1
|
Chung SSW, Cheung K, Arromrak BS, Li Z, Tse CM, Gaitán-Espitia JD. The interplay between host-specificity and habitat-filtering influences sea cucumber microbiota across an environmental gradient of pollution. ENVIRONMENTAL MICROBIOME 2024; 19:74. [PMID: 39397007 PMCID: PMC11479550 DOI: 10.1186/s40793-024-00620-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Environmental gradients can influence morpho-physiological and life-history differences in natural populations. It is unclear, however, to what extent such gradients can also modulate phenotypic differences in other organismal characteristics such as the structure and function of host-associated microbial communities. In this work, we addressed this question by assessing intra-specific variation in the diversity, structure and function of environmental-associated (sediment and water) and animal-associated (skin and gut) microbiota along an environmental gradient of pollution in one of the most urbanized coastal areas in the world. Using the tropical sea cucumber Holothuria leucospilota, we tested the interplay between deterministic (e.g., environmental/host filtering) and stochastic (e.g., random microbial dispersal) processes underpinning host-microbiome interactions and microbial assemblages. Overall, our results indicate that microbial communities are complex and vary in structure and function between the environment and the animal hosts. However, these differences are modulated by the level of pollution across the gradient with marked clines in alpha and beta diversity. Yet, such clines and overall differences showed opposite directions when comparing environmental- and animal-associated microbial communities. In the sea cucumbers, intrinsic characteristics (e.g., body compartments, biochemistry composition, immune systems), may underpin the observed intra-individual differences in the associated microbiomes, and their divergence from the environmental source. Such regulation favours specific microbial functional pathways that may play an important role in the survival and physiology of the animal host, particularly in high polluted areas. These findings suggest that the interplay between both, environmental and host filtering underpins microbial community assembly in H. leucospilota along the pollution gradient in Hong Kong.
Collapse
Affiliation(s)
- Sheena Suet-Wah Chung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Bovern Suchart Arromrak
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Zhenzhen Li
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
- Jiangsu Key Laboratory of Marine Bioresources and Environment and Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
| | - Cham Man Tse
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Juan Diego Gaitán-Espitia
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
2
|
Fernández C, Poupin MJ, Lagos NA, Broitman BR, Lardies MA. Physiological resilience of intertidal chitons in a persistent upwelling coastal region. Sci Rep 2024; 14:21401. [PMID: 39271926 PMCID: PMC11399262 DOI: 10.1038/s41598-024-72488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Current climate projections for mid-latitude regions globally indicate an intensification of wind-driven coastal upwelling due to warming conditions. The dynamics of mid-latitude coastal upwelling are marked by environmental variability across temporal scales, which affect key physiological processes in marine calcifying organisms and can impact their large-scale distribution patterns. In this context, marine invertebrates often exhibit phenotypic plasticity, enabling them to adapt to environmental change. In this study, we examined the physiological performance (i.e., metabolism, Thermal Performance Curves, and biomass and calcification rates) of individuals of the intertidal mollusk Chiton granosus, a chiton found from northern Peru to Cape Horn (5° to 55°S). Our spatial study design indicated a pattern of contrasting conditions among locations. The Talcaruca site, characterized by persistent upwelling and serving as a biogeographic break, exhibited lower pH and carbonate saturation states, along with higher pCO2, compared to the sites located to the north and south of this location (Huasco and Los Molles, respectively). In agreement with the spatial pattern in carbonate system parameters, long-term temperature records showed lower temperatures that changed faster over synoptic scales (1-15 days) at Talcaruca, in contrast to the more stable conditions at the sites outside the break. Physiological performance traits from individuals from the Talcaruca population exhibited higher values and more significant variability, along with significantly broader and greater warming tolerance than chitons from the Huasco and Los Molles populations. Moreover, marked changes in local abundance patterns over three years suggested population-level responses to the challenging environmental conditions at the biogeographic break. Thus, C. granosus from the Talcaruca upwelling zone represents a local population with wide tolerance ranges that may be capable of withstanding future upwelling intensification on the Southern Eastern Pacific coast and likely serving as a source of propagules for less adapted populations.
Collapse
Affiliation(s)
- Carolina Fernández
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
| | - María Josefina Poupin
- Laboratorio de Bioingeniería, Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
- Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Nelson A Lagos
- Centro de Investigación E Innovación, Para El Cambio Climático (CiiCC), Facultad de Ciencias, Universidad Santo Tomás, Santiago, Chile
- Instituto Milenio de Socio-Ecología Costera (SECOS), Santiago, Chile
| | - Bernardo R Broitman
- Instituto Milenio de Socio-Ecología Costera (SECOS), Santiago, Chile
- Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Viña del Mar, Chile
| | - Marco Antonio Lardies
- Instituto Milenio de Socio-Ecología Costera (SECOS), Santiago, Chile.
- Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Viña del Mar, Chile.
| |
Collapse
|
3
|
de Groot VA, Trueman C, Bates AE. Incorporating otolith-isotope inferred field metabolic rate into conservation strategies. CONSERVATION PHYSIOLOGY 2024; 12:coae013. [PMID: 38666227 PMCID: PMC11044438 DOI: 10.1093/conphys/coae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/08/2024] [Accepted: 02/24/2024] [Indexed: 04/28/2024]
Abstract
Fluctuating ocean conditions are rearranging whole networks of marine communities-from individual-level physiological thresholds to ecosystem function. Physiological studies support predictions from individual-level responses (biochemical, cellular, tissue, respiratory potential) based on laboratory experiments. The otolith-isotope method of recovering field metabolic rate has recently filled a gap for the bony fishes, linking otolith stable isotope composition to in situ oxygen consumption and experienced temperature estimates. Here, we review the otolith-isotope method focusing on the biochemical and physiological processes that yield estimates of field metabolic rate. We identify a multidisciplinary pathway in the application of this method, providing concrete research goals (field, modeling) aimed at linking individual-level physiological data to higher levels of biological organization. We hope that this review will provide researchers with a transdisciplinary 'roadmap', guiding the use of the otolith-isotope method to bridge the gap between individual-level physiology, observational field studies, and modeling efforts, while ensuring that in situ data is central in marine policy-making aimed at mitigating climatic and anthropogenic threats.
Collapse
Affiliation(s)
- Valesca A de Groot
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, A1C 5S7, Canada
- University of Victoria, 3800 Finnerty Rd, Victoria, BCV8 P5C2, Canada
| | - Clive Trueman
- School of Ocean and Earth Science, University of Southampton, Southampton SO1 43ZH, UK
| | - Amanda E Bates
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL, A1C 5S7, Canada
- University of Victoria, 3800 Finnerty Rd, Victoria, BCV8 P5C2, Canada
| |
Collapse
|
4
|
Fung CW, Chau KY, Tong DCS, Knox C, Tam SST, Tan SY, Loi DSC, Leung Z, Xu Y, Lan Y, Qian PY, Chan KYK, Wu AR. Parentage influence on gene expression under acidification revealed through single-embryo sequencing. Mol Ecol 2023; 32:6796-6808. [PMID: 37888909 DOI: 10.1111/mec.17148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/06/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023]
Abstract
The dissolution of anthropogenic carbon dioxide (CO2 ) in seawater has altered its carbonate chemistry in the process of ocean acidification (OA). OA affects the viability of marine species. In particular, calcifying organisms and their early planktonic larval stages are considered vulnerable. These organisms often utilize energy reserves for metabolism rather than growth and calcification as supported by bulk RNA-sequencing (RNA-seq) experiments. Yet, transcriptomic profiling of a bulk sample reflects the average gene expression of the population, neglecting the variations between individuals, which forms the basis for natural selection. Here, we used single-embryo RNA-seq on larval sea urchin Heliocidaris crassispina, which is a commercially and ecologically valuable species in East Asia, to document gene expression changes to OA at an individual and family level. Three paternal half-sibs groups were fertilized and exposed to 3 pH conditions (ambient pH 8.0, 7.7 and 7.4) for 12 h prior to sequencing and oxygen consumption assay. The resulting transcriptomic profile of all embryos can be distinguished into four clusters, with differences in gene expressions that govern biomineralization, cell differentiation and patterning, as well as metabolism. While these responses were influenced by pH conditions, the male identities also had an effect. Specifically, a regression model and goodness of fit tests indicated a significant interaction between sire and pH on the probability of embryo membership in different clusters of gene expression. The single-embryo RNA-seq approach is promising in climate stressor research because not only does it highlight potential impacts before phenotypic changes were observed, but it also highlights variations between individuals and lineages, thus enabling a better determination of evolutionary potential.
Collapse
Affiliation(s)
- Cheuk Wang Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kin Yung Chau
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Daniel Chun Sang Tong
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Claire Knox
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sindy Sing Ting Tam
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Sin Yen Tan
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Danson Shek Chun Loi
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ziuwin Leung
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ying Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yi Lan
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Kit Yu Karen Chan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Biology Department, Swarthmore College, Swarthmore, Pennsylvania, USA
| | - Angela Ruohao Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Center for Aging Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| |
Collapse
|
5
|
Glass BH, Schmitt AH, Brown KT, Speer KF, Barott KL. Parental exposure to ocean acidification impacts gamete production and physiology but not offspring performance in Nematostella vectensis. Biol Open 2023; 12:bio059746. [PMID: 36716103 PMCID: PMC10003076 DOI: 10.1242/bio.059746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Ocean acidification (OA) resulting from anthropogenic CO2 emissions is impairing the reproduction of marine organisms. While parental exposure to OA can protect offspring via carryover effects, this phenomenon is poorly understood in many marine invertebrate taxa. Here, we examined how parental exposure to acidified (pH 7.40) versus ambient (pH 7.72) seawater influenced reproduction and offspring performance across six gametogenic cycles (13 weeks) in the estuarine sea anemone Nematostella vectensis. Females exhibited reproductive plasticity under acidic conditions, releasing significantly fewer but larger eggs compared to ambient females after 4 weeks of exposure, and larger eggs in two of the four following spawning cycles despite recovering fecundity, indicating long-term acclimatization and greater investment in eggs. Males showed no changes in fecundity under acidic conditions but produced a greater percentage of sperm with high mitochondrial membrane potential (MMP; a proxy for elevated motility), which corresponded with higher fertilization rates relative to ambient males. Finally, parental exposure to acidic conditions did not significantly influence offspring development rates, respiration rates, or heat tolerance. Overall, this study demonstrates that parental exposure to acidic conditions impacts gamete production and physiology but not offspring performance in N. vectensis, suggesting that increased investment in individual gametes may promote fitness.
Collapse
Affiliation(s)
- Benjamin H. Glass
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Angela H. Schmitt
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristen T. Brown
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelsey F. Speer
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katie L. Barott
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Rodríguez‐Romero A, Gaitán‐Espitía JD, Opitz T, Lardies MA. Heterogeneous environmental seascape across a biogeographic break influences the thermal physiology and tolerances to ocean acidification in an ecosystem engineer. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Araceli Rodríguez‐Romero
- Departamento de Ciencias Facultad de Artes Liberales Universidad Adolfo Ibáñez Peñalolén, Santiago Chile
- Green Engineering and Resources Group (GER) Department of Chemistry and Process & Resource Engineering ETSIIT Universidad de Cantabria Santander Spain
- Departamento de Química Analítica. Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz Cádiz Spain
| | - Juan Diego Gaitán‐Espitía
- The Swire Institute of Marine Science and School of Biological Sciences The University of Hong Kong Hong Kong China
| | - Tania Opitz
- Departamento de Ciencias Facultad de Artes Liberales Universidad Adolfo Ibáñez Peñalolén, Santiago Chile
- Dirección de Investigación y Publicaciones Universidad Finis Terrae Santiago
| | - Marco A. Lardies
- Departamento de Ciencias Facultad de Artes Liberales Universidad Adolfo Ibáñez Peñalolén, Santiago Chile
- Instituto Milenio de Socio‐Ecología Costera “SECOS” Santiago Chile
| |
Collapse
|
7
|
Parker LM, Scanes E, O'Connor WA, Ross PM. Transgenerational plasticity responses of oysters to ocean acidification differ with habitat. J Exp Biol 2021; 224:jeb.239269. [PMID: 33785501 DOI: 10.1242/jeb.239269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/23/2021] [Indexed: 01/06/2023]
Abstract
Transgenerational plasticity (TGP) has been identified as a critical mechanism of acclimation that may buffer marine organisms against climate change, yet whether the TGP response of marine organisms is altered depending on their habitat is unknown. Many marine organisms are found in intertidal zones where they experience episodes of emersion (air exposure) daily as the tide rises and recedes. During episodes of emersion, the accumulation of metabolic carbon dioxide (CO2) leads to hypercapnia for many species. How this metabolic hypercapnia impacts the TGP response of marine organisms to climate change is unknown as all previous transgenerational studies have been done under subtidal conditions, where parents are constantly immersed. Here, we assess the capacity of the ecologically and economically important oyster, Saccostrea glomerata, to acclimate to elevated CO2 dependent on habitat, across its vertical distribution, from the subtidal to intertidal zone. Tidal habitat altered both the existing tolerance and transgenerational response of S. glomerata to elevated CO2. Overall, larvae from parents conditioned in an intertidal habitat had a greater existing tolerance to elevated CO2 than larvae from parents conditioned in a subtidal habitat, but had a lower capacity for beneficial TGP following parental exposure to elevated CO2. Our results suggest that the TGP responses of marine species will not be uniform across their distribution and highlights the need to consider the habitat of a species when assessing TGP responses to climate change stressors.
Collapse
Affiliation(s)
- Laura M Parker
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, NSW 2006, Australia.,The University of New South Wales, School of Biological, Earth and Environmental Sciences, Kensington, NSW 2052, Australia
| | - Elliot Scanes
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, NSW 2006, Australia.,The Western Sydney University, School of Science and Health, Locked Bag 1797, Penrith South DC 2751, Sydney, NSW 2751, Australia
| | - Wayne A O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW 2316, Australia
| | - Pauline M Ross
- The University of Sydney, School of Life and Environmental Sciences, Camperdown, NSW 2006, Australia.,The Western Sydney University, School of Science and Health, Locked Bag 1797, Penrith South DC 2751, Sydney, NSW 2751, Australia
| |
Collapse
|
8
|
Effect of environmental history on the habitat-forming kelp Macrocystis pyrifera responses to ocean acidification and warming: a physiological and molecular approach. Sci Rep 2021; 11:2510. [PMID: 33510300 PMCID: PMC7843619 DOI: 10.1038/s41598-021-82094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023] Open
Abstract
The capacity of marine organisms to adapt and/or acclimate to climate change might differ among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidification (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not differ among populations: elevated temperature reduced growth while OA had no effect on growth and photosynthesis. However, we observed higher growth rates and NO3- assimilation, and enhanced expression of metabolic-genes involved in the NO3- and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter-population differences in response to OA and OW, intrinsic differences among populations might be related to their natural variability in CO2, NO3- and seawater temperatures driven by coastal upwelling. Further work including additional populations and fluctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might influence a species' response to climate change.
Collapse
|
9
|
Byrne M, Foo SA, Ross PM, Putnam HM. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. GLOBAL CHANGE BIOLOGY 2020; 26:80-102. [PMID: 31670444 DOI: 10.1111/gcb.14882] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 05/18/2023]
Abstract
Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help 'climate proof' shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock-type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2 vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity-adaptation interactions.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Shawna A Foo
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
10
|
Kapsenberg L, Cyronak T. Ocean acidification refugia in variable environments. GLOBAL CHANGE BIOLOGY 2019; 25:3201-3214. [PMID: 31199553 PMCID: PMC6851593 DOI: 10.1111/gcb.14730] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 06/05/2019] [Indexed: 05/04/2023]
Abstract
Climate change refugia in the terrestrial biosphere are areas where species are protected from global environmental change and arise from natural heterogeneity in landscapes and climate. Within the marine realm, ocean acidification, or the global decline in seawater pH, remains a pervasive threat to organisms and ecosystems. Natural variability in seawater carbon dioxide (CO2 ) chemistry, however, presents an opportunity to identify ocean acidification refugia (OAR) for marine species. Here, we review the literature to examine the impacts of variable CO2 chemistry on biological responses to ocean acidification and develop a framework of definitions and criteria that connects current OAR research to management goals. Under the concept of managing vulnerability, the most likely mechanisms by which OAR can mitigate ocean acidification impacts are by reducing exposure to harmful conditions or enhancing adaptive capacity. While local management options, such as OAR, show some promise, they present unique challenges, and reducing global anthropogenic CO2 emissions must remain a priority.
Collapse
Affiliation(s)
- Lydia Kapsenberg
- Department of Marine Biology and OceanographyCSIC Institute of Marine SciencesBarcelonaSpain
| | - Tyler Cyronak
- Department of Marine and Environmental SciencesHalmos College of Natural Sciences and OceanographyNova Southeastern UniversityDania BeachFlorida
| |
Collapse
|
11
|
Fox RJ, Donelson JM, Schunter C, Ravasi T, Gaitán-Espitia JD. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180174. [PMID: 30966962 PMCID: PMC6365870 DOI: 10.1098/rstb.2018.0174] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2018] [Indexed: 12/18/2022] Open
Abstract
How populations and species respond to modified environmental conditions is critical to their persistence both now and into the future, particularly given the increasing pace of environmental change. The process of adaptation to novel environmental conditions can occur via two mechanisms: (1) the expression of phenotypic plasticity (the ability of one genotype to express varying phenotypes when exposed to different environmental conditions), and (2) evolution via selection for particular phenotypes, resulting in the modification of genetic variation in the population. Plasticity, because it acts at the level of the individual, is often hailed as a rapid-response mechanism that will enable organisms to adapt and survive in our rapidly changing world. But plasticity can also retard adaptation by shifting the distribution of phenotypes in the population, shielding it from natural selection. In addition to which, not all plastic responses are adaptive-now well-documented in cases of ecological traps. In this theme issue, we aim to present a considered view of plasticity and the role it could play in facilitating or hindering adaption to environmental change. This introduction provides a re-examination of our current understanding of the role of phenotypic plasticity in adaptation and sets the theme issue's contributions in their broader context. Four key themes emerge: the need to measure plasticity across both space and time; the importance of the past in predicting the future; the importance of the link between plasticity and sexual selection; and the need to understand more about the nature of selection on plasticity itself. We conclude by advocating the need for cross-disciplinary collaborations to settle the question of whether plasticity will promote or retard species' rates of adaptation to ever-more stressful environmental conditions. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Collapse
Affiliation(s)
- Rebecca J. Fox
- Division of Ecology and Evolution, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jennifer M. Donelson
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4810, Australia
| | - Celia Schunter
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| | - Timothy Ravasi
- KAUST Environmental Epigenetic Program (KEEP), Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan D. Gaitán-Espitia
- The Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, People's Republic of China
| |
Collapse
|
12
|
Bacigalupe LD, Gaitán‐Espitia JD, Barria AM, Gonzalez‐Mendez A, Ruiz‐Aravena M, Trinder M, Sinervo B. Natural selection on plasticity of thermal traits in a highly seasonal environment. Evol Appl 2018; 11:2004-2013. [PMID: 30459844 PMCID: PMC6231472 DOI: 10.1111/eva.12702] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/10/2023] Open
Abstract
For ectothermic species with broad geographical distributions, latitudinal/altitudinal variation in environmental temperatures (averages and extremes) is expected to shape the evolution of physiological tolerances and the acclimation capacity (i.e., degree of phenotypic plasticity) of natural populations. This can create geographical gradients of selection in which environments with greater thermal variability (e.g., seasonality) tend to favor individuals that maximize performance across a broader range of temperatures compared to more stable environments. Although thermal acclimation capacity plays a fundamental role in this context, it is unknown whether natural selection targets this trait in natural populations. Additionally, understanding whether and how selection acts on thermal physiological plasticity is also highly relevant to climate change and biological conservation. Here, we addressed such an important gap in our knowledge in the northernmost population of the four-eyed frog, Pleurodema thaul. We measured plastic responses of critical thermal limits for activity, behavioral thermal preference, and thermal sensitivity of metabolism to acclimation at 10 and 20°C. We monitored survival during three separate recapture efforts and used mark-recapture integrated into an information-theoretic approach to evaluate the relationship between survivals as a function of the plasticity of thermal traits. Overall, we found no evidence that thermal acclimation in this population is being targeted by directional selection, although there might be signals of selection on individual traits. According to the most supported models, survival increased in individuals with higher tolerance to cold when cold-acclimated, probably because daily low extremes are frequent during the cooler periods of the year. Furthermore, survival increased with body size. However, in both cases, the directional selection estimates were nonsignificant, and the constraints of our experimental design prevented us from evaluating more complex models (i.e., nonlinear selection).
Collapse
Affiliation(s)
- Leonardo D. Bacigalupe
- Facultad de Ciencias, Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Juan D. Gaitán‐Espitia
- The Swire Institute of Marine Science and School of Biological SciencesThe University of Hong KongHong KongChina
- CSIRO Oceans and AtmosphereHobartTasmaniaAustralia
| | - Aura M. Barria
- Facultad de Ciencias, Instituto de Ciencias Ambientales y EvolutivasUniversidad Austral de ChileValdiviaChile
| | - Avia Gonzalez‐Mendez
- Departamento de Ecología and Center of Applied Ecology and Sustainability (CAPES), Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
| | - Manuel Ruiz‐Aravena
- School of Natural Sciences, College of Sciences and EngineeringUniversity of TasmaniaHobartTasmaniaAustralia
| | | | - Barry Sinervo
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaSanta CruzCalifornia
| |
Collapse
|
13
|
Munday PL. New perspectives in ocean acidification research: editor's introduction to the special feature on ocean acidification. Biol Lett 2017; 13:rsbl.2017.0438. [PMID: 28877955 DOI: 10.1098/rsbl.2017.0438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 11/12/2022] Open
Abstract
Ocean acidification, caused by the uptake of additional carbon dioxide (CO2) from the atmosphere, will have far-reaching impacts on marine ecosystems (Gattuso & Hansson 2011 Ocean acidification Oxford University Press). The predicted changes in ocean chemistry will affect whole biological communities and will occur within the context of global warming and other anthropogenic stressors; yet much of the biological research conducted to date has tested the short-term responses of single species to ocean acidification conditions alone. While an important starting point, these studies may have limited predictive power because they do not account for possible interactive effects of multiple climate change drivers or for ecological interactions with other species. Furthermore, few studies have considered variation in responses among populations or the evolutionary potential within populations. Therefore, our knowledge about the potential for marine organisms to adapt to ocean acidification is extremely limited. In 2015, two of the pioneers in the field, Ulf Riebesell and Jean-Pierre Gattuso, noted that to move forward as a field of study, future research needed to address critical knowledge gaps in three major areas: (i) multiple environmental drivers, (ii) ecological interactions and (iii) acclimation and adaptation (Riebesell and Gattuso 2015 Nat. Clim. Change5, 12-14 (doi:10.1038/nclimate2456)). In May 2016, more than 350 researchers, students and stakeholders met at the 4th International Symposium on the Ocean in a High-CO2 World in Hobart, Tasmania, to discuss the latest advances in understanding ocean acidification and its biological consequences. Many of the papers presented at the symposium reflected this shift in focus from short-term, single species and single stressor experiments towards multi-stressor and multispecies experiments that address knowledge gaps about the ecological impacts of ocean acidification on marine communities. The nine papers in this Special Feature are from authors who attended the symposium and address cutting-edge questions and emerging topics in ocean acidification research, across the taxonomic spectrum from plankton to top predators. They cover the three streams of research identified as crucial to understanding the biological impacts of ocean acidification: (i) the relationship with other environmental drivers, (ii) the effects on ecological process and species interactions, and (iii) the role that individual variation, phenotypic plasticity and adaptation will have in shaping the impacts of ocean acidification and warming on marine ecosystems.
Collapse
Affiliation(s)
- Philip L Munday
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|