1
|
Chiang C, Franks B. Disaggregating animal welfare risks in aquaculture. SCIENCE ADVANCES 2024; 10:eadn8782. [PMID: 39413176 PMCID: PMC11482320 DOI: 10.1126/sciadv.adn8782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 08/20/2024] [Indexed: 10/18/2024]
Abstract
Aquaculture, fueled partly by claims of supporting food security, is experiencing unprecedented growth. Framing aquaculture as a monolith, however, overlooks its extreme taxonomic diversity. This paper assesses the welfare risks associated with that diversity, establishing seven species-level risk factors from involved parental care to long lifespans. Investigating these welfare risks across all aquatic species reported to the Food and Agriculture Organization (FAO) revealed an uneven distribution of risk, with extreme species-level risks in chordates, crustaceans, and cephalopod mollusks. Compared to species with fewer risks, species with extreme welfare risks were found to cost more and contribute the least to global production. This work challenges the notion that prioritizing animal welfare is incompatible with addressing food security and creates the possibility of identifying certain plant and invertebrate species, like seaweeds and bivalves, that minimize welfare concerns while providing affordability and accessibility. Going forward, proactive welfare approaches are needed to inform consumer choice and shape just and sustainable aquaculture policy.
Collapse
Affiliation(s)
- Chiawen Chiang
- Department of Environmental Studies, New York University, 285 Mercer Street, New York, NY 10003, USA
| | - Becca Franks
- Department of Environmental Studies, New York University, 285 Mercer Street, New York, NY 10003, USA
| |
Collapse
|
2
|
Karwinkel T, Peter A, Holland RA, Thorup K, Bairlein F, Schmaljohann H. A conceptual framework on the role of magnetic cues in songbird migration ecology. Biol Rev Camb Philos Soc 2024; 99:1576-1593. [PMID: 38629349 DOI: 10.1111/brv.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 07/06/2024]
Abstract
Migrating animals perform astonishing seasonal movements by orienting and navigating over thousands of kilometres with great precision. Many migratory species use cues from the sun, stars, landmarks, olfaction and the Earth's magnetic field for this task. Among vertebrates, songbirds are the most studied taxon in magnetic-cue-related research. Despite multiple studies, we still lack a clear understanding of when, where and how magnetic cues affect the decision-making process of birds and hence, their realised migratory behaviour in the wild. This understanding is especially important to interpret the results of laboratory experiments in an ecologically appropriate way. In this review, we summarise the current findings about the role of magnetic cues for migratory decisions in songbirds. First, we review the methodological principles for orientation and navigation research, specifically by comparing experiments on caged birds with experiments on free-flying birds. While cage experiments can show the sensory abilities of birds, studies with free-flying birds can characterise the ecological roles of magnetic cues. Second, we review the migratory stages, from stopover to endurance flight, in which songbirds use magnetic cues for their migratory decisions and incorporate this into a novel conceptual framework. While we lack studies examining whether and when magnetic cues affect orientation or navigation decisions during flight, the role of magnetic cues during stopover is relatively well studied, but mostly in the laboratory. Notably, many such studies have produced contradictory results so that understanding the biological importance of magnetic cues for decisions in free-flying songbirds is not straightforward. One potential explanation is that reproducibility of magnetic-cue experiments is low, probably because variability in the behavioural responses of birds among experiments is high. We are convinced that parts of this variability can be explained by species-specific and context-dependent reactions of birds to the study conditions and by the bird's high flexibility in whether they include magnetic cues in a decision or not. Ultimately, this review should help researchers in the challenging field of magnetoreception to design experiments meticulously and interpret results of such studies carefully by considering the migration ecology of their focal species.
Collapse
Affiliation(s)
- Thiemo Karwinkel
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Annika Peter
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| | - Richard A Holland
- School of Environmental and Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Kasper Thorup
- Center for Macroecology, Evolution and Climate, Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark
| | - Franz Bairlein
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Max Planck Institute of Animal Behavior, Am Obstberg 1, Radolfzell, 78315, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research 'Vogelwarte Helgoland', An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
- Carl von Ossietzky Universität Oldenburg, School of Mathematics and Science, Institute of Biology and Environmental Sciences, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany
| |
Collapse
|
3
|
Helm B, Liedvogel M. Avian migration clocks in a changing world. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:691-716. [PMID: 38305877 PMCID: PMC11226503 DOI: 10.1007/s00359-023-01688-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024]
Abstract
Avian long-distance migration requires refined programming to orchestrate the birds' movements on annual temporal and continental spatial scales. Programming is particularly important as long-distance movements typically anticipate future environmental conditions. Hence, migration has long been of particular interest in chronobiology. Captivity studies using a proxy, the shift to nocturnality during migration seasons (i.e., migratory restlessness), have revealed circannual and circadian regulation, as well as an innate sense of direction. Thanks to rapid development of tracking technology, detailed information from free-flying birds, including annual-cycle data and actograms, now allows relating this mechanistic background to behaviour in the wild. Likewise, genomic approaches begin to unravel the many physiological pathways that contribute to migration. Despite these advances, it is still unclear how migration programmes are integrated with specific environmental conditions experienced during the journey. Such knowledge is imminently important as temporal environments undergo rapid anthropogenic modification. Migratory birds as a group are not dealing well with the changes, yet some species show remarkable adjustments at behavioural and genetic levels. Integrated research programmes and interdisciplinary collaborations are needed to understand the range of responses of migratory birds to environmental change, and more broadly, the functioning of timing programmes under natural conditions.
Collapse
Affiliation(s)
- Barbara Helm
- Swiss Ornithological Institute, Bird Migration Unit, Seerose 1, CH-6204, Sempach, Schweiz.
| | - Miriam Liedvogel
- Institute of Avian Research, An Der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
4
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Bottini CLJ, Whiley RE, Branfireun BA, MacDougall-Shackleton SA. Effects of methylmercury and food stress on migratory activity in song sparrows, Melospiza melodia. Horm Behav 2022; 146:105261. [PMID: 36126358 DOI: 10.1016/j.yhbeh.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/25/2022]
Abstract
Avian migration is a challenging life stage susceptible to the adverse effects of stressors, including contaminants like methylmercury (MeHg). Although birds often experience stressors and contaminants concurrently in the wild, no study to date has investigated how simultaneous exposure to MeHg and food stress affects migratory behavior. Our objectives were to determine if MeHg or food stress exposure during summer, alone or combined, has carry-over effects on autumn migratory activity, and if hormone levels (corticosterone, thyroxine) and body condition were related to these effects. We tested how exposure to dietary MeHg and/or food stress (unpredictable temporary food removal) affected migratory behavior in captive song sparrows, Melospiza melodia. Nocturnal activity was influenced by a 3-way interaction between MeHg × stress × nights of the study, indicating that activity changed over time in different ways depending on prior treatments. Thyroxine was not affected by treatment or sampling date. During the migratory season, fecal corticosterone metabolite concentrations increased in birds co-exposed to MeHg and food stress compared to controls, suggesting an additive carry-over effect. As well, during the period of behavioral recording, body condition increased with time in unstressed birds, but not in stressed birds. Fecal corticosterone metabolite concentrations were positively correlated to duration of nocturnal activity, but thyroxine levels and body condition were not. The differences in nocturnal activity between groups suggest that food stress and MeHg exposure on breeding grounds could have direct and indirect carry-over effects that have the potential to affect the fall migration journey.
Collapse
Affiliation(s)
- Claire L J Bottini
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada.
| | - Rebecca E Whiley
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada; Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| | - Brian A Branfireun
- University of Western Ontario, Department of Biology, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Scott A MacDougall-Shackleton
- Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada; University of Western Ontario, Department of Psychology, 1151 Richmond St., London, Ontario N6A 5C2, Canada
| |
Collapse
|
6
|
Food limitation modulates the endogenous control of spring migratory behavior in a captive long-distance migratory bird population. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03242-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Churchman E, MacDougall-Shackleton SA. Leptin administration does not influence migratory behaviour in white-throated sparrows ( Zonotrichia albicollis). PeerJ 2022; 10:e13584. [PMID: 35726262 PMCID: PMC9206435 DOI: 10.7717/peerj.13584] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 05/23/2022] [Indexed: 01/17/2023] Open
Abstract
Migratory flights by birds are among the most energetically demanding forms of animal movement, and are primarily fueled by fat as an energy source. Leptin is a critical fat-regulation hormone associated with energy balance in non-avian species but its function in birds is highly controversial. Prior research indicated the effects of leptin differed between birds in migratory condition or not, but no research has assessed the effect of leptin on migratory behaviour itself. In this study, our objective was to determine if leptin affects migratory restlessness and fat deposition in migratory songbirds. We used photoperiod manipulation to induce spring migratory condition, and measured migratory restlessness in leptin-injected and saline-injected white-throated sparrows (Zonotrichia albicollis). Leptin treatment had no effect on migratory restlessness nor fat deposition, providing evidence that leptin does not influence avian migratory motivation or behaviour. Our results also further support the idea that birds in a hyperphagic migratory condition may be insensitive to leptin.
Collapse
Affiliation(s)
- Emma Churchman
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Scott A. MacDougall-Shackleton
- Department of Biology, University of Western Ontario, London, Ontario, Canada,Department of Psychology, University of Western Ontario, London, Ontario, Canada,Advanced Facility for Avian Research, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
8
|
Binning SA, Craft ME, Zuk M, Shaw AK. How to study parasites and host migration: a roadmap for empiricists. Biol Rev Camb Philos Soc 2022; 97:1161-1178. [DOI: 10.1111/brv.12835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Sandra A. Binning
- Département de sciences biologiques Université de Montréal 1375 Ave. Thérèse‐Lavoie‐Roux Montréal QC H2V 0B3 Canada
| | - Meggan E. Craft
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| | - Marlene Zuk
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| | - Allison K. Shaw
- Department of Ecology, Evolution, and Behavior University of Minnesota 1479 Gortner Ave St. Paul MN 55108 U.S.A
| |
Collapse
|
9
|
Nine Levels of Explanation : A Proposed Expansion of Tinbergen's Four-Level Framework for Understanding the Causes of Behavior. HUMAN NATURE-AN INTERDISCIPLINARY BIOSOCIAL PERSPECTIVE 2021; 32:748-793. [PMID: 34739657 DOI: 10.1007/s12110-021-09414-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/23/2021] [Indexed: 01/16/2023]
Abstract
Tinbergen's classic "On Aims and Methods of Ethology" (Zeitschrift für Tierpsychologie, 20, 1963) proposed four levels of explanation of behavior, which he thought would soon apply to humans. This paper discusses the need for multilevel explanation; Huxley and Mayr's prior models, and others that followed; Tinbergen's differences with Lorenz on "the innate"; and Mayr's ultimate/proximate distinction. It synthesizes these approaches with nine levels of explanation in three categories: phylogeny, natural selection, and genomics (ultimate causes); maturation, sensitive period effects, and routine environmental effects (intermediate causes); and hormonal/metabolic processes, neural circuitry, and eliciting stimuli (proximate causes), as a respectful extension of Tinbergen's levels. The proposed classification supports and builds on Tinbergen's multilevel model and Mayr's ultimate/proximate continuum, adding intermediate causes in accord with Tinbergen's emphasis on ontogeny. It requires no modification of Standard Evolutionary Theory or The Modern Synthesis, but shows that much that critics claim was missing was in fact part of Neo-Darwinian theory (so named by J. Mark Baldwin in The American Naturalist in 1896) all along, notably reciprocal causation in ontogeny, niche construction, cultural evolution, and multilevel selection. Updates of classical examples in ethology are offered at each of the nine levels, including the neuroethological and genomic findings Tinbergen foresaw. Finally, human examples are supplied at each level, fulfilling his hope of human applications as part of the biology of behavior. This broad ethological framework empowers us to explain human behavior-eventually completely-and vindicates the idea of human nature, and of humans as a part of nature.
Collapse
|
10
|
Vanni L, Cerritelli G, Turchi A, Giunchi D. Migratory restlessness and stopover duration in Wood sandpiper Tringa glareola. ETHOL ECOL EVOL 2021. [DOI: 10.1080/03949370.2021.1878282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Lorenzo Vanni
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Giulia Cerritelli
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Alessandro Turchi
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| | - Dimitri Giunchi
- Department of Biology, University of Pisa, Via A. Volta 6, Pisa 56126, Italy
| |
Collapse
|
11
|
DeSimone JG, Tobalske BW, Breuner CW. Physiology and behavior under food limitation support an escape, not preparative, response in the nomadic pine siskin ( Spinus pinus). J Exp Biol 2021; 224:jeb238774. [PMID: 33376142 DOI: 10.1242/jeb.238774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022]
Abstract
Migration allows animals to use resources that are variable in time and/or space, with different migratory strategies depending on the predictability of resource variation. When food varies seasonally, obligate migrants anticipate and prepare for migration. In contrast, facultative migrants, whose movements are unpredictable in timing and destination, may prepare for either migration or escape when resources are depleted. We propose and test two alternative hypotheses regarding the behavioral and physiological responses of facultative migrants to declining food availability. (1) The prepare hypothesis predicts that facultative migrants prepare for departure by increasing fuel stores in response to declining food availability, and elevations of baseline corticosterone (CORT) facilitate increased activity. (2) The escape hypothesis predicts that facultative migrants do not prepare for departure, body condition declines as food availability declines, and stress-induced levels of CORT induce escape behavior when both energetic condition and food resources are low. We conducted a 16-day experiment, measuring body composition (using quantitative magnetic resonance), activity (using force perches) and baseline CORT in pine siskins (Spinus pinus) given ad libitum food or a slow decline, fast decline or randomly changing amount of food. Our results support the escape hypothesis: body condition declined as food declined, decreases in body and fat mass were associated with increases in baseline CORT, and activity increased only when food availability was low. This work suggests that facultative migration in autumn allows birds to escape low-resource areas and that the underlying physiological mechanisms differ from those driving both seasonal, obligate migrations and spring nomadic movements.
Collapse
Affiliation(s)
- Joely G DeSimone
- Ecology and Evolution, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Bret W Tobalske
- Ecology and Evolution, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Creagh W Breuner
- Ecology and Evolution, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
12
|
Klinner T, Schmaljohann H. Temperature change is an important departure cue in nocturnal migrants: controlled experiments with wild-caught birds in a proof-of-concept study. Proc Biol Sci 2020; 287:20201650. [PMID: 33023413 DOI: 10.1098/rspb.2020.1650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The decision-making process of migrating birds at stopover sites is a complex interplay of the innate migration program and both intrinsic and extrinsic factors. While it is well studied how variation in precipitation, wind and air pressure influence this process, there is less evidence of the effects of temperature changes on the departure decision. Thus, we lack knowledge on how the predicted changes due to global climate change in temperature alone may affect the decision-making process during migration. Aiming to fill parts of this gap, we conducted a proof-of-concept study by manipulating the ambient temperature of temporarily confined wild-caught migrant songbirds under constant feeding conditions. In spring, departure probability increased with a 20°C rise in temperature for both a medium-distance migrant (European robin, Erithacus rubecula) and a long-distance migrant (northern wheatear, Oenanthe oenanthe), and in autumn, departure probabilities of the long-distance migrant both decreased with a 20°C rise and increased with a 20°C drop. Consequently, the temperature is an important departure cue influencing the decision-making process of migrating songbirds. Incorporating causal relationships between changes in temperature and departure probability in migration models could substantially improve our ability to predict the effects of climate change on the phenology of migratory birds.
Collapse
Affiliation(s)
- Thomas Klinner
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.,Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|
13
|
DeSimone JG, Ramirez MG, Elowe CR, Griego MS, Breuner CW, Gerson AR. Developing a Stopover-CORT hypothesis: Corticosterone predicts body composition and refueling rate in Gray Catbirds during migratory stopover. Horm Behav 2020; 124:104776. [PMID: 32439349 DOI: 10.1016/j.yhbeh.2020.104776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 11/21/2022]
Abstract
Migratory flight is energetically challenging, requiring alternating phases of fuel catabolism and fuel accumulation, accompanied by dramatic changes in body composition and behavior. Baseline corticosterone (CORT; the primary glucocorticoid in birds) is thought to underlie transitions between fuel catabolism during flight, fuel deposition during stopover, and the initiation of migratory flight. However, studies of CORT on stopover physiology and behavior remain disparate efforts, lacking the cohesion of a general hypothesis. Here we develop a Stopover-CORT hypothesis formalizing the relationships among CORT, body condition, and refueling rate in migratory birds. First we expect body mass to increase with triglycerides (TRIG) as birds refuel. Second, based on a synthesis of previous literature, we predict a U-shaped CORT curve over the course of stopover, postulating that elevated CORT at arrival is reactive, responding to poor body condition, while CORT elevation before departure is preparative, driving changes in behavior and body condition. We tested these predictions in Gray Catbirds (Dumetella carolinensis) following a trans-Gulf flight during spring migration. We found baseline CORT was negatively correlated with body condition and TRIG, corresponding with our predictions for arriving and refueling-but not departing-birds. It is possible catbirds undergo regional habitat translocations rather than complete the entire stopover phase at our study site. We propose the Stopover-CORT hypothesis as a useful predictive framework for future studies of the mechanistic basis of stopover physiology. By studying the regulation of stopover refueling and departure, we may better understand physiological limitations to overall migration rate and improve assessments of habitat quality for refueling birds.
Collapse
Affiliation(s)
- Joely G DeSimone
- Organismal Biology, Ecology, and Evolution, University of Montana, Missoula, MT 59812, USA.
| | | | - Cory R Elowe
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Michael S Griego
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Creagh W Breuner
- Organismal Biology, Ecology, and Evolution, University of Montana, Missoula, MT 59812, USA
| | - Alexander R Gerson
- Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
14
|
Schmaljohann H, Klinner T. A quasi-experimental approach using telemetry to assess migration-strategy-specific differences in the decision-making processes at stopover. BMC Ecol 2020; 20:36. [PMID: 32641125 PMCID: PMC7346510 DOI: 10.1186/s12898-020-00307-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/30/2020] [Indexed: 12/03/2022] Open
Abstract
Background Migrant birds travel between their breeding areas and wintering grounds by alternating energetically and physiologically demanding flights with periods of rest and fuelling, so-called stopovers. An important intrinsic factor influencing the decision to resume migration is the amount of energy stores available for the next flight. Correlative studies with free-flying birds and experimental studies with caged birds have shown that the amount of energy stores affects the day-to-day, within-day and the directional decision of departure. The methodological advantages of both the correlative and experimental approach are combined when radio-tagging many individuals on the same day and subsequently determining the departure decisions at a high spatiotemporal resolution. Making use of such a quasi-experimental approach with an automated radio-tracking system at stopover, we studied the effect of energy stores on departure decisions and whether they vary between species of different migration strategies experiencing contrasting time constraints. For this, we chose a long-distance migrant, the common redstart (Phoenicurus phoenicurus), and a medium-distance migrant, the European robin (Erithacus rubecula), because the former has to travel at relatively higher speed to reach its wintering ground in a reasonable time at the expense of relatively higher energetic costs for travelling than the latter. Results Common redstarts with higher energy stores were more likely to resume migration than their conspecifics with lower energy stores, whereas this pattern was absent in the European robins. The amount of energy stores significantly affected the timing of departure within the day, with large energy stores yielding early departures in both species. Departure directions from the stopover site during the first night after capture were oriented towards the seasonally appropriate direction but were not affected by variation in energy stores. Conclusions We demonstrate the importance of variation in energy stores on the departure decisions and that it may affect species with different migration strategies dissimilarly in autumn. Nevertheless, knowledge of other intrinsic factors, such as feeding conditions, health status and physiological consequences of previous flights, is additionally required to better understand the departure decisions of migrants, as this is the key to providing an overall assessment of the decision-making process.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute for Biology und Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany. .,Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.
| | - Thomas Klinner
- Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
15
|
Ferretti A, McWilliams SR, Rattenborg NC, Maggini I, Cardinale M, Fusani L. Energy Stores, Oxidative Balance, and Sleep in Migratory Garden Warblers ( Sylvia borin) and Whitethroats ( Sylvia communis) at a Spring Stopover Site. Integr Org Biol 2020; 2:obaa010. [PMID: 33791554 PMCID: PMC7671129 DOI: 10.1093/iob/obaa010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Little is known about how songbirds modulate sleep during migratory periods. Due to the alternation of nocturnal endurance flights and diurnal refueling stopovers, sleep is likely to be a major constraint for many migratory passerine species. Sleep may help to increase the endogenous antioxidant capacity that counteracts free radicals produced during endurance flight and reduces energy expenditure. Here, we investigated the relationship between sleep behavior, food intake, and two markers of physiological condition-the amount of energy reserves and oxidative status-in two migratory songbird species, the garden warbler (Sylvia borin) and the whitethroat (Sylvia communis). In garden warblers, birds with high energy stores were more prone to sleep during the day, while this condition-dependent sleep pattern was not present in whitethroats. In both species, birds with low energy stores were more likely to sleep with their head tucked in the feathers during nocturnal sleep. Moreover, we found a positive correlation between food intake and the extent of energy reserves in garden warblers, but not in whitethroats. Finally, we did not find significant correlations between oxidative status and sleep, or oxidative status and energy stores. Despite our study was not comparative, it suggests that different species might use different strategies to manage their energy during stopover and, additionally, it raises the possibility that migrants have evolved physiological adaptations to deal with oxidative damage produced during migration.
Collapse
Affiliation(s)
- Andrea Ferretti
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstraße 14 (UZA1), Wien 1090, Austria
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| | - Scott R McWilliams
- Department of Natural Resources Science, University of Rhode Island, 1 Greenhouse Road, Kingston, RI 02881, USA
| | - Niels C Rattenborg
- Avian Sleep Group, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße, Seewiesen 8231, Germany
| | - Ivan Maggini
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| | - Massimiliano Cardinale
- Marine Research Institute, Swedish University of Agricultural Sciences, Turistgatan 5, Lysekil SE-453 30, Sweden
| | - Leonida Fusani
- Department of Behavioural and Cognitive Biology, University of Vienna, Althanstraße 14 (UZA1), Wien 1090, Austria
- Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Savoyenstraße 1a, Wien 1160, Austria
| |
Collapse
|
16
|
Bayly NJ, Norris DR, Taylor PD, Hobson KA, Morales-Rozo A. There's no place like home: tropical overwintering sites may have a fundamental role in shaping migratory strategies. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
|
18
|
Transcriptome signatures in the brain of a migratory songbird. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100681. [PMID: 32222683 DOI: 10.1016/j.cbd.2020.100681] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
Abstract
Most of the birds's adaptations for migration have a neuroendocrine origin, triggered by changes in photoperiod and the patterns of Earth's magnetic field. Migration phenomenology has been well described in the past decades, yet the genetic structure behind it remains terra incognita. We used RNA-Seq data to investigate which biological functions are linked with the seasonal brain adaptations of a long-distance trans-continental migratory passerine, the Northern Wheatear (Oenanthe oenanthe). We sequenced the wheatear's transcriptomes at three different stages: lean birds, a characteristic phenotype before the onset of migration, during fattening, and at their maximal migratory body mass. We identified a total of 15,357 genes in the brain of wheatears, of which 84 were differentially expressed. These were mostly related to nervous tissue development, angiogenesis, ATP production, innate immune response, and antioxidant protection, as well as GABA and dopamine signalling. The expression pattern of differentially expressed genes is correlated with typical phenotypic changes before migration, such as hyperphagia, migratory restlessness, and a potential increment in the visual and spatial memory capacities. Our work points out, for future studies, biological functions found to be involved in the development of the migratory phenotype -a unique model to study the core of neural, energetic and muscular adaptations for endurance exercise. Comparison of wheatears' transcriptomic data with two other studies with similar goals shows no correlation among the trends in the gene expression. It highlights the complexity and diversity of adaptations for long-distance migration in birds.
Collapse
|
19
|
Eikenaar C, Winslott E, Hessler S, Isaksson C. Oxidative damage to lipids is rapidly reduced during migratory stopovers. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13540] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research Wilhelmshaven Germany
| | | | - Sven Hessler
- Institute of Avian Research Wilhelmshaven Germany
| | | |
Collapse
|
20
|
Kelly TR, Rubin BD, MacDougall-Shackleton SA, MacDougall-Shackleton EA. Experimental Malaria Infection Affects Songbirds' Nocturnal Migratory Activity. Physiol Biochem Zool 2020; 93:97-110. [PMID: 32013740 DOI: 10.1086/707495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Migratory animals encounter multiple parasite communities, raising concerns that migration may aid transport of infectious disease. How migration affects disease spread depends fundamentally on how disease affects migration, specifically whether infection alters individuals' migratory physiology and behavior. We inoculated white-throated sparrows (Zonotrichia albicollis) with avian malaria parasites (Plasmodium sp.), monitored parasite loads for 5 wk as the birds reached spring migratory condition, and compared nocturnal migratory restlessness (Zugunruhe), body composition (fat, lean, and whole-body mass), and hematocrit among experimentally infected birds, sham-inoculated birds, and birds that were exposed to parasites but resisted infection. Migratory restlessness increased over time in the study, but the rate of change varied between sham (control) birds, infected birds, and birds that resisted infection. We were unable to detect any effects of malaria exposure on body condition. Our findings suggest that encountering parasites affects migratory activity, regardless of whether infection occurs or is resisted.
Collapse
|
21
|
Eikenaar C, Hessler S, Hegemann A. Migrating birds rapidly increase constitutive immune function during stopover. ROYAL SOCIETY OPEN SCIENCE 2020; 7:192031. [PMID: 32257353 PMCID: PMC7062082 DOI: 10.1098/rsos.192031] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/06/2020] [Indexed: 06/01/2023]
Abstract
Migratory flight is physiologically highly demanding and has been shown to negatively affect multiple parameters of constitutive immune function (CIF), an animal's first line of physiological defence against infections. In between migratory flights, most birds make stopovers, periods during which they accumulate fuel for the next flight(s). Stopovers are also commonly thought of as periods of rest and recovery, but what this encompasses is largely undefined. Here, we show that during stopover, northern wheatears Oenanthe oenanthe, a long-distance migratory bird, can rapidly increase constitutive innate immune function. We caught and temporarily caged birds under ad libitum food conditions at a stopover site in autumn. Within 2 days, most birds significantly increased complement activity and their ability to kill microbes. Changes in immune function were not related to the birds' food intake or extent of fuel accumulation. Our study suggests that stopovers may not only be important to refuel but also to restore immune function. Additionally, the increase in CIF could help migrating birds to deal with novel pathogens they may encounter at stopover sites.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, Wilhelmshaven 26386, Germany
| | - Arne Hegemann
- Department of Biology, Lund University, Ecology Building, Lund 223 62, Sweden
| |
Collapse
|
22
|
Klinner T, Buddemeier J, Bairlein F, Schmaljohann H. Decision-making in migratory birds at stopover: an interplay of energy stores and feeding conditions. Behav Ecol Sociobiol 2020. [DOI: 10.1007/s00265-019-2784-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
23
|
Kadar J, Ladds M, Mourier J, Day J, Brown C. Acoustic accelerometry reveals diel activity patterns in premigratory Port Jackson sharks. Ecol Evol 2019; 9:8933-8944. [PMID: 31462992 PMCID: PMC6706188 DOI: 10.1002/ece3.5323] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 05/03/2019] [Accepted: 05/10/2019] [Indexed: 11/07/2022] Open
Abstract
Distinguishing the factors that influence activity within a species advances understanding of their behavior and ecology. Continuous observation in the marine environment is not feasible but biotelemetry devices provide an opportunity for detailed analysis of movements and activity patterns. This study investigated the detail that calibration of accelerometers measuring root mean square (RMS) acceleration with video footage can add to understanding the activity patterns of male and female Port Jackson sharks (Heterodontus portusjacksoni) in a captive environment. Linear regression was used to relate RMS acceleration output to time-matched behavior captured on video to quantify diel activity patterns. To validate captive data, diel patterns from captive sharks were compared with diel movement data from free-ranging sharks using passive acoustic tracking. The RMS acceleration data showed captive sharks exhibited nocturnal diel patterns peaking during the late evening before midnight and decreasing before sunrise. Correlation analysis revealed that captive animals displayed similar activity patterns to free-ranging sharks. The timing of wild shark departures for migration in the late breeding season corresponded with elevated diel activity at night within the captive individuals, suggesting a form of migratory restlessness in captivity. By directly relating RMS acceleration output to activity level, we show that sex, time of day, and sex-specific seasonal behavior all influenced activity levels. This study contributes to a growing body of evidence that RMS acceleration data are a promising method to determine activity patterns of cryptic marine animals and can provide more detailed information when validated in captivity.
Collapse
Affiliation(s)
- Julianna Kadar
- Department of Biological SciencesMacquarie UniversityMarsfieldAustralia
| | - Monique Ladds
- Department of ConservationNational OfficeWellingtonNew Zealand
| | - Johann Mourier
- UMR MARBEC (IRD, Ifremer Univ. Montpellier, CNRS)SèteFrance
| | - Joanna Day
- Taronga Conservation Society AustraliaMosmanAustralia
| | - Culum Brown
- Department of Biological SciencesMacquarie UniversityMarsfieldAustralia
| |
Collapse
|
24
|
Eikenaar C, Hessler S, Fischer S, Bairlein F. An exception to the rule: Captivity does not stress wild migrating northern wheatears. Gen Comp Endocrinol 2019; 275:25-29. [PMID: 30753841 DOI: 10.1016/j.ygcen.2019.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/28/2022]
Abstract
Wild animals typically suffer from stress when brought into captivity. This stress is characterized by elevated circulating glucocorticoid levels and weight loss. We here describe for the first time a case where a wild animal, the long-distance migrating northern wheatear, does not show signs of stress when caged. We captured these birds on a stopover site during their spring migration and caged them individually with ad libitum access to food and water. The birds were divided into four groups and were blood-sampled immediately in the field, a few hours after caging, one day after caging, or three days after caging, respectively. From these blood-samples we determined circulating corticosterone level. Food intake and body mass were also monitored. We found that, with very few exceptions, corticosterone levels were low and did not differ among the groups. Accordingly, almost all birds consumed huge quantities of food and substantially increased their body mass. Together these results clearly show that caging does not result in indications of stress in wild migrating northern wheatears. Confinement-specific conditions such as restricted movement normally stress animals. We suggest migratory birds may not perceive such conditions as stressors due to their hyperphagic state, a notion that requires further testing.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sandra Fischer
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Franz Bairlein
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
25
|
Eikenaar C, Hessler S, Ballstaedt E, Schmaljohann H, Kaiya H. Ghrelin, corticosterone and the resumption of migration from stopover, an automated telemetry study. Physiol Behav 2018; 194:450-455. [DOI: 10.1016/j.physbeh.2018.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 01/23/2023]
|
26
|
Sharma A, Singh D, Malik S, Gupta NJ, Rani S, Kumar V. Difference in control between spring and autumn migration in birds: insight from seasonal changes in hypothalamic gene expression in captive buntings. Proc Biol Sci 2018; 285:rspb.2018.1531. [PMID: 30158302 DOI: 10.1098/rspb.2018.1531] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/06/2018] [Indexed: 12/20/2022] Open
Abstract
We hypothesized differences in molecular strategies for similar journeys that migrants undertake to reproduce in spring and to overwinter in autumn. We tested this in redheaded buntings (Emberiza bruniceps) photoinduced into spring and autumn migratory states, with winter and summer non-migratory states as controls. Compared with controls, buntings fattened, gained weight and showed Zugunruhe (nocturnal migratory restlessness) in the migratory state. Spring migration was associated with greater fat and body mass, and higher intensity of Zugunruhe, compared with autumn migration. Circulating corticosterone levels were higher in spring, while T3 levels were higher in autumn. Hypothalamic expression of thyroid hormone-responsive (dio2, dio3), light-responsive (per2, cry1, adcyap1) and th (tyrosine hydroxylase, involved in dopamine biosynthesis) genes showed significant changes with transition from non-migratory to the migratory state. There were significantly higher mRNA expressions in autumn, except for higher th levels in the spring. Furthermore, the expression patterns of dnmt3a (not dnmt3b) and tet2 genes suggested an epigenetic difference between the non-migrant and migrant periods, and the spring and autumn migrant periods. These results demonstrate for the first time seasonal transition in hypothalamic gene expressions, and suggest differences in regulatory strategies at the transcriptional level for spring and autumn migrations in songbirds.
Collapse
Affiliation(s)
- Aakansha Sharma
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Devraj Singh
- Department of Zoology, University of Delhi, Delhi 110 007, India
| | - Shalie Malik
- Department of Zoology, University of Lucknow, Lucknow 226 007, India
| | | | - Sangeeta Rani
- Department of Zoology, University of Lucknow, Lucknow 226 007, India
| | - Vinod Kumar
- Department of Zoology, University of Delhi, Delhi 110 007, India
| |
Collapse
|
27
|
Robart AR, McGuire MMK, Watts HE. Increasing photoperiod stimulates the initiation of spring migratory behaviour and physiology in a facultative migrant, the pine siskin. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180876. [PMID: 30225078 PMCID: PMC6124035 DOI: 10.1098/rsos.180876] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/06/2018] [Indexed: 05/04/2023]
Abstract
The transition to a migratory state involves coordinated changes in physiology and behaviour. In species with regular, predictable (obligate) migrations, increasing day length triggers the expression of a spring migratory state and androgens play an important role in stimulating its development. By contrast, we know little about the environmental cues and endocrine mechanisms that regulate migration in species with less predictable (facultative) migrations. Here, we tested whether photoperiod stimulates a migratory state in a facultative nomadic migrant, the pine siskin (Spinus pinus). We exposed wintering birds to either a naturally increasing or short-day photoperiod and measured physiological and behavioural changes indicative of a migratory state. We also examined changes in circulating hormones that may play a role in the migratory transition. Natural-day, but not short-day, birds displayed physiological preparations for migration, including increases in fat deposition, and showed increased levels of migratory restlessness. We found no evidence for a role of corticosterone in the migratory transition, but testosterone may be important. This study is the first experimental test of the role of photoperiod in regulating facultative migration and demonstrates that the predictive cue used by many obligate migrants to time spring migration is also important in a facultative migrant.
Collapse
Affiliation(s)
- Ashley R. Robart
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Mali M. K. McGuire
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Heather E. Watts
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
- Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA
- Department of Biology, Loyola Marymount University, Los Angeles, CA 90045, USA
| |
Collapse
|
28
|
|
29
|
Eikenaar C, Ballstaedt E, Hessler S, Klinner T, Müller F, Schmaljohann H. Cues, corticosterone and departure decisions in a partial migrant. Gen Comp Endocrinol 2018; 261:59-66. [PMID: 29397064 DOI: 10.1016/j.ygcen.2018.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 11/20/2022]
Abstract
Most migrating birds make multiple stopovers to fuel and/or rest. The decision to resume migration from stopover is based on various cues, such as time within the season and wind conditions. There are hints that the strength of these departure cues shapes corticosterone level, which in its turn appears to regulate the timing of departure. We here provide results that very strongly indicate that indeed departure cues jointly shape corticosterone level of migrants at stopover. We compared corticosterone level between migrating and sedentary common blackbirds (Turdus merula) sampled simultaneously at the same location during autumn migration. As expected, in migrating individuals corticosterone level was positively associated with time within the season and with current wind conditions. The latter was only apparent in adult birds and not in 1st year migrants, thus matching the observation that 1st year autumnal migrants are less wind selective than adults. In contrast to the migrants, in sedentary blackbirds these "cues" did not explain variation in corticosterone level. Furthermore, stopover departure seemed more likely and to occur earlier in the night in migrants with high corticosterone level. Our unique comparative study thus supports the newly developed concept that corticosterone mediates between departure cues and stopover departure timing in avian migrants.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Elmar Ballstaedt
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Thomas Klinner
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Heiko Schmaljohann
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany; Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
30
|
Interrupted breeding in a songbird migrant triggers development of nocturnal locomotor activity. Sci Rep 2018; 8:5520. [PMID: 29615823 PMCID: PMC5882773 DOI: 10.1038/s41598-018-23834-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 03/19/2018] [Indexed: 11/30/2022] Open
Abstract
Long-distance avian migrants, e.g. Eurasian reed warblers (Acrocephalus scirpaceus), can precisely schedule events of their annual cycle. However, the proximate mechanisms controlling annual cycle and their interplay with environmental factors are poorly understood. We artificially interrupted breeding in reed warblers by bringing them into captivity and recording birds’ locomotor activity for 5–7 days. Over this time, most of the captive birds gradually developed nocturnal locomotor activity not observed in breeding birds. When the birds were later released and radio-tracked, the individuals with highly developed caged activity performed nocturnal flights. We also found that reed warblers kept indoors without access to local cues developed a higher level of nocturnal activity compared to the birds kept outdoors with an access to the familiar environment. Also, birds translocated from a distant site (21 km) had a higher motivation to fly at night-time after release compared to the birds captured within 1 km of a study site. Our study suggests that an interrupted breeding triggers development of nocturnal locomotor activity in cages, and the level of activity is correlated with motivation to perform nocturnal flights in the wild, which can be restrained by familiar environment.
Collapse
|
31
|
Müller F, Eikenaar C, Crysler ZJ, Taylor PD, Schmaljohann H. Nocturnal departure timing in songbirds facing distinct migratory challenges. J Anim Ecol 2018; 87:1102-1115. [PMID: 29504627 DOI: 10.1111/1365-2656.12821] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/14/2018] [Indexed: 11/30/2022]
Abstract
Most migratory songbirds travel between their breeding areas and wintering grounds through a series of nocturnal flights. The timing of their departures defines the potential flight duration and thus the distance covered during a migratory night. Yet, migratory songbirds show substantial variation in their nocturnal departure timing. With this study, we aim to assess whether the respective challenges of the migration route, namely its distance and nature, help to explain this variation. At a stopover site, we caught Northern Wheatears (Oenanthe oenanthe) of two subspecies that differ in distance and nature of their onward migration route in spring, but not in autumn. We determined the start of their nocturnal migratory restlessness during short-term captivity, and radiotracked their nocturnal departure timing after release in both migration seasons. Northern Wheatears started their nocturnal migratory restlessness earlier when facing a long remaining migration distance and an extended sea barrier in spring. Individual departure directions generally affected the nocturnal departure timing with early departures being directed towards the respective migratory destination. In spring, this pattern was predominantly found in birds carrying relatively large fuel stores, but was absent in lean birds. At the same time, birds facing a short remaining migration distance and no extended sea barrier strongly reacted to relatively large fuel stores by an early start of nocturnal migratory behaviour (migratory restlessness and departure timing), whereas this reaction was not found in birds facing a long remaining migration distance and sea barrier. These results suggest that the basic diel schedule of birds' migratory activity is adapted to the onward migration route. Further, they suggest that birds adjust their behavioural response, that is start of nocturnal migratory behaviour, to fuel stores in relation to their impending migratory challenges. This is a substantial step in understanding variation of nocturnal departure timing and its adjustments in migratory songbirds. Further, it emphasizes the importance of interpreting birds' nocturnal migratory behaviour in the respective ecological context.
Collapse
Affiliation(s)
- Florian Müller
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Cas Eikenaar
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany
| | - Zoe J Crysler
- Department of Biology, Acadia University, Wolfville, NS, Canada.,Bird Studies Canada, Port Rowan, ON, Canada
| | - Philip D Taylor
- Department of Biology, Acadia University, Wolfville, NS, Canada.,Bird Studies Canada, Port Rowan, ON, Canada
| | - Heiko Schmaljohann
- Institute of Avian Research "Vogelwarte Helgoland", Wilhelmshaven, Germany.,Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
32
|
Eikenaar C, Müller F, Rüppel G, Stöwe M. Endocrine regulation of migratory departure from stopover: Evidence from a longitudinal migratory restlessness study on northern wheatears. Horm Behav 2018; 99:9-13. [PMID: 29408015 DOI: 10.1016/j.yhbeh.2018.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/28/2018] [Accepted: 01/30/2018] [Indexed: 02/08/2023]
Abstract
Most migrating birds make stopovers to replenish fuel stores. The decision to resume migration from stopover to a large extent shapes the temporal organization of migration. This decision is known to be shaped by a suite of intrinsic and extrinsic factors such as the bird's fuel stores and current weather conditions. However, how departures from stopover are physiologically regulated is largely unknown. We here present data that strongly indicate that corticosterone, a hormone with a stimulatory effect on locomotion, acts as a mediator between fuel stores and departure from stopover. In migrating northern wheatears (Oenanthe oenanthe) temporarily caged at stopover, we observed a positive relationship between the change in fuel stores and the concurrent change in glucocorticoid metabolite (GCM) levels measured in the birds' droppings. We also found a positive relationship between the change in GCM levels and the change in the intensity of nocturnal migratory restlessness. As in northern wheatears nocturnal migratory restlessness is an accurate proxy for stopover departure likelihood, our results indicate that corticosterone mediates between fuel stores and the decision to resume migration. Our unique longitudinal study represents a considerable advance in our understanding of the endocrine regulation of avian migration.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Georg Rüppel
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Mareike Stöwe
- Department for Biomedical Sciences, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|
33
|
Eikenaar C, Müller F, Leutgeb C, Hessler S, Lebus K, Taylor PD, Schmaljohann H. Corticosterone and timing of migratory departure in a songbird. Proc Biol Sci 2018; 284:rspb.2016.2300. [PMID: 28077768 DOI: 10.1098/rspb.2016.2300] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/24/2016] [Indexed: 11/12/2022] Open
Abstract
Bird migration entails replenishing fuel stores at stopover sites. There, individuals make daily decisions whether to resume migration, and must also decide their time of departure. Variation in departure timing affects the total time required to complete a migratory journey, which in turn affects fitness through arrival time at the breeding and wintering grounds. It is well established that stopover departure decisions are based on cues from innate rhythms, intrinsic factors and extrinsic factors. Yet, virtually nothing is known about the physiological mechanism(s) linking these cues to departure decisions. Here, we show for a nocturnal migratory songbird, the northern wheatear (Oenanthe oenanthe), that baseline corticosterone levels of birds at stopover increased both over the migratory season and with wind assistance towards the migratory destination. Corticosterone in turn predicted departure probability; individuals with high baseline corticosterone levels were more likely to resume migration on a given night. Corticosterone further predicted the departure time within the night, with high baseline levels being associated with early departures. These novel findings indicate that corticosterone may be mediating between departure cues and the timing of departure from a stopover site, which is a major step towards understanding the hormonal control of animal migration.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Clara Leutgeb
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Sven Hessler
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Konstantin Lebus
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Philip D Taylor
- Bird Studies Canada Chair of Ornithology, Acadia University, Wolfville, Nova Scotia, Canada
| | - Heiko Schmaljohann
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
34
|
Heyers D, Elbers D, Bulte M, Bairlein F, Mouritsen H. The magnetic map sense and its use in fine-tuning the migration programme of birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:491-497. [PMID: 28365788 DOI: 10.1007/s00359-017-1164-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 10/19/2022]
Abstract
The Earth's magnetic field is one of several natural cues, which migratory birds can use to derive directional ("compass") information for orientation on their biannual migratory journeys. Moreover, magnetic field effects on prominent aspects of the migratory programme of birds, such as migratory restlessness behaviour, fuel deposition and directional orientation, implicate that geomagnetic information can also be used to derive positional ("map") information. While the magnetic "compass" in migratory birds is likely to be based on radical pair-forming molecules embedded in their visual system, the sensory correlates underlying a magnetic "map" sense currently remain elusive. Behavioural, physiological and neurobiological findings indicate that the sensor is most likely innervated by the ophthalmic branch of the trigeminal nerve and based on magnetic iron particles. Information from this unknown sensor is neither necessary nor sufficient for a functional magnetic compass, but instead could contribute important components of a multifactorial "map" for global positioning. Positional information could allow migratory birds to make vitally important dynamic adaptations of their migratory programme at any relevant point during their journeys.
Collapse
Affiliation(s)
- D Heyers
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany. .,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany.
| | - D Elbers
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,AG Biochemistry, Faculty of Medicine/Health Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| | - M Bulte
- , Schmidtkunzstraße 13, 86199, Augsburg, Germany.,Institute for Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
| | - F Bairlein
- Institute for Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany
| | - H Mouritsen
- AG Animal Navigation, Faculty of Biology/Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany.,Research Centre for Neurosensory Sciences, University of Oldenburg, 26111, Oldenburg, Germany
| |
Collapse
|
35
|
Schmaljohann H, Eikenaar C. How do energy stores and changes in these affect departure decisions by migratory birds? A critical view on stopover ecology studies and some future perspectives. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:411-429. [PMID: 28332031 DOI: 10.1007/s00359-017-1166-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/01/2022]
Abstract
In birds, accumulating energy is far slower than spending energy during flight. During migration, birds spend, therefore, most of the time at stopover refueling energy used during the previous flight. This elucidates why current energy stores and actual rate of accumulating energy are likely crucial factors influencing bird's decision when to resume migration in addition to other intrinsic (sex, age) and extrinsic (predation, weather) factors modulating the decision within the innate migration program. After first summarizing how energy stores and stopover durations are generally determined, we critically review that high-energy stores and low rates of accumulating energy were significantly related to high departure probabilities in several bird groups. There are, however, also many studies showing no effect at all. Recent radio-tracking studies highlighted that migrants leave a site either to resume migration or to search for a better stopover location, so-called "landscape movements". Erroneously treating such movements as departures increases the likelihood of type II errors which might mistakenly suggest no effect of either trait on departure. Furthermore, we propose that energy loss during the previous migratory flight in relation to bird's current energy stores and migration strategy significantly affects its urge to refuel and hence its departure decision.
Collapse
Affiliation(s)
- Heiko Schmaljohann
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany.
| | - Cas Eikenaar
- Institute of Avian Research "Vogelwarte Helgoland", An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| |
Collapse
|
36
|
Eikenaar C. Endocrine regulation of fueling by hyperphagia in migratory birds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:439-445. [DOI: 10.1007/s00359-017-1152-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/05/2017] [Accepted: 01/28/2017] [Indexed: 02/07/2023]
|
37
|
Abstract
Wakefulness enables animals to interface adaptively with the environment. Paradoxically, in insects to humans, the efficacy of wakefulness depends on daily sleep, a mysterious, usually quiescent state of reduced environmental awareness. However, several birds fly non-stop for days, weeks or months without landing, questioning whether and how they sleep. It is commonly assumed that such birds sleep with one cerebral hemisphere at a time (i.e. unihemispherically) and with only the corresponding eye closed, as observed in swimming dolphins. However, the discovery that birds on land can perform adaptively despite sleeping very little raised the possibility that birds forgo sleep during long flights. In the first study to measure the brain state of birds during long flights, great frigatebirds (Fregata minor) slept, but only during soaring and gliding flight. Although sleep was more unihemispheric in flight than on land, sleep also occurred with both brain hemispheres, indicating that having at least one hemisphere awake is not required to maintain the aerodynamic control of flight. Nonetheless, soaring frigatebirds appeared to use unihemispheric sleep to watch where they were going while circling in rising air currents. Despite being able to engage in all types of sleep in flight, the birds only slept for 0.7 h d-1 during flights lasting up to 10 days. By contrast, once back on land they slept 12.8 h d-1. This suggests that the ecological demands for attention usually exceeded that afforded by sleeping unihemispherically. The ability to interface adaptively with the environment despite sleeping very little challenges commonly held views regarding sleep, and therefore serves as a powerful system for examining the functions of sleep and the consequences of its loss.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Avian Sleep Group , Max Planck Institute for Ornithology , Seewiesen , Germany
| |
Collapse
|
38
|
Seasonal expression of migratory behavior in a facultative migrant, the pine siskin. Behav Ecol Sociobiol 2016. [DOI: 10.1007/s00265-016-2248-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Tomotani BM, Gienapp P, Beersma DGM, Visser ME. Climate change relaxes the time constraints for late-born offspring in a long-distance migrant. Proc Biol Sci 2016; 283:20161366. [PMID: 27655765 PMCID: PMC5046899 DOI: 10.1098/rspb.2016.1366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/25/2016] [Indexed: 11/12/2022] Open
Abstract
Animals in seasonal environments need to fit their annual-cycle stages, such as moult and migration, in a tight schedule. Climate change affects the phenology of organisms and causes advancements in timing of these annual-cycle stages but not necessarily at the same rates. For migratory birds, this can lead to more severe or more relaxed time constraints in the time from fledging to migration, depending on the relative shifts of the different stages. We tested how a shift in hatch date, which has advanced due to climate change, impacts the organization of the birds' whole annual cycle. We experimentally advanced and delayed the hatch date of pied flycatcher chicks in the field and then measured the timing of their annual-cycle stages in a controlled laboratory environment. Hatch date affected the timing of moult and pre-migratory fattening, but not migration. Early-born birds hence had a longer time to fatten up than late-born ones; the latter reduced their interval between onset of fattening and migration to be able to migrate at the same time as the early-born birds. This difference in time constraints for early- and late-born individuals may explain why early-born offspring have a higher probability to recruit as a breeding bird. Climate change-associated advancements of avian egg-lay dates, which in turn advances hatch dates, can thus reduce the negative fitness consequences of reproducing late, thereby reducing the selection for early egg-laying migratory birds.
Collapse
Affiliation(s)
- Barbara M Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Phillip Gienapp
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Domien G M Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
40
|
Zúñiga D, Falconer J, Fudickar AM, Jensen W, Schmidt A, Wikelski M, Partecke J. Abrupt switch to migratory night flight in a wild migratory songbird. Sci Rep 2016; 6:34207. [PMID: 27666200 PMCID: PMC5035921 DOI: 10.1038/srep34207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
Every year, billions of wild diurnal songbirds migrate at night. To do so, they shift their daily rhythm from diurnality to nocturnality. In captivity this is observed as a gradual transition of daytime activity developing into nocturnal activity, but how wild birds prepare their daily rhythms for migration remains largely unknown. Using an automated radio-telemetry system, we compared activity patterns of free-living migrant and resident European blackbirds (Turdus merula) in a partially migratory population during the pre-migratory season. We found that activity patterns between migrant and resident birds did not differ during day and night. Migrants did not change their daily rhythm in a progressive manner as has been observed in captivity, but instead abruptly became active during the night of departure. The rapid shift in rhythmicity might be more common across migratory songbird species, but may not have been observed before in wild animals due to a lack of technology.
Collapse
Affiliation(s)
- Daniel Zúñiga
- Max Planck Institute for Ornithology, Am Obstberg 1, D-78315 Radolfzell, Germany.,University of Konstanz, Department of Biology, D-78457 Konstanz, Germany
| | - Jade Falconer
- Max Planck Institute for Ornithology, Am Obstberg 1, D-78315 Radolfzell, Germany.,University of Glasgow, Institute of Biodiversity, Animal Health and Comparative Medicine College of Medical, Veterinary &Life Sciences, G12 8QQ, Glasgow, UK
| | - Adam M Fudickar
- Max Planck Institute for Ornithology, Am Obstberg 1, D-78315 Radolfzell, Germany.,University of Konstanz, Department of Biology, D-78457 Konstanz, Germany.,Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN, 47405, USA
| | - Willi Jensen
- Max Planck Institute for Ornithology, D-82319 Seewiesen, Germany
| | - Andreas Schmidt
- Max Planck Institute for Ornithology, Am Obstberg 1, D-78315 Radolfzell, Germany
| | - Martin Wikelski
- Max Planck Institute for Ornithology, Am Obstberg 1, D-78315 Radolfzell, Germany.,University of Konstanz, Department of Biology, D-78457 Konstanz, Germany
| | - Jesko Partecke
- Max Planck Institute for Ornithology, Am Obstberg 1, D-78315 Radolfzell, Germany.,University of Konstanz, Department of Biology, D-78457 Konstanz, Germany
| |
Collapse
|
41
|
Eikenaar C, Fritzsch A, Kämpfer S, Schmaljohann H. Migratory restlessness increases and refuelling rate decreases over the spring migration season in northern wheatears. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2015.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Müller F, Taylor PD, Sjöberg S, Muheim R, Tsvey A, Mackenzie SA, Schmaljohann H. Towards a conceptual framework for explaining variation in nocturnal departure time of songbird migrants. MOVEMENT ECOLOGY 2016; 4:24. [PMID: 27833750 PMCID: PMC5066284 DOI: 10.1186/s40462-016-0089-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 09/22/2016] [Indexed: 05/16/2023]
Abstract
Most songbird migrants travel between their breeding areas and wintering grounds by a series of nocturnal flights. The exact nocturnal departure time for these flights varies considerably between individuals even of the same species. Although the basic circannual and circadian rhythms of songbirds, their adaptation to migration, and the factors influencing the birds' day-to-day departure decision are reasonably well studied, we do not understand how birds time their departures within the night. These decisions are crucial, because the nocturnal departure time defines the potential flight duration of the migratory night. The distances covered during the nocturnal migratory flights in the course of migration in turn directly affect the overall speed of migration. To understand the factors influencing the arrival of the birds in the breeding/wintering areas, we need to investigate the mechanisms that control nocturnal departure time. Here, we provide the first conceptual framework for explaining the variation commonly observed in this migratory trait. The basic schedule of nocturnal departure is likely regulated by both the circannual and circadian rhythms of the innate migration program. We postulate that the endogenously controlled schedule of nocturnal departures is modified by intrinsic and extrinsic factors. So far there is only correlative evidence that birds with a high fuel load or a considerable increase in fuel load and significant wind (flow) assistance towards their migratory goal depart early within the night. In contrast, birds migrating with little fuel and under unfavorable wind conditions show high variation in their nocturnal departure time. The latter may contain an unknown proportion of nocturnal movements not directly related to migratory flights. Excluding such movements is crucial to clearly identify the main drivers of the variation in nocturnal departure time. In general we assume that the observed variation in the nocturnal departure time is explained by individually different reactions norms of the innate migration program to both intrinsic and extrinsic factors.
Collapse
Affiliation(s)
- Florian Müller
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Philip D. Taylor
- Department of Biology, Acadia University, 33 Westwood Avenue, Wolfville, NS B4P 2R6 Canada
- Bird Studies Canada, 115 Front Street, Port Rowan, ON N0E 1M0 Canada
| | - Sissel Sjöberg
- Department of Biology, Lund University, Biology Building, Sölvegatan 35, 223 62 Lund, Sweden
| | - Rachel Muheim
- Department of Biology, Lund University, Biology Building, Sölvegatan 35, 223 62 Lund, Sweden
| | - Arseny Tsvey
- Biological Station Rybachy, Zoological Institute RAS, RU-238535 Rybachy, Kaliningrad region Russia
| | | | - Heiko Schmaljohann
- Institute of Avian Research “Vogelwarte Helgoland”, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
43
|
Eikenaar C, Müller F, Klinner T, Bairlein F. Baseline corticosterone levels are higher in migrating than sedentary common blackbirds in autumn, but not in spring. Gen Comp Endocrinol 2015; 224:121-5. [PMID: 26163918 DOI: 10.1016/j.ygcen.2015.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/15/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022]
Abstract
Corticosterone at baseline levels is thought to be mainly involved in the regulation of uptake, storage and release of energy, processes central to avian migration. Consequently, corticosterone levels are thought to be upregulated during migration, but the temporal pattern of its secretion during migration is not well defined. For example, although it appears that corticosterone levels decrease from flight to stopover, it is unknown if levels at stopover are still elevated and it is largely unclear how these levels compare to non-migratory life-history stages. Furthermore, what role corticosterone plays in crucial migratory processes, such as refueling and departure from stopover, is far from understood. We here determined baseline corticosterone levels in migrating and resident common blackbirds (Turdus merula), sampled simultaneously on Helgoland, a stopover site that also supports a sedentary breeding population. In autumn, migrants had higher corticosterone levels than residents, but in spring levels did not differ between the two groups. Corticosterone levels of migrants were very similar in spring and autumn, whereas in residents levels tended to be higher in spring than autumn. Higher levels in residents in spring than autumn most likely reflect the higher daily workload faced by birds during the pre-breeding than the post-breeding period. Our study thus indicates that, relative to the levels observed in residents in autumn, in spring baseline corticosterone levels were moderately elevated in both migrants and residents and that in autumn levels were moderately elevated in migrants only. Currently, corticosterone's main function at stopover is thought to lie in the regulation of departure. Because most migrant blackbirds stay only one or two days on Helgoland, our results are in line with this idea and suggest that migrating blackbirds up-regulated their corticosterone level in anticipation of an oncoming flight bout.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Florian Müller
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Thomas Klinner
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Franz Bairlein
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| |
Collapse
|
44
|
Start of nocturnal migratory restlessness in captive birds predicts nocturnal departure time in free-flying birds. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1902-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Noyce K, Garshelis D. Follow the leader: social cues help guide landscape-level movements of American black bears (Ursus americanus). CAN J ZOOL 2014. [DOI: 10.1139/cjz-2014-0029] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Solitary, facultative migrating animals must make decisions each year on whether, when, and where to migrate. Factors influencing individuals in their movement choices are poorly understood. American black bears (Ursus americanus Pallas, 1780) commonly migrate in late summer to areas of concentrated foods before winter denning; some bears also move long distances to dens. We radio-tracked seasonal migrations of >200 bears in Minnesota, USA, over 10 years. We observed concurrences in movements that suggested social coordination among individuals, including (i) individuals with neighboring summer ranges traveling to the same distant feeding and (or) denning areas, (ii) shared travel routes with use staggered through time, and (iii) instances of ≥2 individuals traveling in loose tandem over tens of kilometres. We sought to explain the mechanism for these coordinated migrations by comparing our observations to the predictions of six hypotheses: instinct, landscape morphology, habitat gradients, long-distance olfaction, maternal teaching, and conspecific cueing. The most parsimonious explanation was that bears follow other bears, with social cueing likely mediated through chemical communication. Males likely play a key role in social transmission of knowledge of the nutritional landscape via a system of travel routes and information centers that benefits the entire population.
Collapse
Affiliation(s)
- K.V. Noyce
- Forest Wildlife Populations and Research Group, Minnesota Department of Natural Resources, 1201 East Highway 2, Grand Rapids, MN 55744, USA
| | - D.L. Garshelis
- Forest Wildlife Populations and Research Group, Minnesota Department of Natural Resources, 1201 East Highway 2, Grand Rapids, MN 55744, USA
| |
Collapse
|
46
|
Eikenaar C, Klinner T, Stöwe M. Corticosterone predicts nocturnal restlessness in a long-distance migrant. Horm Behav 2014; 66:324-9. [PMID: 24956025 DOI: 10.1016/j.yhbeh.2014.06.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 10/25/2022]
Abstract
The decision made by migrating birds to stop refueling and to depart from stopover depends on cues from innate rhythms, intrinsic factors such as fuel reserves, and extrinsic factors such as weather conditions. The physiological mechanism behind this decision, however, is largely unexplored. The transition from refueling to flight involves an increase in both locomotion and energetic demands. Because, at baseline levels, corticosterone stimulates locomotion and is involved in the mobilization of energy, this hormone could encourage departure of migrants. We collected field data on baseline corticosterone, migratory restlessness, and actual departure in northern wheatears at stopover. Additionally, in refueling long-term captive conspecifics, we measured migratory restlessness while simultaneously collecting droppings to determine glucocorticoid metabolite (GCM) levels. We found that migratory restlessness at stopover was positively correlated with corticosterone level. Similarly, in refueling long-term captive birds, migratory restlessness was positively correlated with concurrently measured GCM levels in droppings. To our best knowledge, our study is the first to simultaneously measure a hormonal signal and migratory restlessness. In conclusion, our results are consistent with the hypothesis that, by increasing locomotor activity, baseline corticosterone is involved in the regulation of departure of migrants at stopover. Future studies could reveal how corticosterone is up-regulated in migrants that are ready to depart.
Collapse
Affiliation(s)
- Cas Eikenaar
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany.
| | - Thomas Klinner
- Institute of Avian Research, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Mareike Stöwe
- Department of Biomedical Sciences/Biochemistry, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| |
Collapse
|