1
|
Tumulty JP, Miller SE, Van Belleghem SM, Weller HI, Jernigan CM, Vincent S, Staudenraus RJ, Legan AW, Polnaszek TJ, Uy FMK, Walton A, Sheehan MJ. Evidence for a selective link between cooperation and individual recognition. Curr Biol 2023; 33:5478-5487.e5. [PMID: 38065097 PMCID: PMC11074921 DOI: 10.1016/j.cub.2023.11.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 09/05/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
The ability to recognize others is a frequent assumption of models of the evolution of cooperation. At the same time, cooperative behavior has been proposed as a selective agent favoring the evolution of individual recognition abilities. Although theory predicts that recognition and cooperation may co-evolve, data linking recognition abilities and cooperative behavior with evidence of selection are elusive. Here, we provide evidence of a selective link between individual recognition and cooperation in the paper wasp Polistes fuscatus through a combination of clinal, common garden, and population genomics analyses. We identified latitudinal clines in both rates of cooperative nesting and color pattern diversity, consistent with a selective link between recognition and cooperation. In behavioral experiments, we replicated previous results demonstrating individual recognition in cooperative and phenotypically diverse P. fuscatus from New York. In contrast, wasps from a less cooperative and phenotypically uniform Louisiana population showed no evidence of individual recognition. In a common garden experiment, groups of wasps from northern populations formed more stable and individually biased associations, indicating that recognition facilitates group stability. The strength of recent positive selection on cognition-associated loci likely to mediate individual recognition is substantially greater in northern compared with southern P. fuscatus populations. Collectively, these data suggest that individual recognition and cooperative nesting behavior have co-evolved in P. fuscatus because recognition helps stabilize social groups. This work provides evidence of a specific cognitive phenotype under selection because of social interactions, supporting the idea that social behavior can be a key driver of cognitive evolution.
Collapse
Affiliation(s)
- James P Tumulty
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| | - Sara E Miller
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121, USA
| | - Steven M Van Belleghem
- Ecology, Evolution and Conservation Biology, Biology Department, KU Leuven, 3000 Leuven, Belgium
| | - Hannah I Weller
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Christopher M Jernigan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Sierra Vincent
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Regan J Staudenraus
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | - Andrew W Legan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | | - Floria M K Uy
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | - Alexander Walton
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Michael J Sheehan
- Laboratory for Animal Social Evolution and Recognition, Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Poissonnier LA, Hartmann Y, Czaczkes TJ. Ants combine object affordance with latent learning to make efficient foraging decisions. Proc Natl Acad Sci U S A 2023; 120:e2302654120. [PMID: 37603741 PMCID: PMC10468611 DOI: 10.1073/pnas.2302654120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023] Open
Abstract
The affordance of an object refers to its functional properties. For example, a bowl has the affordance of holding water, but a sieve does not. Here, we report that ants learn the affordance of a novel object without this attribute being rewarded, and use the memory of this affordance to avoid predicted, but never experienced, crowding. Ants were trained to feeders, which could support either only one ant or many. Two feeders were encountered, each of identical design but differently scented. After training, on the outward journey, half the ants encounter nestmates, which had fed on food matching one of the training feeders. Encountering returning nestmates reduced preference for the feeder matching the scent of the encountered nestmates, but only for ants trained on a limited-access feeder; ants trained on an unlimited feeder were unaffected. In other words, only if ants know that the food access is limited, and receive information that this feeder is heavily visited, do they reduce their preference for this feeder. To achieve this, the ants had to combine memories of the feeders' affordance with the presence of nestmates. Then they had to use semantic knowledge that restricted food access combined with nestmate presence predicts a likelihood of crowding, or a rule such as "if the food is restricted and there are nestmates on the path, go to another food source." Regardless of the mechanism, these results demonstrate that ants latently learn the affordance of their surroundings, an unexpected cognitive ability for an invertebrate.
Collapse
Affiliation(s)
- Laure-Anne Poissonnier
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, RegensburgD-95053, Germany
| | - Yannick Hartmann
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, RegensburgD-95053, Germany
| | - Tomer J. Czaczkes
- Animal Comparative Economics Laboratory, Department of Zoology and Evolutionary Biology, University of Regensburg, RegensburgD-95053, Germany
| |
Collapse
|
3
|
Pluháček J, Tučková V, Šárová R, King SRB. Why wait to mark? Possible reasons behind latency from olfactory exploration to overmarking in four African equid species. Anim Cogn 2022; 25:1443-1452. [PMID: 35554766 DOI: 10.1007/s10071-022-01625-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 11/30/2022]
Abstract
Whereas most studies on overmarking in mammals analysed the rate of overmarking, that those investigate time between exploration of an olfactory stimulus and the response to it remain less common, with inconsistent results. We examined the latency in time between elimination by the sender and sniffing by the receiver, and from sniffing and overmarking, in four captive African equid species to explore differences among species, and among age and sex classes. We investigated these latency time periods in light of three potential hypotheses explaining overmarking behaviour in equids: social bonds, group cohesion, and intrasexual competition. Analysing 1684 events of sniffing and 719 of overmarking among 130 individuals, we found that (i) the time from elimination to overmarking was shorter among female friends and in parent-offspring dyads, proving support to the social bond hypothesis; (ii) intraspecific differences in time periods do not reflect the social organisation of species, thus not supporting the group cohesion hypothesis; (iii) males were more attracted to elimination of conspecifics than females, and female's eliminations were inspected longer, in line with the sexual competition hypothesis and/or reproductive behaviour. In addition, we found that the younger foals came to sniff eliminations faster than older ones, and in larger groups foals devoted longer time to sniffing the elimination before overmarking. We concluded that examination of the elimination could be driven by motivations other than the decision to overmark. Whereas overmarking serves to express bonds to a familiar individual, the latency of overmarking reflects more reproductive interests.
Collapse
Affiliation(s)
- Jan Pluháček
- Department of Ethology, Institute of Animal Science, Přátelství 815, Uhříněves, 10400, Prague, Czech Republic.
- Ostrava Zoo, Michálkovická 2081/197, 71000, Ostrava, Czech Republic.
- Departement of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, 71000, Ostrava, Czech Republic.
| | - Vladimíra Tučková
- Department of Zoology, Faculty of Science, University of South Bohemia, Branišovská 1760, 37005, České Budějovice, Czech Republic
| | - Radka Šárová
- Department of Ethology, Institute of Animal Science, Přátelství 815, Uhříněves, 10400, Prague, Czech Republic
| | - Sarah R B King
- Natural Resource Ecology Laboratory, Warner College of Natural Resources, Colorado State University, Campus Delivery 1499, Fort Collins, USA
| |
Collapse
|
4
|
Individual recognition and individual identity signals in Polistes fuscatus wasps vary geographically. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2021.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Tibbetts EA, Wong E, Bonello S. Wasps Use Social Eavesdropping to Learn about Individual Rivals. Curr Biol 2020; 30:3007-3010.e2. [DOI: 10.1016/j.cub.2020.05.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/01/2020] [Accepted: 05/14/2020] [Indexed: 01/05/2023]
|
6
|
Wang Q, Goodger JQD, Woodrow IE, Chang L, Elgar MA. Task-Specific Recognition Signals Are Located on the Legs in a Social Insect. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
7
|
|
8
|
Ma WJ, Higham JP. The role of familiarity in signaller-receiver interactions. J R Soc Interface 2018; 15:20180568. [PMID: 30958228 PMCID: PMC6303790 DOI: 10.1098/rsif.2018.0568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/19/2018] [Indexed: 11/12/2022] Open
Abstract
In animal communication, individuals of species exhibiting individual recognition of conspecifics with whom they have repeated interactions, receive signals not only from unfamiliar conspecifics, but also from individuals with whom they have prior experience. Empirical evidence suggests that familiarity with a specific signaller aids receivers in interpreting that signaller's signals, but there has been little theoretical work on this effect. Here, we develop a Bayesian decision-making model and apply it to the well-studied systems of primate ovulation signals. We compare the siring probability of learner males versus non-learner males, based on variation in their assessment of the best time to mate and mate-guard females. We compare males of different dominance ranks, and vary the number of females, and their cycle synchrony. We find strong fitness advantages for learners, which manifest very quickly. Receivers do not have to see the full range of a signaller's signals in order to start gaining familiarity benefits. Reproductive asynchrony and increasing the number of females both enhance learning advantages. We provide theoretical evidence for a strong advantage to specific learning of a signaller's range of signals in signalling systems. Our results have broad implications, not only for understanding communication, but in elucidating additional fitness benefits to group-living, the evolution of individual recognition, and other characteristics of animal behavioural biology.
Collapse
Affiliation(s)
- Wei Ji Ma
- Center for Neural Science, New York University, 4 Washington Place, New York, NY, USA
- Department of Psychology, New York University, 6 Washington Place, New York, NY, USA
| | - James P. Higham
- Department of Anthropology, New York University, 25 Waverly Place, New York, NY, USA
| |
Collapse
|
9
|
Tibbetts EA, Pandit S, Nondorf D. Developmental plasticity and the origin of novel communication systems: Individual recognition in
Polistes
wasps*. Evolution 2018; 72:2728-2735. [DOI: 10.1111/evo.13613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/22/2018] [Indexed: 11/27/2022]
Affiliation(s)
- Elizabeth A. Tibbetts
- Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109‐1085
| | - Sohini Pandit
- Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109‐1085
| | - Daniel Nondorf
- Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109‐1085
| |
Collapse
|
10
|
Tibbetts EA, Injaian A, Sheehan MJ, Desjardins N. Intraspecific Variation in Learning: Worker Wasps Are Less Able to Learn and Remember Individual Conspecific Faces than Queen Wasps. Am Nat 2018; 191:595-603. [DOI: 10.1086/696848] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Gong Z, Tan K, Nieh JC. First demonstration of olfactory learning and long term memory in honey bee queens. J Exp Biol 2018; 221:jeb.177303. [DOI: 10.1242/jeb.177303] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/15/2018] [Indexed: 01/06/2023]
Abstract
As the primary source of colony reproduction, social insect queens play a vital role. However, the cognitive abilities of queens are not well understood, although queen learning and memory are essential in multiple species such as honey bees, in which virgin queens must leave the nest and then successful learn to navigate back over repeated nuptial flights. Honey bee queen learning has never been previously demonstrated. We therefore tested olfactory learning in queens and workers and examined the role of DNA methylation, which plays a key role in long term memory formation. We provide the first evidence that honey bee queens have excellent learning and memory. The proportion of honey bee queens that exhibited learning was 5-fold higher than workers at every tested age and, for memory, 4-fold higher than workers at a very young age. DNA methylation may play a key role in this queen memory because queens exhibiting remote memory had a more consistent elevation in Dnmt3 gene expression as compared to workers. Both castes also showed excellent remote memory (7 day memory), which was reduced by 14-20% by the DNA methylation inhibitor, zebularine. Given that queens live about 10-fold longer than workers, these results suggest that queens can serve as an excellently long-term reservoir of colony memory.
Collapse
Affiliation(s)
- Zhiwen Gong
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Science. Menglun, China
| | - Ken Tan
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Science, Kunming, Yunnan Province, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Science. Menglun, China
| | - James C. Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
12
|
de Souza AR, Teixeira GVM, do Nascimento FS. Individually distinctive facial patterning without a signal value: a case of ‘missing’ social knowledge in the paper wasp Polistes versicolor? Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2388-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Chronic social defeat induces long-term behavioral depression of aggressive motivation in an invertebrate model system. PLoS One 2017; 12:e0184121. [PMID: 28910319 PMCID: PMC5598953 DOI: 10.1371/journal.pone.0184121] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/18/2017] [Indexed: 11/23/2022] Open
Abstract
Losing a fight against a conspecific male (social defeat) induces a period of suppressed aggressiveness and general behaviour, often with symptoms common to human psychiatric disorders. Agonistic experience is also discussed as a potential cause of consistent, behavioral differences between individuals (animal “personality”). In non-mammals, however, the impact of single agonistic encounters typically last only hours, but then again studies of repeated intermittent defeat (chronic social defeat) are seldom. We report the effect of chronic social defeat in adult male crickets (Gryllus bimaculatus), for which all known behavioral effects of defeat last only 3 h. Firstly, after 48 h social isolation, crickets that experienced 5 defeats at 24 h intervals against the same, weight-matched opponent exhibited suppressed aggressiveness lasting >24 h, which was still evident when the animals were matched against an unfamiliar opponent at the last trial. Secondly, this longer-term depression of aggression also occurred in 48 h isolated crickets that lost 6 fights at 1 h intervals against unfamiliar opponents at each trial. Thirdly, crickets isolated as larvae until adult maturity (>16 days) were significantly more aggressive, and less variable in their aggressiveness at their very first fight than 48 h isolates, and also significantly more resilient to the effects of chronic social defeat. We conclude that losing an aggressive encounter in crickets has a residual effect, lasting at least 24 h, that accumulates when repeated defeats are experienced, and leads to a prolonged depression of aggressive motivation in subordinates. Furthermore, our data indicate that social interactions between young adults and possibly larvae can have even longer, possibly lifelong influences on subsequent behavior. Social subjugation is thus likely to be a prime determinant of inter-individual behavioral differences in crickets. Our work also opens new avenues for investigating proximate mechanisms underlying depression-like phenomena.
Collapse
|
14
|
Schoofs L, De Loof A, Van Hiel MB. Neuropeptides as Regulators of Behavior in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2017; 62:35-52. [PMID: 27813667 DOI: 10.1146/annurev-ento-031616-035500] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Neuropeptides are by far the largest and most diverse group of signaling molecules in multicellular organisms. They are ancient molecules important in regulating a multitude of processes. Their small proteinaceous character allowed them to evolve and radiate quickly into numerous different molecules. On average, hundreds of distinct neuropeptides are present in animals, sometimes with unique classes that do not occur in distantly related species. Acting as neurotransmitters, neuromodulators, hormones, or growth factors, they are extremely diverse and are involved in controlling growth, development, ecdysis, digestion, diuresis, and many more physiological processes. Neuropeptides are also crucial in regulating myriad behavioral actions associated with feeding, courtship, sleep, learning and memory, stress, addiction, and social interactions. In general, behavior ensures that an organism can survive in its environment and is defined as any action that can change an organism's relationship to its surroundings. Even though the mode of action of neuropeptides in insects has been vigorously studied, relatively little is known about most neuropeptides and only a few model insects have been investigated. Here, we provide an overview of the roles neuropeptides play in insect behavior. We conclude that multiple neuropeptides need to work in concert to coordinate certain behaviors. Additionally, most neuropeptides studied to date have more than a single function.
Collapse
Affiliation(s)
- Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| | - Matthias Boris Van Hiel
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, 3000 Leuven, Belgium; , ,
| |
Collapse
|
15
|
Berens AJ, Tibbetts EA, Toth AL. Candidate genes for individual recognition in Polistes fuscatus paper wasps. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:115-29. [PMID: 26660069 DOI: 10.1007/s00359-015-1057-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 11/12/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022]
Abstract
Few animals are known to individually recognize conspecifics, i.e. learn and recall unique individuals during subsequent encounters, and nearly all are social vertebrates. Remarkably, the social paper wasp Polistes fuscatus has recently been discovered to possess this ability, which is useful for remembering identities during competitive social interactions. We analyzed brain gene expression in staged encounters between pairs of individuals to explore potential mechanisms underlying wasps' ability to recall familiar individuals using real-time qRT-PCR. We identified four candidate genes (IP3K, IP3R, Nckx30C and Su(var)2-10) that were down-regulated in the presence of familiar individuals compared to single wasps and pairs of wasps meeting for the first time. These candidate genes are related to calcium signaling, therefore, we treated wasps with lithium chloride, a pharmacological agent that inhibits calcium signaling in neurons. This treatment decreased aggression in paper wasps, but did not affect expression of genes related to calcium signaling. The results suggest calcium signaling differences may be related to individual memory recall in wasps, and we present four promising candidate genes for future study. These data suggest genes associated with dominance behavior may be co-opted for individual recognition, but further work is needed to establish a causal association with the behavior.
Collapse
Affiliation(s)
- A J Berens
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA.
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
| | - E A Tibbetts
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - A L Toth
- Program in Bioinformatics and Computational Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
- Department of Entomology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
16
|
Status discrimination through fertility signalling allows ants to regulate reproductive conflicts. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
17
|
Injaian A, Tibbetts EA. Cognition across castes: individual recognition in worker Polistes fuscatus wasps. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2013.10.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Gill KP, van Wilgenburg E, Macmillan DL, Elgar MA. Density of Antennal Sensilla Influences Efficacy of Communication in a Social Insect. Am Nat 2013; 182:834-40. [DOI: 10.1086/673712] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Individual Recognition and the Evolution of Learning and Memory in Polistes Paper Wasps. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
20
|
Learning and Recognition of Identity in Ants. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-415823-8.00038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
21
|
Wiley RH. Specificity and multiplicity in the recognition of individuals: implications for the evolution of social behaviour. Biol Rev Camb Philos Soc 2012; 88:179-95. [DOI: 10.1111/j.1469-185x.2012.00246.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Gherardi F, Aquiloni L, Tricarico E. Revisiting social recognition systems in invertebrates. Anim Cogn 2012; 15:745-62. [PMID: 22639070 DOI: 10.1007/s10071-012-0513-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 05/01/2012] [Accepted: 05/01/2012] [Indexed: 01/27/2023]
Abstract
Since the 1970s, the ability of some invertebrate species to recognize individual conspecifics has attracted increased scientific interest. However, there is still confusion in the literature, possibly due to the lack of unambiguous criteria for classifying social recognition in its different forms. Here, we synthesize the results of studies on invertebrates and provide a framework with the purpose of identifying research needs and directions for future investigations. Following in part Sherman et al.'s (Behavioural ecology: an evolutionary approach. Blackwell Science, Oxford, pp 69-96, 1997) definition of 'recognition systems' and Tibbetts and Dale's (Trends Ecol Evol 22:529-537, 2007) classification of 'individual recognition,' we first discuss different case studies that exemplify the categories of 'familiar recognition' and 'class-level recognition.' Then, through the analysis of the invertebrate literature, we illustrate eight key properties that characterize 'true individual recognition' systems. We are confident that the proposed framework will provide opportunities for exciting discoveries of the cognitive abilities in invertebrates.
Collapse
Affiliation(s)
- Francesca Gherardi
- Department of Evolutionary Biology Leo Pardi, University of Florence, Via Romana 17, 50125, Florence, Italy.
| | | | | |
Collapse
|
23
|
Gill KP, van Wilgenburg E, Taylor P, Elgar MA. Collective retention and transmission of chemical signals in a social insect. Naturwissenschaften 2012; 99:245-8. [PMID: 22328072 DOI: 10.1007/s00114-012-0891-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 11/27/2022]
Abstract
Social insect colonies exhibit highly coordinated responses to ecological challenges by acquiring information that is disseminated throughout the colony. Some responses are coordinated directly from the signals produced by individuals that acquired the information. Other responses may require information to be transferred indirectly through a third party, thereby requiring colony-wide retention of information. Social insects use colony signature odours to distinguish between nestmates and non-nestmates, and the level of aggression between non-nestmates typically varies according to the distance between colonies and thus their history of interactions. Such coordinated, colony-specific responses may require information about particular odours to be disseminated and retained across the colony. Our field experiments with weaver ants reveal colony-wide, indirect acquisition and retention of the signature odours of a different colony with which they had experienced aggression. These data highlight the significance of interaction history and suggest the presence of a collective memory.
Collapse
Affiliation(s)
- Katherine P Gill
- Department of Zoology, University of Melbourne, Melbourne, VIC, 3010, Australia
| | | | | | | |
Collapse
|
24
|
Olfactory recognition of individual competitors by means of faeces in horse (Equus caballus). Anim Cogn 2010; 14:245-57. [DOI: 10.1007/s10071-010-0358-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 11/16/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
25
|
Bos N, Guerrieri FJ, d’Ettorre P. Significance of chemical recognition cues is context dependent in ants. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2010.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Abstract
Attempts to relate brain size to behaviour and cognition have rarely integrated information from insects with that from vertebrates. Many insects, however, demonstrate that highly differentiated motor repertoires, extensive social structures and cognition are possible with very small brains, emphasising that we need to understand the neural circuits, not just the size of brain regions, which underlie these feats. Neural network analyses show that cognitive features found in insects, such as numerosity, attention and categorisation-like processes, may require only very limited neuron numbers. Thus, brain size may have less of a relationship with behavioural repertoire and cognitive capacity than generally assumed, prompting the question of what large brains are for. Larger brains are, at least partly, a consequence of larger neurons that are necessary in large animals due to basic biophysical constraints. They also contain greater replication of neuronal circuits, adding precision to sensory processes, detail to perception, more parallel processing and enlarged storage capacity. Yet, these advantages are unlikely to produce the qualitative shifts in behaviour that are often assumed to accompany increased brain size. Instead, modularity and interconnectivity may be more important.
Collapse
|
27
|
Avoiding plants unsuitable for the symbiotic fungus: learning and long-term memory in leaf-cutting ants. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2009.12.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Holman L, Dreier S, d'Ettorre P. Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc Biol Sci 2010; 277:2007-15. [PMID: 20181562 DOI: 10.1098/rspb.2009.2311] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Social insects offer unique opportunities to test predictions regarding the evolution of cooperation, life histories and communication. Colony founding by groups of unrelated queens, some of which are later killed, may select for selfish reproductive strategies, honest signalling and punishment. Here, we use a brood transfer experiment to test whether cofounding queens of the ant Lasius niger 'selfishly' adjust their productivity when sharing the nest with future competitors. We simultaneously analysed queen cuticular hydrocarbon (CHC) profiles to investigate whether queens honestly signal their reproductive output or produce dishonest, manipulative signals, providing a novel test of the evolutionary significance of queen pheromones. Queens produced fewer workers when their colony contained ample brood, but only in the presence of competitors, suggesting selfish conservation of resources. Several CHCs correlated with reproductive maturation, and to a lesser extent with productivity; the same hydrocarbons were more abundant on queens that were not killed, suggesting that workers select productive queens using these chemical cues. Our results highlight the role of honest signalling in the evolution of cooperation: whenever cheaters can be reliably identified, they may incur sanctions that reduce the incentive to be selfish.
Collapse
Affiliation(s)
- Luke Holman
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
29
|
Sheehan MJ, Tibbetts EA. Selection for individual recognition and the evolution of polymorphic identity signals in Polistes paper wasps. J Evol Biol 2010; 23:570-7. [PMID: 20074307 DOI: 10.1111/j.1420-9101.2009.01923.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Individual recognition (IR) requires individuals to uniquely identify their social partners based on phenotypic variation. Because IR is so specific, distinctive phenotypes that stand out from the crowd facilitate efficient recognition. Over time, the benefits of unique appearances are predicted to produce a correlation between IR and phenotypic variation. Here, we test whether there is an association between elevated phenotypic polymorphism and IR in paper wasps. Previous work has shown that Polistes fuscatus use variable colour patterns for IR. We test whether two less variable wasp species, Polistes dominulus and Polistes metricus, are capable of IR. As predicted, neither species is capable of IR, suggesting that highly variable colour patterns are confined to Polistes species with IR. This association suggests that elevated phenotypic variation in taxa with IR may be the result of selection for identity signals rather than neutral processes. Given that IR is widespread among social taxa, selection for identity signalling may be an underappreciated mechanism for the origin and maintenance of polymorphism.
Collapse
Affiliation(s)
- M J Sheehan
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
30
|
Blacher P, Lecoutey E, Fresneau D, Nowbahari E. Reproductive hierarchies and status discrimination in orphaned colonies of Pachycondyla apicalis ants. Anim Behav 2010. [DOI: 10.1016/j.anbehav.2009.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
31
|
Josens R, Eschbach C, Giurfa M. Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants. ACTA ACUST UNITED AC 2009; 212:1904-11. [PMID: 19483008 DOI: 10.1242/jeb.030080] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Individual Camponotus fellah ants perceive and learn odours in a Y-maze in which one odour is paired with sugar (CS+) while a different odour (CS-) is paired with quinine (differential conditioning). We studied olfactory retention in C. fellah to determine whether olfactory learning leads to long-term memory retrievable 24 h and 72 h after training. One and 3 days after training, ants exhibited robust olfactory memory through a series of five successive retention tests in which they preferred the CS+ and stayed longer in the arm presenting it. In order to determine the nature of the associations memorized, we asked whether choices within the Y-maze were driven by excitatory memory based on choosing the CS+ and/or inhibitory memory based on avoiding the CS-. By confronting ants with a novel odour vs either the CS+ or the CS- we found that learning led to the formation of excitatory memory driving the choice of the CS+ but no inhibitory memory based on the CS- was apparent. Ants even preferred the CS- to the novel odour, thus suggesting that they used the CS- as a contextual cue in which the CS+ was embedded, or as a second-order cue predicting the CS+ and thus the sugar reward. Our results constitute the first controlled account of olfactory long-term memory in individual ants for which the nature of associations could be precisely characterized.
Collapse
Affiliation(s)
- Roxana Josens
- Grupo de Estudio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. II, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
32
|
Sheehan MJ, Tibbetts EA. Evolution of identity signals: frequency-dependent benefits of distinctive phenotypes used for individual recognition. Evolution 2009; 63:3106-13. [PMID: 19744121 DOI: 10.1111/j.1558-5646.2009.00833.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Identifying broad-scale evolutionary processes that maintain phenotypic polymorphisms has been a major goal of modern evolutionary biology. There are numerous mechanisms, such as negative frequency-dependent selection, that may maintain polymorphisms, although it is unknown which mechanisms are prominent in nature. Traits used for individual recognition are strikingly variable and have evolved independently in numerous lineages, providing an excellent model to investigate which factors maintain ecologically relevant phenotypic polymorphisms. Theoretical models suggest that individuals may benefit by advertising their identities with distinctive, recognizable phenotypes. Here, we test the benefits of advertising one's identity with a distinctive phenotype. We manipulated the appearance of Polistes fuscatus paper wasp groups so that three individuals had the same appearance and one individual had a unique, easily recognizable appearance. We found that individuals with distinctive appearances received less aggression than individuals with nondistinctive appearances. Therefore, individuals benefit by advertising their identity with a unique phenotype. Our results provide a potential mechanism through which negative frequency-dependent selection may maintain the polymorphic identity signals in P. fuscatus. Given that recognition is important for many social interactions, selection for distinctive identity signals may be an underappreciated and widespread mechanism underlying the evolution of phenotypic polymorphisms in social taxa.
Collapse
Affiliation(s)
- Michael J Sheehan
- Ecology and Evolutionary Biology, University of Michigan, 830 N. University Avenue, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
33
|
Tannure-Nascimento IC, Nascimento FS, Dantas JO, Zucchi R. Decision rules for egg recognition are related to functional roles and chemical cues in the queenless ant Dinoponera quadriceps. Naturwissenschaften 2009; 96:857-61. [PMID: 19421729 DOI: 10.1007/s00114-009-0535-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2009] [Revised: 03/26/2009] [Accepted: 03/30/2009] [Indexed: 11/26/2022]
Abstract
The capacity to distinguish colony members from strangers is a key component in social life. In social insects, this extends to the brood and involves discrimination of queen eggs. Chemical substances communicate colony affiliation for both adults and brood; thus, in theory, all colony members should be able to recognize fellow nestmates. In this study, we investigate the ability of Dinoponera quadriceps workers to discriminate nestmate and non-nestmate eggs based on cuticular hydrocarbon composition. We analyzed whether cuticular hydrocarbons present on the eggs provide cues of discrimination. The results show that egg recognition in D. quadriceps is related to both age and the functional role of workers. Brood care workers were able to distinguish nestmate from non-nestmate eggs, while callow and forager workers were unable to do so.
Collapse
|
34
|
Abstract
Recognition of group-members is a key feature of sociality. Ants use chemical communication to discriminate nestmates from intruders, enhancing kin cooperation and preventing parasitism. The recognition code is embedded in their cuticular chemical profile, which typically varies between colonies. We predicted that ants might be capable of accurate recognition in unusual situations when few individuals interact repeatedly, as new colonies started by two to three queens. Individual recognition would be favoured by selection when queens establish dominance hierarchies, because repeated fights for dominance are costly; but it would not evolve in absence of hierarchies. We previously showed that Pachycondyla co-founding queens, which form dominance hierarchies, have accurate individual recognition based on chemical cues. Here, we used the ant Lasius niger to test the null hypothesis that individual recognition does not occur when co-founding queens do not establish dominance hierarchies. Indeed, L. niger queens show a similar level of aggression towards both co-foundresses and intruders, indicating that they are unable of individual recognition, contrary to Pachycondyla. Additionally, the variation in chemical profiles of Lasius and Pachycondyla queens is comparable, thus informational constraints are unlikely to apply. We conclude that selection pressure from the social context is of crucial significance for the sophistication of recognition systems.
Collapse
Affiliation(s)
- S Dreier
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
35
|
|
36
|
Dahbi A, Hefetz A, Lenoir A. Chemotaxonomy of some Cataglyphis ants from Morocco and Burkina Faso. BIOCHEM SYST ECOL 2008. [DOI: 10.1016/j.bse.2008.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Abstract
Division of labour is the cornerstone of successful societies. A new study has shown that individual experience can produce long-lasting task specialisation in ants. This asks for a reappraisal of the role of individual learning in insect societies.
Collapse
Affiliation(s)
- Patrizia D'Ettorre
- Department of Biology, Section of Population Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|