1
|
Akrokoh J, Bediako JO, Fafanyo K, Musah-Yussif H, Asubonteng AK, Adjei HO, Ofori AGA, Skov PV, Obirikorang KA. Relatedness of hypoxia and hyperthermia tolerances in the Nile tilapia (Oreochromis niloticus) and their relationships with cardiac and gill traits. Comp Biochem Physiol A Mol Integr Physiol 2024; 294:111648. [PMID: 38643961 DOI: 10.1016/j.cbpa.2024.111648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
In fish, thermal and hypoxia tolerances may be functionally related, as suggested by the oxygen- and capacity-limited thermal tolerance (OCLTT) concept, which explains performance failure at high temperatures due to limitations in oxygen delivery. In this study the interrelatedness of hyperthermia and hypoxia tolerances in the Nile tilapia (Oreochromis niloticus), and their links to cardiorespiratory traits were examined. Different groups of O. niloticus (n = 51) were subjected to hypoxia and hyperthermia challenges and the O2 tension for aquatic surface respiration (ASR pO2) and critical thermal maximum (CTmax) were assessed as measurement endpoints. Gill filament length, total filament number, ventricle mass, length and width were also measured. Tolerance to hypoxia, as evidenced by ASR pO2 thresholds of the individual fish, was highly variable and varied between 0.26 and 3.39 kPa. ASR events increased more profoundly as O2 tensions decreased below 2 kPa. The CTmax values recorded for the O. niloticus individuals ranged from 43.1 to 44.8 °C (Mean: 44.2 ± 0.4 °C). Remarkably, there was a highly significant correlation between ASR pO2 and CTmax in O. niloticus (r = -0.76, p < 0.0001) with ASR pO2 increasing linearly with decreasing CTmax. There were, however, no discernible relationships between the measured cardiorespiratory properties and hypoxia or hyperthermia tolerances. The strong relationship between hypoxia and hyperthermia tolerances in this study may be related to the ability of the cardiorespiratory system to provide oxygen to respiring tissues under thermal stress, and thus provides some support for the OCLTT concept in this species, at least at the level of the entire organism.
Collapse
Affiliation(s)
- Jesslyn Akrokoh
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. https://twitter.com/@missakrokoh
| | - Jedida Osei Bediako
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kelvin Fafanyo
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Harriya Musah-Yussif
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Audrey Korsah Asubonteng
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Henry Owusu Adjei
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Peter Vilhelm Skov
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| | - Kwasi Adu Obirikorang
- Department of Fisheries and Watershed Management, Faculty of Renewable Natural Resources, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
2
|
Schwieterman GD, Hardison EA, Cox GK, Van Wert JC, Birnie-Gauvin K, Eliason EJ. Mechanisms of cardiac collapse at high temperature in a marine teleost (Girella nigrians). Comp Biochem Physiol A Mol Integr Physiol 2023; 286:111512. [PMID: 37726058 DOI: 10.1016/j.cbpa.2023.111512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Heat-induced mortality in ectotherms may be attributed to impaired cardiac performance, specifically a collapse in maximum heart rate (fHmax), although the physiological mechanisms driving this phenomenon are still unknown. Here, we tested two proposed factors which may restrict cardiac upper thermal limits: noxious venous blood conditions and oxygen limitation. We hypothesized elevated blood [K+] (hyperkalemia) and low oxygen (hypoxia) would reduce cardiac upper thermal limits in a marine teleost (Girella nigricans), while high oxygen (hyperoxia) would increase thermal limits. We also hypothesized higher acclimation temperatures would exacerbate the harmful effects of an oxygen limitation. Using the Arrhenius breakpoint temperature test, we measured fHmax in acutely warmed fish under control (saline injected) and hyperkalemic conditions (elevated plasma [K+]) while exposed to hyperoxia (200% air saturation), normoxia (100% air saturation), or hypoxia (20% air saturation). We also measured ventricle lactate content and venous blood oxygen partial pressure (PO2) to determine if there were universal thresholds in either metric driving cardiac collapse. Elevated [K+] was not significantly correlated with any cardiac thermal tolerance metric. Hypoxia significantly reduced cardiac upper thermal limits (Arrhenius breakpoint temperature [TAB], peak fHmax, temperature of peak heart rate [TPeak], and temperature at arrhythmia [TARR]). Hyperoxia did not alter cardiac thermal limits compared to normoxia. There was no evidence of a species-wide threshold in ventricular [lactate] or venous PO2. Here, we demonstrate that oxygen limits cardiac thermal tolerance only in instances of hypoxia, but that other physiological processes are responsible for causing temperature-induced heart failure when oxygen is not limited.
Collapse
Affiliation(s)
- Gail D Schwieterman
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA; School of Marine Sciences, University of Maine, Orono, ME, USA; Maine Agricultural and Forest Experiment Station, Orono, ME, USA.
| | - Emily A Hardison
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA. https://twitter.com/eahardison
| | | | - Jacey C Van Wert
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA. https://twitter.com/jacey_van_wert
| | - Kim Birnie-Gauvin
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA; Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark. https://twitter.com/kbg_conserv
| | - Erika J Eliason
- Department of Ecology Evolution and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Sandrelli RM, Gamperl AK. The upper temperature and hypoxia limits of Atlantic salmon (Salmo salar) depend greatly on the method utilized. J Exp Biol 2023; 226:jeb246227. [PMID: 37622446 PMCID: PMC10560559 DOI: 10.1242/jeb.246227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
In this study, Atlantic salmon were: (i) implanted with heart rate (fH) data storage tags (DSTs), pharmacologically stimulated to maximum fH, and warmed at 10°C h-1 (i.e. tested using a 'rapid screening protocol'); (ii) fitted with Doppler® flow probes, recovered in respirometers and given a critical thermal maximum (CTmax) test at 2°C h-1; and (iii) implanted with fH DSTs, recovered in a tank with conspecifics for 4 weeks, and had their CTmax determined at 2°C h-1. Fish in respirometers and those free-swimming were also exposed to a stepwise decrease in water oxygen level (100% to 30% air saturation) to determine the oxygen level at which bradycardia occurred. Resting fH was much lower in free-swimming fish than in those in respirometers (∼49 versus 69 beats min-1) and this was reflected in their scope for fH (∼104 versus 71 beats min-1) and CTmax (27.7 versus 25.9°C). Further, the Arrhenius breakpoint temperature and temperature at peak fH for free-swimming fish were considerably greater than for those tested in the respirometers and given a rapid screening protocol (18.4, 18.1 and 14.6°C; and 26.5, 23.2 and 20.2°C, respectively). Finally, the oxygen level at which bradycardia occurred was significantly higher in free-swimming salmon than in those in respirometers (∼62% versus 53% air saturation). These results: highlight the limitations of some lab-based methods of determining fH parameters and thermal tolerance in fishes; and suggest that scope for fH may be a more reliable and predictive measure of a fish's upper thermal tolerance than their peak fH.
Collapse
Affiliation(s)
- Rebeccah M. Sandrelli
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| | - A. Kurt Gamperl
- Department of Ocean Sciences, Memorial University of Newfoundland and Labrador, St John's, NL, Canada, A1C 5S7
| |
Collapse
|
4
|
Farrell AP. Getting to the heart of anatomical diversity and phenotypic plasticity: fish hearts are an optimal organ model in need of greater mechanistic study. J Exp Biol 2023; 226:jeb245582. [PMID: 37578108 DOI: 10.1242/jeb.245582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Natural selection has produced many vertebrate 'solutions' for the cardiac life-support system, especially among the approximately 30,000 species of fishes. For example, across species, fish have the greatest range for central arterial blood pressure and relative ventricular mass of any vertebrate group. This enormous cardiac diversity is excellent ground material for mechanistic explorations. Added to this species diversity is the emerging field of population-specific diversity, which is revealing that cardiac design and function can be tailored to a fish population's local environmental conditions. Such information is important to conservation biologists and ecologists, as well as physiologists. Furthermore, the cardiac structure and function of an individual adult fish are extremely pliable (through phenotypic plasticity), which is typically beneficial to the heart's function when environmental conditions are variable. Consequently, exploring factors that trigger cardiac remodelling with acclimation to new environments represents a marvellous opportunity for performing mechanistic studies that minimize the genetic differences that accompany cross-species comparisons. What makes the heart an especially good system for the investigation of phenotypic plasticity and species diversity is that its function can be readily evaluated at the organ level using established methodologies, unlike most other organ systems. Although the fish heart has many merits as an organ-level model to provide a mechanistic understanding of phenotypic plasticity and species diversity, bringing this potential to fruition will require productive research collaborations among physiologists, geneticists, developmental biologists and ecologists.
Collapse
|
5
|
Firth BL, Craig PM, Drake DAR, Power M. Seasonal, environmental and individual effects on hypoxia tolerance of eastern sand darter ( Ammocrypta pellucida). CONSERVATION PHYSIOLOGY 2023; 11:coad008. [PMID: 36926473 PMCID: PMC10012177 DOI: 10.1093/conphys/coad008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Metabolic rate and hypoxia tolerance are highly variable among individual fish in a stable environment. Understanding the variability of these measures in wild fish populations is critical for assessing adaptive potential and determining local extinction risks as a result of climate-induced fluctuations in temperature and hypoxic conditions. We assessed the field metabolic rate (FMR) and two hypoxia tolerance metrics, oxygen pressure at loss of equilibrium (PO2 at LOE) and critical oxygen tolerance (Pcrit) of wild-captured eastern sand darter (Ammocrypta pellucida), a threatened species in Canada, using field trials (June to October) that encompassed ambient water temperatures and oxygen conditions typically experienced by the species. Temperature was significantly and positively related to hypoxia tolerance but not FMR. Temperature alone explained 1%, 31% and 7% of the variability observed in FMR, LOE, and Pcrit, respectively. Environmental and fish-specific factors such as reproductive season and condition explained much of the residual variation. Reproductive season significantly affected FMR by increasing it by 159-176% over the tested temperature range. Further understanding the impact of reproductive season on metabolic rate over a temperature range is crucial for understanding how climate change could impact species fitness. Among-individual variation in FMR significantly increased with temperature while among-individual variation in both hypoxia tolerance metrics did not. A large degree of variation in FMR in the summer might allow for evolutionary rescue with increasing mean and variance of global temperatures. Findings suggest that temperature may be a weak predictor in a field setting where biotic and abiotic factors can act concurrently on variables that affect physiological tolerance.
Collapse
Affiliation(s)
- Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - D Andrew R Drake
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, ON, L7S 1A1, Canada
| | - Michael Power
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
6
|
Anttila K, Mauduit F, Kanerva M, Götting M, Nikinmaa M, Claireaux G. Cardiovascular oxygen transport and peripheral oxygen extraction capacity contribute to acute heat tolerance in European seabass. Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111340. [PMID: 36347467 DOI: 10.1016/j.cbpa.2022.111340] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/23/2022] [Accepted: 11/02/2022] [Indexed: 11/08/2022]
Abstract
This study evaluated whether different parameters describing cardiovascular function, energy metabolism, oxygen transport and oxidative stress were related to the critical thermal maximum (CTMAX) of European seabass (Dicentrarchus labrax) and if there were differential changes in these parameters during and after heat shock in animals with different CTMAX in order to characterize which physiological features make seabass vulnerable to heat waves. Seabass (n = 621) were tested for CTMAX and the physiological parameters were measured in individuals with good or poor temperature tolerance before and after a heat shock (change in temperature from 15 °C to 28 °C in 1.5 h). Fish with good thermal tolerance had larger ventricles with higher maximal heart rate during the heat shock than individuals with poor tolerance. Furthermore, they initially had a high ventricular Ca2+-ATPase activity, which was reduced to a similar level as in fish with poor tolerance following heat shock. The activity of heart lactate dehydrogenase increased in fish with high tolerance, when they were exposed to heat shock, while the aerobic enzyme activity did not differ between groups. The tolerant individuals had smaller red muscle fibers with higher myoglobin content than the poorly tolerant ones. The poorly tolerant individuals had higher hematocrit, which increased with heat shock in both groups. The poorly tolerant individuals had also higher activity of enzymes related to oxidative stress especially after heat shock. In general, CTMAX was not depending on merely one physiological factor but several organ and cellular parameters were related to the CTMAX of seabass and when working in combination they might protect the highly tolerant seabass from future heat waves.
Collapse
Affiliation(s)
- Katja Anttila
- Department of Biology, University of Turku, FI-20014 Turku, Finland.
| | - Florian Mauduit
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| | - Mirella Kanerva
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Miriam Götting
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikko Nikinmaa
- Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Guy Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, Plouzané 29280, France
| |
Collapse
|
7
|
Pettinau L, Lancien F, Zhang Y, Mauduit F, Ollivier H, Farrell AP, Claireaux G, Anttila K. Warm, but not hypoxic acclimation, prolongs ventricular diastole and decreases the protein level of Na +/Ca 2+ exchanger to enhance cardiac thermal tolerance in European sea bass. Comp Biochem Physiol A Mol Integr Physiol 2022; 272:111266. [PMID: 35772648 DOI: 10.1016/j.cbpa.2022.111266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
One of the physiological mechanisms that can limit the fish's ability to face hypoxia or elevated temperature, is maximal cardiac performance. Yet, few studies have measured how cardiac electrical activity and associated calcium cycling proteins change with acclimation to those environmental stressors. To examine this, we acclimated European sea bass for 6 weeks to three experimental conditions: a seasonal average temperature in normoxia (16 °C; 100% air sat.), an elevated temperature in normoxia (25 °C; 100% air sat.) and a seasonal average temperature in hypoxia (16 °C; 50% air sat.). Following each acclimation, the electrocardiogram was measured to assess how acclimation affected the different phases of cardiac cycle, the maximal heart rate (fHmax) and cardiac thermal performance during an acute increase of temperature. Whereas warm acclimation prolonged especially the diastolic phase of the ventricular contraction, reduced the fHmax and increased the cardiac arrhythmia temperature (TARR), hypoxic acclimation was without effect on these functional indices. We measured the level of two key proteins involved with cellular relaxation of cardiomyocytes, i.e. sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) and Na+/Ca2+ exchanger (NCX). Warm acclimation reduced protein level of both NCX and SERCA and hypoxic acclimation reduced SERCA protein levels without affecting NCX. The changes in ventricular NCX level correlated with the observed changes in diastole duration and fHmax as well as TARR. Our results shed new light on mechanisms of cardiac plasticity to environmental stressors and suggest that NCX might be involved with the observed functional changes, yet future studies should also measure its electrophysiological activity.
Collapse
Affiliation(s)
- Luca Pettinau
- Department of Biology, University of Turku, 20014 Turku, Finland.
| | - Frédéric Lancien
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Yangfan Zhang
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada. https://twitter.com/theYangfanZHANG
| | - Florian Mauduit
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Hélène Ollivier
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Anthony P Farrell
- Department of Zoology, Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guy Claireaux
- Université de Bretagne Occidentale, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France
| | - Katja Anttila
- Department of Biology, University of Turku, 20014 Turku, Finland. https://twitter.com/anttilaLab
| |
Collapse
|
8
|
Joyce W, Wang T. Regulation of heart rate in vertebrates during hypoxia: A comparative overview. Acta Physiol (Oxf) 2022; 234:e13779. [PMID: 34995393 DOI: 10.1111/apha.13779] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 01/01/2022] [Indexed: 12/18/2022]
Abstract
Acute exposure to low oxygen (hypoxia) places conflicting demands on the heart. Whilst an increase in heart rate (tachycardia) may compensate systemic oxygen delivery as arterial oxygenation falls, the heart itself is an energetically expensive organ that may benefit from slowing (bradycardia) to reduce work when oxygen is limited. Both strategies are apparent in vertebrates, with tetrapods (mammals, birds, reptiles, and amphibians) classically exhibiting hypoxic tachycardia and fishes displaying characteristic hypoxic bradycardia. With a richer understanding of the ontogeny and evolution of the responses, however, we see similarities in the underlying mechanisms between vertebrate groups. For example, in adult mammals, primary bradycardia results from the hypoxic stimulation of carotid body chemoreceptors that are overwhelmed by mechano-sensory feedback from the lung associated with hyperpnoea. Fish-like bradycardia prevails in the mammalian foetus (which, at this stage, is incapable of pulmonary ventilation), and in fish and foetus alike, the bradycardia ensues despite an elevation of circulating catecholamines. In both cases, the reduced heart rate may primarily serve to protect the heart. Thus, the comparative perspective offers fundamental insight into how and why different vertebrates regulate heart rate in different ways during periods of hypoxia.
Collapse
Affiliation(s)
- William Joyce
- Department of Biology—Zoophysiology Aarhus University Aarhus C Denmark
| | - Tobias Wang
- Department of Biology—Zoophysiology Aarhus University Aarhus C Denmark
| |
Collapse
|
9
|
Killen SS, Cortese D, Cotgrove L, Jolles JW, Munson A, Ioannou CC. The Potential for Physiological Performance Curves to Shape Environmental Effects on Social Behavior. Front Physiol 2021; 12:754719. [PMID: 34858209 PMCID: PMC8632012 DOI: 10.3389/fphys.2021.754719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/19/2021] [Indexed: 01/03/2023] Open
Abstract
As individual animals are exposed to varying environmental conditions, phenotypic plasticity will occur in a vast array of physiological traits. For example, shifts in factors such as temperature and oxygen availability can affect the energy demand, cardiovascular system, and neuromuscular function of animals that in turn impact individual behavior. Here, we argue that nonlinear changes in the physiological traits and performance of animals across environmental gradients—known as physiological performance curves—may have wide-ranging effects on the behavior of individual social group members and the functioning of animal social groups as a whole. Previous work has demonstrated how variation between individuals can have profound implications for socially living animals, as well as how environmental conditions affect social behavior. However, the importance of variation between individuals in how they respond to changing environmental conditions has so far been largely overlooked in the context of animal social behavior. First, we consider the broad effects that individual variation in performance curves may have on the behavior of socially living animals, including: (1) changes in the rank order of performance capacity among group mates across environments; (2) environment-dependent changes in the amount of among- and within-individual variation, and (3) differences among group members in terms of the environmental optima, the critical environmental limits, and the peak capacity and breadth of performance. We then consider the ecological implications of these effects for a range of socially mediated phenomena, including within-group conflict, within- and among group assortment, collective movement, social foraging, predator-prey interactions and disease and parasite transfer. We end by outlining the type of empirical work required to test the implications for physiological performance curves in social behavior.
Collapse
Affiliation(s)
- Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Daphne Cortese
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Lucy Cotgrove
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jolle W Jolles
- Center for Ecological Research and Forestry Applications (CREAF), Campus de Bellaterra (UAB), Barcelona, Spain
| | - Amelia Munson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Christos C Ioannou
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
10
|
Li M, Pan D, Sun H, Zhang L, Cheng H, Shao T, Wang Z. The hypoxia adaptation of small mammals to plateau and underground burrow conditions. Animal Model Exp Med 2021; 4:319-328. [PMID: 34977483 PMCID: PMC8690988 DOI: 10.1002/ame2.12183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/08/2021] [Indexed: 12/19/2022] Open
Abstract
Oxygen is one of the important substances for the survival of most life systems on the earth, and plateau and underground burrow systems are two typical hypoxic environments. Small mammals living in hypoxic environments have evolved different adaptation strategies, which include increased oxygen delivery, metabolic regulation of physiological responses and other physiological responses that change tissue oxygen utilization. Multi-omics predictions have also shown that these animals have evolved different adaptations to extreme environments. In particular, vascular endothelial growth factor (VEGF) and erythropoietin (EPO), which have specific functions in the control of O2 delivery, have evolved adaptively in small mammals in hypoxic environments. Naked mole-rats and blind mole-rats are typical hypoxic model animals as they have some resistance to cancer. This review primarily summarizes the main living environment of hypoxia tolerant small mammals, as well as the changes of phenotype, physiochemical characteristics and gene expression mode of their long-term living in hypoxia environment.
Collapse
Affiliation(s)
- Mengke Li
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Dan Pan
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
- Centre for Nutritional EcologyZhengzhou UniversityZhengzhouP.R. China
| | - Lei Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouP.R. China
| |
Collapse
|
11
|
Morgenroth D, McArley T, Gräns A, Axelsson M, Sandblom E, Ekström A. Coronary blood flow influences tolerance to environmental extremes in fish. J Exp Biol 2021; 224:jeb.239970. [PMID: 33688058 DOI: 10.1242/jeb.239970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022]
Abstract
Approximately half of all fishes have, in addition to the luminal venous O2 supply, a coronary circulation supplying the heart with fully oxygenated blood. Yet, it is not fully understood how coronary O2 delivery affects tolerance to environmental extremes such as warming and hypoxia. Hypoxia reduces arterial oxygenation, while warming increases overall tissue O2 demand. Thus, as both stressors are associated with reduced venous O2 supply to the heart, we hypothesised that coronary flow benefits hypoxia and warming tolerance. To test this hypothesis, we blocked coronary blood flow (via surgical coronary ligation) in rainbow trout (Oncorhynchus mykiss) and assessed how in vivo cardiorespiratory performance and whole-animal tolerance to acute hypoxia and warming was affected. While coronary ligation reduced routine stroke volume relative to trout with intact coronaries, cardiac output was maintained by an increase in heart rate. However, in hypoxia, coronary-ligated trout were unable to increase stroke volume to maintain cardiac output when bradycardia developed, which was associated with a slightly reduced hypoxia tolerance. Moreover, during acute warming, coronary ligation caused cardiac function to collapse at lower temperatures and reduced overall heat tolerance relative to trout with intact coronary arteries. We also found a positive relationship between individual hypoxia and heat tolerance across treatment groups, and tolerance to both environmental stressors was positively correlated with cardiac performance. Collectively, our findings show that coronary perfusion improves cardiac O2 supply and therefore cardiovascular function at environmental extremes, which benefits tolerance to natural and anthropogenically induced environmental perturbations.
Collapse
Affiliation(s)
- Daniel Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Tristan McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Albin Gräns
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, 532 23 Skara, Sweden
| | - Michael Axelsson
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Erik Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - Andreas Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
12
|
The effects of elevated potassium, acidosis, reduced oxygen levels, and temperature on the functional properties of isolated myocardium from three elasmobranch fishes: clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus). J Comp Physiol B 2021; 191:127-141. [PMID: 33394123 DOI: 10.1007/s00360-020-01328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 10/22/2022]
Abstract
Elevated plasma potassium levels (hyperkalemia), reduced plasma pH (acidosis), reduced blood oxygen content, and elevated temperatures are associated with species-specific rates of at-vessel and post-release mortality in elasmobranch fishes. The mechanism linking these physiological disturbances to mortality remains undetermined however, and we hypothesize that the proximate cause is reduced myocardial function. We measured changes in the functional properties of isolated ventricular myocardial strips from clearnose skate (Rostroraja eglanteria), smooth dogfish (Mustelus canis), and sandbar shark (Carcharhinus plumbeus) when subjected to the following stressors (both in isolation and in combination): hyperkalemia (7.4 mM K+), acidosis (from 7.9 to 7.1), and reduced oxygen (to 31% O2 saturation) applied at temperatures 5 °C above and below holding temperatures. We selected these species based on phylogenetic distance, diverse routine activity levels, and their tolerance to capture and transport. Stressors had a few significant species-specific detrimental impacts on myocardial function (e.g., a 33-45% decrease in net force under acidosis + low O2). Net force production of myocardial strips from clearnose skate and smooth dogfish approximately doubled following exposure to isoproterenol, demonstrating that these species possess beta-adrenergic receptors and that their stimulation could provide a mechanism for preservation of cardiac function during stress. Our results suggest that disruption of physiological homeostasis associated with capture may fatally impair cardiac function in some elasmobranch species, although research with more severe stressors is needed.
Collapse
|
13
|
Roberts JC, Carnevale C, Gamperl AK, Syme DA. Effects of hypoxic acclimation on contractile properties of the spongy and compact ventricular myocardium of steelhead trout (Oncorhynchus mykiss). J Comp Physiol B 2020; 191:99-111. [PMID: 33084921 DOI: 10.1007/s00360-020-01318-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022]
Abstract
The trout ventricle has an outer compact layer supplied with well-oxygenated arterial blood from the coronary circulation, and an inner spongy myocardium supplied with oxygen poor venous blood. It was hypothesized that: (1) the spongy myocardium of steelhead trout (Oncorhynchus mykiss), given its routine exposure to low partial pressures of oxygen (PO2), would be better able to maintain contractile performance (work) when exposed to acute hypoxia (100 to 10% air saturation) relative to the compact myocardium, and would show little benefit from hypoxic acclimation; and (2) the compact myocardium from hypoxia-acclimated (40% air saturation) fish would be better able to maintain work during acute exposure to hypoxia relative to normoxia-acclimated individuals. Consistent with our expectations, when PO2 was acutely lowered, net work from the compact myocardium of normoxia-acclimated fish declined more (by ~ 73%) than the spongy myocardium (~ 50%), and more than the compact myocardium of hypoxia-acclimated fish (~ 55%), and hypoxic acclimation did not benefit the spongy myocardium in the face of reduced PO2. Further, while hypoxic acclimation resulted in a 25% (but not significant) decrease in net work of the spongy myocardium, the performance of the compact myocardium almost doubled. This research suggests that, in contrast to the spongy myocardium, performance of the compact myocardium is improved by hypoxic acclimation; and supports previous research suggesting that the decreased contractile performance of the myocardium upon exposure to lowered PO2 may be adaptive and mediated by mechanisms within the muscle itself.
Collapse
Affiliation(s)
- Jordan C Roberts
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Christian Carnevale
- Departments of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - A Kurt Gamperl
- Departments of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada
| | - Douglas A Syme
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
14
|
O'Brien KM, Rix AS, Grove TJ, Sarrimanolis J, Brooking A, Roberts M, Crockett EL. Characterization of the hypoxia-inducible factor-1 pathway in hearts of Antarctic notothenioid fishes. Comp Biochem Physiol B Biochem Mol Biol 2020; 250:110505. [PMID: 32966875 DOI: 10.1016/j.cbpb.2020.110505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
The ability of Antarctic notothenioid fishes to mount a robust molecular response to hypoxia is largely unknown. The transcription factor, hypoxia-inducible factor-1 (HIF-1), a heterodimer of HIF-1α and HIF-1β subunits, is the master regulator of oxygen homeostasis in most metazoans. We sought to determine if, in the hearts of Antarctic notothenioids, HIF-1 is activated and functional in response to either an acute heat stress or hypoxia. The red-blooded Notothenia coriiceps and the hemoglobinless icefish, Chaenocephalus aceratus, were exposed to their critical thermal maximum (CTMAX) or hypoxia (5.0 ± 0.3 mg of O2 L-1) for 2 h. Additionally, N. coriiceps was exposed to 2.3 ± 0.3 mg of O2 L-1 for 12 h, and red-blooded Gobionotothen gibberifrons was exposed to both levels of hypoxia. Levels of HIF-1α were quantified in nuclei isolated from heart ventricles using western blotting. Transcript levels of genes involved in anaerobic metabolism, and known to be regulated by HIF-1, were quantified by real-time PCR, and lactate levels were measured in heart ventricles. Protein levels of HIF-1α increase in nuclei of hearts of N. coriiceps and C. aceratus in response to exposure to CTMAX and in hearts of N. coriiceps exposed to severe hypoxia, yet mRNA levels of anaerobic metabolic genes do not increase in any species, nor do lactate levels increase, suggesting that HIF-1 does not stimulate metabolic remodeling in hearts of notothenioids under these conditions. Together, these data suggest that Antarctic notothenioids may be vulnerable to hypoxic events, which are likely to increase with climate warming.
Collapse
Affiliation(s)
- K M O'Brien
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America.
| | - A S Rix
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America
| | - T J Grove
- Department of Biology, Valdosta State University, Valdosta, GA 31698, United States of America
| | - J Sarrimanolis
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America
| | - A Brooking
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America
| | - M Roberts
- Institute of Arctic Biology, Fairbanks, Alaska, United States of America
| | - E L Crockett
- Department of Biological Sciences, Ohio University, Athens, OH 45701, United States of America
| |
Collapse
|
15
|
Jiang M, Shi L, Li X, Dong Q, Sun H, Du Y, Zhang Y, Shao T, Cheng H, Chen W, Wang Z. Genome-wide adaptive evolution to underground stresses in subterranean mammals: Hypoxia adaption, immunity promotion, and sensory specialization. Ecol Evol 2020; 10:7377-7388. [PMID: 32760535 PMCID: PMC7391338 DOI: 10.1002/ece3.6462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022] Open
Abstract
Life underground has provided remarkable examples of adaptive evolution in subterranean mammals; however, genome-wide adaptive evolution to underground stresses still needs further research. There are approximately 250 species of subterranean mammals across three suborders and six families. These species not only inhabit hypoxic and dark burrows but also exhibit evolved adaptation to hypoxia, cancer resistance, and specialized sensory systems, making them an excellent model of evolution. The adaptive evolution of subterranean mammals has attracted great attention and needs further study. In the present study, phylogenetic analysis of 5,853 single-copy orthologous gene families of five subterranean mammals (Nannospalax galili, Heterocephalus glaber, Fukomys damarensis, Condylura cristata, and Chrysochloris asiatica) showed that they formed fou distinct clusters. This result is consistent with the traditional systematics of these species. Furthermore, comparison of the high-quality genomes of these five subterranean mammalian species led to the identification of the genomic signatures of adaptive evolution. Our results show that the five subterranean mammalian did not share positively selected genes but had similar functional enrichment categories, including hypoxia tolerance, immunity promotion, and sensory specialization, which adapted to the environment of underground stresses. Moreover, variations in soil hardness, climate, and lifestyles have resulted in different molecular mechanisms of adaptation to the hypoxic environment and different degrees of visual degradation. These results provide insights into the genome-wide adaptive evolution to underground stresses in subterranean mammals, with special focus on the characteristics of hypoxia adaption, immunity promotion, and sensory specialization response to the life underground.
Collapse
Affiliation(s)
- Mengwan Jiang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Luye Shi
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Xiujuan Li
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Qianqian Dong
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Hong Sun
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yimeng Du
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Yifeng Zhang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Tian Shao
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Han Cheng
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| | - Weihua Chen
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Zhenlong Wang
- School of Life SciencesZhengzhou UniversityZhengzhouChina
| |
Collapse
|
16
|
Kraskura K, Nelson JA. Hypoxia tolerance is unrelated to swimming metabolism of wild, juvenile striped bass ( Morone saxatilis). J Exp Biol 2020; 223:jeb217125. [PMID: 32098876 DOI: 10.1242/jeb.217125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/10/2020] [Indexed: 11/20/2022]
Abstract
Juvenile striped bass residing in Chesapeake Bay are likely to encounter hypoxia that could affect their metabolism and performance. The ecological success of this economically valuable species may depend on their ability to tolerate hypoxia and perform fitness-dependent activities in hypoxic waters. We tested whether there is a link between hypoxia tolerance (HT) and oxygen consumption rate (ṀO2 ) of juvenile striped bass measured while swimming in normoxic and hypoxic water, and to identify the interindividual variation and repeatability of these measurements. HT (loss of equilibrium) of fish (N=18) was measured twice collectively, 11 weeks apart, between which ṀO2 was measured individually for each fish while swimming in low flow (10.2 cm s-1) and high flow (∼67% of critical swimming speed, Ucrit) under normoxia and hypoxia. Both HT and ṀO2 varied substantially among individuals. HT increased across 11 weeks while the rank order of individual HT was significantly repeatable. Similarly, ṀO2 increased in fish swimming at high flow in a repeatable fashion, but only within a given level of oxygenation. ṀO2 was significantly lower when fish were swimming against high flow under hypoxia. There were no clear relationships between HT and ṀO2 while fish were swimming under any conditions. Only the magnitude of increase in HT over 11 weeks and an individual's ṀO2 under low flow were correlated. The results suggest that responses to the interacting stressors of hypoxia and exercise vary among individuals, and that HT and change in HT are not simple functions of aerobic metabolic rate.
Collapse
Affiliation(s)
- Krista Kraskura
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Jay A Nelson
- Department of Biological Sciences, Towson University, Towson, MD 21252, USA
| |
Collapse
|
17
|
Abstract
In the 1950s, Arthur C. Guyton removed the heart from its pedestal in cardiovascular physiology by arguing that cardiac output is primarily regulated by the peripheral vasculature. This is counterintuitive, as modulating heart rate would appear to be the most obvious means of regulating cardiac output. In this Review, we visit recent and classic advances in comparative physiology in light of this concept. Although most vertebrates increase heart rate when oxygen demands rise (e.g. during activity or warming), experimental evidence suggests that this tachycardia is neither necessary nor sufficient to drive a change in cardiac output (i.e. systemic blood flow, Q̇ sys) under most circumstances. Instead, Q̇ sys is determined by the interplay between vascular conductance (resistance) and capacitance (which is mainly determined by the venous circulation), with a limited and variable contribution from heart function (myocardial inotropy). This pattern prevails across vertebrates; however, we also highlight the unique adaptations that have evolved in certain vertebrate groups to regulate venous return during diving bradycardia (i.e. inferior caval sphincters in diving mammals and atrial smooth muscle in turtles). Going forward, future investigation of cardiovascular responses to altered metabolic rate should pay equal consideration to the factors influencing venous return and cardiac filling as to the factors dictating cardiac function and heart rate.
Collapse
Affiliation(s)
- William Joyce
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark .,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
18
|
Carnevale C, Roberts JC, Syme DA, Gamperl AK. Hypoxic acclimation negatively impacts the contractility of steelhead trout ( Oncorhynchus mykiss) spongy myocardium. Am J Physiol Regul Integr Comp Physiol 2020; 318:R214-R226. [PMID: 31747300 PMCID: PMC7052596 DOI: 10.1152/ajpregu.00107.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 11/18/2019] [Accepted: 11/18/2019] [Indexed: 11/22/2022]
Abstract
Cardiac stroke volume (SV) is compromised in Atlantic cod and rainbow trout following acclimation to hypoxia (i.e., 40% air saturation; ~8 kPa O2) at 10-12°C, and this is not due to changes in heart morphometrics or maximum achievable in vitro end-diastolic volume. To examine if this diminished SV may be related to compromised myocardial contractility, we used the work-loop method to measure work and power in spongy myocardial strips from normoxic- and hypoxic-acclimated steelhead trout when exposed to decreasing Po2 levels (21 to 1.5 kPa) at several frequencies (30-90 contractions/min) at 14°C (their acclimation temperature). Work required to lengthen the muscle, as during filling of the heart, was strongly frequency dependent (i.e., increased with contraction rate) but was not affected by hypoxic acclimation or test Po2. In contrast, although shortening work was less frequency dependent, this parameter and network (and power) 1) were consistently lower (by ~30-50 and ~15%, respectively) in strips from hypoxic-acclimated fish and 2) fell by ~40-50% in both groups from 20 to 1.5 kPa Po2, despite the already-reduced myocardial performance in the hypoxic-acclimated group. In addition, strips from hypoxic-acclimated trout showed a poorer recovery of net power (by ~15%) when returned to normoxia. These results strongly suggest that hypoxic acclimation reduces myocardial contractility, and in turn, may limit SV (possibly by increasing end-systolic volume), but that this diminished performance does not improve the capacity to maintain myocardial performance under oxygen limiting conditions.
Collapse
Affiliation(s)
- C. Carnevale
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John’s Newfoundland and Labrador, Canada
| | - J. C. Roberts
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - D. A. Syme
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - A. K. Gamperl
- Department of Ocean Sciences and Biology, Memorial University of Newfoundland, St. John’s Newfoundland and Labrador, Canada
| |
Collapse
|
19
|
Ferrari S, Rey S, Høglund E, Øverli Ø, Chatain B, MacKenzie S, Bégout ML. Physiological responses during acute stress recovery depend on stress coping style in European sea bass, Dicentrarchus labrax. Physiol Behav 2020; 216:112801. [PMID: 31931036 DOI: 10.1016/j.physbeh.2020.112801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/12/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023]
Abstract
Individual stress coping style (reactive, intermediate and proactive) was determined in 3 groups of 120 pit tagged European seabass using the hypoxia avoidance test. The same three groups (no change in social composition) were then reared according to the standards recommended for this species. Then, 127 days later, individuals initially characterized as reactive, intermediate or proactive were submitted to an acute confinement stress for 30 min. Blood samples were taken to measure plasma cortisol levels 30 min (Stress30) or 150 min (Stress150) after the end of the confinement stress. Individuals were then sacrificed to sample the telencephalon in order to measure the main monoamines and their catabolites (at Stress30 only). Individuals from Stress150 were sampled for whole brain for a transcriptomic analysis. The main results showed that reactive individuals had a lower body mass than intermediate individuals which did not differ from proactive individuals. The physiological cortisol response did not differ between coping style at Stress30 but at Stress150 when intermediate and proactive individuals had recovered pre stress levels, reactive individuals showed a significant higher level illustrating a modulation of stress recovery by coping style. Serotonin turnover ratio was higher in proactive and reactive individuals compared to intermediate individuals and a significant positive correlation was observed with cortisol levels whatever the coping style. Further, the confinement stress led to a general increase in the serotonin turnover comparable between coping styles. Stress150 had a significant effect on target mRNA copy number (Gapdh mRNA copy number decreased while ifrd1 mRNA copy number increased) and such changes tended to depend upon coping style.
Collapse
Affiliation(s)
- Sébastien Ferrari
- Ifremer, Fisheries Research Laboratory, L'Houmeau 17137, France; MARBEC, Ifremer, Université de Montpellier, CNRS, IRD, Palavas-les-flots, France
| | - Sonia Rey
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | - Erik Høglund
- Norwegian Institute for Water Research (NIVA), Oslo N-0349, Norway
| | - Øyvind Øverli
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo N-0033, Norway
| | - Béatrice Chatain
- MARBEC, Ifremer, Université de Montpellier, CNRS, IRD, Palavas-les-flots, France
| | - Simon MacKenzie
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK
| | | |
Collapse
|
20
|
Nelson JA, Kraskura K, Lipkey GK. Repeatability of Hypoxia Tolerance of Individual Juvenile Striped Bass Morone saxatilis and Effects of Social Status. Physiol Biochem Zool 2019; 92:396-407. [PMID: 31141466 DOI: 10.1086/704010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Chesapeake Bay is the primary nursery for striped bass (Morone saxatilis), which are increasingly being exposed to hypoxic waters. Tolerance to hypoxia in fish is generally determined by a single exposure of an isolated individual or by exposing large groups of conspecifics to hypoxia without regard to social status. The importance of social context in determining physiological responses to stressors is being increasingly recognized. To determine whether social interactions influence hypoxia tolerance (HT) in striped bass, loss of equilibrium HT was assessed in the same fish while manipulating the social environment around it. Small group settings were used to be more representative of the normal sociality experienced by this species than the paired encounters typically used. After establishing the dominance hierarchy within a group of fish, HT was determined collectively for the individuals in that group, and then new groups were constructed from the same pool of fish. Individuals could then be followed across multiple settings for both repeatability of HT and hierarchy position ( X ¯ = 4.2 ± 0.91 SD groups per individual). HT increased with repeated exposures to hypoxia ( P < 0.001 ), with a significant increase by a third exposure ( P = 0.004 ). Despite this changing HT, rank order of HT was significantly repeatable across trials for 6 mo ( P = 0.012 ). Social status was significantly repeatable across trials of different group composition ( P = 0.02 ) and unrelated to growth rate but affected HT weakly in a complex interaction with size. Final HT was significantly correlated with blood [hemoglobin] and hematocrit. The repeatability and large intraspecific variance of HT in juvenile striped bass suggest that HT is potentially an important determinant of Darwinian fitness in an increasingly hypoxic Chesapeake Bay.
Collapse
|
21
|
Rees BB, Matute LA. Repeatable Interindividual Variation in Hypoxia Tolerance in the Gulf Killifish, Fundulus grandis. Physiol Biochem Zool 2018; 91:1046-1056. [DOI: 10.1086/699596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Hollins J, Thambithurai D, Koeck B, Crespel A, Bailey DM, Cooke SJ, Lindström J, Parsons KJ, Killen SS. A physiological perspective on fisheries-induced evolution. Evol Appl 2018; 11:561-576. [PMID: 29875803 PMCID: PMC5978952 DOI: 10.1111/eva.12597] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence that intense fishing pressure is not only depleting fish stocks but also causing evolutionary changes to fish populations. In particular, body size and fecundity in wild fish populations may be altered in response to the high and often size‐selective mortality exerted by fisheries. While these effects can have serious consequences for the viability of fish populations, there are also a range of traits not directly related to body size which could also affect susceptibility to capture by fishing gears—and therefore fisheries‐induced evolution (FIE)—but which have to date been ignored. For example, overlooked within the context of FIE is the likelihood that variation in physiological traits could make some individuals within species more vulnerable to capture. Specifically, traits related to energy balance (e.g., metabolic rate), swimming performance (e.g., aerobic scope), neuroendocrinology (e.g., stress responsiveness) and sensory physiology (e.g., visual acuity) are especially likely to influence vulnerability to capture through a variety of mechanisms. Selection on these traits could produce major shifts in the physiological traits within populations in response to fishing pressure that are yet to be considered but which could influence population resource requirements, resilience, species’ distributions and responses to environmental change.
Collapse
Affiliation(s)
- Jack Hollins
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Davide Thambithurai
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Barbara Koeck
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Amelie Crespel
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - David M Bailey
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory Department of Biology and Institute of Environmental Science Carleton University Ottawa ON Canada
| | - Jan Lindström
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Kevin J Parsons
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| |
Collapse
|
23
|
Zhang Y, Mauduit F, Farrell AP, Chabot D, Ollivier H, Rio-Cabello A, Le Floch S, Claireaux G. Exposure of European sea bass (Dicentrarchus labrax) to chemically dispersed oil has a chronic residual effect on hypoxia tolerance but not aerobic scope. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 191:95-104. [PMID: 28806602 DOI: 10.1016/j.aquatox.2017.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 06/07/2023]
Abstract
We tested the hypothesis that the chronic residual effects of an acute exposure of European sea bass (Dicentrarchus labrax) to chemically dispersed crude oil is manifest in indices of hypoxic performance rather than aerobic performance. Sea bass were pre-screened with a hypoxia challenge test to establish their incipient lethal oxygen saturation (ILOS), but on discovering a wide breadth for individual ILOS values (2.6-11.0% O2 saturation), fish were subsequently subdivided into either hypoxia sensitive (HS) or hypoxia tolerant (HT) phenotypes, traits that were shown to be experimentally repeatable. The HT phenotype had a lower ILOS and critical oxygen saturation (O2crit) compared with the HS phenotype and switched to glycolytic metabolism at a lower dissolved oxygen, even though both phenotypes accumulated lactate and glucose to the same plasma concentrations at ILOS. As initially hypothesized, and regardless of the phenotype considered, we found no residual effect of oil on any of the indices of aerobic performance. Contrary to our hypothesis, however, oil exposure had no residual effect on any of the indices of hypoxic performance in the HS phenotype. In the HT phenotype, on the other hand, oil exposure had residual effects as illustrated by the impaired repeatability of hypoxia tolerance and also by the 24% increase in O2crit, the 40% increase in scope for oxygen deficit, the 17% increase in factorial scope for oxygen deficit and the 57% increase in accumulated oxygen deficit. Thus, sea bass with a HT phenotype remained chronically impaired for a minimum of 167days following an acute 24-h oil exposure while the HS phenotypes did not. We reasoned that impaired oxygen extraction at gill due to oil exposure activates glycolytic metabolism at a higher dissolved oxygen, conferring on the HT phenotype an inferior hypoxia resistance that might eventually compromise their ability to survive hypoxic episodes.
Collapse
Affiliation(s)
- Yangfan Zhang
- Department of Zoology & Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Florian Mauduit
- Université de Bretagne Occidentale, Laboratoire des Sciences de l'Environnement Marin (UMR-6539), Unité PFOM-ARN, Ifremer Centre de Bretagne, Plouzané, France
| | - Anthony P Farrell
- Department of Zoology & Faculty of Land and Food System, University of British Columbia, Vancouver, British Columbia, Canada
| | - Denis Chabot
- Maurice Lamontagne Institute, Fisheries & Oceans Canada, Mont-Joli, QC, G5H 3Z4, Canada
| | - Hélène Ollivier
- Université de Bretagne Occidentale, Laboratoire des Sciences de l'Environnement Marin (UMR-6539), Unité PFOM-ARN, Ifremer Centre de Bretagne, Plouzané, France
| | - Adrien Rio-Cabello
- Université de Bretagne Occidentale, Laboratoire des Sciences de l'Environnement Marin (UMR-6539), Unité PFOM-ARN, Ifremer Centre de Bretagne, Plouzané, France
| | - Stéphane Le Floch
- Centre de documentation, de recherche et d'expérimentations sur les pollutions accidentelles des eaux, Brest, France
| | - Guy Claireaux
- Université de Bretagne Occidentale, Laboratoire des Sciences de l'Environnement Marin (UMR-6539), Unité PFOM-ARN, Ifremer Centre de Bretagne, Plouzané, France
| |
Collapse
|
24
|
Clow KA, Short CE, Driedzic WR. Low levels of extracellular glucose limit cardiac anaerobic metabolism in some species of fish. ACTA ACUST UNITED AC 2017; 220:2970-2979. [PMID: 28596211 DOI: 10.1242/jeb.159582] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/02/2017] [Indexed: 11/20/2022]
Abstract
There is a wide interspecific range in plasma glucose levels in teleosts from less than 0.5 to greater than 10 mmol l-1 Here we assessed how glucose availability influences glucose metabolism in hearts of Atlantic cod (Gadus morhua), rainbow trout (Oncorhynchus mykiss), lumpfish (Cyclopterus lumpus) and short-horned sculpin (Myoxocephalus scorpius) under normoxic and hypoxic conditions. These species had plasma glucose levels of 5.1, 4.8, 0.9 and 0.5 mmol l-1, respectively. Rates of glucose metabolism and lactate production were determined in isolated hearts perfused with medium containing physiological levels of glucose. Under normoxic conditions there was no significant difference in rates of either glucose metabolism (average 15 nmol g-1 min-1) or lactate production (average 30 nmol g-1 min-1) across species. Under hypoxia (12% of air saturation) there were significant increases in rates of glucose metabolism and lactate production in hearts from Atlantic cod (glucose-130; lactate-663 nmol g-1 min-1) and rainbow trout (glucose-103; lactate-774 nmol g-1 min-1); however, there was no change in rate of glucose metabolism in hearts from either lumpfish or short-horned sculpin and only increases in lactate production to rates much lower than the other species. Furthermore, Atlantic cod hearts perfused with medium containing low non-physiological levels of glucose (0.5 mmol l-1) had the same rates of glucose metabolism under normoxic and hypoxic treatments. Anaerobic metabolism supported by extracellular glucose is compromised in fish with low levels of plasma glucose, which in turn may decrease performance under oxygen-limiting conditions at the whole-animal level.
Collapse
Affiliation(s)
- Kathy A Clow
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Connie E Short
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - William R Driedzic
- Department of Ocean Sciences, Ocean Sciences Centre, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
25
|
Larter KF, Rees BB. Influence of euthanasia method on blood and gill variables in normoxic and hypoxic Gulf killifish Fundulus grandis. JOURNAL OF FISH BIOLOGY 2017; 90:2323-2343. [PMID: 28397260 DOI: 10.1111/jfb.13316] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/09/2017] [Indexed: 06/07/2023]
Abstract
In many experiments, euthanasia, or humane killing, of animals is necessary. Some methods of euthanasia cause death through cessation of respiratory or cardiovascular systems, causing oxygen levels of blood and tissues to drop. For experiments where the goal is to measure the effects of environmental low oxygen (hypoxia), the choice of euthanasia technique, therefore, may confound the results. This study examined the effects of four euthanasia methods commonly used in fish biology (overdose of MS-222, overdose of clove oil, rapid cooling and blunt trauma to the head) on variables known to be altered during hypoxia (haematocrit, plasma cortisol, blood lactate and blood glucose) or reflecting gill damage (trypan blue exclusion) and energetic status (ATP, ADP and ATP:ADP) in Gulf killifish Fundulus grandis after 24 h exposure to well-aerated conditions (normoxia, 7·93 mg O2 l-1 , c. 150 mm Hg or c. 20 kPa) or reduced oxygen levels (0·86 mg O2 l-1 , c. 17 mm Hg or c. 2·2 kPa). Regardless of oxygen treatment, fish euthanized by an overdose of MS-222 had higher haematocrit and lower gill ATP:ADP than fish euthanized by other methods. The effects of 24 h hypoxic exposure on these and other variables, however, were equivalent among methods of euthanasia (i.e. there were no significant interactions between euthanasia method and oxygen treatment). The choice of an appropriate euthanasia method, therefore, will depend upon the magnitude of the treatment effects (e.g. hypoxia) relative to potential artefacts caused by euthanasia on the variables of interest.
Collapse
Affiliation(s)
- K F Larter
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, U.S.A
| | - B B Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, U.S.A
| |
Collapse
|
26
|
Ozolina K, Shiels HA, Ollivier H, Claireaux G. Intraspecific individual variation of temperature tolerance associated with oxygen demand in the European sea bass (Dicentrarchus labrax). CONSERVATION PHYSIOLOGY 2016; 4:cov060. [PMID: 27382468 PMCID: PMC4922261 DOI: 10.1093/conphys/cov060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/05/2015] [Accepted: 11/12/2015] [Indexed: 06/06/2023]
Abstract
The European sea bass (Dicentrarchus labrax) is an economically important fish native to the Mediterranean and Northern Atlantic. Its complex life cycle involves many migrations through temperature gradients that affect the energetic demands of swimming. Previous studies have shown large intraspecific variation in swimming performance and temperature tolerance, which could include deleterious and advantageous traits under the evolutionary pressure of climate change. However, little is known of the underlying determinants of this individual variation. We investigated individual variation in temperature tolerance in 30 sea bass by exposing them to a warm temperature challenge test. The eight most temperature-tolerant and eight most temperature-sensitive fish were then studied further to determine maximal swimming speed (U CAT), aerobic scope and post-exercise oxygen consumption. Finally, ventricular contractility in each group was determined using isometric muscle preparations. The temperature-tolerant fish showed lower resting oxygen consumption rates, possessed larger hearts and initially recovered from exhaustive exercise faster than the temperature-sensitive fish. Thus, whole-animal temperature tolerance was associated with important performance traits. However, the temperature-tolerant fish also demonstrated poorer maximal swimming capacity (i.e. lower U CAT) than their temperature-sensitive counterparts, which may indicate a trade-off between temperature tolerance and swimming performance. Interestingly, the larger relative ventricular mass of the temperature-tolerant fish did not equate to greater ventricular contractility, suggesting that larger stroke volumes, rather than greater contractile strength, may be associated with thermal tolerance in this species.
Collapse
Affiliation(s)
- Karlina Ozolina
- Core Technology Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Holly A Shiels
- Core Technology Facility, The University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Hélène Ollivier
- LEMAR, Unité PFOM-ARN, Centre Ifremer de Bretagne, Université de Bretagne Occidentale, Plouzané 29280, France
| | - Guy Claireaux
- LEMAR, Unité PFOM-ARN, Centre Ifremer de Bretagne, Université de Bretagne Occidentale, Plouzané 29280, France
| |
Collapse
|
27
|
Killen SS, Adriaenssens B, Marras S, Claireaux G, Cooke SJ. Context dependency of trait repeatability and its relevance for management and conservation of fish populations. CONSERVATION PHYSIOLOGY 2016; 4:cow007. [PMID: 27382470 PMCID: PMC4922260 DOI: 10.1093/conphys/cow007] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 05/19/2023]
Abstract
Repeatability of behavioural and physiological traits is increasingly a focus for animal researchers, for which fish have become important models. Almost all of this work has been done in the context of evolutionary ecology, with few explicit attempts to apply repeatability and context dependency of trait variation toward understanding conservation-related issues. Here, we review work examining the degree to which repeatability of traits (such as boldness, swimming performance, metabolic rate and stress responsiveness) is context dependent. We review methods for quantifying repeatability (distinguishing between within-context and across-context repeatability) and confounding factors that may be especially problematic when attempting to measure repeatability in wild fish. Environmental factors such temperature, food availability, oxygen availability, hypercapnia, flow regime and pollutants all appear to alter trait repeatability in fishes. This suggests that anthropogenic environmental change could alter evolutionary trajectories by changing which individuals achieve the greatest fitness in a given set of conditions. Gaining a greater understanding of these effects will be crucial for our ability to forecast the effects of gradual environmental change, such as climate change and ocean acidification, the study of which is currently limited by our ability to examine trait changes over relatively short time scales. Also discussed are situations in which recent advances in technologies associated with electronic tags (biotelemetry and biologging) and respirometry will help to facilitate increased quantification of repeatability for physiological and integrative traits, which so far lag behind measures of repeatability of behavioural traits.
Collapse
Affiliation(s)
- S S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
- Corresponding author: Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK. Tel: +44 (0)141 330 2898.
| | - B Adriaenssens
- Institute of Biodiversity, Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow G12 8QQ, UK
| | - S Marras
- IAMC-CNR, Institute for the Coastal Marine Environment, National Research Council, Località Sa Mardini, 09170 Torregrande, Oristano, Italy
| | - G Claireaux
- Université de Bretagne Occidentale, LEMAR (UMR 6539), Unité PFOM-ARN, Centre Ifremer de Bretagne, 29280 Plouzané, France
| | - S J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6
| |
Collapse
|