1
|
Hird C, Lundsgaard NU, Downie AT, Cramp RL, Franklin CE. Considering ultraviolet radiation in experimental biology: a neglected pervasive stressor. J Exp Biol 2024; 227:jeb247231. [PMID: 39140251 DOI: 10.1242/jeb.247231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Ultraviolet radiation (UVR) is a pervasive factor that has shaped the evolution of life on Earth. Ambient levels of UVR mediate key biological functions but can also cause severe lethal and sublethal effects in a wide range of organisms. Furthermore, UVR is a powerful modulator of the effects of other environmental factors on organismal physiology, such as temperature, disease, toxicology and pH, among others. This is critically important in the context of global change, where understanding the effects of multiple stressors is a key challenge for experimental biologists. Ecological physiologists rarely afford UVR discussion or include UVR in experimental design, even when it is directly relevant to their study system. In this Commentary, we provide a guide for experimental biologists to better understand if, when, and how UVR can be integrated into experimental designs to improve the ecological realism of their experiments.
Collapse
Affiliation(s)
- Coen Hird
- School of the Environment, The University of Queensland, St Lucia, Magandjin (Brisbane) 4072, Queensland, Australia
| | - Niclas U Lundsgaard
- Queensland Department of Environment, Science and Innovation, Dutton Park, Magandjin (Brisbane) 4102, Queensland, Australia
| | - Adam T Downie
- School of the Environment, The University of Queensland, St Lucia, Magandjin (Brisbane) 4072, Queensland, Australia
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, St Lucia, Magandjin (Brisbane) 4072, Queensland, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, St Lucia, Magandjin (Brisbane) 4072, Queensland, Australia
| |
Collapse
|
2
|
de Souza SS, Bruce KHR, da Costa JC, Pereira D, da Silva GS, Val AL. Effects of climate change and mixtures of pesticides on the Amazonian fish Colossoma macropomum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171379. [PMID: 38431165 DOI: 10.1016/j.scitotenv.2024.171379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
Several studies highlighted the complexity of mixing pesticides present in Amazonian aquatic environments today. There is evidence that indicates that ongoing climate change can alter the pattern of pesticide use, increasing the concentration and frequency of pesticide applications. It is known that the combination of thermal and chemical stress can induce interactive effects in aquatic biota, which accentuates cell and molecular damage. However, considering that the effects of climate change go beyond the increase in temperature the objective of this study was to evaluate the effect of climate change scenarios proposed by 6 th IPCC report and a mixture of pesticides on the tambaqui (Colossoma macropomum). The hypothesis of this study is that the negative effects will be accentuated by the combination of an extreme climate changes scenario and a mixture of pesticides. To test the hypothesis, juvenile tambaqui were exposed to a combination of four pesticides (chlorpyrifos, malathion, carbendazim and atrazine) in two scenarios, one that simulates current environmental conditions and another that predicted the environmental scenario for the year 2100. Fish were subjected to the experimental conditions for 96 h. At the end of the experiment, samples of blood, gills, liver, brain, and muscle were obtained for hematological, genotoxic, biochemical, and histopathological analyses. The results demonstrate that environmentally realistic concentrations of pesticides, when mixed, can alter the biochemical responses of tambaqui. The extreme scenario promotes hematological adjustments, but impairs branchial antioxidant enzymes. There is an interaction between the mixture of pesticides and the extreme scenario, accentuating liver tissue damage, which demonstrates that even increased activity of antioxidant and biotransformation enzymes were not sufficient to prevent liver damage.
Collapse
Affiliation(s)
- Samara Silva de Souza
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil.
| | - Kerem Hapuque Rodrigues Bruce
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Jaqueline Custódio da Costa
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| | - Desyree Pereira
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Grazyelle Sebrenski da Silva
- Department of Morphology, Institute of Biological Science (ICB), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Adalberto Luis Val
- Laboratory of Ecophysiology and Molecular Evolution, National Institute for Amazonian Research (INPA), Manaus, AM, Brazil
| |
Collapse
|
3
|
Hird C, Flanagan E, Franklin CE, Cramp RL. Cold-induced skin darkening does not protect amphibian larvae from UV-associated DNA damage. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2024; 341:272-281. [PMID: 38197718 DOI: 10.1002/jez.2780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Amphibian declines are sometimes correlated with increasing levels of ultraviolet radiation (UVR). While disease is often implicated in declines, environmental factors such as temperature and UVR play an important role in disease epidemiology. The mutagenic effects of UVR exposure on amphibians are worse at low temperatures. Amphibians from cold environments may be more susceptible to increasing UVR. However, larvae of some species demonstrate cold acclimation, reducing UV-induced DNA damage at low temperatures. Understanding of the mechanisms underpinning this response is lacking. We reared Limnodynastes peronii larvae in cool (15°C) or warm (25°C) waters before acutely exposing them to 1.5 h of high intensity (80 µW cm-2 ) UVBR. We measured the color of larvae and mRNA levels of a DNA repair enzyme. We reared larvae at 25°C in black or white containers to elicit a skin color response, and then measured DNA damage levels in the skin and remaining carcass following UVBR exposure. Cold-acclimated larvae were darker and displayed lower levels of DNA damage than warm-acclimated larvae. There was no difference in CPD-photolyase mRNA levels between cold- and warm-acclimated larvae. Skin darkening in larvae did not reduce their accumulation of DNA damage following UVR exposure. Our results showed that skin darkening does not explain cold-induced reductions in UV-associated DNA damage in L. peronii larvae. Beneficial cold-acclimation is more likely underpinned by increased CPD-photolyase abundance and/or increased photolyase activity at low temperatures.
Collapse
Affiliation(s)
- Coen Hird
- School of the Environment, The University of Queensland, Brisbane (Magandjin), Queensland, Australia
| | - Emer Flanagan
- School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Brisbane (Magandjin), Queensland, Australia
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, Brisbane (Magandjin), Queensland, Australia
| |
Collapse
|
4
|
Downie AT, Wu NC, Cramp RL, Franklin CE. Sublethal consequences of ultraviolet radiation exposure on vertebrates: Synthesis through meta-analysis. GLOBAL CHANGE BIOLOGY 2023; 29:6620-6634. [PMID: 37366045 DOI: 10.1111/gcb.16848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023]
Abstract
Ultraviolet radiation (UVR) from the sun is a natural daytime stressor for vertebrates in both terrestrial and aquatic ecosystems. UVR effects on the physiology of vertebrates manifest at the cellular level, but have bottom-up effects at the tissue level and on whole-animal performance and behaviours. Climate change and habitat loss (i.e. loss of shelter from UVR) could interact with and exacerbate the genotoxic and cytotoxic impacts of UVR on vertebrates. Therefore, it is important to understand the range and magnitude of effects that UVR can have on a diversity of physiological metrics, and how these may be shaped by taxa, life stage or geographical range in the major vertebrate groups. Using a meta-analytical approach, we used 895 observations from 47 different vertebrate species (fish, amphibian, reptile and bird), and 51 physiological metrics (i.e. cellular, tissue and whole-animal metrics), across 73 independent studies, to elucidate the general patterns of UVR effects on vertebrate physiology. We found that while UVR's impacts on vertebrates are generally negative, fish and amphibians were the most susceptible taxa, adult and larvae were the most susceptible life stages, and animals inhabiting temperate and tropical latitudes were the most susceptible to UVR stress. This information is critical to further our understanding of the adaptive capacity of vulnerable taxon to UVR stress, and the wide-spread sublethal physiological effects of UVR on vertebrates, such as DNA damage and cellular stress, which may translate up to impaired growth and locomotor performance. These impairments to individual fitness highlighted by our study may potentially cause disruptions at the ecosystem scale, especially if the effects of this pervasive diurnal stressor are exacerbated by climate change and reduced refuge due to habitat loss and degradation. Therefore, conservation of habitats that provide refuge to UVR stress will be critical to mitigate stress from this pervasive daytime stressor.
Collapse
Affiliation(s)
- Adam T Downie
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
5
|
Hird C, Cramp RL, Franklin CE. Thermal compensation reduces DNA damage from UV radiation. J Therm Biol 2023; 117:103711. [PMID: 37717403 DOI: 10.1016/j.jtherbio.2023.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/19/2023]
Abstract
Increases in ultraviolet radiation (UVR) correlate spatially and temporally with global amphibian population declines and interact with other stressors such as disease and temperature. Declines have largely occurred in high-altitude areas associated with greater UVR and cooler temperatures. UVR is a powerful mutagenic harming organisms largely by damaging DNA. When acutely exposed to UVR at cool temperatures, amphibian larvae have increased levels of DNA damage. Amphibians may compensate for the depressive effects of temperature on DNA damage through acclimatisation, but it is unknown whether they have this capacity. We reared striped marsh frog larvae (Limnodynastes peronii) in warm (25 °C) and cool (15 °C) temperatures under a low or moderate daily dose of UVR (10 and 40 μW cm-2 UV-B for 1 h at midday, respectively) for 18-20 days and then measured DNA damage resulting from an acute high UVR dose (80 μW cm-2 UV-B for 1.5 h) at a range of temperatures (10, 15, 20, 25, and 30 °C). Larvae acclimated to 15 °C and exposed to UVR at 15 °C completely compensated UVR-induced DNA damage compared with 25 °C acclimated larvae exposed to UVR at 25 °C. Additionally, warm-acclimated larvae had higher DNA damage than cold-acclimated larvae across test temperatures, which indicated a cost of living in warmer temperatures. Larvae reared under elevated UVR levels showed no evidence of UVR acclimation resulting in lower DNA damage following high UVR exposure. Our finding that thermal acclimation in L. peronii larvae compensated UVR-induced DNA damage at low temperatures suggested that aquatic ectotherms living in cool temperatures may be more resilient to high UVR than previously realised. We suggested individuals or species with less capacity for thermal acclimation of DNA repair mechanisms may be more at risk if exposed to changing thermal and UVR exposure regimes.
Collapse
Affiliation(s)
- Coen Hird
- School of the Environment, The University of Queensland, Magandjin, 4072, Australia.
| | - Rebecca L Cramp
- School of the Environment, The University of Queensland, Magandjin, 4072, Australia
| | - Craig E Franklin
- School of the Environment, The University of Queensland, Magandjin, 4072, Australia
| |
Collapse
|
6
|
Lundsgaard NU, Hird C, Doody KA, Franklin CE, Cramp RL. Carryover effects from environmental change in early life: An overlooked driver of the amphibian extinction crisis? GLOBAL CHANGE BIOLOGY 2023; 29:3857-3868. [PMID: 37310166 DOI: 10.1111/gcb.16726] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/27/2023] [Indexed: 06/14/2023]
Abstract
Ecological carryover effects, or delayed effects of the environment on an organism's phenotype, are central predictors of individual fitness and a key issue in conservation biology. Climate change imposes increasingly variable environmental conditions that may be challenging to early life-history stages in animals with complex life histories, leading to detrimental physiological and fitness effects in later life. Yet, the latent nature of carryover effects, combined with the long temporal scales over which they can manifest, means that this phenomenon remains understudied and is often overlooked in short-term studies limited to single life-history stages. Herein, we review evidence for the physiological carryover effects induced by elevated ultraviolet radiation (UVR; 280-400 nm) as a potential contributor to recent amphibian population declines. UVR exposure causes a suite of molecular, cellular and physiological consequences known to underpin carryover effects in other taxa, but there is a lack of research linking embryonic and larval UVR exposures to fitness consequences post-metamorphosis in amphibians. We propose that the key impacts of UVR on disease-related amphibian declines are facilitated through carryover effects that bridge embryonic and larval UVR exposure with potential increased disease susceptibility post-metamorphosis. We conclude by identifying a practical direction for the study of ecological carryover effects in amphibians that could guide future ecological research in the broader field of conservation physiology. Only by addressing carryover effects can many of the mechanistic links between environmental change and population declines be elucidated.
Collapse
Affiliation(s)
- Niclas U Lundsgaard
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Coen Hird
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Kathleen A Doody
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, St Lucia, Australia
| |
Collapse
|