resultant psychopharmacology manifesting as altered behavior, affect, mood, or cognition. Trainees should receive a multidimensional education based on modern neuroscience, not a partial education based on clinical precedent. The authors briefly outline the rationale for increasing the integration of neurology and psychiatry and discuss a nested model with which clinical neuroscientists (neurologists and psychiatrists) can approach and treat brain disorders.
Collapse
Affiliation(s)
- Joseph J Taylor
- J.J. Taylor is an MD/PhD student, Medical University of South Carolina, Charleston, South Carolina. N.R. Williams is instructor, Department of Psychiatry and Behavioral Science, Stanford University, Stanford, California. M.S. George is Layton McCurdy Endowed Chair, Distinguished Professor of Psychiatry, Radiology, and Neuroscience, and director, Brain Stimulation Laboratory, Medical University of South Carolina; staff physician, Ralph H. Johnson VA Medical Center, Charleston, South Carolina; and editor-in-chief, Brain Stimulation: Basic, Translational and Clinical Research in Neuromodulation
| | | | | |
Collapse
|
27
|
Herrold AA, Kletzel SL, Harton BC, Chambers RA, Jordan N, Pape TLB. Transcranial magnetic stimulation: potential treatment for co-occurring alcohol, traumatic brain injury and posttraumatic stress disorders. Neural Regen Res 2014; 9:1712-30. [PMID: 25422632 PMCID: PMC4238159 DOI: 10.4103/1673-5374.143408] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2014] [Indexed: 12/13/2022] Open
Abstract
Alcohol use disorder (AUD), mild traumatic brain injury (mTBI), and posttraumatic stress disorder (PTSD) commonly co-occur (AUD + mTBI + PTSD). These conditions have overlapping symptoms which are, in part, reflective of overlapping neuropathology. These conditions become problematic because their co-occurrence can exacerbate symptoms. Therefore, treatments must be developed that are inclusive to all three conditions. Repetitive transcranial magnetic stimulation (rTMS) is non-invasive and may be an ideal treatment for co-occurring AUD + mTBI + PTSD. There is accumulating evidence on rTMS as a treatment for people with AUD, mTBI, and PTSD each alone. However, there are no published studies to date on rTMS as a treatment for co-occurring AUD + mTBI + PTSD. This review article advances the knowledge base for rTMS as a treatment for AUD + mTBI + PTSD. This review provides background information about these co-occurring conditions as well as rTMS. The existing literature on rTMS as a treatment for people with AUD, TBI, and PTSD each alone is reviewed. Finally, neurobiological findings in support of a theoretical model are discussed to inform TMS as a treatment for co-occurring AUD + mTBI + PTSD. The peer-reviewed literature was identified by targeted literature searches using PubMed and supplemented by cross-referencing the bibliographies of relevant review articles. The existing evidence on rTMS as a treatment for these conditions in isolation, coupled with the overlapping neuropathology and symptomology of these conditions, suggests that rTMS may be well suited for the treatment of these conditions together.
Collapse
Affiliation(s)
- Amy A. Herrold
- Edward Hines Jr. VA Hospital, Research Service PO Box 5000 (M/C 151H), Hines, IL, USA
- The Department of Veterans Affairs (VA), Center for Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, PO Box 5000 (M/C 151H), Hines, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 East Ontario, #7-200, Chicago, IL, USA
| | - Sandra L. Kletzel
- The Department of Veterans Affairs (VA), Center for Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, PO Box 5000 (M/C 151H), Hines, IL, USA
| | - Brett C. Harton
- Chicago Association for Research and Education in Science, Hines, IL, USA
| | - R. Andrew Chambers
- Department of Psychiatry, Laboratory for Translational Neuroscience of Dual Diagnosis & Development, Neuroscience Research Center, Indiana University School of Medicine, 320 West 15 Street, Indianapolis, IN, USA
| | - Neil Jordan
- The Department of Veterans Affairs (VA), Center for Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, PO Box 5000 (M/C 151H), Hines, IL, USA
- Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, 446 East Ontario, #7-200, Chicago, IL, USA
| | - Theresa Louise-Bender Pape
- Edward Hines Jr. VA Hospital, Research Service PO Box 5000 (M/C 151H), Hines, IL, USA
- The Department of Veterans Affairs (VA), Center for Innovation for Complex Chronic Healthcare, Edward Hines Jr. VA Hospital, PO Box 5000 (M/C 151H), Hines, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Physical Medicine and Rehabilitation, Office of Medical Educ. (1574), 345 E. Superior St., Chicago, IL, USA
| |
Collapse
|
28
|
Abstract
OBJECTIVES The therapeutic effects of transcranial magnetic stimulation (TMS) and transcranial direct current stimulation in patients with major depression have shown promising results; however, there is a lack of mechanistic studies using biological markers (BMs) as an outcome. Therefore, our aim was to review noninvasive brain stimulation trials in depression using BMs. METHODS The following databases were used for our systematic review: MEDLINE, Web of Science, Cochrane, and SCIELO. We examined articles published before November 2012 that used TMS and transcranial direct current stimulation as an intervention for depression and had BM as an outcome measure. The search was limited to human studies written in English. RESULTS Of 1234 potential articles, 52 articles were included. Only studies using TMS were found. Biological markers included immune and endocrine serum markers, neuroimaging techniques, and electrophysiological outcomes. In 12 articles (21.4%), end point BM measurements were not significantly associated with clinical outcomes. All studies reached significant results in the main clinical rating scales. Biological marker outcomes were used as predictors of response, to understand mechanisms of TMS, and as a surrogate of safety. CONCLUSIONS Functional magnetic resonance imaging, single-photon emission computed tomography, positron emission tomography, magnetic resonance spectroscopy, cortical excitability, and brain-derived neurotrophic factor consistently showed positive results. Brain-derived neurotrophic factor was the best predictor of patients' likeliness to respond. These initial results are promising; however, all studies investigating BMs are small, used heterogeneous samples, and did not take into account confounders such as age, sex, or family history. Based on our findings, we recommend further studies to validate BMs in noninvasive brain stimulation trials in MDD.
Collapse
|
29
|
Kedzior KK, Azorina V, Reitz SK. More female patients and fewer stimuli per session are associated with the short-term antidepressant properties of repetitive transcranial magnetic stimulation (rTMS): a meta-analysis of 54 sham-controlled studies published between 1997-2013. Neuropsychiatr Dis Treat 2014; 10:727-56. [PMID: 24855360 PMCID: PMC4019615 DOI: 10.2147/ndt.s58405] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) of the dorsolateral prefrontal cortex (DLPFC) appears to have short-term antidepressant properties. The aim of the current study was to update our previous meta-analysis and to investigate factors associated with the antidepressant properties of rTMS. METHOD Following a systematic literature search conducted in Medline and PsycInfo, N=14 sham-controlled, parallel design studies (published after 2008 to August 2013) that had utilized rTMS of the DLPFC in major depression were included in the current meta-analysis. The sensitivity and moderator analyses also included data from N=40 studies (published in 1997-2008) from our previous meta-analysis. The effect size (Cohen's d) in each study was the standardized difference in mean depression scores (on Hamilton Depression Rating Scale, Beck Depression Inventory, Montgomery Åsberg Depression Rating Scale) from baseline to final (after last session) in rTMS compared to sham groups. RESULTS According to a random-effects model with inverse-variance weights, depression scores were significantly reduced after rTMS compared to sham in studies published from 2008-2013 based on N=659 patients (overall mean weighted d=-0.42, 95% confidence interval: -0.66, -0.18, P=0.001). Combining studies from our past and current meta-analyses (published in 1997-2013; N=54) revealed that depression was significantly reduced after left-fast (>1 Hz), right-slow (≤1 Hz), and bilateral (or sequential) rTMS of DLPFC compared to sham. Significant antidepressant properties of rTMS were observed in studies with patients who were treatment resistant, unipolar (or bipolar), non-psychotic, medication-free (or started on antidepressants concurrently with rTMS). According to univariate meta-regressions, depression scores were significantly lower in studies with more female patients and fewer stimuli per session. There was little evidence that publication bias occurred in the analysis. CONCLUSION According to this study, the largest meta-analysis to date, short-term antidepressant properties of rTMS are independent of concurrent antidepressants and might depend on sex and the number of stimuli per session.
Collapse
Affiliation(s)
| | - Valeriya Azorina
- School of Engineering and Science, Jacobs University Bremen, Bremen, Germany
| | - Sarah Kim Reitz
- School of Humanities and Social Sciences, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
30
|
Croarkin PE, Wall CA, Nakonezny PA, Buyukdura JS, Husain MM, Sampson SM, Emslie GJ, Kozel FA. Increased cortical excitability with prefrontal high-frequency repetitive transcranial magnetic stimulation in adolescents with treatment-resistant major depressive disorder. J Child Adolesc Psychopharmacol 2012; 22:56-64. [PMID: 22257125 DOI: 10.1089/cap.2011.0054] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To examine changes in motor cortical excitability in adolescent subjects receiving 30 sessions of high-frequency prefrontal repetitive transcranial magnetic stimulation (rTMS). METHODS Eight adolescents with treatment-resistant major depressive disorder (MDD) enrolled in an open augmentation trial of 10 Hz rTMS. Resting motor thresholds were obtained by the visualization of movement method with a maximum likelihood threshold hunting computer algorithm at baseline and after every five sessions of rTMS. Motor threshold was recorded as the percentage of total machine output at each measurement. RESULTS Motor threshold data from baseline, weeks 2, 4, and 5 were included in a mixed model repeated measure analysis to examine a change in least square mean effect over time. The omnibus effect did not reach statistical significance (F=1.25, p=0.32). However, multiple comparisons from the overall model demonstrated a decrease in the least square mean motor threshold. The mean contrast from baseline to week 5 approached significance (p=0.07). Moreover, a post-hoc analysis with a Wilcoxon signed ranks test demonstrated a significant decrease at week 5 (p=0.03). CONCLUSIONS This suggests that high-frequency rTMS may increase cortical excitability in adolescents with treatment-resistant MDD.
Collapse
Affiliation(s)
- Paul E Croarkin
- Division of Child and Adolescent Psychiatry, Department of Psychiatry, UT Southwestern Medical Center Dallas, Dallas, Texas 75390-8589, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Peng H, Zheng H, Li L, Liu J, Zhang Y, Shan B, Zhang L, Yin Y, Liu J, Li W, Zhou J, Li Z, Yang H, Zhang Z. High-frequency rTMS treatment increases white matter FA in the left middle frontal gyrus in young patients with treatment-resistant depression. J Affect Disord 2012; 136:249-57. [PMID: 22217432 DOI: 10.1016/j.jad.2011.12.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/04/2011] [Accepted: 12/06/2011] [Indexed: 11/18/2022]
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for treatment-resistant depression (TRD), but its therapeutic mechanisms are unclear. White matter abnormalities are thought to cause network dysfunction underlying TRD. Diffusion tensor imaging (DTI) is an ideal tool for examining neural connections and the integrity of white matter. Few studies have used DTI to investigate the impact of rTMS on alterations of whiter matter in TRD. METHOD 30 young treatment-resistant unipolar depression patients (19 males and 11 females) were enrolled in a double-blind, randomized high-frequency (15 Hz) rTMS treatment study. Seventeen patients were treated with real stimulation, and 13 were treated with sham stimulation. White-matter fractional anisotropy (FA) was evaluated using voxel-based analysis (VBA) of FA maps derived from DTI before and after treatment. Twenty-five age- and gender-matched subjects were examined as a control group. RESULTS In an exploratory VBA method, clusters of fifty voxels or greater that survived a family-wise error (FWE)-corrected threshold of p<0.05 were considered significant. The results revealed significantly reduced FA in the left middle frontal gyrus, with peak coordinates [-18 46 -14] in TRD patients. This reduced FA was significantly improved after active rTMS treatment, but not sham stimulation. FA increases were correlated with decreased depressive symptoms. LIMITATIONS This study requires replication and further clarification in a larger patient population, and optimization of stimulation locations and methods. CONCLUSIONS These results suggest that the efficacy of rTMS on TRD is related to increased white-matter FA in the left middle frontal gyrus.
Collapse
Affiliation(s)
- Hongjun Peng
- Mental Health Institute, Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
In psychiatry, neuroimaging facilitates the diagnosis of psychiatric disorders and the development of new medications. It is used to detect structural lesions causing psychosis and to differentiate depression from neurodegenerative disorders or brain tumors. Functional neuroimaging, mostly in the form of molecular neuroimaging with positron emission tomography or single photon emission tomography, facilitates the identification of therapeutic targets, the determination of the dose of a new drug needed to occupy its target in the brain, and the selection of patients for clinical trials.
Collapse
Affiliation(s)
- Joseph C Masdeu
- Section on Integrative Neuroimaging, Intramural Research Program, National Institutes of Health (NIH/NIMH-CBDB), Bethesda, Maryland 20892-1365, USA.
| |
Collapse
|