1
|
Borrero J, Mogollon Perez E, Wright DS, Lozano-Urrego D, Rueda-Muñoz G, Pardo-Diaz C, Salazar C, Montgomery SH, Merrill RM. Weighting of sensory cues reflect changing patterns of visual investment during ecological divergence in Heliconius butterflies. Biol Lett 2024; 20:20240377. [PMID: 39439357 PMCID: PMC11496948 DOI: 10.1098/rsbl.2024.0377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 10/25/2024] Open
Abstract
Integrating information across sensory modalities enables animals to orchestrate a wide range of complex behaviours. The relative importance placed on one sensory modality over another reflects the reliability of cues in a particular environment and corresponding differences in neural investment. As populations diverge across environmental gradients, the reliability of sensory cues may shift, favouring divergence in neural investment and the weight given to different sensory modalities. During their divergence across closed-forest and forest-edge habitats, closely related butterflies Heliconius cydno and Heliconius melpomene evolved distinct brain morphologies, with the former investing more in vision. Quantitative genetic analyses suggest that selection drove these changes, but their behavioural consequences remain uncertain. We hypothesized that divergent neural investment may alter sensory weighting. We trained individuals in an associative learning experiment using multimodal colour and odour cues. When positively rewarded stimuli were presented in conflict, i.e. pairing positively trained colour with negatively trained odour and vice versa, H. cydno favoured visual cues more strongly than H. melpomene. Hence, differences in sensory weighting may evolve early during divergence and are predicted by patterns of neural investment. These findings, alongside other examples, imply that differences in sensory weighting stem from divergent investment as adaptations to local sensory environments.
Collapse
Affiliation(s)
- José Borrero
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Elisa Mogollon Perez
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniel Shane Wright
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Lozano-Urrego
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Geraldine Rueda-Muñoz
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Camilo Salazar
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| | | | - Richard M. Merrill
- Division of Evolutionary Biology, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
2
|
Konnerth MM, Foster JJ, el Jundi B, Spaethe J, Beetz MJ. Monarch butterflies memorize the spatial location of a food source. Proc Biol Sci 2023; 290:20231574. [PMID: 38113939 PMCID: PMC10730289 DOI: 10.1098/rspb.2023.1574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Spatial memory helps animals to navigate familiar environments. In insects, spatial memory has extensively been studied in central place foragers such as ants and bees. However, if butterflies memorize a spatial location remains unclear. Here, we conducted behavioural experiments to test whether monarch butterflies (Danaus plexippus) can remember and retrieve the spatial location of a food source. We placed several visually identical feeders in a flight cage, with only one feeder providing sucrose solution. Across multiple days, individual butterflies predominantly visited the rewarding feeder. Next, we displaced a salient landmark close to the feeders to test which visual cue the butterflies used to relocate the rewarding feeder. While occasional landmark displacements were ignored by the butterflies and did not affect their decisions, systematic displacement of both the landmark and the rewarding feeder demonstrated that the butterflies associated the salient landmark with the feeder's position. Altogether, we show that butterflies consolidate and retrieve spatial memory in the context of foraging.
Collapse
Affiliation(s)
- M. Marcel Konnerth
- Zoology II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Bayern, Germany
| | - James J. Foster
- Department of Biology, University of Konstanz, 78464 Konstanz, Baden-Württemberg, Germany
| | - Basil el Jundi
- Department of Biology, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Johannes Spaethe
- Zoology II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Bayern, Germany
| | - M. Jerome Beetz
- Zoology II, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Bayern, Germany
| |
Collapse
|
3
|
Alcalde Anton A, Young FJ, Melo-Flórez L, Couto A, Cross S, McMillan WO, Montgomery SH. Adult neurogenesis does not explain the extensive post-eclosion growth of Heliconius mushroom bodies. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230755. [PMID: 37885989 PMCID: PMC10598442 DOI: 10.1098/rsos.230755] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Among butterflies, Heliconius have a unique behavioural profile, being the sole genus to actively feed on pollen. Heliconius learn the location of pollen resources, and have enhanced visual memories and expanded mushroom bodies, an insect learning and memory centre, relative to related genera. These structures also show extensive post-eclosion growth and developmental sensitivity to environmental conditions. However, whether this reflects plasticity in neurite growth, or an extension of neurogenesis into the adult stage, is unknown. Adult neurogenesis has been described in some Lepidoptera, and could provide one route to the increased neuron number observed in Heliconius. Here, we compare volumetric changes in the mushroom bodies of freshly eclosed and aged Heliconius erato and Dryas iulia, and estimate the number of intrinsic mushroom body neurons using a new and validated automated method to count nuclei. Despite extensive volumetric variation associated with age, our data show that neuron number is remarkably constant in both species, suggesting a lack of adult neurogenesis in the mushroom bodies. We support this conclusion with assays of mitotic cells, which reveal very low levels of post-eclosion cell division. Our analyses provide an insight into the evolution of neural plasticity, and can serve as a basis for continued exploration of the potential mechanisms behind brain development and maturation.
Collapse
Affiliation(s)
| | - Fletcher J. Young
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Antoine Couto
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Stephen Cross
- Wolfson Bioimaging Centre, University of Bristol, Bristol, UK
| | | | - Stephen H. Montgomery
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| |
Collapse
|
4
|
Couto A, Young FJ, Atzeni D, Marty S, Melo-Flórez L, Hebberecht L, Monllor M, Neal C, Cicconardi F, McMillan WO, Montgomery SH. Rapid expansion and visual specialisation of learning and memory centres in the brains of Heliconiini butterflies. Nat Commun 2023; 14:4024. [PMID: 37419890 PMCID: PMC10328955 DOI: 10.1038/s41467-023-39618-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/15/2023] [Indexed: 07/09/2023] Open
Abstract
Changes in the abundance and diversity of neural cell types, and their connectivity, shape brain composition and provide the substrate for behavioral evolution. Although investment in sensory brain regions is understood to be largely driven by the relative ecological importance of particular sensory modalities, how selective pressures impact the elaboration of integrative brain centers has been more difficult to pinpoint. Here, we provide evidence of extensive, mosaic expansion of an integration brain center among closely related species, which is not explained by changes in sites of primary sensory input. By building new datasets of neural traits among a tribe of diverse Neotropical butterflies, the Heliconiini, we detected several major evolutionary expansions of the mushroom bodies, central brain structures pivotal for insect learning and memory. The genus Heliconius, which exhibits a unique dietary innovation, pollen-feeding, and derived foraging behaviors reliant on spatial memory, shows the most extreme enlargement. This expansion is primarily associated with increased visual processing areas and coincides with increased precision of visual processing, and enhanced long term memory. These results demonstrate that selection for behavioral innovation and enhanced cognitive ability occurred through expansion and localized specialization in integrative brain centers.
Collapse
Affiliation(s)
- Antoine Couto
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Fletcher J Young
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | - Daniele Atzeni
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Life Science, University of Trieste, Trieste, Italy
| | - Simon Marty
- Department of Zoology, University of Cambridge, Cambridge, UK
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Université de Lyon, Lyon, France
| | | | - Laura Hebberecht
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Zoology, University of Cambridge, Cambridge, UK
- Smithsonian Tropical Research Institute, Gamboa, Panama
| | | | - Chris Neal
- Wolfson Bioimaging Facility, University of Bristol, Bristol, UK
| | | | | | - Stephen H Montgomery
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Smithsonian Tropical Research Institute, Gamboa, Panama.
| |
Collapse
|
5
|
Borrero J, Wright DS, Bacquet CN, Merrill RM. Oviposition behavior is not affected by ultraviolet light in a butterfly with sexually-dimorphic expression of a UV-sensitive opsin. Ecol Evol 2023; 13:e10243. [PMID: 37408633 PMCID: PMC10318619 DOI: 10.1002/ece3.10243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023] Open
Abstract
Animal vision is important for mediating multiple complex behaviors. In Heliconius butterflies, vision guides fundamental behaviors such as oviposition, foraging, and mate choice. Color vision in Heliconius involves ultraviolet (UV), blue and long-wavelength-sensitive photoreceptors (opsins). Additionally, Heliconius possess a duplicated UV opsin, and its expression varies widely within the genus. In Heliconius erato, opsin expression is sexually dimorphic; only females express both UV-sensitive opsins, enabling UV wavelength discrimination. However, the selective pressures responsible for sex-specific differences in opsin expression and visual perception remain unresolved. Female Heliconius invest heavily in finding suitable hostplants for oviposition, a behavior heavily dependent on visual cues. Here, we tested the hypothesis that UV vision is important for oviposition in H. erato and Heliconius himera females by manipulating the availability of UV in behavioral experiments under natural conditions. Our results indicate that UV does not influence the number of oviposition attempts or eggs laid, and the hostplant, Passiflora punctata, does not reflect UV wavelengths. Models of H. erato female vision suggest only minimal stimulation of the UV opsins. Overall, these findings suggest that UV wavelengths do not directly affect the ability of Heliconius females to find suitable oviposition sites. Alternatively, UV discrimination could be used in the context of foraging or mate choice, but this remains to be tested.
Collapse
Affiliation(s)
- Jose Borrero
- Division of Evolutionary BiologyLMU MunichMunichGermany
| | | | | | | |
Collapse
|
6
|
Moura PA, Cardoso MZ, Montgomery SH. No evidence of social learning in a socially roosting butterfly in an associative learning task. Biol Lett 2023; 19:20220490. [PMID: 37194257 PMCID: PMC10189306 DOI: 10.1098/rsbl.2022.0490] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023] Open
Abstract
Insects may acquire social information by active communication and through inadvertent social cues. In a foraging setting, the latter may indicate the presence and quality of resources. Although social learning in foraging contexts is prevalent in eusocial species, this behaviour has been hypothesized to also exist between conspecifics in non-social species with sophisticated behaviours, including Heliconius butterflies. Heliconius are the only butterfly genus with active pollen feeding, a dietary innovation associated with a specialized, spatially faithful foraging behaviour known as trap-lining. Long-standing hypotheses suggest that Heliconius may acquire trap-line information by following experienced individuals. Indeed, Heliconius often aggregate in social roosts, which could act as 'information centres', and present conspecific following behaviour, enhancing opportunities for social learning. Here, we provide a direct test of social learning ability in Heliconius using an associative learning task in which naive individuals completed a colour preference test in the presence of demonstrators trained to feed randomly or with a strong colour preference. We found no evidence that Heliconius erato, which roost socially, used social information in this task. Combined with existing field studies, our results add to data which contradict the hypothesized role of social learning in Heliconius foraging behaviour.
Collapse
Affiliation(s)
- Priscila A. Moura
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
| | - Marcio Z. Cardoso
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, RN, 59078-970, Brazil
- Departamento de Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | | |
Collapse
|
7
|
Namboodiri VMK. How do real animals account for the passage of time during associative learning? Behav Neurosci 2022; 136:383-391. [PMID: 35482634 PMCID: PMC9561011 DOI: 10.1037/bne0000516] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Animals routinely learn to associate environmental stimuli and self-generated actions with their outcomes such as rewards. One of the most popular theoretical models of such learning is the reinforcement learning (RL) framework. The simplest form of RL, model-free RL, is widely applied to explain animal behavior in numerous neuroscientific studies. More complex RL versions assume that animals build and store an explicit model of the world in memory. To apply these approaches to explain animal behavior, typical neuroscientific RL models make implicit assumptions about how real animals represent the passage of time. In this perspective, I explicitly list these assumptions and show that they have several problematic implications. I hope that the explicit discussion of these problems encourages the field to seriously examine the assumptions underlying timing and reinforcement learning. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
|
8
|
Cram DL. Oxidative stress and cognition in ecology. J Zool (1987) 2022. [DOI: 10.1111/jzo.13020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D. L. Cram
- Department of Zoology University of Cambridge Cambridge UK
| |
Collapse
|
9
|
Dell’Aglio DD, McMillan WO, Montgomery SH. Shifting balances in the weighting of sensory modalities are predicted by divergence in brain morphology in incipient species of Heliconius butterflies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
10
|
Rather PA, Herzog AE, Ernst DA, Westerman EL. Effect of experience on mating behaviour in male Heliconius melpomene butterflies. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|