1
|
Zhou J, Guo Y, Sun Q, Lin F, Jiang C, Xu K, Ta D. Transcranial ultrafast ultrasound Doppler imaging: A phantom study. ULTRASONICS 2024; 144:107430. [PMID: 39173276 DOI: 10.1016/j.ultras.2024.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/02/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Ultrafast ultrasound Doppler imaging facilitates the assessment of cerebral hemodynamics with high spatio-temporal resolution. However, the significant acoustic impedance mismatch between the skull and soft tissue results in phase aberrations, which can compromise the quality of transcranial imaging and introduce biases in velocity and direction quantification of blood flow. This paper proposed an aberration correction method that combines deep learning-based skull sound speed modelling with ray theory to realize transcranial plane-wave imaging and ultrafast Doppler imaging. The method was validated through phantom experiments using a linear array with a center frequency of 6.25 MHz, 128 elements, and a pitch of 0.3 mm. The results demonstrated an improvement in the imaging quality of intracranial targets when using the proposed method. After aberration correction, the average locating deviation decreased from 1.40 mm to 0.27 mm in the axial direction, from 0.50 mm to 0.20 mm in the lateral direction, and the average full-width-at-half-maximum (FWHM) decreased from 1.37 mm to 0.97 mm for point scatterers. For circular inclusions, the average contrast-to-noise ratio (CNR) improved from 8.1 dB to 11.0 dB, and the average eccentricity decreased from 0.36 to 0.26. Furthermore, the proposed method was applied to transcranial ultrafast Doppler flow imaging. The results showed a significant improvement in accuracy and quality for blood Doppler flow imaging. The results in the absence of the skull were considered as the reference, and the average normalized root-mean-square errors of the axial velocity component on the five selected axial profiles were reduced from 17.67% to 8.02% after the correction.
Collapse
Affiliation(s)
- Jiangjin Zhou
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Yuanyang Guo
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Qiandong Sun
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Fanglue Lin
- Ultrasound BU, Wuhan United Imaging Healthcare Co., Ltd., Wuhan 430206, China
| | - Chen Jiang
- Yiwu Research Institute of Fudan University, Zhejiang 322000, China.
| | - Kailiang Xu
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Yiwu Research Institute of Fudan University, Zhejiang 322000, China; PodaMed Medical Technology Co., Ltd., Shanghai 200433, China.
| | - Dean Ta
- Department of Biomedical Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China; Yiwu Research Institute of Fudan University, Zhejiang 322000, China
| |
Collapse
|
2
|
Oglat AA. A review of ultrasound contrast media. F1000Res 2024; 12:1444. [PMID: 38817410 PMCID: PMC11137482 DOI: 10.12688/f1000research.140131.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/01/2024] Open
Abstract
Efforts have been made over the last five decades to create effective ultrasonic contrast media (UCM) for cardiac and noncardiac applications. The initial UCM was established in the 1980s, following publications from the 1960s that detailed the discovery of ultrasonic contrast enhancement using small gaseous bubbles in echocardiographic examinations. An optimal contrast agent for echography should possess the following characteristics: non-toxicity, suitability for intravenous injection, ability to traverse pulmonary, cardiac, and capillary circulations, and stability for recirculation. Definity, Optison, Sonazoid, and SonoVue are examples of current commercial contrast media. These contrast media have shown potential for various clinical reasons, both on-label and off-label. Several possible UCMs have been developed or are in progress. Advancements in comprehending the physical, chemical, and biological characteristics of microbubbles have significantly improved the visualization of tumor blood vessels, the identification of areas with reduced blood supply, and the enhanced detection of narrowed blood vessels. Innovative advances are expected to enhance future applications such as ultrasonic molecular imaging and therapeutic utilization of microbubbles.
Collapse
Affiliation(s)
- Ammar A. Oglat
- Department of Medical Imaging, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan., The Hashemite University, Az-Zarqa, Zarqa Governorate, 13133, Jordan
| |
Collapse
|
3
|
Mahmoud AM, Ragab SG, Mohamed Agamy T, Shaban Goda A. The Power of Color Flow Doppler Ultrasonography Versus Blind Technique in Localization of Epidural Catheter: A Randomized Prospective Study. Anesth Pain Med 2024; 14:e147828. [PMID: 39416806 PMCID: PMC11480820 DOI: 10.5812/aapm-147828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 10/19/2024] Open
Abstract
Background The success of epidural analgesia hinges on the precise insertion of the needle within the epidural space; failure rates have been reported to reach 32%. Objectives We report a new method using color Doppler to help verify the accurate location of the epidural needle tip. Methods This is a randomized prospective study. Sixty patients undergoing hysterectomy were enrolled, with 30 patients in each group. Color flow Doppler (CFD) ultrasonography was employed to guide epidural catheter placement. The ultrasound-guided epidural technique was used for patients where challenges in identifying traditional landmarks for epidural space localization were anticipated. The procedure commenced with a spinal epidural technique. After sterile preparation and draping of the area, a curvilinear ultrasound transducer, encased in a sterile sheath, was used to locate the interspinous space. The primary outcome measure focused on flow visualization at different insertion levels. Secondary outcome measures included the duration of catheter implantation, intervertebral level of insertion, and dermatome sensory levels. The study also assessed the quality of epidural analgesia and patients' assessment of analgesic quality using a Verbal Numerical Rating Scale. Results The study reported a successful and predominantly safe outcome, with high success rates in flow visualization and effective anesthesia coverage. Flow visualization at the insertion and surrounding levels demonstrated a 100% success rate at all observed points. The Visual Numeric Rating Scale (VNRS) results indicated a median pain score of 2 with an interquartile range (IQR) of 2 - 3, showcasing a generally low level of post-procedural pain among the subjects, reflecting good quality post-operative analgesia. Regarding dermatome sensory levels after 2 hours, the distribution across various levels, including T4, T6, T7, T8, T10, and T12, exhibited a favorable outcome. The highest proportion was observed at T10 (68.3%), suggesting effective anesthesia coverage in the targeted areas. The study demonstrated comparable efficiency between the CFD-guided and blind techniques in terms of procedural aspects. However, notable distinctions were observed in patients' reported pain levels, with the CFD group experiencing lower pain compared to the blind technique group. Additionally, the study highlighted the association between CFD and improved procedural accuracy and safety. Conclusions This study advocates for the integration of CFD into routine clinical practice to enhance procedural outcomes and patient safety during hysterectomy surgeries.
Collapse
Affiliation(s)
- Atef Mohamed Mahmoud
- Department of Anesthesia, Faculty of Medicine, University of Fayoum, Faiyum, Egypt
| | - Safaa Gaber Ragab
- Department of Anesthesia, Faculty of Medicine, University of Fayoum, Faiyum, Egypt
| | | | | |
Collapse
|
4
|
Zhao M, Zhang L, Chen J, Gu S, Wu R, Jia C. Associations between carotid plaque shape, biomechanical parameters, and ischemic stroke in mild carotid stenosis with a single plaque. Ultrasonography 2024; 43:209-219. [PMID: 38644636 PMCID: PMC11079503 DOI: 10.14366/usg.24019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/17/2024] [Accepted: 04/02/2024] [Indexed: 04/23/2024] Open
Abstract
PURPOSE This cross-sectional cohort-comparison observational study investigated the value of high-frame-rate vector flow (V Flow) imaging for evaluating differences in carotid plaque shape and biomechanical parameters in patients with mild stenosis according to a recent history of ipsilateral ischemic stroke. METHODS The present study included 352 patients from February 2023 to October 2023, who were categorized as symptomatic or asymptomatic based on a history of recent ischemic stroke and ipsilateral ischemic lesions detected on head computed tomography or magnetic resonance imaging. A Mindray Resona R9 system was used for B-mode ultrasonography and V Flow imaging. The upstream and downstream surfaces of the plaques were examined at the carotid bifurcation for wall shear stress (WSS), oscillatory shear index (OSI), and turbulence index, which performed peri-plaque biomechanical condition. Multivariable logistic regression models were used to determine associations between plaque shape, V Flow parameters, and ischemic stroke. RESULTS Symptomatic patients exhibited higher WSS values for the upstream and downstream surfaces of carotid plaque, as well as higher OSI and turbulence index values for the downstream surface. Type Ⅲ plaques and higher WSS and OSI values for the downstream surface of the plaque were significantly associated with ischemic stroke. Type Ⅲ plaques were more prevalent in symptomatic patients and demonstrated much higher WSS and OSI values for the downstream plaque surface in both groups. CONCLUSION High-frame-rate V Flow imaging could assess peri-plaque biomechanical forces and may provide effective imaging biomarkers for early prediction of ischemic stroke in patients with mild stenosis.
Collapse
Affiliation(s)
- Man Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luni Zhang
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Ultrasound, Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Jing Chen
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shiyao Gu
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Caixia Jia
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Uy M, Lam C, Guo Y, Bansal R, Hae R, Gangji A, Ribic C, Lambe S. Point-of-care-ultrasound for the assessment of post-renal transplant recipients. Can Urol Assoc J 2024; 18:110-114. [PMID: 38381939 PMCID: PMC11034972 DOI: 10.5489/cuaj.8531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
INTRODUCTION Postoperative imaging for deceased donor renal transplants is often delayed, as these surgeries occur after-hours. These delays can be critical in identifying immediate complications. To our knowledge, there are no formal training programs for point-of-care ultrasound (POCUS) in this setting; therefore, we aimed to develop and evaluate a feasible and practical POCUS curriculum for the assessment of a renal transplant graft. METHODS Urology and nephrology transplant physicians completed a three-hour online course, followed by a five-hour hands-on seminar for sonographic scanning. Simulated patients with transplanted kidneys were used. Course material was developed with licensed ultrasound technologists based on Sonography Canada national competency profiles. Pre- and post-course surveys focused on user confidence, while pre- and post-course multiple-choice questionnaires assessed theoretical knowledge. RESULTS Twelve participants were included, six of whom were urologists. Theoretical knowledge in POCUS improved significantly (p<0.001). Confidence in manipulation of ultrasound controls, Doppler imaging, and POCUS of the transplant kidney also improved (all p<0.001, d>2.0). Participants indicated an increased likelihood of POCUS use in clinical practice and that training should be integrated into a transplant fellowship. CONCLUSIONS We introduced a novel and guideline-based POCUS curriculum that leveraged local ultrasound educators and found improved theoretical knowledge and skill confidence in our cohort of transplant physicians. This course will serve as the first step toward a validated competency-based training system for POCUS use in the immediate post-renal transplant setting, and likely will be incorporated into the training of the modern transplant physician.
Collapse
Affiliation(s)
- Michael Uy
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Cameron Lam
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Yanbo Guo
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Urology, St. Joseph’s Healthcare Hamilton, ON, Canada
| | - Rahul Bansal
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Urology, St. Joseph’s Healthcare Hamilton, ON, Canada
| | - Richard Hae
- Department of Urology, St. Joseph’s Healthcare Hamilton, ON, Canada
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Azim Gangji
- Department of Urology, St. Joseph’s Healthcare Hamilton, ON, Canada
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Christine Ribic
- Department of Urology, St. Joseph’s Healthcare Hamilton, ON, Canada
- Division of Nephrology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Shahid Lambe
- Division of Urology, Department of Surgery, McMaster University, Hamilton, ON, Canada
- Department of Urology, St. Joseph’s Healthcare Hamilton, ON, Canada
| |
Collapse
|
6
|
Li S, Dong Z, Song P, Zou J. A water-immersible scanning mirror with hybrid polymer and elastomer hinges for high-speed and wide-field 3D ultrasound imaging. SENSORS AND ACTUATORS. A, PHYSICAL 2024; 367:115032. [PMID: 39380786 PMCID: PMC11460793 DOI: 10.1016/j.sna.2024.115032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
This paper reports a new water-immersible single-axis scanning mirror using hybrid polymer and elastomer hinges to achieve both high scanning resonance frequencies and large tilting angles for high-speed and wide-field 3D ultrasound imaging. To demonstrate the concept, a prototype scanning mirror is designed, fabricated, and characterized. The fast- and slow-scanning were achieved by integrating stiff BoPET (biaxially oriented polyethylene terephthalate) and soft elastomer PDMS (Polydimethylsiloxane) hinges, respectively. The testing results have shown a resonance frequency of 270 Hz for the BoPET hinges and a resonance frequency of 10 Hz for the PDMS hinges when the scanning mirror was immersed in water. 3D ultrasound imaging is demonstrated by combining the fast- and slow-scanning together to provide both an augmented field of view (FoV) and high local imaging volume rate.
Collapse
Affiliation(s)
- Shuangliang Li
- Departement of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zhijie Dong
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Pengfei Song
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Zou
- Departement of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Pillai GS, Kutumbaka A, Nazar PK, Chandiri A, Ravindran GC. Association between resistivity index of central retinal artery and severity of diabetic retinopathy. Indian J Ophthalmol 2023; 71:3539-3543. [PMID: 37870021 PMCID: PMC10752313 DOI: 10.4103/ijo.ijo_3408_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/28/2023] [Accepted: 06/16/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a leading cause of ocular morbidity. Its progression depends mainly on retinal vasculature and ocular blood flow. Color Doppler imaging (CDI) is a noninvasive imaging technique that measures blood flow velocity. The resistivity index (RI), calculated by the CDI, reflects the vascular resistance distal to the measuring location. RI is independent of the doppler angle and position of the patient, making it a reliable and reproducible parameter. To the best of our knowledge, there is only one study in literature studying the association between resistivity index (RI) of the central retinal artery (CRA) and severity of DR. Aim To determine the association between RI of CRA and severity of DR. To determine the association between RI of CRA and spectral-domain optical coherence tomography (SD-OCT) biomarkers for DR. Methods Type II diabetics visiting our OPD underwent DR screening and were graded into three categories according to ETDRS classification which include Group A-No diabetic retinopathy (No DR), Group B-Nonproliferative diabetic retinopathy (Moderate-Severe-Very Severe NPDR), and Group C-Proliferative diabetic retinopathy (PDR). SD-OCT was performed. Ultrasonic color doppler imaging was done. RI of the CRA was noted. It was compared between the three groups and its association with severity of DR and OCT biomarkers (central subfield thickness, cube average thickness and ellipsoid zone disruption) was studied. Results 56 eyes of 28 patients were included in our study with 20 in Group A,14 in Group B, and 22 in Group C. RI of CRA compared within groups showed statistically significant association with severity of DR (P < 0.001). The presenting BCVA (LogMar) showed positive correlation with RI in all groups. OCT biomarker central subfield thickness showed a positive correlation with RI in Groups A (P < 0.001) and B. Ellipsoid zone (EZ) disruption showed a statistically significant association with RI in Group C (P < 0.001). Conclusion The RI of CRA is a reliable biomarker for the assessment of the severity of DR. Patients with high RI of CRA had higher chances of EZ disruption and presented with poor visual acuity.
Collapse
Affiliation(s)
- Gopal S Pillai
- Department of Ophthalmology, Amrita Institute of Medical Sciences Kochi, Kerala, India
| | - Akhila Kutumbaka
- Department of Ophthalmology, Amrita Institute of Medical Sciences Kochi, Kerala, India
| | - P K Nazar
- Department of Radiology, Amrita Institute of Medical Sciences Kochi, Kerala, India
| | - Anvesh Chandiri
- Department of Radiology, Amrita Institute of Medical Sciences Kochi, Kerala, India
| | - Greeshma C Ravindran
- Department of Biostatistics, Amrita Institute of Medical Sciences Kochi, Kerala, India
| |
Collapse
|
8
|
Xue ES, Su HZ, Li ZY, Hong LC, Lin WJ, Chen C, Guo J, Fang ZY. Contrast-Enhanced Ultrasound Imaging: Novel Method for the Evaluation of Chronic Alcohol-Induced Testicular Damage. ULTRASOUND IN MEDICINE & BIOLOGY 2023:S0301-5629(23)00165-5. [PMID: 37271681 DOI: 10.1016/j.ultrasmedbio.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
OBJECTIVE The goals of this study were to determine whether contrast-enhanced ultrasound (CEUS) imaging could be used for assessment of chronic alcohol-induced testicular damage (CAITD) and to explore the relationships between the laboratory and pathological findings of CAITD and the quantitative parameters of CEUS. METHODS Thirty-six rabbits were randomly divided into a chronic ethanol exposure (CEE) group and negative control (NC) group, which were further randomly divided into six groups with equal numbers of rabbits by period of exposure (30 d, 60 d, 90 d). All rabbits underwent conventional US and CEUS imaging at the end of the induction period. Blood and histological specimens were collected for laboratory and pathological examination. RESULTS The peak intensity (PI) and area under the curve (AUC) for the CEUS parameters decreased as CAITD progressed (p < 0.05). Both PI and AUC were positively correlated with the Johnsen score (r= 0.945 and 0.898, respectively, all p values <0.001) and the mean epithelium thickness of the seminiferous tubule (METST) (r= 0.927 and 0.881, respectively, all p values <0.001) of the testis, and negatively correlated with the serum levels of endothelin-1 (ET-1) (r = -0.940 and -0.899, respectively, all p values <0.001) and nitric oxide (NO) (r = -0.894 and -0.954, respectively, all p values <0.001), as well as the testicular tissue content of malondialdehyde (MDA) (r = -0.894 and -0.945, respectively, all p values <0.001). CONCLUSION CEUS imaging can be used for monitoring organ perfusion of the testis to quantify the development of CAITD.
Collapse
Affiliation(s)
- En-Sheng Xue
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Huan-Zhong Su
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Zhi-Yong Li
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Long-Cheng Hong
- Department of Ultrasound, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Wen-Jin Lin
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Cong Chen
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jie Guo
- Department of Ultrasound, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Zhen-Yan Fang
- Department of Ultrasound, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
9
|
Haniel J, Yiu BYS, Chee AJY, Huebner R, Yu ACH. Efficacy of ultrasound vector flow imaging in tracking omnidirectional pulsatile flow. Med Phys 2023; 50:1699-1714. [PMID: 36546560 DOI: 10.1002/mp.16168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ultrasound vector flow imaging (VFI) shows potential as an emerging non-invasive modality for time-resolved flow mapping. However, its efficacy in tracking multidirectional pulsatile flow with temporal resolvability has not yet been systematically evaluated because of the lack of an appropriate test protocol. PURPOSE We present the first systematic performance investigation of VFI in tracking pulsatile flow in a meticulously designed scenario with time-varying, omnidirectional flow fields (with flow angles from 0° to 360°). METHODS Ultrasound VFI was performed on a three-loop spiral flow phantom (4 mm diameter; 5 mm pitch) that was configured to operate under pulsatile flow conditions (10 ml/s peak flow rate; 1 Hz pulse rate; carotid pulse shape). The spiral lumen geometry was designed to simulate recirculatory flow dynamics observed in the heart and in curvy blood vessel segments such as the carotid bulb. The imaging sequence was based on steered plane wave pulsing (-10°, 0°, +10° steering angles; 5 MHz imaging frequency; 3.3 kHz interleaved pulse repetition frequency). VFI's pulsatile flow estimation performance and its ability to detect secondary flow were comparatively assessed against flow fields derived from computational fluid dynamics (CFD) simulations that included consideration of fluid-structure interactions (FSI). The mean percentage error (MPE) and the coefficient of determination (R2 ) were computed to assess the correspondence of the velocity estimates derived from VFI and CFD-FSI simulations. In addition, VFI's efficacy in tracking pulse waves was analyzed with respect to pressure transducer measurements made at the phantom's inlet and outlet. RESULTS Pulsatile flow patterns rendered by VFI agreed with the flow profiles computed from CFD-FSI simulations (average MPE: -5.3%). The shape of the VFI-measured velocity magnitude profile generally matched the inlet flow profile. High correlation exists between VFI measurements and simulated flow vectors (lateral velocity: R2 = 0.8; axial velocity R2 = 0.89; beam-flow angle: R2 = 0.98; p < 0.0001 for all three quantities). VFI was found to be capable of consistently tracking secondary flow. It also yielded pulse wave velocity (PWV) estimates (5.72 ± 1.02 m/s) that, on average, are within 6.4% of those obtained from pressure transducer measurements (6.11 ± 1.15 m/s). CONCLUSION VFI can consistently track omnidirectional pulsatile flow on a time-resolved basis. This systematic investigation serves well as a quality assurance test of VFI.
Collapse
Affiliation(s)
- Jonathas Haniel
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Billy Y S Yiu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Adrian J Y Chee
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Rudolf Huebner
- Department of Mechanical Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alfred C H Yu
- Schlegel Research Institute for Aging and Department of Electrical & Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
10
|
Qiu YJ, Cheng J, Zhang Q, Yang DH, Zuo D, Mao F, Liu LX, Dong Y, Cao SQ, Wang WP. Clinical Application of High-Frame-Rate Vector Flow Imaging in Evaluation of Carotid Atherosclerotic Stenosis. Diagnostics (Basel) 2023; 13:diagnostics13030519. [PMID: 36766624 PMCID: PMC9914914 DOI: 10.3390/diagnostics13030519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE This study seeks to evaluate the value of the high-frame-rate vector flow imaging technique in assessing the hemodynamic changes of carotid atherosclerotic stenosis in aging people (>60 years old). METHODS Aging patients diagnosed with carotid atherosclerotic stenosis who underwent carotid high-frame-rate vector flow imaging examination were prospectively enrolled. A Mindray Resona7s ultrasound machine equipped with high-frame-rate vector flow function was used for ultrasound evaluation. First, B mode ultrasound and color Doppler flow imaging were used to evaluate carotid stenosis. Then, the vector arrows and flow streamline detected by V Flow were analyzed and the wall shear stress values (Pa) at the carotid stenosis site were measured. All patients were divided into symptomatic and asymptomatic groups according to whether they had acute/subacute stroke or other clinical symptoms within 2 weeks before ultrasound examination. The results of digital subtraction angiography or computed tomography angiography were used as the gold standard. The stenosis rate was calcified, according to North American Symptomatic Carotid Endarterectomy Trial criteria. The diagnostic values of wall shear stress, conventional ultrasound, and the combined diagnosis in carotid atherosclerotic stenosis were compared. RESULTS Finally, 88 patients with carotid atherosclerotic plaque were enrolled (71 males (80.7%), mean age 67.6 ± 5.4 years). The success rate of high-frame-rate vector flow imaging was 96.7% (88/91). The WSS value of symptomatic carotid stenosis (1.4 ± 0.15 Pa) was significantly higher than that of asymptomatic carotid stenosis (0.80 ± 0.08 Pa) (p < 0.05). Taking the wall shear stress value > 0.78 Pa as the diagnostic criteria for symptomatic carotid atherosclerotic plaque, the area under receiver operating characteristic curves was 0.79 with 87.1% sensitivity and 69.6% specificity. The area under receiver operating characteristic curves of the combined diagnosis (0.966) for differentiating severe carotid atherosclerotic stenosis was significantly higher than that of conventional ultrasound and WSS value, with 89.7% sensitivity and 93.2% specificity (p < 0.05). CONCLUSION As a non-invasive imaging method, the high-frame-rate vector flow imaging technique showed potential value in the preoperative assessment of the symptomatic carotid atherosclerotic stenosis and diagnosing carotid atherosclerotic stenosis in aging patients.
Collapse
Affiliation(s)
- Yi-Jie Qiu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Juan Cheng
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Qi Zhang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dao-Hui Yang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Dan Zuo
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Feng Mao
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ling-Xiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Correspondence: (L.-X.L.); (Y.D.); Tel.: +86-(0)21-6404-1990 (ext. 2474) (L.-X.L.); +86-(0)21-2507-6104 (Y.D.); Fax: +86-(0)21-6422-0319 (L.-X.L.); +86-(0)21-2507-7258 (Y.D.)
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
- Correspondence: (L.-X.L.); (Y.D.); Tel.: +86-(0)21-6404-1990 (ext. 2474) (L.-X.L.); +86-(0)21-2507-6104 (Y.D.); Fax: +86-(0)21-6422-0319 (L.-X.L.); +86-(0)21-2507-7258 (Y.D.)
| | - Si-Qi Cao
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
11
|
Fiori G, Pica A, Sciuto SA, Marinozzi F, Bini F, Scorza A. A Comparative Study on a Novel Quality Assessment Protocol Based on Image Analysis Methods for Color Doppler Ultrasound Diagnostic Systems. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22249868. [PMID: 36560240 PMCID: PMC9783207 DOI: 10.3390/s22249868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 06/12/2023]
Abstract
Color Doppler (CD) imaging is widely used in diagnostics since it allows real-time detection and display of blood flow superimposed on the B-mode image. Nevertheless, to date, a shared worldwide standard on Doppler equipment testing is still lacking. In this context, the study herein proposed would give a contribution focusing on the combination of five test parameters to be included in a novel Quality Assessment (QA) protocol for CD systems testing. A first approach involving the use of the Kiviat diagram was investigated, assuming the diagram area, normalized with respect to one of the gold standards, as an index of the overall Doppler system performance. The QA parameters were obtained from the post-processing of CD data through the implementation of custom-written image analysis methods and procedures, here applied to three brand-new high-technology-level ultrasound systems. Experimental data were collected through phased and convex array probes, in two configuration settings, by means of a Doppler flow phantom set at different flow rate regimes. The outcomes confirmed that the Kiviat diagram might be a promising tool applied to quality controls of Doppler equipment, although further investigations should be performed to assess the sensitivity and specificity of the proposed approach.
Collapse
Affiliation(s)
- Giorgia Fiori
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| | - Andrada Pica
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, 00184 Rome, Italy
| | - Salvatore Andrea Sciuto
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| | - Franco Marinozzi
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, 00184 Rome, Italy
| | - Fabiano Bini
- Department of Mechanical and Aerospace Engineering, “Sapienza” University of Rome, 00184 Rome, Italy
| | - Andrea Scorza
- Department of Industrial, Electronic and Mechanical Engineering, University of Roma Tre, 00146 Rome, Italy
| |
Collapse
|
12
|
Aziz MU, Eisenbrey JR, Deganello A, Zahid M, Sharbidre K, Sidhu P, Robbin ML. Microvascular Flow Imaging: A State-of-the-Art Review of Clinical Use and Promise. Radiology 2022; 305:250-264. [PMID: 36165794 PMCID: PMC9619200 DOI: 10.1148/radiol.213303] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/11/2022]
Abstract
Vascular imaging with color and power Doppler is a useful tool in the assessment of various disease processes. Assessment of blood flow, from infarction and ischemia to hyperemia, in organs, neoplasms, and vessels, is used in nearly every US investigation. Recent developments in this area are sensitive to small-vessel low velocity flow without use of intravenous contrast agents, known as microvascular flow imaging (MVFI). MVFI is more sensitive in detection of small vessels than color, power, and spectral Doppler, reducing the need for follow-up contrast-enhanced US (CEUS), CT, and MRI, except when arterial and venous wash-in and washout characteristics would be helpful in diagnosis. Varying clinical applications of MVFI are reviewed in adult and pediatric populations, including its technical underpinnings. MVFI shows promise in assessment of several conditions including benign and malignant lesions in the liver and kidney, acute pathologic abnormalities in the gallbladder and testes, and superficial lymph nodes. Future potential of MVFI in different conditions (eg, endovascular repair) is discussed. Finally, clinical cases in which MVFI correlated and potentially obviated additional CEUS, CT, or MRI are shown.
Collapse
Affiliation(s)
- Muhammad Usman Aziz
- From the Department of Radiology, University of Alabama at
Birmingham, 619 S 19th St, Suite JTN361, Birmingham, AL 35233 (M.U.A., M.Z.,
K.S., M.L.R.); Department of Radiology, Thomas Jefferson University,
Philadelphia, Pa (J.R.E.); and Department of Radiology, King’s College
London, King’s College Hospital, London, UK (A.D., P.S.)
| | - John R. Eisenbrey
- From the Department of Radiology, University of Alabama at
Birmingham, 619 S 19th St, Suite JTN361, Birmingham, AL 35233 (M.U.A., M.Z.,
K.S., M.L.R.); Department of Radiology, Thomas Jefferson University,
Philadelphia, Pa (J.R.E.); and Department of Radiology, King’s College
London, King’s College Hospital, London, UK (A.D., P.S.)
| | - Annamaria Deganello
- From the Department of Radiology, University of Alabama at
Birmingham, 619 S 19th St, Suite JTN361, Birmingham, AL 35233 (M.U.A., M.Z.,
K.S., M.L.R.); Department of Radiology, Thomas Jefferson University,
Philadelphia, Pa (J.R.E.); and Department of Radiology, King’s College
London, King’s College Hospital, London, UK (A.D., P.S.)
| | - Mohd Zahid
- From the Department of Radiology, University of Alabama at
Birmingham, 619 S 19th St, Suite JTN361, Birmingham, AL 35233 (M.U.A., M.Z.,
K.S., M.L.R.); Department of Radiology, Thomas Jefferson University,
Philadelphia, Pa (J.R.E.); and Department of Radiology, King’s College
London, King’s College Hospital, London, UK (A.D., P.S.)
| | - Kedar Sharbidre
- From the Department of Radiology, University of Alabama at
Birmingham, 619 S 19th St, Suite JTN361, Birmingham, AL 35233 (M.U.A., M.Z.,
K.S., M.L.R.); Department of Radiology, Thomas Jefferson University,
Philadelphia, Pa (J.R.E.); and Department of Radiology, King’s College
London, King’s College Hospital, London, UK (A.D., P.S.)
| | - Paul Sidhu
- From the Department of Radiology, University of Alabama at
Birmingham, 619 S 19th St, Suite JTN361, Birmingham, AL 35233 (M.U.A., M.Z.,
K.S., M.L.R.); Department of Radiology, Thomas Jefferson University,
Philadelphia, Pa (J.R.E.); and Department of Radiology, King’s College
London, King’s College Hospital, London, UK (A.D., P.S.)
| | - Michelle L. Robbin
- From the Department of Radiology, University of Alabama at
Birmingham, 619 S 19th St, Suite JTN361, Birmingham, AL 35233 (M.U.A., M.Z.,
K.S., M.L.R.); Department of Radiology, Thomas Jefferson University,
Philadelphia, Pa (J.R.E.); and Department of Radiology, King’s College
London, King’s College Hospital, London, UK (A.D., P.S.)
| |
Collapse
|
13
|
LONG WILL, BRADWAY DAVID, AHMED RIFAT, LONG JAMES, TRAHEY GREGGE. Spatial Coherence Adaptive Clutter Filtering in Color Flow Imaging-Part II: Phantom and In Vivo Experiments. IEEE OPEN JOURNAL OF ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 2:119-130. [PMID: 36712828 PMCID: PMC9881236 DOI: 10.1109/ojuffc.2022.3184909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Conventional color flow processing is associated with a high degree of operator dependence, often requiring the careful tuning of clutter filters and priority encoding to optimize the display and accuracy of color flow images. In a companion paper, we introduced a novel framework to adapt color flow processing based on local measurements of backscatter spatial coherence. Through simulation studies, the adaptive selection of clutter filters using coherence image quality characterization was demonstrated as a means to dynamically suppress weakly-coherent clutter while preserving coherent flow signal in order to reduce velocity estimation bias. In this study, we extend previous work to evaluate the application of coherence-adaptive clutter filtering (CACF) on experimental data acquired from both phantom and in vivo liver and fetal vessels. In phantom experiments with clutter-generating tissue, CACF was shown to increase the dynamic range of velocity estimates and decrease bias and artifact from flash and thermal noise relative to conventional color flow processing. Under in vivo conditions, such properties allowed for the direct visualization of vessels that would have otherwise required fine-tuning of filter cutoff and priority thresholds with conventional processing. These advantages are presented alongside various failure modes identified in CACF as well as discussions of solutions to mitigate such limitations.
Collapse
Affiliation(s)
| | - DAVID BRADWAY
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - RIFAT AHMED
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - JAMES LONG
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - GREGG E. TRAHEY
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
- Department of Radiology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
14
|
Cao Y, Huang R, Kong R, Li H, Zhang H, Li Y, Liang L, Xiong D, Han S, Zhou L, Guo J, Dai G, Meng M, Lou H, Hou Z, Jiang L. Prevalence and risk factors for congenital heart defects among children in the Multi-Ethnic Yunnan Region of China. Transl Pediatr 2022; 11:813-824. [PMID: 35800272 PMCID: PMC9253957 DOI: 10.21037/tp-21-371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 03/17/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To determine the congenital heart defect (CHD) prevalence and identify the associated risk factors in children within the multi-ethnic Yunnan Region of China. METHODS This is a prospective matched case-control screening study. Screening for CHD in children residing within 28 county districts of Yunnan Province during the period of January 2001 to December 2016 was conducted. A total of 2,421 and CHD cohort and 24,210 control cohort were derived from a total population of 400,855 children (under 18 years of age). RESULTS A total of 2,421 children were diagnosed with CHD, yielding a CHD prevalence of 6.04 cases per 1,000 children. The prevalence of CHD by sex was 6.54 per 1,000 females versus 5.59 per 1,000 males. The ethnic groups displaying the highest CHD prevalence were the Lisu (15.51 per 1,000), Achang (13.18 per 1,000), Jingpo (12.32 per 1,000), Naxi (9.68 per 1,000), and Tibetan (8.57 per 1,000), respectively. The most common CHD was atrial septal defect, amounting to 1.94 instances per 1,000 children. We identified a number of child-associated parameters that significantly correlated with greater CHD risk, such as lower mass at birth, shorter duration of gestation, and younger age at the time of screening. We also identified a number of maternal and familial risk factors. CONCLUSIONS This ultrasonic color Doppler imaging study revealed a relatively commonplace prevalence of CHD. Moreover, the prevalence of CHD in Yunnan Region significantly varied with sex and ethnic status. Certain child-associated, maternal, and familial risk factors may contribute to CHD risk.
Collapse
Affiliation(s)
- Yu Cao
- Department of Cardiovascular Surgery, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Rongzhong Huang
- Department of Cardiovascular Surgery, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ruize Kong
- Department of Cardiovascular Surgery, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hongrong Li
- Department of Cardiovascular Surgery, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hong Zhang
- Department of Cardiology, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yaxiong Li
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China.,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, China
| | - Liwen Liang
- Department of Cardiology, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Xiong
- Department of Cardiovascular Surgery, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Shen Han
- Department of Cardiovascular Surgery, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China.,Key Laboratory of Cardiovascular Disease of Yunnan Province, Kunming, China
| | - Liang Zhou
- Department of Cardiology, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Junyin Guo
- Department of Cardiology, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Guolin Dai
- Department of Cardiovascular Surgery, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Mingyao Meng
- Department of Central Laboratory, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hongbo Lou
- Department of Cardiology, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zongliu Hou
- Department of Central Laboratory, Yan'an Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lihong Jiang
- Department of Cardiovascular Surgery, the First Peoples' Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
15
|
Jia S, Wu Y, Wang W, Lin W, Chen Y, Zhang H, Xia S, Zhou H. An Exploratory Study on the Relationship between Brachial Arterial Blood Flow and Cardiac Output. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:1251199. [PMID: 34976321 PMCID: PMC8718296 DOI: 10.1155/2021/1251199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/31/2021] [Accepted: 11/09/2021] [Indexed: 01/16/2023]
Abstract
Background We have obtained prospective clinical outcomes using the brachial artery largely, such as Korotkoff sound and vasomotor function measurement by ultrasound guidance to predict the prognosis of cardiovascular diseases. Very few reports on the quantitative measurement of the relationship between the brachial artery blood flow and cardiac output have been reported. Purpose (1) To investigate whether the quantitative relationship between the brachial artery blood flow and cardiac output existed. (2) To provide a theoretical basis for taking advantage of artificial intelligence (AI) using Korotkoff sound analogously as far as possible to predict the cardiac output. Methods A total of 586 patients who underwent cardiac color ultrasound in our center from 2021.3 to 2021.7 were included for analyses. The vascular parameters of the right upper limb brachial artery (such as the Diameter, Area, Blood Velocity, and Flow) were measured immediately after the cardiac color ultrasound, and some basic clinical parameters (Age, Sex, BMI, and Disease) were recorded subsequently. Ultimately, the Mann-Whitney and independent sample T-test were used to analyze the data. Results (1) The mean Rate of the brachial arterial blood flow to cardiac output was 1.23%, and the mean 95% CI was (1.18%, 1.29%), indicating that the value was mainly concentrated in the current value interval. The indicator demonstrates that there is no significant difference currently among the patients with hypertension, coronary heart disease, and cardiac dysfunction. (2) The brachial artery wall diameter (Dist) is significantly thicker in patients with coronary heart disease and hypertension compared to patients with other cardiovascular diseases. (3) Cardiac output augments remarkably in patients with hypertension. Conclusion Our study suggests that the Rate (brachial artery blood flow/cardiac output) is a constant of 1.23% approximately. It provides a theoretical basis for the subsequent application of the artificial intelligence (AI) method to predict heart function using Korotkoff sound, cope with large computational amounts, and improve computational speed. It is also indirectly proved that hypertension can lead to a change in peripheral vascular hyperplasia and increase cardiac output.
Collapse
Affiliation(s)
- Sixiang Jia
- Department of Heart Center, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu 322000, China
| | - Yiteng Wu
- Department of Heart Center, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu 322000, China
| | - Wei Wang
- Department of Heart Center, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu 322000, China
| | - Wenting Lin
- Department of Heart Center, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu 322000, China
| | - Yiwen Chen
- Department of Heart Center, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu 322000, China
| | - Huanyu Zhang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310000, China
| | - Shudong Xia
- Department of Heart Center, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, N1 Shangcheng Road, Yiwu 322000, China
| | - Hong Zhou
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310000, China
| |
Collapse
|
16
|
Song Y, Xing H, Zhang Z, Felix LO. Detection of Carotid Atherosclerotic Intraplaque Neovascularization Using Superb Microvascular Imaging: A Meta-Analysis. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2021; 40:2629-2638. [PMID: 33587302 DOI: 10.1002/jum.15652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/31/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVES Although superb microvascular imaging (SMI) (Toshiba/Canon, Tokyo, Japan) has enabled routine characterization of intraplaque neovascularization (IPN) features in patients with carotid stenosis, no reports have been published on the multicenter and large sample size research in this aspect. The efficacy of SMI in detecting carotid IPN has not been concluded. This study aimed to assess the efficacy of SMI comparing with contrast-enhanced carotid ultrasonography (CEUS) in the detection of carotid IPN or pathologic evaluations of IPN correlated with a history of stroke or transient ischemic attack (TIA). METHODS Web of Science, Cochrane Library, PubMed, Embase, and Scopus were searched up to August 2020 to identify peer-reviewed human studies on the diagnostic accuracy of SMI in detecting IPN. For the selected study, the correlation coefficient R and Kappa index between SMI and CEUS in detecting IPN were calculated. The correlation coefficient R between SMI in identifying IPN and pathologic evaluations of IPN and the odds ratio of IPN detected by SMI and history of stroke or TIA were also extracted. The subgroup analysis was performed to indicate the source of heterogeneity. RESULTS Our search identified 11 reports enrolling a total of 605 carotid stenosis patients. Carotid IPN detected by SMI was significantly correlated with which detected by CEUS (R, 0.89; 95% CI, 0.80-0.94; P = .00, and Kappa index, 0.73; 95% CI, 0.67-0.80; P = .00). Notably, a significant correlation was observed in SMI in detecting IPN and pathologic evaluations of IPN (R, 0.52; 95% CI, 0.40-0.62; P = .00). The odds ratio of IPN detected by SMI and history of stroke or TIA was pooled summary with statistical significance (OR, 3.33; 95% CI, 1.78-6.23; P = .00). In subgroup analysis, lower heterogeneity was associated with the degree of carotid stenosis, patients from which country, and types of equipment. CONCLUSIONS SMI and CEUS display an excellent agreement in detecting carotid IPN. IPN detected by SMI shows high consistency with pathologic evaluations of IPN. Individuals with carotid IPN are more likely to develop stroke or TIA than those without carotid IPN.
Collapse
Affiliation(s)
- Yi Song
- Department of Ultrasound, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hang Xing
- Division of Cardiothoracic Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Zhiqi Zhang
- Division of Cardiothoracic Surgery, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| | - Lewis Oscar Felix
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, RI, 02903, USA
| |
Collapse
|
17
|
Ahn J, Kim JY, Choi W, Kim C. High-resolution functional photoacoustic monitoring of vascular dynamics in human fingers. PHOTOACOUSTICS 2021; 23:100282. [PMID: 34258222 PMCID: PMC8259315 DOI: 10.1016/j.pacs.2021.100282] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/18/2021] [Accepted: 06/23/2021] [Indexed: 05/09/2023]
Abstract
Functional imaging of microvascular dynamics in extremities delivers intuitive information for early detection, diagnosis, and prognosis of vascular diseases. High-resolution and high-speed photoacoustic microscopy (PAM) visualizes and measures multiparametric information of microvessel networks in vivo such as morphology, flow, oxygen saturation, and metabolic rate. Here, we demonstrate high-resolution photoacoustic monitoring of vascular dynamics in human fingers. We photoacoustically monitored the position displacement of blood vessels associated with arterial pulsation in human fingers. Then, during and after arterial occlusion, we photoacoustically quantified oxygen consumption and blood perfusion in the fingertips. The results demonstrate that high-resolution functional PAM could be a vital tool in peripheral vascular examination for measuring heart rate, oxygen consumption, and/or blood perfusion.
Collapse
|
18
|
Guidi F, Tortoli P. Real-Time High Frame Rate Color Flow Mapping System. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2193-2201. [PMID: 33690116 DOI: 10.1109/tuffc.2021.3064612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plane wave (PW) transmission (TX) can be profitably used to improve the performance of color flow mapping (CFM) systems by increasing the autocorrelation ensemble length (EL) and/or the frame rate (FR). Although high-end scanners tend to include imaging schemes using PW TX and parallel receive beams, high frame rate (HFR) CFM has been so far experimentally implemented mostly through research platforms that transmit PWs and beamform/process the received channel data off-line. In this article, full real-time implementation of PW CFM with continuous-time clutter filtering and extended FR/EL is reported. The field-programmable gate arrays (FPGAs) and digital signal processors (DSPs) onboard the ULA-OP 256 research scanner were programmed to perform high-speed parallel beamforming and autocorrelation-based CFM processing, respectively. Different strategies were tested, in which the TX of PWs for CFM is either continuous or interleaved with the TX of packets of B-mode pulses. A fourth-order Chebyshev continuous-time high-pass filter with programmable cutoff frequency was implemented and its clutter rejection performance was positively compared with that obtained when operating on packet data. CFM FRs up to 575 were obtained. The possibility of programming the autocorrelation EL up to 64 permitted to detect flow with high sensitivity and accuracy (average relative errors down to 0.4% ± 8.4%). In vivo HFR movies are presented, showing the dynamics of flow in the common carotid artery, which highlight the presence of secondary flow components.
Collapse
|
19
|
Poree J, Goudot G, Pedreira O, Laborie E, Khider L, Mirault T, Messas E, Julia P, Alsac JM, Tanter M, Pernot M. Dealiasing High-Frame-Rate Color Doppler Using Dual-Wavelength Processing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2117-2128. [PMID: 33534706 DOI: 10.1109/tuffc.2021.3056932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Doppler ultrasound is the premier modality to analyze blood flow dynamics in clinical practice. With conventional systems, Doppler can either provide a time-resolved quantification of the flow dynamics in sample volumes (spectral Doppler) or an average Doppler velocity/power [color flow imaging (CFI)] in a wide field of view (FOV) but with a limited frame rate. The recent development of ultrafast parallel systems made it possible to evaluate simultaneously color, power, and spectral Doppler in a wide FOV and at high-frame rates but at the expense of signal-to-noise ratio (SNR). However, like conventional Doppler, ultrafast Doppler is subject to aliasing for large velocities and/or large depths. In a recent study, staggered multi-pulse repetition frequency (PRF) sequences were investigated to dealias color-Doppler images. In this work, we exploit the broadband nature of pulse-echo ultrasound and propose a dual-wavelength approach for CFI dealiasing with a constant PRF. We tested the dual-wavelength bandpass processing, in silico, in laminar flow phantom and validated it in vivo in human carotid arteries ( n = 25 ). The in silico results showed that the Nyquist velocity could be extended up to four times the theoretical limit. In vivo, dealiased CFI were highly consistent with unfolded Spectral Doppler ( r2=0.83 , y=1.1x+0.1 , N=25 ) and provided consistent vector flow images. Our results demonstrate that dual-wavelength processing is an efficient method for high-velocity CFI.
Collapse
|
20
|
Goncin U, Ton N, Reddy A, El Kaffas A, Brinkmann M, Machtaler S. Contrast-enhanced ultrasound imaging for assessing organ perfusion in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141231. [PMID: 33182180 DOI: 10.1016/j.scitotenv.2020.141231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Contrast-enhanced ultrasound (CEUS) imaging has great potential as a non-lethal, inexpensive monitoring tool in aquatic toxicology. It is a well-established clinical imaging approach that combines real-time, quantitative assessment of organ blood flow, with morphological data. In humans, it has been extensively used to measure changes in blood flow that can be attributed to cancer, inflammation, and other biological abnormalities. However, it has yet to be explored as a tool for fish physiology or environmental toxicology. In this study, our goal was to determine if CEUS could be used to visualize and measure blood flow in the liver of a rainbow trout. All rainbow trout received two injections of an ultrasound contrast agent, microbubbles. A subset received a third injection after administration of propranolol, a non-specific beta1 & 2-blocker, to determine if changes in blood flow could be detected. Ultrasound contrast time-intensity curves (TIC) were obtained, fit to a lognormal model, and different perfusion parameters were calculated. Contrast enhancement was observed in all rainbow trout livers, with high percentage between repeated measurements, including blood flow (80.6 ± 27.3%), area under the curve (73.2 ± 14%), blood volume (84 ± 14.2%) and peak enhancement (86.7 ± 7.5%). After administration of propranolol, we detected a non-significant (p > 0.05) increase in area under the curve (102.6 ± 44.2%), peak enhancement (77.3 ± 106.4), blood volume (48.2 ± 74.5%), and decrease in hepatic blood flow (-17.3 ± 37.1%). These data suggest that CEUS imaging is suitable to measure organ blood flow in fish, and demonstrates tremendous potential for exploring different organs, fish species, and effects of chemical contaminants in future studies.
Collapse
Affiliation(s)
- Una Goncin
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ngoc Ton
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ashwin Reddy
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Ahmed El Kaffas
- Department of Radiology, Stanford University, School of Medicine, Stanford, CA, USA
| | - Markus Brinkmann
- School of Environment and Sustainability (SENS), University of Saskatchewan, Saskatoon, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, Canada; Global Institute for Water Security (GIWS), University of Saskatchewan, Saskatoon, Canada
| | - Steven Machtaler
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
21
|
|
22
|
Functional characterization of human brown adipose tissue metabolism. Biochem J 2020; 477:1261-1286. [PMID: 32271883 DOI: 10.1042/bcj20190464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.
Collapse
|
23
|
Ali MJ, Ponnaganti S, Barla K, Varma DR, Bothra N. Color Doppler Imaging Features of the Lacrimal Sac in Health and Diseased States. Curr Eye Res 2020; 46:758-761. [PMID: 32886568 DOI: 10.1080/02713683.2020.1820527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE The objective of this study is to present Color Doppler imaging (CDI) features of the lacrimal sac in normal and diseased states. METHODS Prospective study was performed on 20 lacrimal sacs of 20 eyes of 10 patients who underwent Color Doppler imaging at a tertiary care Dacryology service over a period of 6 months. All the patients were subjected to Duplex doppler scanning of the lacrimal sacs. Of the 20 lacrimal drainage systems studied, 8 were normal, 8 had primary acquired nasolacrimal duct obstruction (PANDO) and 4 were that of acute dacryocystitis (AcDac). Patient demographics, clinical presentation, duration of the disease and Color Doppler vascular characteristics like peri-sac vascular flow, peak systolic velocity (PSV), end-diastolic velocity (EDV), resistivity index (RI), arterial spectral waveforms and sac dimensions and wall thickness were analyzed. RESULTS The vascular flow around the lacrimal sac was increased with higher flow velocities in PANDO as compared to normal and grossly enhanced in AcDac. Flow disturbances were also quite discernible in AcDac. The mean PSV and EDV were 9 & 3.87 cm/sec, 13.07 & 4.63 cm/sec and 18 & 8.5 cm/sec in normal, PANDO and AcDac, respectively. The mean vascular resistivity index increased in patients with PANDO (0.67) and decreased in AcDac (0.53) as compared to the normal (0.57). The arterial spectral waveforms in PANDO and AcDac showed low pulsatility, but the systolic peaks were sharper with more continuous forward flow through diastole in AcDac. This reflects vascular dilatation and reduced resistance to flow in AcDac. CONCLUSION Characteristic Color Doppler flow parameters can be demonstrated in patients with PANDO and acute dacryocystitis. Color Doppler techniques have the potential to enhance the understanding of lacrimal drainage pathophysiology.
Collapse
Affiliation(s)
- Mohammad Javed Ali
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Hyderabad, India
| | | | - Kiran Barla
- Department of Neuroradiology, Citi Neuro Centre, Hyderabad, India
| | - D Ravi Varma
- Department of Neuroradiology, Citi Neuro Centre, Hyderabad, India
| | - Nandini Bothra
- Govindram Seksaria Institute of Dacryology, L.V. Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
24
|
Zhang N, Ashikuzzaman M, Rivaz H. Clutter suppression in ultrasound: performance evaluation and review of low-rank and sparse matrix decomposition methods. Biomed Eng Online 2020; 19:37. [PMID: 32466753 PMCID: PMC7254711 DOI: 10.1186/s12938-020-00778-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/07/2020] [Indexed: 11/10/2022] Open
Abstract
Vessel diseases are often accompanied by abnormalities related to vascular shape and size. Therefore, a clear visualization of vasculature is of high clinical significance. Ultrasound color flow imaging (CFI) is one of the prominent techniques for flow visualization. However, clutter signals originating from slow-moving tissue are one of the main obstacles to obtain a clear view of the vascular network. Enhancement of the vasculature by suppressing the clutters is a significant and irreplaceable step for many applications of ultrasound CFI. Currently, this task is often performed by singular value decomposition (SVD) of the data matrix. This approach exhibits two well-known limitations. First, the performance of SVD is sensitive to the proper manual selection of the ranks corresponding to clutter and blood subspaces. Second, SVD is prone to failure in the presence of large random noise in the dataset. A potential solution to these issues is using decomposition into low-rank and sparse matrices (DLSM) framework. SVD is one of the algorithms for solving the minimization problem under the DLSM framework. Many other algorithms under DLSM avoid full SVD and use approximated SVD or SVD-free ideas which may have better performance with higher robustness and less computing time. In practice, these models separate blood from clutter based on the assumption that steady clutter represents a low-rank structure and that the moving blood component is sparse. In this paper, we present a comprehensive review of ultrasound clutter suppression techniques and exploit the feasibility of low-rank and sparse decomposition schemes in ultrasound clutter suppression. We conduct this review study by adapting 106 DLSM algorithms and validating them against simulation, phantom, and in vivo rat datasets. Two conventional quality metrics, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), are used for performance evaluation. In addition, computation times required by different algorithms for generating clutter suppressed images are reported. Our extensive analysis shows that the DLSM framework can be successfully applied to ultrasound clutter suppression.
Collapse
Affiliation(s)
- Naiyuan Zhang
- Department of Electrical and Computer Engineering, Concordia, Rue Sainte-Catherine O, Montreal, Canada
| | - Md Ashikuzzaman
- Department of Electrical and Computer Engineering, Concordia, Rue Sainte-Catherine O, Montreal, Canada
| | - Hassan Rivaz
- Department of Electrical and Computer Engineering, Concordia, Rue Sainte-Catherine O, Montreal, Canada.
| |
Collapse
|
25
|
Legler M, Koy L, Kummerfeld N, Fehr M. Color Flow Doppler Echocardiography in Healthy Racing Pigeons ( Columba livia f. domestica) and the Evidence of Physiological Blood Flow Vortex Formations. Vet Sci 2020; 7:vetsci7020060. [PMID: 32375406 PMCID: PMC7355422 DOI: 10.3390/vetsci7020060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
In avian medicine, Doppler sonographic techniques are used to visualize and estimate blood flow in the heart. In the literature there is a lack of standardized studies of the use of color Doppler flow on healthy avian species. For this purpose, we examined blood flow in the heart in the four-chamber view of clinically healthy awake racing pigeons (n = 43) by color flow Doppler sonography. With this technique the diastolic and systolic blood flow in the heart chambers and the heart valve regions were well visualized. However, the pulse repetition frequency must be adapted to the specific blood flow velocities of the heart region to be measured to reduce aliasing in higher velocities and to visualize blood flow of lower velocities. With the help of color Doppler imaging in the four-chamber view, typical physiological atrial and ventricular blood flow vortex formations were visualized in the avian heart for the first time. In the left ventricle an asymmetric vortex ring in the passive and active ventricular filling, in the right ventricle a great counter-clockwise blood vortex in the active ventricular filling, in the left atrium a vortex clockwise, and in the right atrium counter-clockwise were observed. The knowledge of these physiological blood flow vortices is important to identify pathological blood flow.
Collapse
|
26
|
Dong J, Zhang Y, Lee WN. Walled vessel-mimicking phantom for ultrasound imaging using 3D printing with a water-soluble filament: design principle, fluid-structure interaction (FSI) simulation, and experimental validation. Phys Med Biol 2020; 65:085006. [PMID: 32106096 DOI: 10.1088/1361-6560/ab7abf] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The geometry and stiffness of a vessel are pertinent to blood dynamics and vessel wall mechanical behavior and may alter in diseased conditions. Ultrasound-based ultrafast Doppler (uDoppler) imaging and shear wave imaging (SWI) techniques have been extensively exploited for the assessment of vascular hemodynamics and mechanics. Their performance is conventionally validated on vessel-mimicking phantoms (VMPs) prior to their clinical use. Compared with commercial ones, customized VMPs are favored for research use because of their wider range of material properties, more complex lumen geometries, or wall structures. Fused deposition modeling (FDM) 3D printing technique with plastic filaments is a promising method for making VMPs with a complex vessel lumen. However, it may require a toxic solvent or a long dissolution time currently. In this paper, we present a safe, efficient and geometrically flexible method where FDM 3D printing with a water-soluble polyvinyl alcohol (PVA) filament is exploited to fabricate a walled three-branch VMP (VMP-I). As a key step in fabrication, to avoid dissolution of the PVA-printed vessel core by the solution of the tissue-mimicking material, paraffin wax was used for isolation. Paraffin wax is easy to coat (i.e. without any special equipment), of satisfactory thickness (∼0.1 mm), chemically stable, and easy to remove after fabrication, thus making the proposed method practicable for ultrasound imaging studies. VMP-I was examined by B-mode imaging and power Doppler imaging (PDI) to verify complete dissolution of PVA-printed vessel core in its lumen, confirming good fabrication quality. The flow velocities in VMP-I were estimated by uDoppler imaging with a -0.8% difference, and the shear wave propagation speeds for the same phantom were estimated by SWI with a -6.03% difference when compared with fluid-structure interaction (FSI) simulation results. A wall-less VMP of a scaled and simplified coronary arterial network (VMP-II) was additionally fabricated and examined to test the capability of the proposed method for a complex lumen geometry. The proposed fabrication method for customized VMPs is foreseen to facilitate the development of ultrasound imaging techniques for blood vessels.
Collapse
Affiliation(s)
- Jinping Dong
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
27
|
Correlation-based Doppler-angle estimation with plane-wave excitation. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
28
|
Goddi A, Bortolotto C, Raciti MV, Fiorina I, Aiani L, Magistretti G, Sacchi A, Tinelli C, Calliada F. High-Frame Rate Vector Flow Imaging of the Carotid Bifurcation in Healthy Adults: Comparison With Color Doppler Imaging. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:2263-2275. [PMID: 29574932 DOI: 10.1002/jum.14579] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/07/2017] [Accepted: 12/09/2017] [Indexed: 06/08/2023]
Abstract
OBJECTIVES To evaluate the carotid bifurcation in healthy adults using a commercial system equipped with high-frame rate vector flow imaging (VFI) based on the plane wave and to compare VFI with color Doppler imaging. METHODS Carotid bifurcation diameters and flow characteristics of 60 vessels in 60 healthy volunteers were evaluated quantitatively and qualitatively to assess complex flow patterns and their extension and duration. RESULTS Complex flow in the internal carotid artery (ICA) was associated with a statistically significant difference in the ΔICA sinus-to-common carotid artery (CCA) diameter ratio (the relative change in diameter between the CCA and ICA sinus.) Vector flow imaging and color Doppler imaging were in accordance when detecting complex flow in 96.7% of cases; in 3.3% of cases, only VFI identified small recirculation areas of short duration. Vector flow imaging highlighted a larger extension of the complex flow (mean ± SD, 47.7 ± 28.5 mm2 ; median, 45.5 mm2 ) compared with color Doppler imaging (mean, 29.2 ± 19.9 mm2 ; median, 29.5 mm2 ) and better depicted different complex flow patterns; a strong correlation (r = 0.84) was found between the ΔICA sinus-to-CCA diameter ratio and the complex flow extension. Vector flow imaging showed a longer duration of the flow disturbances (mean, 380 ± 218 milliseconds; median, 352.5 milliseconds) compared with color Doppler imaging (mean, 325 ± 206 milliseconds; median, 333 milliseconds), and there was a strong correlation (r = 0.92). CONCLUSIONS Vector flow imaging is as effective as color Doppler imaging in the detection of flow disturbances, but it is more powerful in the assessment of complex flow patterns.
Collapse
Affiliation(s)
- Alfredo Goddi
- Centro Medico SME-Diagnostica per Immagini, Varese, Italy
| | - Chandra Bortolotto
- Radiology Unit, University of Pavia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Maria Vittoria Raciti
- Radiology Unit, University of Pavia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Ilaria Fiorina
- Radiology Unit, University of Pavia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Luca Aiani
- Centro Medico SME-Diagnostica per Immagini, Varese, Italy
| | | | - Andrea Sacchi
- Centro Medico SME-Diagnostica per Immagini, Varese, Italy
| | - Carmine Tinelli
- Clinical Epidemiology and Biometric Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| | - Fabrizio Calliada
- Radiology Unit, University of Pavia, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
29
|
Maresca D, Lakshmanan A, Abedi M, Bar-Zion A, Farhadi A, Lu GJ, Szablowski JO, Wu D, Yoo S, Shapiro MG. Biomolecular Ultrasound and Sonogenetics. Annu Rev Chem Biomol Eng 2018; 9:229-252. [PMID: 29579400 PMCID: PMC6086606 DOI: 10.1146/annurev-chembioeng-060817-084034] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Visualizing and modulating molecular and cellular processes occurring deep within living organisms is fundamental to our study of basic biology and disease. Currently, the most sophisticated tools available to dynamically monitor and control cellular events rely on light-responsive proteins, which are difficult to use outside of optically transparent model systems, cultured cells, or surgically accessed regions owing to strong scattering of light by biological tissue. In contrast, ultrasound is a widely used medical imaging and therapeutic modality that enables the observation and perturbation of internal anatomy and physiology but has historically had limited ability to monitor and control specific cellular processes. Recent advances are beginning to address this limitation through the development of biomolecular tools that allow ultrasound to connect directly to cellular functions such as gene expression. Driven by the discovery and engineering of new contrast agents, reporter genes, and bioswitches, the nascent field of biomolecular ultrasound carries a wave of exciting opportunities.
Collapse
Affiliation(s)
- David Maresca
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Anupama Lakshmanan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mohamad Abedi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Avinoam Bar-Zion
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Arash Farhadi
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Jerzy O Szablowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Di Wu
- Division of Engineering and Applied Sciences, California Institute of Technology, Pasadena, California 91125, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA;
| |
Collapse
|
30
|
González TFF, Latorre J, Reiz AN. Ultrasound and Stars. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:1296-1297. [PMID: 29602539 DOI: 10.1016/j.ultrasmedbio.2018.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/15/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Affiliation(s)
| | - Julieta Latorre
- Department of Anaesthesiology, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
31
|
A PSF-Shape-Based Beamforming Strategy for Robust 2D Motion Estimation in Ultrafast Data. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8030429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
32
|
Yiu BYS, Yu ACH. Spiral Flow Phantom for Ultrasound Flow Imaging Experimentation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:1840-1848. [PMID: 29035216 DOI: 10.1109/tuffc.2017.2762860] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As new ultrasound flow imaging methods are being developed, there is a growing need to devise appropriate flow phantoms that can holistically assess the accuracy of the derived flow estimates. In this paper, we present a novel spiral flow phantom design whose Archimedean spiral lumen naturally gives rise to multi-directional flow over all possible angles (i.e., from 0° to 360°). Developed using lost-core casting principles, the phantom geometry comprised a three-loop spiral (4-mm diameter and 5-mm pitch), and it was set to operate in steady flow mode (3 mL/s flow rate). After characterizing the flow pattern within the spiral vessel using computational fluid dynamics (CFD) simulations, the phantom was applied to evaluate the performance of color flow imaging (CFI) and high-frame-rate vector flow imaging. Significant spurious coloring artifacts were found when using CFI to visualize flow in the spiral phantom. In contrast, using vector flow imaging (least-squares multi-angle Doppler based on a three-transmit and three-receive configuration), we observed consistent depiction of flow velocity magnitude and direction within the spiral vessel lumen. The spiral flow phantom was also found to be a useful tool in facilitating demonstration of dynamic flow visualization based on vector projectile imaging. Overall, these results demonstrate the spiral flow phantom's practical value in analyzing the efficacy of ultrasound flow estimation methods.
Collapse
|
33
|
Zhou X, Hoskins PR. Testing a new surfactant in a widely-used blood mimic for ultrasound flow imaging. ULTRASOUND : JOURNAL OF THE BRITISH MEDICAL ULTRASOUND SOCIETY 2017; 25:239-244. [PMID: 29163660 DOI: 10.1177/1742271x17733299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/04/2017] [Indexed: 11/15/2022]
Abstract
Background A blood-mimicking fluid developed by Ramnarine et al. has been widely used in flow phantoms for ultrasound flow imaging research, and it has also been cited by IEC 61685 as a reference for making blood-mimicking fluid.However, the surfactant material Synperonic N in this blood-mimicking fluid recipe is phased out from the European market due to environmental issues. The aim of this study is to test whether Synperonic N can be substituted by biodegradable Synperonic A7 in making blood-mimicking fluid for ultrasound flow imaging research. Methods and materials A flow phantom was fabricated to test the blood-mimicking fluid with Synperonic N and Synperonic A7 as surfactants separately. Doppler images and velocity data were collected using a clinical ultrasound scanner under constant and pulsatile flows; and images and measured velocities were compared. Results It was found that both blood mimics can provide exactly the same images under spectral Doppler ultrasound and colour Doppler ultrasound in terms of their image qualities. The maximum velocities under constant flow were measured by the spectral Doppler ultrasound as 0.4714 ± 0.001 m.s-1 and 0.4644 ± 0.001 m.s-1 for blood-mimicking fluid with Synperonic N and blood-mimicking fluid with Synperonic A7, respectively. Measured velocities using the two different blood-mimicking fluids were statistically different (p < 0.001), but this difference was less than 2%. The Synperonic A7 can be used as a substitute for Synperonic N as a surfactant material in making the blood-mimicking fluid for ultrasound flow imaging research.
Collapse
Affiliation(s)
- Xiaowei Zhou
- School of Engineering, University of Dundee, Dundee, UK
| | - Peter R Hoskins
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
Shirinifard A, Thiagarajan S, Johnson MD, Calabrese C, Sablauer A. Measuring Absolute Blood Perfusion in Mice Using Dynamic Contrast-Enhanced Ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2017; 43:1628-1638. [PMID: 28522149 DOI: 10.1016/j.ultrasmedbio.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 06/07/2023]
Abstract
We investigated the feasibility of estimating absolute tissue blood perfusion using dynamic contrast-enhanced ultrasound (CEUS) imaging in mice. We developed a novel method of microbubble administration and a model-free approach to estimate absolute kidney perfusion, and explored the kidney as a reference organ to estimate absolute perfusion of a neuroblastoma tumor. We performed CEUS on the kidneys of CD1 nude mice using the VisualSonics VEVO 2100 imaging system. We estimated individual kidney blood perfusion using the burst-replenishment (BR) technique. We repeated the kidney imaging on the mice after a week. We performed CEUS imaging of a neuroblastoma mouse xenograft tumor along with its right kidney using two sets of microbubble administration parameters to estimate absolute tumor blood perfusion. We performed statistical tests at a significance level of 0.05. Our estimated absolute kidney perfusion (425 ± 123 mL/min/100 g) was within the range of previously reported values. There was no statistical difference between the estimated absolute kidney blood perfusions from the 2 wk of imaging (paired t-test, p = 0.09). We estimated the absolute blood perfusion in the neuroblastoma tumor to be 16.49 and 16.9 mL/min/100 g for the two sets of microbubble administration parameters (Wilcoxon rank-sum test, p = 0.6). We have established the kidney as a reliable reference organ in which to estimate absolute perfusion of other tissues. Using a neuroblastoma tumor, we have determined the feasibility of estimating absolute blood perfusion in tissues using contrast-enhanced ultrasound imaging.
Collapse
Affiliation(s)
- Abbas Shirinifard
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Suresh Thiagarajan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Melissa D Johnson
- Department of Small Animal Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Christopher Calabrese
- Department of Small Animal Imaging, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - András Sablauer
- Department of Information Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA; Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.
| |
Collapse
|
35
|
|
36
|
Ultrasound Vector Flow Imaging – could be a new tool in evaluation of arteriovenous fistulas for hemodialysis? J Vasc Access 2017; 18:284-289. [DOI: 10.5301/jva.5000721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2017] [Indexed: 02/06/2023] Open
Abstract
Introduction We report the use of a new ultrasound technique to evaluate the axial and lateral components of a complex flow in the arteriovenous fistula (AVF). Vector Flow Imaging (VFI) allows to identify different components of the flow in every direction, even orthogonal to the flow streamline, represented by many single vectors. VFI could help to identify flow alterations in AVF, probably responsible for its malfunction. Methods From February to June 2016, 14 consecutive patients with upper-limb AVF were examined with a Resona 7 (Mindray, Shenzhen, China) ultrasound scanner equipped with VFI. An analysis of mean velocity, angular direction and mean number of vectors impacting the vessel wall was carried out. We also identified main flow patterns present in the arterial side, into the venous aneurysm and in correspondence of significant stenosis. Results A disturbed flow with the presence of vectors directed against the vessel walls was found in 9/14 patients (64.28%): in correspondence of the iuxta-anastomotic venous side (4/9; 44.4%), into the venous aneurysmal tracts (3/9; 33.3%) and in concomitance of stenosis (2/9; 22.2%). The mean velocity of the vectors was around 20-25 cm/s, except in presence of stenosis, where the velocities were much higher (45-50 cm/s). The vectors directed against the vessel walls presented high angle attack (from 45° to 90°, with a median angular deviation 65°). Conclusions VFI was confirmed to be an innovative and intuitive imaging technology to study the flow complexity in the arteriovenous fistulas.
Collapse
|
37
|
High-frame rate vector flow imaging of the carotid bifurcation. Insights Imaging 2017; 8:319-328. [PMID: 28500487 PMCID: PMC5438320 DOI: 10.1007/s13244-017-0554-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 03/30/2017] [Accepted: 04/13/2017] [Indexed: 11/14/2022] Open
Abstract
Abstract Carotid artery atherosclerotic disease is still a significant cause of cerebrovascular morbidity and mortality. A new angle-independent technique, measuring and visualizing blood flow velocities in all directions, called vector flow imaging (VFI) is becoming available from several vendors. VFI can provide more intuitive and quantitative imaging of vortex formation, which is not clearly distinguishable in the color Doppler image. VFI, as quantitative method assessing disturbed flow patterns of the carotid bifurcation, has the potential to allow better understanding of the diagnostic value of complex flow and to enhance risk stratification. This pictorial review article will show which new information VFI adds for the knowledge of hemodynamics in comparison to the conventional ultrasound techniques. Teaching points • VFI is an angle-independent technique measuring flow velocities in all directions. • This kind of VFI is based on a plane wave multidirectional excitation technique. • VFI allows quantitative assessment of carotid streamlines progression and visualizes vorticity. • VFI does not allow a precise comprehension of streamlines’ 3D shape. • VFI allows a better understanding of carotid artery complex flows. Electronic supplementary material The online version of this article (doi:10.1007/s13244-017-0554-5) contains supplementary material, which is available to authorized users.
Collapse
|
38
|
Abstract
INTRODUCTION Pleural disease encompasses a large range of conditions, is a common presentation to the acute medical take and often requires comprehensive investigation and treatment. Ultrasound is well recognised as a useful investigative tool in pleural disease especially in the field of pleural effusion, pleural thickening and interventional procedures. Thoracic ultrasound (TUS) has gained widespread use by physicians as evidence has shown a reduced rate of complications when performing pleural procedures with ultrasound guidance. Areas covered: This article will review studies assessing the role of TUS in the management of pleural disease and examine ongoing research into how TUS could advance our knowledge and understanding over the next decade. Expert commentary: Physician lead thoracic ultrasound has become commonplace over the last decade, and now represents a minimum standard of safety in conducting the majority of 'bedside' pleural procedures. The current evidence points to important diagnostic and procedural roles of the use of bedside thoracic ultrasound. In the future, research developments are likely to lead to the use of thoracic ultrasound in prognostication, targeted treatment and understanding pathogenesis in pleural disease.
Collapse
Affiliation(s)
- Rachel M Mercer
- a University of Oxford Respiratory Trials Unit , Churchill Hospital , Oxford , UK.,b Oxford Centre for Respiratory Medicine , Oxford University Hospitals NHS Trust , Oxford , UK
| | - Ioannis Psallidas
- a University of Oxford Respiratory Trials Unit , Churchill Hospital , Oxford , UK.,b Oxford Centre for Respiratory Medicine , Oxford University Hospitals NHS Trust , Oxford , UK
| | - Najib M Rahman
- a University of Oxford Respiratory Trials Unit , Churchill Hospital , Oxford , UK.,b Oxford Centre for Respiratory Medicine , Oxford University Hospitals NHS Trust , Oxford , UK.,c NIHR Oxford Biomedical Research Centre , University of Oxford , Oxford , UK
| |
Collapse
|
39
|
Holbek S, Ewertsen C, Bouzari H, Pihl MJ, Hansen KL, Stuart MB, Thomsen C, Nielsen MB, Jensen JA. Ultrasonic 3-D Vector Flow Method for Quantitative In Vivo Peak Velocity and Flow Rate Estimation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:544-554. [PMID: 27992335 DOI: 10.1109/tuffc.2016.2639318] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Current clinical ultrasound (US) systems are limited to show blood flow movement in either 1-D or 2-D. In this paper, a method for estimating 3-D vector velocities in a plane using the transverse oscillation method, a 32×32 element matrix array, and the experimental US scanner SARUS is presented. The aim of this paper is to estimate precise flow rates and peak velocities derived from 3-D vector flow estimates. The emission sequence provides 3-D vector flow estimates at up to 1.145 frames/s in a plane, and was used to estimate 3-D vector flow in a cross-sectional image plane. The method is validated in two phantom studies, where flow rates are measured in a flow-rig, providing a constant parabolic flow, and in a straight-vessel phantom ( ∅=8 mm) connected to a flow pump capable of generating time varying waveforms. Flow rates are estimated to be 82.1 ± 2.8 L/min in the flow-rig compared with the expected 79.8 L/min, and to 2.68 ± 0.04 mL/stroke in the pulsating environment compared with the expected 2.57 ± 0.08 mL/stroke. Flow rates estimated in the common carotid artery of a healthy volunteer are compared with magnetic resonance imaging (MRI) measured flow rates using a 1-D through-plane velocity sequence. Mean flow rates were 333 ± 31 mL/min for the presented method and 346 ± 2 mL/min for the MRI measurements.
Collapse
|
40
|
Fraser KH, Poelma C, Zhou B, Bazigou E, Tang MX, Weinberg PD. Ultrasound imaging velocimetry with interleaved images for improved pulsatile arterial flow measurements: a new correction method, experimental and in vivo validation. J R Soc Interface 2017; 14:rsif.2016.0761. [PMID: 28148767 DOI: 10.1098/rsif.2016.0761] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/03/2017] [Indexed: 01/17/2023] Open
Abstract
Blood velocity measurements are important in physiological science and clinical diagnosis. Doppler ultrasound is the most commonly used method but can only measure one velocity component. Ultrasound imaging velocimetry (UIV) is a promising technique capable of measuring two velocity components; however, there is a limit on the maximum velocity that can be measured with conventional hardware which results from the way images are acquired by sweeping the ultrasound beam across the field of view. Interleaved UIV is an extension of UIV in which two image frames are acquired concurrently, allowing the effective interframe separation time to be reduced and therefore increasing the maximum velocity that can be measured. The sweeping of the ultrasound beam across the image results in a systematic error which must be corrected: in this work, we derived and implemented a new velocity correction method which accounts for acceleration of the scatterers. We then, for the first time, assessed the performance of interleaved UIV for measuring pulsatile arterial velocities by measuring flows in phantoms and in vivo and comparing the results with spectral Doppler ultrasound and transit-time flow probe data. The velocity and flow rate in the phantom agreed within 5-10% of peak velocity, and 2-9% of peak flow, respectively, and in vivo the velocity difference was 9% of peak velocity. The maximum velocity measured was 1.8 m s-1, the highest velocity reported with UIV. This will allow flows in diseased arteries to be investigated and so has the potential to increase diagnostic accuracy and enable new vascular research.
Collapse
Affiliation(s)
- Katharine H Fraser
- Department of Mechanical Engineering, University of Bath, Bath BA2 7AY, UK
| | - Christian Poelma
- Laboratory for Aero and Hydrodynamics, Delft University of Technology, Delft, The Netherlands
| | - Bin Zhou
- School of Environment and Energy, Southeast University, Nanjing, People's Republic of China
| | - Eleni Bazigou
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
41
|
Jensen JA, Nikolov SI, Yu ACH, Garcia D. Ultrasound Vector Flow Imaging-Part I: Sequential Systems. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1704-1721. [PMID: 27824555 DOI: 10.1109/tuffc.2016.2600763] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This paper gives a review of the most important methods for blood velocity vector flow imaging (VFI) for conventional sequential data acquisition. This includes multibeam methods, speckle tracking, transverse oscillation, color flow mapping derived VFI, directional beamforming, and variants of these. The review covers both 2-D and 3-D velocity estimation and gives a historical perspective on the development along with a summary of various vector flow visualization algorithms. The current state of the art is explained along with an overview of clinical studies conducted and methods for presenting and using VFI. A number of examples of VFI images are presented, and the current limitations and potential solutions are discussed.
Collapse
|
42
|
Pouliopoulos AN, Choi JJ. Superharmonic microbubble Doppler effect in ultrasound therapy. Phys Med Biol 2016; 61:6154-71. [PMID: 27469394 PMCID: PMC5390953 DOI: 10.1088/0031-9155/61/16/6154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 05/24/2016] [Accepted: 06/14/2016] [Indexed: 12/23/2022]
Abstract
The introduction of microbubbles in focused ultrasound therapies has enabled a diverse range of non-invasive technologies: sonoporation to deliver drugs into cells, sonothrombolysis to dissolve blood clots, and blood-brain barrier opening to deliver drugs into the brain. Current methods for passively monitoring the microbubble dynamics responsible for these therapeutic effects can identify the cavitation position by passive acoustic mapping and cavitation mode by spectral analysis. Here, we introduce a new feature that can be monitored: microbubble effective velocity. Previous studies have shown that echoes from short imaging pulses had a Doppler shift that was produced by the movement of microbubbles. Therapeutic pulses are longer (>1 000 cycles) and thus produce a larger alteration of microbubble distribution due to primary and secondary acoustic radiation force effects which cannot be monitored using pulse-echo techniques. In our experiments, we captured and analyzed the Doppler shift during long therapeutic pulses using a passive cavitation detector. A population of microbubbles (5 × 10(4)-5 × 10(7) microbubbles ml(-1)) was embedded in a vessel (inner diameter: 4 mm) and sonicated using a 0.5 MHz focused ultrasound transducer (peak-rarefactional pressure: 75-366 kPa, pulse length: 50 000 cycles or 100 ms) within a water tank. Microbubble acoustic emissions were captured with a coaxially aligned 7.5 MHz passive cavitation detector and spectrally analyzed to measure the Doppler shift for multiple harmonics above the 10th harmonic (i.e. superharmonics). A Doppler shift was observed on the order of tens of kHz with respect to the primary superharmonic peak and is due to the axial movement of the microbubbles. The position, amplitude and width of the Doppler peaks depended on the acoustic pressure and the microbubble concentration. Higher pressures increased the effective velocity of the microbubbles up to 3 m s(-1), prior to the onset of broadband emissions, which is an indicator for high magnitude inertial cavitation. Although the microbubble redistribution was shown to persist for the entire sonication period in dense populations, it was constrained to the first few milliseconds in lower concentrations. In conclusion, superharmonic microbubble Doppler effects can provide a quantitative measure of effective velocities of a sonicated microbubble population and could be used for monitoring ultrasound therapy in real-time.
Collapse
Affiliation(s)
- Antonios N Pouliopoulos
- Noninvasive Surgery and Biopsy laboratory, Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| | - James J Choi
- Noninvasive Surgery and Biopsy laboratory, Bioengineering Department, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
43
|
van den Berg PJ, Daoudi K, Steenbergen W. Pulsed photoacoustic flow imaging with a handheld system. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:26004. [PMID: 26857470 DOI: 10.1117/1.jbo.21.2.026004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 01/07/2016] [Indexed: 05/06/2023]
Abstract
Flow imaging is an important technique in a range of disease areas, but estimating low flow speeds, especially near the walls of blood vessels, remains challenging. Pulsed photoacoustic flow imaging can be an alternative since there is little signal contamination from background tissue with photoacoustic imaging. We propose flow imaging using a clinical photoacoustic system that is both handheld and portable. The system integrates a linear array with 7.5 MHz central frequency in combination with a high-repetition-rate diode laser to allow high-speed photoacoustic imaging--ideal for this application. This work shows the flow imaging performance of the system in vitro using microparticles. Both two-dimensional (2-D) flow images and quantitative flow velocities from 12 to 75 mm/s were obtained. In a transparent bulk medium, flow estimation showed standard errors of ∼7% the estimated speed; in the presence of tissue-realistic optical scattering, the error increased to 40% due to limited signal-to-noise ratio. In the future, photoacoustic flow imaging can potentially be performed in vivo using fluorophore-filled vesicles or with an improved setup on whole blood.
Collapse
|
44
|
Qureshi AI, Miran MS, Degenhardt J, Axt-Fliedner R, Kohl T. Transabdominal Insonation of Fetal Basilar Artery: A Feasibility Study. J Neuroimaging 2015; 26:180-3. [PMID: 26686700 DOI: 10.1111/jon.12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/10/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Fetal anterior, middle, and posterior cerebral arteries have been studied using transabdominal Doppler ultrasound. We performed a feasibility study to determine whether basilar artery can be identified and blood flow velocities measured using transabdominal fetal Doppler ultrasound. METHODS The basilar artery was identified in sagittal plane behind the clivus bone using directional color Doppler with 6-2 and 7-4 MHz curved array probes. The clivus was identified by hyperechoic linear signal anterior to junction of vertebral processes and occipital bone and superior to first vertebral body. The flow direction was away from the probe in the basilar artery consistent with caudo cephalic orientation. The Doppler ultrasound probe was placed at insonation angles of less than 30° at the visualized segment of the basilar artery. Peak systolic and end diastolic velocities were measured. RESULTS We attempted insonation of the basilar artery in 20 fetuses. The basilar artery was adequately insonated in 18 fetuses with a mean gestational age of 27 weeks (range 19 to 38 weeks). The mean value (±SD) of peak systolic velocity of the basilar artery was 22.1 ± 8.5 cm/second (range 10.4-36.7 cm/second). The mean value (±SD) of end diastolic velocity was 6.8 ± 2.8 cm/second (range 3.5-13.5 cm/second). There was an increase in peak systolic velocity values according to gestational age of fetus. CONCLUSIONS We demonstrate the feasibility of fetal basilar artery insonation using directional color Doppler ultrasound via transabdominal approach.
Collapse
Affiliation(s)
- Adnan I Qureshi
- Department of Prenatal Medicine, University Hospital, Justus-Liebig University, Giessen, Germany.,Zeenat Qureshi Stroke Institute, St. Cloud, MN
| | | | - Jan Degenhardt
- Department of Prenatal Medicine, University Hospital, Justus-Liebig University, Giessen, Germany
| | - Roland Axt-Fliedner
- Department of Prenatal Medicine, University Hospital, Justus-Liebig University, Giessen, Germany
| | - Thomas Kohl
- Department of Prenatal Medicine, University Hospital, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
45
|
Time-dependent flow velocity measurement using two-dimensional color Doppler flow imaging and evaluation by Hagen-Poiseuille equation. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2015; 38:755-66. [PMID: 26676566 DOI: 10.1007/s13246-015-0396-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 11/01/2015] [Indexed: 12/20/2022]
Abstract
This paper aims to develop a technique to assess velocity flow profile and wall shear stress (WSS) spatial distribution across a vessel phantom representing an artery. Upon confirming the reliability of the technique, it was then used on a set of carotid arteries from a cohort of human subjects. We implemented color Doppler flow imaging (CDFI) for measurement of velocity profile in the artery cross section. Two dimensional instantaneous and time-dependent flow velocity and WSS vector fields were measured and their waveforms of peak velocities based on the technique were compared with WSS values generated by Hagen-Poiseuille equation. Seventy-five patients with intima-media thickening were prospectively enrolled and were divided into an IMT group. At the same time, another 75 healthy volunteers were enrolled as the control group. All the subjects were scanned and the DICOM files were imported into our in-house program. Next, we determine the velocity profile of carotid arteries in a set of 150 human subjects and compared them again. The peak velocities by the CDFI and Hagen-Poiseuille equation techniques were compared and statistically evaluated. The amounts of deviation for the two measured WSS profiles were performed and we demonstrated that they are not significantly different. At two different flow settings with peak flow velocity of 0.1, 0.5 (×10(-11)) m/s, the obtained WSS were 0.021 ± 0.04, 0.038 ± 0.05 m/s, respectively. For the patient population study, the mean WSS value calculated by Hagen-Poiseuille equation was 2.98 ± 0.15 dyne/cm(2), while it was 2.31 ± 0.14 dyne/cm(2) by our CDFI analysis program. The difference was not statistically significant (t = -1.057, P = 0.259). Similar to the Hagen-Poiseuille equation, a negative linear correlation was also found between the calculated WSS and intima-media thickness (P = 0.000). Using CDFI analysis, we found that the WSS distribution at the middle of the proximal plaque shoulder was larger than the top of the shoulder. CDFI can assess the velocity and WSS profile accurately and efficiently and may be used for clinical diagnosis of cardiovascular conditions.
Collapse
|
46
|
Leow CH, Bazigou E, Eckersley RJ, Yu ACH, Weinberg PD, Tang MX. Flow Velocity Mapping Using Contrast Enhanced High-Frame-Rate Plane Wave Ultrasound and Image Tracking: Methods and Initial in Vitro and in Vivo Evaluation. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:2913-2925. [PMID: 26275971 DOI: 10.1016/j.ultrasmedbio.2015.06.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/22/2015] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
Ultrasound imaging is the most widely used method for visualising and quantifying blood flow in medical practice, but existing techniques have various limitations in terms of imaging sensitivity, field of view, flow angle dependence, and imaging depth. In this study, we developed an ultrasound imaging velocimetry approach capable of visualising and quantifying dynamic flow, by combining high-frame-rate plane wave ultrasound imaging, microbubble contrast agents, pulse inversion contrast imaging and speckle image tracking algorithms. The system was initially evaluated in vitro on both straight and carotid-mimicking vessels with steady and pulsatile flows and in vivo in the rabbit aorta. Colour and spectral Doppler measurements were also made. Initial flow mapping results were compared with theoretical prediction and reference Doppler measurements and indicate the potential of the new system as a highly sensitive, accurate, angle-independent and full field-of-view velocity mapping tool capable of tracking and quantifying fast and dynamic flows.
Collapse
Affiliation(s)
- Chee Hau Leow
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Eleni Bazigou
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Robert J Eckersley
- Department of Biomedical Engineering, King's College London, London, United Kingdom
| | - Alfred C H Yu
- Medical Engineering Program, University of Hong Kong, Pokfulam, Hong Kong
| | - Peter D Weinberg
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Meng-Xing Tang
- Department of Bioengineering, Imperial College London, London, United Kingdom.
| |
Collapse
|
47
|
Tina L, Johan KMA. An Inventory of Current Available Ultrasound Devices for Dental Use. Open Dent J 2015; 9:319-29. [PMID: 26464602 PMCID: PMC4598369 DOI: 10.2174/1874210601509010319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/17/2014] [Accepted: 05/25/2015] [Indexed: 11/24/2022] Open
Abstract
Objective : The first aim of the study was to make an inventory of the currently available ultrasound imaging devices on the market. The second aim was to identify portable ultrasound devices which could be used in general dental offices to image salivary glands, masticatory muscles and lymph nodes. Material and Methods : A list of ultrasound devices was collected from 11 international and American manufacturers using company websites and ultrasound retailer’s websites using the search engine Google®. Results : A total of 86 ultrasound machines from 11 different manufacturers were identified, of which only 14 devices are portable. Transducers are usually transferrable between devices of the same brand, and the non-portable machines have multiple transducer ports (three or four), while portable machines typically have only one or two ports. Portable machine weights range from 10 to 20 pounds, and often resemble large laptops, which are convenient to carry and take up minimal space in clinics. Conclusion : Some manufacturers provide portable and non-portable ultrasound devices. The first ones could be valuable in dental settings, as they can easily be moved around in the office.
Collapse
Affiliation(s)
- Le Tina
- Department of Public Health, Student, University of Washington, Seattle-Washington, USA
| | - K M Aps Johan
- School of Dentistry, Department of Oral Medicine, Division of Oral and Maxillofacial Radiology, University of Washington, Seattle-Washington, USA
| |
Collapse
|
48
|
Kokkalis E, Cookson AN, Stonebridge PA, Corner GA, Houston JG, Hoskins PR. Comparison of vortical structures induced by arteriovenous grafts using vector Doppler ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:760-774. [PMID: 25683221 DOI: 10.1016/j.ultrasmedbio.2014.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 08/18/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
Arteriovenous prosthetic grafts are used in hemodialysis. Stenosis in the venous anastomosis is the main cause of occlusion and the role of local hemodynamics in this is considered significant. A new spiral graft design has been proposed to stabilize the flow phenomena in the host vein. Cross-flow vortical structures in the outflow of this graft were compared with those from a control device. Both grafts were integrated in identical in-house ultrasound-compatible flow phantoms with realistic surgical configurations. Constant flow rates were applied. In-plane 2-D velocity and vorticity mapping was developed using a vector Doppler technique. One or two vortices were detected for the spiral graft and two to four for the control, along with reduced stagnation points for the former. The in-plane peak velocity and circulation were calculated and found to be greater for the spiral device, implying increased in-plane mixing, which is believed to inhibit thrombosis and neo-intimal hyperplasia.
Collapse
Affiliation(s)
- Efstratios Kokkalis
- Institute for Medical Science and Technology, University of Dundee, Dundee, UK; Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK.
| | - Andrew N Cookson
- Department of Biomedical Engineering, King's College London, London, UK
| | - Peter A Stonebridge
- Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - George A Corner
- Medical Physics, Ninewells Hospital and Medical School, Dundee, UK
| | - J Graeme Houston
- Cardiovascular and Diabetes Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Peter R Hoskins
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
49
|
Pedersen MM, Pihl MJ, Haugaard P, Hansen KL, Lange T, Lönn L, Nielsen MB, Jensen JA. Novel flow quantification of the carotid bulb and the common carotid artery with vector flow ultrasound. ULTRASOUND IN MEDICINE & BIOLOGY 2014; 40:2700-2706. [PMID: 25218449 DOI: 10.1016/j.ultrasmedbio.2014.06.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 04/02/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Abnormal blood flow is usually assessed using spectral Doppler estimation of the peak systolic velocity. The technique, however, only estimates the axial velocity component, and therefore the complexity of blood flow remains hidden in conventional ultrasound examinations. With the vector ultrasound technique transverse oscillation the blood velocities of both the axial and the transverse directions are obtained and the complexity of blood flow can be visualized. The aim of the study was to determine the technical performance and interpretation of vector concentration as a tool for estimation of flow complexity. A secondary aim was to establish accuracy parameters to detect flow changes/patterns in the common carotid artery (CCA) and the carotid bulb (CB). The right carotid bifurcation including the CCA and CB of eight healthy volunteers were scanned in a longitudinal plane with vector flow ultrasound (US) using a commercial vector flow ultrasound scanner (ProFocus, BK Medical, Denmark) with a linear 5 MHz transducer transverse oscillation vector flow software. CCA and CB areas were marked in one cardiac cycle from each volunteer. The complex flow was assessed by medical expert evaluation and by vector concentration calculation. A vortex with complex flow was found in all carotid bulbs, whereas the CCA had mainly laminar flow. The medical experts evaluated the flow to be mainly laminar in the CCA (0.82 ± 0.14) and mainly complex (0.23 ± 0.22) in the CB. Likewise, the estimated vector concentrations in CCA (0.96 ± 0.16) indicated mainly laminar flow and in CB (0.83 ± 0.07) indicated mainly turbulence. Both methods were thus able to clearly distinguish the flow patterns of CCA and CB in systole. Vector concentration from angle-independent vector velocity estimates is a quantitative index, which is simple to calculate and can differentiate between laminar and complex flow.
Collapse
Affiliation(s)
- Mads Møller Pedersen
- Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Michael Johannes Pihl
- Center for Fast Ultrasound Imaging, Department of Electrical Engeneering, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Theis Lange
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Lars Lönn
- Department of Radiology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Department of Vascular Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Electrical Engeneering, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
50
|
Pihl MJ, Jensen JA. A transverse oscillation approach for estimation of three-dimensional velocity vectors, part I: concept and simulation study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2014; 61:1599-1607. [PMID: 25265170 DOI: 10.1109/tuffc.2013.006237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A method for 3-D velocity vector estimation using transverse oscillations is presented. The method employs a 2-D transducer and decouples the velocity estimation into three orthogonal components, which are estimated simultaneously and from the same data. The validity of the method is investigated by conducting simulations emulating a 32 × 32 matrix transducer. The results are evaluated using two performance metrics related to precision and accuracy. The study includes several parameters including 49 flow directions, the SNR, steering angle, and apodization types. The 49 flow directions cover the positive octant of the unit sphere. In terms of accuracy, the median bias is -2%. The precision of v(x) and v(y) depends on the flow angle ß and ranges from 5% to 31% relative to the peak velocity magnitude of 1 m/s. For comparison, the range is 0.4 to 2% for v(z). The parameter study also reveals, that the velocity estimation breaks down with an SNR between -6 and -3 dB. In terms of computational load, the estimation of the three velocity components requires 0.75 billion floating point operations per second (0.75 Gflops) for a realistic setup. This is well within the capability of modern scanners.
Collapse
|