1
|
Phoon CK, Aristizábal O, Farhoud M, Turnbull DH, Wadghiri YZ. Mouse Cardiovascular Imaging. Curr Protoc 2024; 4:e1116. [PMID: 39222027 PMCID: PMC11371386 DOI: 10.1002/cpz1.1116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging, with brief overviews of other imaging modalities. In this update, we also emphasize the importance of rigor and reproducibility in imaging approaches, experimental design, and documentation. Finally, we briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Colin K.L. Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY
| | - Orlando Aristizábal
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| | | | - Daniel H. Turnbull
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Department of Pathology, New York University Grossman School of Medicine, New York, New York
| | - Youssef Z. Wadghiri
- Department of Radiology, Bernard and Irene Schwartz Center for Biomedical Imaging, & Center for Advanced Imaging Innovation and Research, New York University Grossman School of Medicine, New York, NY
- Preclinical Imaging, Division for Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY
| |
Collapse
|
2
|
Izzetti R, Nisi M. Imaging the Micron: New Directions in Diagnosis with Ultra-High-Frequency Ultrasound. Diagnostics (Basel) 2024; 14:735. [PMID: 38611648 PMCID: PMC11012073 DOI: 10.3390/diagnostics14070735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
In recent decades, advancements in medical imaging technologies have revolutionized diagnostic and therapeutic approaches, enhancing the precision and efficacy of healthcare interventions [...].
Collapse
Affiliation(s)
- Rossana Izzetti
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, 56126 Pisa, Italy;
| | | |
Collapse
|
3
|
Dhamija P, Mehata AK, Setia A, Priya V, Malik AK, Bonlawar J, Verma N, Badgujar P, Randhave N, Muthu MS. Nanotheranostics: Molecular Diagnostics and Nanotherapeutic Evaluation by Photoacoustic/Ultrasound Imaging in Small Animals. Mol Pharm 2023; 20:6010-6034. [PMID: 37931040 DOI: 10.1021/acs.molpharmaceut.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Nanotheranostics is a rapidly developing field that integrates nanotechnology, diagnostics, and therapy to provide novel methods for imaging and treating wide categories of diseases. Targeted nanotheranostics offers a platform for the precise delivery of theranostic agents, and their therapeutic outcomes are monitored in real-time. Presently, in vivo magnetic resonance imaging, fluorescence imaging, ultrasound imaging, and photoacoustic imaging (PAI), etc. are noninvasive imaging techniques that are preclinically available for the imaging and tracking of therapeutic outcomes in small animals. Additionally, preclinical imaging is essential for drug development, phenotyping, and understanding disease stage progression and its associated mechanisms. Small animal ultrasound imaging is a rapidly developing imaging technique for theranostics applications due to its merits of being nonionizing, real-time, portable, and able to penetrate deep tissues. Recently, different types of ultrasound contrast agents have been explored, such as microbubbles, echogenic exosomes, gas-vesicles, and nanoparticles-based contrast agents. Moreover, an optical image obtained through photoacoustic imaging is a noninvasive imaging technique that creates ultrasonic waves when pulsed laser light is used to expose an object and creates a picture of the tissue's distribution of light energy absorption on the object. Contrast agents for photoacoustic imaging may be endogenous (hemoglobin, melanin, and DNA/RNA) or exogenous (dyes and nanomaterials-based contrast agents). The integration of nanotheranostics with photoacoustic and ultrasound imaging allows simultaneous imaging and treatment of diseases in small animals, which provides essential information about the drug response and the disease progression. In this review, we have covered various endogenous and exogenous contrast agents for ultrasound and photoacoustic imaging. Additionally, we have discussed various drug delivery systems integrated with contrast agents for theranostic application. Further, we have briefly discussed the current challenges associated with ultrasound and photoacoustic imaging.
Collapse
Affiliation(s)
- Piyush Dhamija
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Vishnu Priya
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Jyoti Bonlawar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nidhi Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Paresh Badgujar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Nandini Randhave
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
4
|
Reginelli A, Russo A, Berritto D, Patane V, Cantisani C, Grassi R. Ultra-High-Frequency Ultrasound: A Modern Diagnostic Technique for Studying Melanoma. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2023; 44:360-378. [PMID: 37068509 DOI: 10.1055/a-2028-6182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The development of new ultra-high-frequency devices with a resolution of 30 μm makes it possible to use ultrasound in the study of new small anatomical units and to apply this tool to new fields of pathology. Cutaneous melanoma is a severe skin disease with an incidence of approximately 160 000 new cases each year and 48 000 deaths. In this paper, we evaluate the role of HFUS in the diagnosis of cutaneous melanoma, describe the sonographic appearance of skin layers in the pre-excision phase as well as of lesion features, and correlate the characteristics with pathological examination.
Collapse
Affiliation(s)
- Alfonso Reginelli
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli School of Medicine and Surgery, Napoli, Italy
| | - Anna Russo
- Department of Radiology, University of Campania, Luigi Vanvitelli School of Medicine and Surgery, Napoli, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, Foggia University Hospital, Foggia, Italy
| | - Vittorio Patane
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli School of Medicine and Surgery, Napoli, Italy
| | | | - Roberto Grassi
- Department of Precision Medicine, University of Campania, Luigi Vanvitelli School of Medicine and Surgery, Napoli, Italy
| |
Collapse
|
5
|
Preclinical Ultrasonography in Rodent Models of Neuromuscular Disorders: The State of the Art for Diagnostic and Therapeutic Applications. Int J Mol Sci 2023; 24:ijms24054976. [PMID: 36902405 PMCID: PMC10003358 DOI: 10.3390/ijms24054976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Ultrasonography is a safe, non-invasive imaging technique used in several fields of medicine, offering the possibility to longitudinally monitor disease progression and treatment efficacy over time. This is particularly useful when a close follow-up is required, or in patients with pacemakers (not suitable for magnetic resonance imaging). By virtue of these advantages, ultrasonography is commonly used to detect multiple skeletal muscle structural and functional parameters in sports medicine, as well as in neuromuscular disorders, e.g., myotonic dystrophy and Duchenne muscular dystrophy (DMD). The recent development of high-resolution ultrasound devices allowed the use of this technique in preclinical settings, particularly for echocardiographic assessments that make use of specific guidelines, currently lacking for skeletal muscle measurements. In this review, we describe the state of the art for ultrasound skeletal muscle applications in preclinical studies conducted in small rodents, aiming to provide the scientific community with necessary information to support an independent validation of these procedures for the achievement of standard protocols and reference values useful in translational research on neuromuscular disorders.
Collapse
|
6
|
Madhvapathy SR, Arafa HM, Patel M, Winograd J, Kong J, Zhu J, Xu S, Rogers JA. Advanced thermal sensing techniques for characterizing the physical properties of skin. APPLIED PHYSICS REVIEWS 2022; 9:041307. [PMID: 36467868 PMCID: PMC9677811 DOI: 10.1063/5.0095157] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Measurements of the thermal properties of the skin can serve as the basis for a noninvasive, quantitative characterization of dermatological health and physiological status. Applications range from the detection of subtle spatiotemporal changes in skin temperature associated with thermoregulatory processes, to the evaluation of depth-dependent compositional properties and hydration levels, to the assessment of various features of microvascular/macrovascular blood flow. Examples of recent advances for performing such measurements include thin, skin-interfaced systems that enable continuous, real-time monitoring of the intrinsic thermal properties of the skin beyond its superficial layers, with a path to reliable, inexpensive instruments that offer potential for widespread use as diagnostic tools in clinical settings or in the home. This paper reviews the foundational aspects of the latest thermal sensing techniques with applicability to the skin, summarizes the various devices that exploit these concepts, and provides an overview of specific areas of application in the context of skin health. A concluding section presents an outlook on the challenges and prospects for research in this field.
Collapse
|
7
|
Russo A, Reginelli A, Lacasella GV, Grassi E, Karaboue MAA, Quarto T, Busetto GM, Aliprandi A, Grassi R, Berritto D. Clinical Application of Ultra-High-Frequency Ultrasound. J Pers Med 2022; 12:jpm12101733. [PMID: 36294872 PMCID: PMC9605054 DOI: 10.3390/jpm12101733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Musculoskeletal ultrasound involves the study of many superficial targets, especially in the hands, wrists, and feet. Many of these areas are within the first 3 cm of the skin surface and are ideal targets for ultra-high-frequency ultrasound. The high spatial resolution and the superb image quality achievable allow foreseeing a wider use of this novel technique, which has the potential to bring innovation to diagnostic imaging.
Collapse
Affiliation(s)
- Anna Russo
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Giorgia Viola Lacasella
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Enrico Grassi
- Department of Orthopedics, University of Florence, 50121 Florence, Italy
| | | | - Tiziana Quarto
- Department of Law, University of Foggia, 71100 Foggia, Italy
| | - Gian Maria Busetto
- Department of Urology and Renal Transplantation, University of Foggia Policlinico Riuniti of Foggia, 71122 Foggia, Italy
| | - Alberto Aliprandi
- Department of Radiology, Istituti Clinici Zucchi, 20900 Monza, Italy
| | - Roberta Grassi
- Department of Precision Oncology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, 20122 Milano, Italy
| | - Daniela Berritto
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
- Correspondence:
| |
Collapse
|
8
|
Han S, Lee D, Kim S, Kim HH, Jeong S, Kim J. Contrast Agents for Photoacoustic Imaging: A Review Focusing on the Wavelength Range. BIOSENSORS 2022; 12:bios12080594. [PMID: 36004990 PMCID: PMC9406114 DOI: 10.3390/bios12080594] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
Photoacoustic imaging using endogenous chromophores as a contrast has been widely applied in biomedical studies owing to its functional imaging capability at the molecular level. Various exogenous contrast agents have also been investigated for use in contrast-enhanced imaging and functional analyses. This review focuses on contrast agents, particularly in the wavelength range, for use in photoacoustic imaging. The basic principles of photoacoustic imaging regarding light absorption and acoustic release are introduced, and the optical characteristics of tissues are summarized according to the wavelength region. Various types of contrast agents, including organic dyes, semiconducting polymeric nanoparticles, gold nanoparticles, and other inorganic nanoparticles, are explored in terms of their light absorption range in the near-infrared region. An overview of the contrast-enhancing capacity and other functional characteristics of each agent is provided to help researchers gain insights into the development of contrast agents in photoacoustic imaging.
Collapse
Affiliation(s)
- Seongyi Han
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea;
| | - Dakyeon Lee
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Sungjee Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - Hyung-Hoi Kim
- Department of Laboratory Medicine and Biomedical Research Institute, Pusan National University Hospital, Pusan National University School of Medicine, Busan 49241, Korea
- Correspondence: (H.-H.K.); (S.J.); (J.K.)
| | - Sanghwa Jeong
- School of Biomedical Convergence Engineering, Pusan National University, Yangsan 50612, Korea;
- Correspondence: (H.-H.K.); (S.J.); (J.K.)
| | - Jeesu Kim
- Departments of Cogno-Mechatronics Engineering and Optics & Mechatronics Engineering, Pusan National University, Busan 46241, Korea;
- Correspondence: (H.-H.K.); (S.J.); (J.K.)
| |
Collapse
|
9
|
Fan D, Niu H, Liu K, Sun X, Wang H, Shi K, Mo W, Jian Z, Wen L, Shen M, Zhao T, Fei C, Chen Y. Nb and Mn Co-Modified Na0.5Bi4.5Ti4O15 Bismuth-Layered Ceramics for High-Frequency Transducer Applications. MICROMACHINES 2022; 13:mi13081246. [PMID: 36014168 PMCID: PMC9415184 DOI: 10.3390/mi13081246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022]
Abstract
Lead-free environmentally friendly piezoelectrical materials with enhanced piezoelectric properties are of great significance for high-resolution ultrasound imaging applications. In this paper, Na0.5Bi4.5Ti3.86Mn0.06Nb0.08O15+y (NBT-Nb-Mn) bismuth-layer-structured ceramics were prepared by solid-phase synthesis. The crystallographic structure, micromorphology, and piezoelectrical and electromechanical properties of NBT-Nb-Mn ceramics were examined, showing their enhanced piezoelectricity (d33 = 33 pC/N) and relatively high electromechanical coupling coefficient (kt = 0.4). The purpose of this article is to describe the development of single element ultrasonic transducers based on these piezoelectric ceramics. The as-prepared high-frequency tightly focused transducer (ƒ-number = 1.13) had an electromechanical coupling coefficient of 0.48. The center frequency was determined to be 37.4 MHz and the −6 dB bandwidth to be 47.2%. According to the B-mode imaging experiment of 25 μm tungsten wires, lateral resolution of the transducer was calculated as 56 μm. Additionally, the experimental results were highly correlated to the results simulated by COMSOL software. By scanning a coin, the imaging effect of the transducer was further evaluated, demonstrating the application advantages of the prepared transducer in the field of high-sensitivity ultrasound imaging.
Collapse
Affiliation(s)
- Dongming Fan
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Huiyan Niu
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Kun Liu
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Xinhao Sun
- School of Microelectronics, Xidian University, Xi’an 740071, China; (X.S.); (K.S.); (C.F.)
| | - Husheng Wang
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Kefei Shi
- School of Microelectronics, Xidian University, Xi’an 740071, China; (X.S.); (K.S.); (C.F.)
| | - Wen Mo
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
| | - Zhishui Jian
- Guangdong JC Technological Innovation Electronics Co., Ltd., Zhaoqing 526000, China; (Z.J.); (L.W.)
| | - Li Wen
- Guangdong JC Technological Innovation Electronics Co., Ltd., Zhaoqing 526000, China; (Z.J.); (L.W.)
| | - Meng Shen
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
- Correspondence: (M.S.); (T.Z.); (Y.C.)
| | - Tianlong Zhao
- School of Microelectronics, Xidian University, Xi’an 740071, China; (X.S.); (K.S.); (C.F.)
- Correspondence: (M.S.); (T.Z.); (Y.C.)
| | - Chunlong Fei
- School of Microelectronics, Xidian University, Xi’an 740071, China; (X.S.); (K.S.); (C.F.)
| | - Yong Chen
- Key Laboratory of Ferro & Piezoelectric Materials and Devices of Hubei Province, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Physics and Electronic Science, Hubei University, Wuhan 430062, China; (D.F.); (H.N.); (K.L.); (H.W.); (W.M.)
- Correspondence: (M.S.); (T.Z.); (Y.C.)
| |
Collapse
|
10
|
Kang J, Yoon H, Yoon C, Emelianov SY. High-Frequency Ultrasound Imaging With Sub-Nyquist Sampling. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2001-2009. [PMID: 35436190 PMCID: PMC10264145 DOI: 10.1109/tuffc.2022.3167726] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Implementation of a high-frequency ultrasound (HFUS) beamformer is computationally challenging because of its high sampling rate. This article introduces an efficient beamformer with sub-Nyquist sampling (or bandpass sampling) that is suitable for HFUS imaging. Our approach used channel radio frequency data sampled at bandpass sampling rate (i.e., 4/ 3fc ) and postfiltering-based interpolation to reduce the computational complexity. A polyphase structure for interpolation was used to further reduce the computational burden while maintaining an adequate delay resolution ( δ ). The performance of the proposed beamformer (i.e., 4/ 3fc sampling with sixfold interpolation, δ = 8fc ) was compared with that of the conventional method (i.e., 4fc sampling with fourfold interpolation, δ = 16fc ). Ultrafast coherent compounding imaging was used in simulation, in vitro and in vivo imaging experiments. Axial/lateral resolution and contrast-to-noise ratio (CNR) values were measured for quantitative evaluation. The number of transmit pulse cycles was varied from 1 to 3 using two transducers with different fractional bandwidths (67% and 98%). In the simulation, the proposed and conventional methods showed the similar -6-dB axial beam widths (63.5 and 61.5 μm , respectively) from the two-cycle transmit pulse using the transducer with a bandwidth of 67%. In vitro and in vivo imaging experiments were performed using a Verasonics ultrasound research platform equipped with a high-frequency array transducer (20-46 MHz). The in vitro imaging results using a wire target showed consistent results with the simulation study (i.e., disparity at -6-dB axial resolution). The in vivo feasibility study with a murine mouse model with breast cancer was also performed, and the proposed method yielded a similar image quality compared with the conventional method. From these studies, it was demonstrated that the proposed HFUS beamformer based on the bandpass sampling can substantially reduce the computational complexity while minimizing the loss of spatial resolution for HFUS imaging.
Collapse
|
11
|
Lee H, Kim J, Kim HH, Kim CS, Kim J. Review on Optical Imaging Techniques for Multispectral Analysis of Nanomaterials. Nanotheranostics 2022; 6:50-61. [PMID: 34976580 PMCID: PMC8671957 DOI: 10.7150/ntno.63222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022] Open
Abstract
Biomedical imaging is an essential tool for investigating biological responses in vivo. Among the several imaging techniques, optical imaging systems with multispectral analysis of nanoparticles have been widely investigated due to their ability to distinguish the substances in biological tissues in vivo. This review article focus on multispectral optical imaging techniques that can provide molecular functional information. We summarize the basic principle of the spectral unmixing technique that enables the delineation of optical chromophores. Then, we explore the principle, typical system configuration, and biomedical applications of the representative optical imaging techniques, which are fluorescence imaging, two-photon microscopy, and photoacoustic imaging. The results in the recent studies show the great potential of the multispectral analysis techniques for monitoring responses of biological systems in vivo.
Collapse
Affiliation(s)
- Haeni Lee
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jaeheung Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung-Hoi Kim
- Department of Laboratory Medicine and Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, Busan 49241, Republic of Korea
| | - Chang-Seok Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jeesu Kim
- Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
12
|
Pakdaman Zangabad R, Iskander-Rizk S, van der Meulen P, Meijlink B, Kooiman K, Wang T, van der Steen AFW, van Soest G. Photoacoustic flow velocity imaging based on complex field decorrelation. PHOTOACOUSTICS 2021; 22:100256. [PMID: 33868919 PMCID: PMC8040274 DOI: 10.1016/j.pacs.2021.100256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 05/18/2023]
Abstract
Photoacoustic (PA) imaging can be used to monitor flowing blood inside the microvascular and capillary bed. Ultrasound speckle decorrelation based velocimetry imaging was previously shown to accurately estimate blood flow velocity in mouse brain (micro-)vasculature. Translating this method to photoacoustic imaging will allow simultaneous imaging of flow velocity and extracting functional parameters like blood oxygenation. In this study, we use a pulsed laser diode and a quantitative method based on normalized first order field autocorrelation function of PA field fluctuations to estimate flow velocities in an ink tube phantom and in the microvasculature of the chorioallantoic membrane of a chicken embryo. We demonstrate how the decorrelation time of signals acquired over frames are related to the flow speed and show that the PA flow analysis based on this approach is an angle independent flow velocity imaging method.
Collapse
Affiliation(s)
- Reza Pakdaman Zangabad
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Sophinese Iskander-Rizk
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pim van der Meulen
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Bram Meijlink
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Klazina Kooiman
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Tianshi Wang
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Antonius F W van der Steen
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Imaging Science and Physics, Delft University of Technology, Delft, The Netherlands
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Gijs van Soest
- Biomedical Engineering, Department of Cardiology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
13
|
Lim HG, Kim HH, Yoon C. Synthetic Aperture Imaging Using High-Frequency Convex Array for Ophthalmic Ultrasound Applications. SENSORS 2021; 21:s21072275. [PMID: 33805048 PMCID: PMC8036709 DOI: 10.3390/s21072275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022]
Abstract
High-frequency ultrasound (HFUS) imaging has emerged as an essential tool for pre-clinical studies and clinical applications such as ophthalmic and dermatologic imaging. HFUS imaging systems based on array transducers capable of dynamic receive focusing have considerably improved the image quality in terms of spatial resolution and signal-to-noise ratio (SNR) compared to those by the single-element transducer-based one. However, the array system still suffers from low spatial resolution and SNR in out-of-focus regions, resulting in a blurred image and a limited penetration depth. In this paper, we present synthetic aperture imaging with a virtual source (SA-VS) for an ophthalmic application using a high-frequency convex array transducer. The performances of the SA-VS were evaluated with phantom and ex vivo experiments in comparison with the conventional dynamic receive focusing method. Pre-beamformed radio-frequency (RF) data from phantoms and excised bovine eye were acquired using a custom-built 64-channel imaging system. In the phantom experiments, the SA-VS method showed improved lateral resolution (>10%) and sidelobe level (>4.4 dB) compared to those by the conventional method. The SNR was also improved, resulting in an increased penetration depth: 16 mm and 23 mm for the conventional and SA-VS methods, respectively. Ex vivo images with the SA-VS showed improved image quality at the entire depth and visualized structures that were obscured by noise in conventional imaging.
Collapse
Affiliation(s)
- Hae Gyun Lim
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea;
| | - Hyung Ham Kim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang 37673, Korea
- Correspondence: (H.H.K.); or (C.Y.)
| | - Changhan Yoon
- Department of Biomedical Engineering, Inje University, Gimhae 50834, Korea
- Department of Nanoscience and Engineering, Inje University, Gimhae 50834, Korea
- Correspondence: (H.H.K.); or (C.Y.)
| |
Collapse
|
14
|
Gibson CR, Gleason A, Messina E. Measurement of total liver blood flow in intact anesthetized rats using ultrasound imaging. Pharmacol Res Perspect 2021; 9:e00731. [PMID: 33660925 PMCID: PMC7931129 DOI: 10.1002/prp2.731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/27/2021] [Indexed: 11/12/2022] Open
Abstract
This short report describes the measurement of total liver blood flow in commonly used laboratory rats using the relatively non-invasive approach of ultrasound imaging. A total of 29 rats (n = 26 Wistar-Han, n = 3 Sprague-Dawley) were imaged and both male and female rats were included. The mean (SD) total liver blood flow of all animals combined was 33.3 ± 7.8 mL/min, or 104.3 ± 17.1 mL/min/kg when normalized to observed body weight at the time of imaging. There was a trend for higher unnormalized total liver blood flow as body weight increased and the female rats had, in general, the lowest body weight and total liver blood flow of the animals studied. There were no major differences in total liver blood flow between the small number of Sprague-Dawley rats used in the study and the larger Wistar-Han group. Further research would be needed to accurately characterize any subtle differences in body weight between rats of different strains, sexes, and body weight.
Collapse
Affiliation(s)
- Christopher R Gibson
- Departments of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (CRG), Translational Biomarkers (AG, EM), Merck & Co., Inc., West Point, PA, USA
| | - Alexa Gleason
- Departments of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (CRG), Translational Biomarkers (AG, EM), Merck & Co., Inc., West Point, PA, USA
| | - Eric Messina
- Departments of Pharmacokinetics, Pharmacodynamics and Drug Metabolism (CRG), Translational Biomarkers (AG, EM), Merck & Co., Inc., West Point, PA, USA
| |
Collapse
|
15
|
Shekhar A, Aristizabal O, Fishman GI, Phoon CKL, Ketterling JA. Characterization of Vortex Flow in a Mouse Model of Ventricular Dyssynchrony by Plane-Wave Ultrasound Using Hexplex Processing. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:538-548. [PMID: 32763851 PMCID: PMC8054309 DOI: 10.1109/tuffc.2020.3014844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The rodent heart is frequently used to study human cardiovascular disease (CVD). Although advanced cardiovascular ultrasound imaging methods are available for human clinical practice, application of these techniques to small animals remains limited due to the temporal and spatial-resolution demands. Here, an ultrasound vector-flow workflow is demonstrated that enables visualization and quantification of the complex hemodynamics within the mouse heart. Wild type (WT) and fibroblast growth factor homologous factor 2 (FHF2)-deficient mice (Fhf2 KO/Y ), which present with hyperthermia-induced ECG abnormalities highly reminiscent of Brugada syndrome, were used as a mouse model of human CVD. An 18-MHz linear array was used to acquire high-speed (30 kHz), plane-wave data of the left ventricle (LV) while increasing core body temperature up to 41.5 °C. Hexplex (i.e., six output) processing of the raw data sets produced the output of vector-flow estimates (magnitude and phase); B-mode and color-Doppler images; Doppler spectrograms; and local time histories of vorticity and pericardium motion. Fhf2 WT/Y mice had repeatable beat-to-beat cardiac function, including vortex formation during diastole, at all temperatures. In contrast, Fhf2 KO/Y mice displayed dyssynchronous contractile motion that disrupted normal inflow vortex formation and impaired LV filling as temperature rose. The hexplex processing approach demonstrates the ability to visualize and quantify the interplay between hemodynamic and mechanical function in a mouse model of human CVD.
Collapse
|
16
|
Calderari S, Daniel N, Mourier E, Richard C, Dahirel M, Lager F, Marchiol C, Renault G, Gatien J, Nadal-Desbarats L, Chavatte-Palmer P, Duranthon V. Metabolomic differences in blastocoel and uterine fluids collected in vivo by ultrasound biomicroscopy on rabbit embryos†. Biol Reprod 2021; 104:794-805. [PMID: 33459770 DOI: 10.1093/biolre/ioab005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Accepted: 01/07/2021] [Indexed: 11/12/2022] Open
Abstract
The success of embryo development and implantation depends in part on the environment in which the embryo evolves. However, the composition of the uterine fluid surrounding the embryo in the peri-implantation period remains poorly studied. In this work, we aimed to develop a new strategy to visualize, collect, and analyze both blastocoelic liquid and juxta-embryonic uterine fluid from in vivo peri-implantation rabbit embryos. Using high-resolution ultrasound biomicroscopy, embryos were observed as fluid-filled anechoic vesicles, some of which were surrounded by a thin layer of uterine fluid. Ultrasound-guided puncture and aspiration of both the blastocoelic fluid contained in the embryo and the uterine fluid in the vicinity of the embryo were performed. Using nuclear magnetic resonance spectroscopy, altogether 24 metabolites were identified and quantified, of which 21 were detected in both fluids with a higher concentration in the uterus compared to the blastocoel. In contrast, pyruvate was detected at a higher concentration in blastocoelic compared to uterine fluid. Two acidic amino acids, glutamate and aspartate, were not detected in uterine fluid in contrast to blastocoelic fluid, suggesting a local regulation of uterine fluid composition. To our knowledge, this is the first report of simultaneous analysis of blastocoelic and uterine fluids collected in vivo at the time of implantation in mammals, shedding new insight for understanding the relationship between the embryo and its local environment at this critical period of development.
Collapse
Affiliation(s)
- Sophie Calderari
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Nathalie Daniel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Eve Mourier
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Michele Dahirel
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Franck Lager
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Carmen Marchiol
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Gilles Renault
- INSERM U1016, Institut Cochin, Université Paris Descartes, PRES Sorbonne Paris Cité, Paris, France
| | - Julie Gatien
- Research and Development Department, Allice, Nouzilly, France
| | - Lydie Nadal-Desbarats
- UMR 1253, iBrain, Inserm, University of Tours, Tours, France.,PST-ASB, University of Tours, Tours, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France.,Plateforme MIMA2-CIMA, Jouy en Josas, France
| | - Véronique Duranthon
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France.,Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| |
Collapse
|
17
|
McLeod GA. Novel approaches to needle tracking and visualisation. Anaesthesia 2021; 76 Suppl 1:160-170. [PMID: 33426657 DOI: 10.1111/anae.15232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2020] [Indexed: 12/22/2022]
Abstract
The accuracy and reliability of ultrasound are still insufficient to guarantee complete and safe nerve block for all patients. Injection of local anaesthetic close to, but not touching, the nerve is key to outcomes, but the exact relationship between the needle tip and nerve epineurium is difficult to evaluate, even with ultrasound. Ultrasound has insufficient resolution, tissues are difficult to discern due to acoustic impedance and needles are more difficult to see with increased angulation. The limitations of ultrasound have shifted the focus of innovation towards bio-markers that help detect needle tip position by utilising the physical properties of tissues, (e.g. pressure, electrical, optics, acoustic and elastic). Although most are at the laboratory stage and results are as yet only available from phantom or cadaver studies, clinical trials are imminent. For example, fine optical fibres placed within the lumen of block needles can measure needle tip pressure. Electrical impedance differentiates between intraneural and perineural needle tip placement. A new tip tracker needle has a piezo element embedded at its distal end that tracks the needle tip in-plane and out-of-plane as a blue/red or green circle depending on its relative location within the beam. Micro-ultrasound at the tip of the needle is in development. Early images using 40MHz in anaesthetised pigs reveal muscle striation, distinct epineurium and 30-40 fascicles > 75 micron in diameter. The next few years will see a technological revolution in tip-tracking technology that has the potential to improve patient safety and, in doing so, change practice.
Collapse
Affiliation(s)
- G A McLeod
- Ninewells Hospital, Dundee, UK.,Institute of Academic Anaesthesia, University of Dundee, UK.,University of East Anglia, Norwich, UK
| |
Collapse
|
18
|
Meyer S, Fuchs D, Meier M. Ultrasound and Photoacoustic Imaging of the Kidney: Basic Concepts and Protocols. Methods Mol Biol 2021; 2216:109-130. [PMID: 33475997 PMCID: PMC9703212 DOI: 10.1007/978-1-0716-0978-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Noninvasive, robust, and reproducible methods to image kidneys are provided by different imaging modalities. A combination of modalities (multimodality) can give better insight into structure and function and to understand the physiology of the kidney. Magnetic resonance imaging can be complemented by a multimodal imaging approach to obtain additional information or include interventional procedures. In the clinic, renal ultrasound has been essential for the diagnosis and management of kidney disease and for the guidance of invasive procedures for a long time. Adapting ultrasound to preclinical requirements and for translational research, the combination with photoacoustic imaging expands the capabilities to obtain anatomical, functional, and molecular information from animal models. This chapter describes the basic concepts of how to image kidneys using different and most appropriate modalities.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Sandra Meyer
- FUJIFILM VisualSonics, Inc, Amsterdam, The Netherlands
| | - Dieter Fuchs
- FUJIFILM VisualSonics, Inc, Amsterdam, The Netherlands
| | - Martin Meier
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
19
|
Li M, Nyayapathi N, Kilian HI, Xia J, Lovell JF, Yao J. Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Mol Imaging 2020; 19:1536012120981518. [PMID: 33336621 PMCID: PMC7750763 DOI: 10.1177/1536012120981518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Photoacoustic tomography (PAT) has become increasingly popular for molecular imaging due to its unique optical absorption contrast, high spatial resolution, deep imaging depth, and high imaging speed. Yet, the strong optical attenuation of biological tissues has traditionally prevented PAT from penetrating more than a few centimeters and limited its application for studying deeply seated targets. A variety of PAT technologies have been developed to extend the imaging depth, including employing deep-penetrating microwaves and X-ray photons as excitation sources, delivering the light to the inside of the organ, reshaping the light wavefront to better focus into scattering medium, as well as improving the sensitivity of ultrasonic transducers. At the same time, novel optical fluence mapping algorithms and image reconstruction methods have been developed to improve the quantitative accuracy of PAT, which is crucial to recover weak molecular signals at larger depths. The development of highly-absorbing near-infrared PA molecular probes has also flourished to provide high sensitivity and specificity in studying cellular processes. This review aims to introduce the recent developments in deep PA molecular imaging, including novel imaging systems, image processing methods and molecular probes, as well as their representative biomedical applications. Existing challenges and future directions are also discussed.
Collapse
Affiliation(s)
- Mucong Li
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| | - Nikhila Nyayapathi
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Hailey I Kilian
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jun Xia
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Jonathan F Lovell
- Department of Biomedical Engineering, 12292University of Buffalo, NY, USA
| | - Junjie Yao
- Department of Biomedical Engineering, 3065Duke University, Durham, NC, USA
| |
Collapse
|
20
|
Moerland JA, Zhang D, Reich LA, Carapellucci S, Lockwood B, Leal AS, Krieger-Burke T, Aleiwi B, Ellsworth E, Liby KT. The novel rexinoid MSU-42011 is effective for the treatment of preclinical Kras-driven lung cancer. Sci Rep 2020; 10:22244. [PMID: 33335263 PMCID: PMC7746742 DOI: 10.1038/s41598-020-79260-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Effective drugs are needed for lung cancer, as this disease remains the leading cause of cancer-related deaths. Rexinoids are promising drug candidates for cancer therapy because of their ability to modulate genes involved in inflammation, cell proliferation or differentiation, and apoptosis through activation of the retinoid X receptor (RXR). The only currently FDA-approved rexinoid, bexarotene, is ineffective as a single agent for treating epithelial cancers and induces hypertriglyceridemia. Here, we used a previously validated screening paradigm to evaluate 23 novel rexinoids for biomarkers related to efficacy and safety. These biomarkers include suppression of inducible nitric oxide synthase (iNOS) and induction of sterol regulatory element-binding protein (SREBP). Because of its potent iNOS suppression, low SREBP induction, and activation of RXR, MSU-42011 was selected as our lead compound. We next used MSU-42011 to treat established tumors in a clinically relevant Kras-driven mouse model of lung cancer. KRAS is one of the most common driver mutations in human lung cancer and correlates with aggressive disease progression and poor patient prognosis. Ultrasound imaging was used to detect and monitor tumor development and growth over time in the lungs of the A/J mice. MSU-42011 markedly decreased the tumor number, size, and histopathology of lung tumors compared to the control and bexarotene groups. Histological sections of lung tumors in mice treated with MSU-42011 exhibited reduced cell density and fewer actively proliferating cells compared to the control and bexarotene-treated tumors. Although bexarotene significantly (p < 0.01) elevated plasma triglycerides and cholesterol, treatment with MSU-42011 did not increase these biomarkers, demonstrating a more favorable toxicity profile in vivo. The combination of MSU-42011 and carboplatin and paclitaxel reduced macrophages in the lung and increased activation markers of CD8+T cells compared to the control groups. Our results validate our screening paradigm for in vitro testing of novel rexinoids and demonstrate the potential for MSU-42011 to be developed for the treatment of KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Jessica A Moerland
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Di Zhang
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Lyndsey A Reich
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Sarah Carapellucci
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Beth Lockwood
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Ana S Leal
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
| | - Teresa Krieger-Burke
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
- In Vivo Facility, Michigan State University, East Lansing, MI, USA
| | - Bilal Aleiwi
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
- Medicial Chemistry Core, Michigan State University, East Lansing, MI, USA
| | - Edmund Ellsworth
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA
- Medicial Chemistry Core, Michigan State University, East Lansing, MI, USA
| | - Karen T Liby
- Department of Pharmacology and Toxicology, Michigan State University, B430 Life Science Building, 1355 Bogue Street, East Lansing, MI, 48824, USA.
| |
Collapse
|
21
|
Izzetti R, Oranges T, Janowska A, Gabriele M, Graziani F, Romanelli M. The Application of Ultra-High-Frequency Ultrasound in Dermatology and Wound Management. INT J LOW EXTR WOUND 2020; 19:334-340. [DOI: 10.1177/1534734620972815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The management of lower extremity wounds is frequently performed by means of clinical examination, representing a challenge for the clinician due to the various conditions that can potentially enter differential diagnosis. Several diagnostic techniques are available in the dermatologist’s arsenal as a support to diagnosis confirmation, including dermoscopy and ultrasonography. Recently, a novel ultrasonographic technique involving the use of ultra-high ultrasound frequencies has entered the scene, and appears a promising tool in the diagnostic workup of skin ulcerative lesions. The focus of this review is to discuss the potential role of ultra-high-frequency ultrasonography in the diagnostic workup of wounds in the light of the current applications of the technique.
Collapse
|
22
|
Advances in imaging feto-placental vasculature: new tools to elucidate the early life origins of health and disease. J Dev Orig Health Dis 2020; 12:168-178. [PMID: 32746961 DOI: 10.1017/s2040174420000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optimal placental function is critical for fetal development, and therefore a crucial consideration for understanding the developmental origins of health and disease (DOHaD). The structure of the fetal side of the placental vasculature is an important determinant of fetal growth and cardiovascular development. There are several imaging modalities for assessing feto-placental structure including stereology, electron microscopy, confocal microscopy, micro-computed tomography, light-sheet microscopy, ultrasonography and magnetic resonance imaging. In this review, we present current methodologies for imaging feto-placental vasculature morphology ex vivo and in vivo in human and experimental models, their advantages and limitations and how these provide insight into placental function and fetal outcomes. These imaging approaches add important perspective to our understanding of placental biology and have potential to be new tools to elucidate a deeper understanding of DOHaD.
Collapse
|
23
|
Izzetti R, Vitali S, Aringhieri G, Nisi M, Oranges T, Dini V, Ferro F, Baldini C, Romanelli M, Caramella D, Gabriele M. Ultra-High Frequency Ultrasound, A Promising Diagnostic Technique: Review of the Literature and Single-Center Experience. Can Assoc Radiol J 2020; 72:418-431. [PMID: 32721173 DOI: 10.1177/0846537120940684] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Ultra-high frequency ultrasonography (UHFUS) is a recently introduced diagnostic technique which finds several applications in diverse clinical fields. The range of frequencies between 30 and 100 MHz allows for high spatial resolution imaging of superficial structures, making this technique suitable for the imaging of skin, blood vessels, musculoskeletal anatomy, oral mucosa, and small parts. However, the current clinical applications of UHFUS have never been analyzed in a consistent multidisciplinary manner. The aim of this study is to revise and discuss the current applications of UHFUS in different aspects of research and clinical practice, as well as to provide some examples of the current work-in-progress carried out in our center. MATERIALS AND METHODS A literature search was performed in order to retrieve articles reporting the applications of UHFUS both in research and in clinical settings. Inclusion criteria were the use of frequencies above 30 MHz and study design conducted in vivo on human subjects. RESULTS In total 66 articles were retrieved. The majority of the articles focused on dermatological and vascular applications, although musculoskeletal and intraoral applications are emerging fields of use. We also describe our experience in the use of UHFUS as a valuable diagnostic support in the fields of dermatology, rheumatology, oral medicine, and musculoskeletal anatomy. CONCLUSION Ultra-high frequency ultrasonography application involves an increasing number of medical fields. The high spatial resolution and the superb image quality achievable allow to foresee a wider use of this novel technique, which has the potential to bring innovation in diagnostic imaging.
Collapse
Affiliation(s)
- Rossana Izzetti
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, 9310University of Pisa, Pisa, Italy
| | - Saverio Vitali
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, 9310University of Pisa, Pisa, Italy
| | - Giacomo Aringhieri
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, 9310University of Pisa, Pisa, Italy
| | - Marco Nisi
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, 9310University of Pisa, Pisa, Italy
| | - Teresa Oranges
- Unit of Dermatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Valentina Dini
- Unit of Dermatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Francesco Ferro
- Unit of Rheumatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Chiara Baldini
- Unit of Rheumatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Marco Romanelli
- Unit of Dermatology, Department of Clinical and Experimental Medicine, 9310University of Pisa, Pisa, Italy
| | - Davide Caramella
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, 9310University of Pisa, Pisa, Italy
| | - Mario Gabriele
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, 9310University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Izzetti R, Vitali S, Aringhieri G, Oranges T, Dini V, Nisi M, Graziani F, Gabriele M, Caramella D. Discovering a new anatomy: exploration of oral mucosa with ultra-high frequency ultrasound. Dentomaxillofac Radiol 2020; 49:20190318. [PMID: 32364758 DOI: 10.1259/dmfr.20190318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVES Ultra-high frequency ultrasound (UHFUS) is a recently developed diagnostic technique involving the use of ultrasound frequencies up to 70 MHz, allowing to obtain 30 µm resolution of targets located within 1 cm from the surface. Oral mucosa can be affected by diverse pathological conditions, which are currently investigated by means of clinical examination. In this scenario, intraoral UHFUS can provide additional information and support clinical assessment of oral mucosa. In this preliminary study, typical features of normal oral mucosa are described, in order to set a benchmark for the future identification of oral soft tissue alterations. METHODS Twenty healthy subjects (10 males and 10 females, mean age 30 years) were enrolled and underwent intraoral UHFUS examination. In all the subjects, tongue, buccal mucosa, gingiva, lip mucosa, and palate were scanned, and images acquired. Intraoral UHFUS scan included Brightness-mode and Doppler mode acquisitions performed with a standardized protocol. UHFUS images were postprocessed and analyzed using a dedicated software. UHFUS-based biomarkers (epithelial thickness, echogenicity, and vascularization) were employed for image description. RESULTS Normal oral anatomy of the different sites analyzed was described. For all the sites, UHFUS biomarkers were characterized, and information on typical aspect of oral mucosa was retrieved. CONCLUSIONS In this explorative study, we suggest a potential role for intraoral UHFUS in the study of oral mucosa, giving insights into the possibility to improve the assessment, diagnosis, and management of the conditions involving oral mucosa. UHFUS seems a promising tool, which could potentially support clinical examination in daily oral medicine practice.
Collapse
Affiliation(s)
- Rossana Izzetti
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Saverio Vitali
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giacomo Aringhieri
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Teresa Oranges
- Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Valentina Dini
- Unit of Dermatology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Nisi
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Filippo Graziani
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Mario Gabriele
- Unit of Dentistry and Oral Surgery, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Davide Caramella
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Development of an embedded multimodality imaging platform for onco-pharmacology using a smart anticancer prodrug as an example. Sci Rep 2020; 10:2661. [PMID: 32060400 PMCID: PMC7021674 DOI: 10.1038/s41598-020-59561-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 01/28/2020] [Indexed: 11/08/2022] Open
Abstract
Increasingly, in vivo imaging holds a strategic position in bio-pharmaceutical innovation. We will present the implementation of an integrated multimodal imaging setup enabling the assessment of multiple, complementary parameters. The system allows the fusion of information provided by: Near infrared fluorescent biomarkers, bioluminescence (for tumor proliferation status), Photoacoustic and Ultrasound imaging. We will study representative applications to the development of a smart prodrug, delivering a highly cytotoxic chemotherapeutic agent to cancer tumors. The results realized the ability of this embedded, multimodality imaging platform to firstly detect bioluminescent and fluorescent signals, and secondly, record ultrasound and photoacoustic data from the same animal. This study demonstrated that the prodrug was effective in three different models of hypoxia in human cancers compared to the parental cytotoxic agent and the vehicle groups. Monitoring by photoacoustic imaging during the treatments revealed that the prodrug exhibits an intrinsic capability to prevent the progression of tumor hypoxia. It is essential for onco-pharmacology studies to precisely document the hypoxic status of tumors both before and during the time course of treatments. This approach opens new perspectives for exploitation of preclinical mouse models of cancer, especially when considering associations between hypoxia, neoangiogenesis and antitumor activity.
Collapse
|
26
|
Izzetti R, Vitali S, Aringhieri G, Caramella D, Nisi M, Oranges T, Dini V, Graziani F, Gabriele M. The efficacy of Ultra-High Frequency Ultrasonography in the diagnosis of intraoral lesions. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 129:401-410. [PMID: 32009004 DOI: 10.1016/j.oooo.2019.09.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/07/2019] [Accepted: 09/21/2019] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The aim of the present study was to evaluate the diagnostic efficacy of ultra-high frequency ultrasound (UHFUS) imaging of intraoral soft tissue lesions. STUDY DESIGN The study included 160 patients presenting with oral soft tissue lesions classified into 4 categories: autoimmune diseases, mucosal growths, potentially (pre)malignant lesions, and oral cancer. Each lesion was evaluated by means of intraoral UHFUS, through B-mode and C-mode acquisitions of the area of interest. The UHFUS findings were compared with the histopathologic findings. RESULTS All values for sensitivity, specificity, and negative predictive value exceeded 90%. Sensitivity was perfect (100%) for mucosal growths and oral cancer. Specificity was almost perfect for all 4 categories of lesions, ranging from 97% to 99%. Values for positive predictive value ranged from 83% to 99%. CONCLUSIONS UHFUS was beneficial in imaging the oral mucosa and the superficial aspects of the underlying soft tissue in detail because of the high spatial resolution of the technique. Consistent patterns were recognized for different categories of lesions. UHFUS holds the promise of being a valuable support to the clinician in terms of diagnosis, treatment, and follow-up of oral lesions.
Collapse
Affiliation(s)
- Rossana Izzetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Saverio Vitali
- Diagnostic and Interventional Imaging, University Hospital of Pisa, Pisa, Italy
| | - Giacomo Aringhieri
- Diagnostic and Interventional Imaging, University Hospital of Pisa, Pisa, Italy
| | - Davide Caramella
- Diagnostic and Interventional Imaging, University Hospital of Pisa, Pisa, Italy
| | - Marco Nisi
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Teresa Oranges
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Valentina Dini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Filippo Graziani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Mario Gabriele
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
27
|
Izzetti R, Vitali S, Oranges T, Dini V, Romanelli M, Caramella D, Gabriele M. Intraoral Ultra-High Frequency Ultrasound study of oral lichen planus: A pictorial review. Skin Res Technol 2019; 26:200-204. [PMID: 31549746 DOI: 10.1111/srt.12777] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/02/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ultra-High Frequency Ultrasound (UHFUS) is a recently introduced diagnostic technique involving the use of higher frequencies compared to conventional ultrasound. Among the several fields of application, intraoral usage of UHFUS appears still limited. We report the intraoral evaluation of Oral Lichen Planus (OLP) by means of UHFUS and describe typical UHFUS aspect of different forms of presentation of OLP. MATERIALS AND METHODS Patients with clinical and histological diagnosis of OLP were enrolled in the study. OLP lesions were evaluated by means of intraoral UHFUS performed at 70 MHz, using B-mode and C-mode, in order to characterize the echostructure of each form of presentation. RESULTS Fifty patients in total were enrolled, and UHFUS features were described for different OLP forms. All the lesions showed a thick, hypoechoic superficial layer in the mucosal stratum, suggesting that such UHFUS alteration can be pathognomonic of OLP. CONCLUSION Ultra-High Frequency Ultrasound was able to differentiate superficial alterations of the oral mucosa, giving insight on possible applications of UHFUS in the study of OLP beyond clinical and histological investigations. Due to a limited study sample, we cannot draw firm conclusions. However, it is reasonable to think that UHFUS evaluation of OLP may provide useful information to the clinician.
Collapse
Affiliation(s)
- Rossana Izzetti
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Saverio Vitali
- Diagnostic and Interventional Radiology, University Hospital of Pisa, Pisa, Italy
| | - Teresa Oranges
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Valentina Dini
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Romanelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Davide Caramella
- Diagnostic and Interventional Radiology, University Hospital of Pisa, Pisa, Italy
| | - Mario Gabriele
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
28
|
Desgrange A, Lokmer J, Marchiol C, Houyel L, Meilhac SM. Standardised imaging pipeline for phenotyping mouse laterality defects and associated heart malformations, at multiple scales and multiple stages. Dis Model Mech 2019; 12:dmm.038356. [PMID: 31208960 PMCID: PMC6679386 DOI: 10.1242/dmm.038356] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/06/2019] [Indexed: 12/11/2022] Open
Abstract
Laterality defects are developmental disorders resulting from aberrant left/right patterning. In the most severe cases, such as in heterotaxy, they are associated with complex malformations of the heart. Advances in understanding the underlying physiopathological mechanisms have been hindered by the lack of a standardised and exhaustive procedure in mouse models for phenotyping left/right asymmetries of all visceral organs. Here, we have developed a multimodality imaging pipeline, which combines non-invasive micro-ultrasound imaging, micro-computed tomography (micro-CT) and high-resolution episcopic microscopy (HREM) to acquire 3D images at multiple stages of development and at multiple scales. On the basis of the position in the uterine horns, we track in a single individual, the progression of organ asymmetry, the situs of all visceral organs in the thoracic or abdominal environment, and the fine anatomical left/right asymmetries of cardiac segments. We provide reference anatomical images and organ reconstructions in the mouse, and discuss differences with humans. This standardised pipeline, which we validated in a mouse model of heterotaxy, offers a fast and easy-to-implement framework. The extensive 3D phenotyping of organ asymmetry in the mouse uses the clinical nomenclature for direct comparison with patient phenotypes. It is compatible with automated and quantitative image analyses, which is essential to compare mutant phenotypes with incomplete penetrance and to gain mechanistic insight into laterality defects. Summary: Laterality defects, which combine anomalies in several visceral organs, are challenging to phenotype. We have developed here a standardised approach for multimodality 3D imaging in mice, generating quantifiable phenotypes.
Collapse
Affiliation(s)
- Audrey Desgrange
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Johanna Lokmer
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France.,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| | - Carmen Marchiol
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,INSERM U1016, Institut Cochin, 75014 Paris, France.,CNRS UMR8104, 75014 Paris, France
| | - Lucile Houyel
- Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France.,Unité de Cardiologie Pédiatrique et Congénitale, Hôpital Necker Enfants Malades, Centre de référence des Malformations Cardiaques Congénitales Complexes-M3C, APHP, 75015 Paris, France
| | - Sigolène M Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France .,INSERM UMR1163, 75015 Paris, France.,Université Paris Descartes, Sorbonne Paris-Cité, 75006 Paris, France
| |
Collapse
|
29
|
Three-Dimensional Ultrasound Versus Computerized Tomography in Fat Graft Volumetric Analysis. Ann Plast Surg 2019; 80:293-296. [PMID: 28678028 DOI: 10.1097/sap.0000000000001183] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Studies evaluating fat grafting in mice have frequently used micro-computed tomography (micro-CT) as an accurate radiographic tool to measure longitudinal volume retention without killing the animal. Over the past decade, however, microultrasonography has emerged as an equally powerful preclinical imaging tool. Given their respective strengths in 3-dimensional reconstruction, there is no study to our knowledge that directly compares micro-CT with microultrasound in volumetric analysis. In this study, we compared the performance of micro-CT with microultrasound in the evaluation of adipose tissue graft volume in a murine model. Fifteen immunodeficient mice were given 200 μL of adipose tissue grafts. In vivo volumetric analysis of the grafts by micro-CT and microultrasound was conducted at discrete time points up to postoperative day 105. Three mice were killed at multiple time points, and explanted grafts were reimaged by CT and ultrasound, as mentioned previously. Analysis revealed that in vivo graft volumes measured by micro-CT do not differ significantly from those of microultrasound. Furthermore, both micro-CT and microultrasound were capable of accurately measuring fat grafts as in vivo volumes closely correlated with explanted volumes. Finally, ultrasound was found to yield improved soft tissue contrast compared with micro-CT. Therefore, either modality may be used, depending on experimental needs.
Collapse
|
30
|
Huang C, Lowerison MR, Lucien F, Gong P, Wang D, Song P, Chen S. Noninvasive Contrast-Free 3D Evaluation of Tumor Angiogenesis with Ultrasensitive Ultrasound Microvessel Imaging. Sci Rep 2019; 9:4907. [PMID: 30894634 PMCID: PMC6426859 DOI: 10.1038/s41598-019-41373-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/28/2019] [Indexed: 01/03/2023] Open
Abstract
Ultrasound microvessel imaging (UMI), when applied with ultrafast planewave acquisitions, has demonstrated superior blood signal sensitivity in comparison to conventional Doppler imaging. Here we propose a high spatial resolution and ultra-sensitive UMI that is based on conventional line-by-line high-frequency ultrasound imagers and singular value decomposition (SVD) clutter filtering for the visualization and quantification of tumor microvasculature and perfusion. The technique was applied to a chicken embryo tumor model of renal cell carcinoma that was treated with two FDA-approved anti-angiogenic agents at clinically relevant dosages. We demonstrate the feasibility of 3D evaluation with UMI to achieve highly sensitive detection of microvasculature using conventional line-by-line ultrasound imaging on a preclinical and commercially available high-frequency ultrasound device without software or hardware modifications. Quantitative parameters (vascularization index and fractional moving blood volume) derived from UMI images provide significantly improved evaluation of anti-angiogenic therapy response as compared with conventional power Doppler imaging, using histological analysis and immunohistochemistry as the reference standard. This proof-of-concept study demonstrates that high-frequency UMI is a low-cost, contrast-agent-free, easily applicable, accessible, and quantitative imaging tool for tumor characterization, which may be very useful for preclinical evaluation and longitudinal monitoring of anti-cancer treatment.
Collapse
Affiliation(s)
- Chengwu Huang
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Matthew R Lowerison
- Department of Urology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Fabrice Lucien
- Department of Urology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Ping Gong
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Diping Wang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Pengfei Song
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| | - Shigao Chen
- Department of Radiology, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Basak K, Luís Deán-Ben X, Gottschalk S, Reiss M, Razansky D. Non-invasive determination of murine placental and foetal functional parameters with multispectral optoacoustic tomography. LIGHT, SCIENCE & APPLICATIONS 2019; 8:71. [PMID: 31666944 PMCID: PMC6804938 DOI: 10.1038/s41377-019-0181-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/27/2019] [Accepted: 07/17/2019] [Indexed: 05/12/2023]
Abstract
Despite the importance of placental function in embryonic development, it remains poorly understood and challenging to characterize, primarily due to the lack of non-invasive imaging tools capable of monitoring placental and foetal oxygenation and perfusion parameters during pregnancy. We developed an optoacoustic tomography approach for real-time imaging through entire ~4 cm cross-sections of pregnant mice. Functional changes in both maternal and embryo regions were studied at different gestation days when subjected to an oxygen breathing challenge and perfusion with indocyanine green. Structural phenotyping of the cross-sectional scans highlighted different internal organs, whereas multi-wavelength acquisitions enabled non-invasive label-free spectroscopic assessment of blood-oxygenation parameters in foeto-placental regions, rendering a strong correlation with the amount of oxygen administered. Likewise, the placental function in protecting the embryo from extrinsically administered agents was substantiated. The proposed methodology may potentially further serve as a probing mechanism to appraise embryo development during pregnancy in the clinical setting.
Collapse
Affiliation(s)
- Kausik Basak
- Faculty of Medicine, Technical University Munich, Munich, Germany
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Present Address: Kausik Basak, Institute of Advanced Studies and Research, JIS University, Kolkata, West Bengal India
| | - Xosé Luís Deán-Ben
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Sven Gottschalk
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
| | - Michael Reiss
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Faculty of Medicine, Technical University Munich, Munich, Germany
- Institute for Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Faculty of Medicine and Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Sathialingam E, Lee SY, Sanders B, Park J, McCracken CE, Bryan L, Buckley EM. Small separation diffuse correlation spectroscopy for measurement of cerebral blood flow in rodents. BIOMEDICAL OPTICS EXPRESS 2018; 9:5719-5734. [PMID: 30460158 PMCID: PMC6238900 DOI: 10.1364/boe.9.005719] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 05/11/2023]
Abstract
Diffuse correlation spectroscopy (DCS) has shown promise as a means to non-invasively measure cerebral blood flow in small animal models. Here, we characterize the validity of DCS at small source-detector reflectance separations needed for small animal measurements. Through Monte Carlo simulations and liquid phantom experiments, we show that DCS error increases as separation decreases, although error remains below 12% for separations > 0.2 cm. In mice, DCS measures of cerebral blood flow have excellent intra-user repeatability and strongly correlate with MRI measures of blood flow (R = 0.74, p<0.01). These results are generalizable to other DCS applications wherein short-separation reflectance geometries are desired.
Collapse
Affiliation(s)
- Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- co-first authorship
| | - Seung Yup Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- co-first authorship
| | - Bharat Sanders
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Jaekeun Park
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
| | - Courtney E. McCracken
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| | - Leah Bryan
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| | - Erin M. Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr. NE, Atlanta, GA 30322, USA
- Department of Pediatrics, School of Medicine, Emory University, 2015 Uppergate Dr., Atlanta, GA 30322, USA
- Children’s Research Scholar, Children’s Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
33
|
Jakubovic R, Ramjist J, Gupta S, Guha D, Sahgal A, Foster FS, Yang VXD. High-Frequency Micro-Ultrasound Imaging and Optical Topographic Imaging for Spinal Surgery: Initial Experiences. ULTRASOUND IN MEDICINE & BIOLOGY 2018; 44:2379-2387. [PMID: 30006213 DOI: 10.1016/j.ultrasmedbio.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 04/22/2018] [Accepted: 05/01/2018] [Indexed: 06/08/2023]
Abstract
High frequency micro-ultrasound (µUS) transducers with central frequencies up to 50 MHz facilitate dynamic visualization of patient anatomy with minimal disruption of the surgical work flow. Micro-ultrasound improves spatial resolution over conventional ultrasound imaging from millimeter to micrometer, but compromises depth penetration. This trade-off is sufficient during an open surgery in which the bone is removed and theultrasound probe can be placed into the surgical cavity. By fusing µUS with pre-operative imaging and tracking the ultrasound probe intra-operatively using our optical topographic imaging technology, we can provide dynamic feedback during surgery, thus affecting clinical decision making. We present our initial experience using high-frequency µUS imaging during spinal procedures. Micro-ultrasound images were obtained in five spinal procedures. Medical rationale for use of µUS was provided for each patient. Surgical procedures were performed using the standard clinical practice with bone removal to facilitate real-time ultrasound imaging of the soft tissue. During surgery, the µUS probe was registered to the pre-operative computed tomography and magnetic resonance images. Images obtained comprised five spinal decompression surgeries (four tumor resections, one cystic synovial mass). Micro-ultrasound images obtained during spine surgery delineated exquisite detailing of the spinal anatomy including white matter and gray matter tracts and nerve roots and allowed accurate assessment of the extent of decompression/tumor resection. In conclusion, tracked µUS enables real-time imaging of the surgical cavity, conferring significant qualitative improvement over conventional ultrasound.
Collapse
Affiliation(s)
- Raphael Jakubovic
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada; Biophotonics and Bioengineering Laboratory, Ryerson University/Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Joel Ramjist
- Biophotonics and Bioengineering Laboratory, Ryerson University/Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Shaurya Gupta
- Biophotonics and Bioengineering Laboratory, Ryerson University/Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Daipayan Guha
- Biophotonics and Bioengineering Laboratory, Ryerson University/Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada
| | - F Stuart Foster
- Department of Physical Sciences, Odette Cancer Research Program, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Victor X D Yang
- Department of Physics, Ryerson University, Toronto, Ontario M5B 2K3, Canada; Biophotonics and Bioengineering Laboratory, Ryerson University/Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, Ontario M4N 3M5, Canada; Department of Electrical Engineering, Ryerson University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
34
|
Abstract
High resolution, microultrasound (μUS) scanning of the gastrointestinal (GI) tract has potential as an important transmural imaging modality to aid in diagnosis. Operating at higher frequencies than conventional clinical ultrasound instruments, μUS is capable of providing scanned images of the GI tract with higher resolution. To investigate the use of μUS for this application, a phantom which is cost effective, within ethical guidelines and, most importantly, similar in histology to the human GI tract is necessary. Therefore, a phantom utilizing porcine small bowel tissue has been developed for custom assembled μUS scanning systems. Two such systems, a stepping scanner and a continuous sweep scanner were utilized to repeatedly scan regions of prepared samples of porcine small bowel tissue. The porcine small bowel tissue phantom was perfused with degassed phosphate buffer saline (dPBS) solution through a cannula inserted in its mesenteric vessel to simulate in vivo conditions and achieve better μUS mucosal characterization. The μUS system scans a transducer across the tissue phantom to acquire RF echo data, which is then processed using MATLAB. A B-scan reconstruction produces 2D images with relative echo strength mapped to a color map of the user's choice. The phantom developed also allows for modifications such as the insertion of fiducial markers to detect tissue change over time and simultaneous perfusion and scanning, providing a platform for more detailed research and investigation into μUS scanning of the GI tract.
Collapse
|
35
|
Alvarez E, Dalton ND, Gu Y, Smith D, Luong A, Hoshijima M, Peterson KL, Rychak J. A novel method for quantitative myocardial contrast echocardiography in mice. Am J Physiol Heart Circ Physiol 2017; 314:H370-H379. [PMID: 29127239 DOI: 10.1152/ajpheart.00568.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The small size of the mouse heart frequently imparts technical challenges when applying conventional in vivo imaging methods for assessing heart function. Here, we describe the use of high-frequency ultrasound imaging in conjunction with a size-tuned blood pool contrast agent for quantitatively assessing myocardial perfusion in living mice. A perflurocarbon microbubble formulation exhibiting a narrow size distribution was developed, and echogenicity was assessed at 18 MHz in vitro. Adult mice were subjected to permanent ligation of the left anterior descending artery. Ultrasound imaging was performed on day 7, and a cohort of intact mice was used as a control. Parasternal long-axis cine clips were acquired at 18 MHz before and after contrast administration. Reduced ejection fraction and increased end-systolic volume were observed in infarcted compared with control mice. In control animals, washin of the contrast agent was visible in all myocardial segments. Reduced contrast enhancement was observed in apical-posterolateral regions of all infarcted mice. A novel method for reslicing of the imaging data through the time domain provided a two-dimensional presentation of regional contrast agent washin, enabling convenient identification of locations exhibiting altered perfusion. Myocardial segments exhibiting diminished contractility were observed to have correspondingly low relative myocardial perfusion. The contrast agent formulation and methods demonstrated here provide the basis for simplifying routine in vivo estimation of infarct size in mice and may be particularly useful in longitudinal evaluation of revascularization interventions and assessment of peri-infarct ischemia. NEW & NOTEWORTHY Murine myocardial contrast echocardiography frequently suffers from poor sensitivity to contrast. Here, we formulated a novel size-tuned microbubble contrast agent and validated it for use with ultra-high-frequency ultrasound. A novel data method for evaluating myocardial perfusion based on reslicing the imaging data through the time domain is presented.
Collapse
Affiliation(s)
- E Alvarez
- Department of Medicine, University of California , San Diego, California
| | - N D Dalton
- Department of Medicine, University of California , San Diego, California
| | - Y Gu
- Department of Medicine, University of California , San Diego, California
| | - D Smith
- Targeson, Incorporated, San Diego, California
| | - A Luong
- Targeson, Incorporated, San Diego, California
| | - M Hoshijima
- Department of Medicine, University of California , San Diego, California
| | - K L Peterson
- Department of Medicine, University of California , San Diego, California
| | - J Rychak
- Department of Bioengineering, University of California , San Diego, California.,Targeson, Incorporated, San Diego, California
| |
Collapse
|
36
|
Guan L, Xu G. Destructive effect of HIFU on rabbit embedded endometrial carcinoma tissues and their vascularities. Oncotarget 2017; 8:19577-19591. [PMID: 28121624 PMCID: PMC5386707 DOI: 10.18632/oncotarget.14751] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/27/2016] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES To evaluate damage effect of High-intensity focused ultrasound on early stage endometrial cancer tissues and their vascularities. MATERIALS AND METHODS Rabbit endometrial cancer models were established via tumor blocks implantation for a prospective control study. Ultrasonic ablation efficacy was evaluated by pathologic and imaging changes. The target lesions of experimental rabbits before and after ultrasonic ablation were observed after autopsy. The slides were used for hematoxylin-eosin staining, elastic fiber staining and endothelial cell staining; the slides were observed by optical microscopy. One slide was observed by electron microscopy. Then the target lesions of experimental animals with ultrasonic ablation were observed by vascular imaging, one group was visualized by digital subtract angiography, one group was quantified by color Doppler flow imaging, and one group was detected by dye perfusion.SPSS 19.0 software was used for statistical analyses. RESULTS Histological examination indicated that High-intensity focused ultrasound caused the tumor tissues and their vascularities coagulative necrosis. Tumor vascular structure components including elastic fiber, endothelial cells all were destroyed by ultrasonic ablation. Digital subtract angiography showed tumor vascular shadow were dismissed after ultrasonic ablation. After ultrasonic ablation, gray-scale of tumor nodules enhanced in ultrasonography, tumor peripheral and internal blood flow signals disappeared or significantly reduced in color Doppler flow imaging. Vascular perfusion performed after ultrasonic ablation, tumor vessels could not filled by dye liquid. CONCLUSION High-intensity focused ultrasound as a noninvasive method can destroy whole endometrial cancer cells and their supplying vascularities, which maybe an alternative approach of targeted therapy and new antiangiogenic strategy for endometrial cancer.
Collapse
Affiliation(s)
- Liming Guan
- Department of Obstetrics and Gynaecology, Zhabei District Central Hospital, Zhabei District, Shanghai 200000, China
| | - Gang Xu
- Department of Radiotherapy, Tumor Hospital, Peking University, Fengtai District, Beijing 100000, China
| |
Collapse
|
37
|
Mufamadi MS, Choonara YE, Kumar P, du Toit LC, Modi G, Naidoo D, Iyuke SE, Pillay V. Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System. AAPS PharmSciTech 2017; 18:671-685. [PMID: 27188761 DOI: 10.1208/s12249-016-0541-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/23/2016] [Indexed: 11/30/2022] Open
Abstract
The purpose of this study was to explore the use of molecular bio-imaging systems and biomechanical dynamics to elucidate the fate of a nanocomposite hydrogel system prepared by merging FITC-labeled nanolipobubbles within a cross-linked hydrogel network. The nanocomposite hydrogel system was characterized by size distribution analysis and zeta potential as well as shears thinning behavior, elastic modulus (G'), viscous loss moduli (G"), TEM, and FTIR. In addition, molecular bio-imaging via Vevo ultrasound and Cell-viZio techniques evaluated the stability and distribution of the nanolipobubbles within the cross-linked hydrogel. FITC-labeled and functionalized nanolipobubbles had particle sizes between 135 and 158 nm (PdI = 0.129 and 0.190) and a zeta potential of -34 mV. TEM and ultrasound imaging revealed the uniformity and dimensional stability of the functionalized nanolipobubbles pre- and post-embedment into the cross-linked hydrogel. Biomechanical characterization of the hydrogel by shear thinning behavior was governed by the polymer concentration and the cross-linker, glutaraldehyde. Ultrasound analysis and Cell-viZio bio-imaging were highly suitable to visualize the fluorescent image-guided nanolipobubbles and their morphology post-embedment into the hydrogel to form the NanoComposite system. Since the nanocomposite is intended for targeted treatment of neurodegenerative disorders, the distribution of the functionalized nanolipobubbles into PC12 neuronal cells was also ascertained via confocal microscopy. Results demonstrated effective release and localization of the nanolipobubbles within PC12 neuronal cells. The molecular structure of the synthetic surface peptide remained intact for an extended period to ensure potency for targeted delivery from the hydrogel ex vivo. These findings provide further insight into the properties of nanocomposite hydrogels for specialized drug delivery.
Collapse
|
38
|
Qiu W, Xia J, Shi Y, Mu P, Wang X, Gao M, Wang C, Xiao Y, Yang G, Liu J, Sun L, Zheng H. A Delayed-Excitation Data Acquisition Method for High-Frequency Ultrasound Imaging. IEEE Trans Biomed Eng 2017; 65:15-20. [PMID: 28368803 DOI: 10.1109/tbme.2017.2687948] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
High-frequency ultrasound imaging (at >20 MHz) has gained widespread attention due to its high spatial resolution being useful for basic cardiovascular and cancer research involving small animals. The sampling rate of the analog-to-digital converter in a high-frequency ultrasound system usually needs to be higher than 120 MHz in order to satisfy the Nyquist sampling-rate requirement. However, the sampling rate is typically within the range of 40-60 MHz in a traditional ultrasound system, and so we propose a delayed-excitation method for performing high-frequency ultrasound imaging with a traditional data acquisition scheme. In this method, the transmitted pulse is delayed by a certain time period so that the ultrasound echo data are aligned into high-sampling-rate slots. Wire and tissue-mimicking phantoms were imaged to evaluate the performance of the proposed method, whereas a porcine small-intestine specimen and an excised rabbit eyeball were used for in vitro imaging evaluations. The test results demonstrate that the proposed method allows high-frequency ultrasound imaging to be implemented using a traditional ultrasound sampling system.
Collapse
|
39
|
Daeichin V, van Rooij T, Skachkov I, Ergin B, Specht PAC, Lima A, Ince C, Bosch JG, van der Steen AFW, de Jong N, Kooiman K. Microbubble Composition and Preparation for High-Frequency Contrast-Enhanced Ultrasound Imaging: In Vitro and In Vivo Evaluation. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:555-567. [PMID: 28113312 DOI: 10.1109/tuffc.2016.2640342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Although high-frequency ultrasound imaging is gaining attention in various applications, hardly any ultrasound contrast agents (UCAs) dedicated to such frequencies (>15 MHz) are available for contrast-enhanced ultrasound (CEUS) imaging. Moreover, the composition of the limited commercially available UCAs for high-frequency CEUS (hfCEUS) is largely unknown, while shell properties have been shown to be an important factor for their performance. The aim of our study was to produce UCAs in-house for hfCEUS. Twelve different UCA formulations A-L were made by either sonication or mechanical agitation. The gas core consisted of C4F10 and the main coating lipid was either 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC; A-F formulation) or 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC; G-L formulation). Mechanical agitation resulted in UCAs with smaller microbubbles (number weighted mean diameter ~1 [Formula: see text]) than sonication (number weighted mean diameter ~2 [Formula: see text]). UCA formulations with similar size distributions but different main lipid components showed that the DPPC-based UCA formulations had higher nonlinear responses at both the fundamental and subharmonic frequencies in vitro for hfCEUS using the Vevo2100 high-frequency preclinical scanner (FUJIFILM VisualSonics, Inc.). In addition, UCA formulations F (DSPC-based) and L (DPPC-based) that were made by mechanical agitation performed similar in vitro to the commercially available Target-Ready MicroMarker (FUJIFILM VisualSonics, Inc.). UCA formulation F also performed similar to Target-Ready MicroMarker in vivo in pigs with similar mean contrast intensity within the kidney ( n = 7 ), but formulation L did not. This is likely due to the lower stability of formulation L in vivo. Our study shows that DSPC-based microbubbles produced by mechanical agitation resulted in small microbubbles with high nonlinear responses suitable for hfCEUS imaging.
Collapse
|
40
|
Sassaroli E, Scorza A, Crake C, Sciuto SA, Park MA. Breast Ultrasound Technology and Performance Evaluation of Ultrasound Equipment: B-Mode. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2017; 64:192-205. [PMID: 27831870 DOI: 10.1109/tuffc.2016.2619622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ultrasound (US) has become increasingly important in imaging and image-guided interventional procedures. In order to ensure that the imaging equipment performs to the highest level achievable and thus provides reliable clinical results, a number of quality control (QC) methods have been developed. Such QC is increasingly required by accrediting agencies and professional organizations; however, these requirements typically do not include detailed procedures for how the tests should be performed. In this paper, a detailed overview of QC methods for general and breast US imaging using computer-based objective methods is described. The application of QC is then discussed within the context of a common clinical application (US-guided needle biopsy) as well as for research applications, where QC may not be mandated, and thus is rarely discussed. The implementation of these methods will help in finding early stage equipment faults and in optimizing image quality, which could lead to better detection and classification of suspicious findings in clinical applications, as well as improving the robustness of research studies.
Collapse
|
41
|
Freeling JL, Rezvani K. Assessment of murine colorectal cancer by micro-ultrasound using three dimensional reconstruction and non-linear contrast imaging. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 5:16070. [PMID: 28053998 PMCID: PMC5147881 DOI: 10.1038/mtm.2016.70] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 09/20/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
The relatively low success rates of current colorectal cancer (CRC) therapies have led investigators to search for more specific treatments. Vertebrate models of colorectal cancer are essential tools for the verification of new therapeutic avenues such as gene therapy. The evaluation of colorectal cancer in mouse models has been limited due to the lack of an accurate quantitative and longitudinal noninvasive method. This work introduces a method of three-dimensional micro-ultrasound reconstruction and microbubble administration for the comprehensive and longitudinal evaluation of CRC progression. This approach enabled quantification of both tumor volume and relative vascularity using a well-established inducible murine model of colon carcinogenesis. This inducible model recapitulated the adenocarcinoma sequence that occurs in human CRC allowing systematic in situ evaluation of the ultrasound technique. The administration of intravenous microbubbles facilitated enhancement of colon vascular contrast and quantification of relative vascularity of the mid and distal colon of the mouse in three dimensions. In addition, two-dimensional imaging in the sagittal orientation of the colon using Non-Linear Contrast Mode enabled calculation of relative blood volume and perfusion as the microbubbles entered the colon microvasculature. Quantitative results provided by the outlined protocol represent a noninvasive tool that can more accurately define CRC development and progression. This ultrasound technique will allow the practical and economical longitudinal study of murine CRC in both basic and preclinical studies.
Collapse
Affiliation(s)
- Jessica L Freeling
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota , Vermillion, South Dakota, USA
| | - Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota , Vermillion, South Dakota, USA
| |
Collapse
|
42
|
Chandra A, Eisma R, Felts P, Munirama S, Corner GA, Demore CEM, McLeod G. The feasibility of micro-ultrasound as a tool to image peripheral nerves. Anaesthesia 2016; 72:190-196. [DOI: 10.1111/anae.13708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 01/14/2023]
Affiliation(s)
- A. Chandra
- Institute for Medical Science and Technology; University of Dundee; Dundee UK
| | - R. Eisma
- Centre for Anatomy and Human Identification; University of Dundee; Dundee UK
| | - P. Felts
- Centre for Anatomy and Human Identification; University of Dundee; Dundee UK
| | - S. Munirama
- Department of Anaesthesia; Manchester Royal Infirmary; Manchester UK
| | - G. A. Corner
- School of Engineering, Physics and Mathematics; University of Dundee; Dundee UK
| | - C. E. M. Demore
- Institute for Medical Science and Technology; University of Dundee; Dundee UK
- Sunnybrook Research Institute; Toronto Ontario Canada
| | - G. McLeod
- Department of Anaesthesia; Ninewells Hospital; Dundee UK
- Institute for Academic Anaesthesia; University of Dundee; Dundee UK
| |
Collapse
|
43
|
Meyer MR, Fredette NC, Daniel C, Sharma G, Amann K, Arterburn JB, Barton M, Prossnitz ER. Obligatory role for GPER in cardiovascular aging and disease. Sci Signal 2016; 9:ra105. [PMID: 27803283 DOI: 10.1126/scisignal.aag0240] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pharmacological activation of the heptahelical G protein-coupled estrogen receptor (GPER) by selective ligands counteracts multiple aspects of cardiovascular disease. We thus expected that genetic deletion or pharmacological inhibition of GPER would further aggravate such disease states, particularly with age. To the contrary, we found that genetic ablation of Gper in mice prevented cardiovascular pathologies associated with aging by reducing superoxide (⋅O2-) formation by NADPH oxidase (Nox) specifically through reducing the expression of the Nox isoform Nox1 Blocking GPER activity pharmacologically with G36, a synthetic, small-molecule, GPER-selective blocker (GRB), decreased Nox1 abundance and ⋅O2- production to basal amounts in cells exposed to angiotensin II and in mice chronically infused with angiotensin II, reducing arterial hypertension. Thus, this study revealed a role for GPER activity in regulating Nox1 abundance and associated ⋅O2--mediated structural and functional damage that contributes to disease pathology. Our results indicated that GRBs represent a new class of drugs that can reduce Nox abundance and activity and could be used for the treatment of chronic disease processes involving excessive ⋅O2- formation, including arterial hypertension and heart failure.
Collapse
Affiliation(s)
- Matthias R Meyer
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Natalie C Fredette
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Christoph Daniel
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Nephropathology, 91054 Erlangen, Germany
| | - Geetanjali Sharma
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA
| | - Kerstin Amann
- Friedrich-Alexander-University of Erlangen-Nürnberg, Department of Nephropathology, 91054 Erlangen, Germany
| | - Jeffrey B Arterburn
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM 88003, USA
| | - Matthias Barton
- University of Zürich, Molecular Internal Medicine, 8057 Zürich, Switzerland
| | - Eric R Prossnitz
- University of New Mexico Health Sciences Center, Department of Internal Medicine, Albuquerque, NM 87131, USA.,University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| |
Collapse
|
44
|
Lowerison MR, Hague MN, Chambers AF, Lacefield JC. Improved Linear Contrast-Enhanced Ultrasound Imaging via Analysis of First-Order Speckle Statistics. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2016; 63:1409-1421. [PMID: 27295664 DOI: 10.1109/tuffc.2016.2578181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The linear subtraction methods commonly used for preclinical contrast-enhanced imaging are susceptible to registration errors and motion artifacts that lead to reduced contrast-to-tissue ratios. To address this limitation, a new approach to linear contrast-enhanced ultrasound (CEUS) is proposed based on the analysis of the temporal dynamics of the speckle statistics during wash-in of a bolus injection of microbubbles. In the proposed method, the speckle signal is approximated as a mixture of temporally varying random processes, representing the microbubble signal, superimposed onto spatially heterogeneous tissue backscatter in multiple subvolumes within the region of interest. A wash-in curve is constructed by plotting the effective degrees of freedom (EDoFs) of the histogram of the speckle signal as a function of time. The proposed method is, therefore, named the EDoF method. The EDoF parameter is proportional to the shape parameter of the Nakagami distribution. Images acquired at 18 MHz from a murine mammary fat pad breast cancer xenograft model were processed using gold-standard nonlinear amplitude modulation, conventional linear subtraction, and the proposed statistical method. The EDoF method shows promise for improving the robustness of linear CEUS based on reduced frame-to-frame variability compared with the conventional linear subtraction time-intensity curves. Wash-in curve parameters estimated using the EDoF method also demonstrate higher correlation to nonlinear CEUS than the conventional linear method. The conceptual basis of the statistical method implies that EDoF wash-in curves may carry information about vascular complexity that could provide valuable new imaging biomarkers for cancer research.
Collapse
|
45
|
Sun C, Panagakou I, Sboros V, Butler MB, Kenwright D, Thomson AJW, Moran CM. Influence of temperature, needle gauge and injection rate on the size distribution, concentration and acoustic responses of ultrasound contrast agents at high frequency. ULTRASONICS 2016; 70:84-91. [PMID: 27140502 DOI: 10.1016/j.ultras.2016.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/16/2016] [Accepted: 04/16/2016] [Indexed: 06/05/2023]
Abstract
This paper investigated the influence of needle gauge (19G and 27G), injection rate (0.85ml·min(-1), 3ml·min(-1)) and temperature (room temperature (RT) and body temperature (BT)) on the mean diameter, concentration, acoustic attenuation, contrast to tissue ratio (CTR) and normalised subharmonic intensity (NSI) of three ultrasound contrast agents (UCAs): Definity, SonoVue and MicroMarker (untargeted). A broadband substitution technique was used to acquire the acoustic properties over the frequency range 17-31MHz with a preclinical ultrasound scanner Vevo770 (Visualsonics, Canada). Significant differences (P<0.001-P<0.05) between typical in vitro setting (19G needle, 3ml·min(-1) at RT) and typical in vivo setting (27G needle, 0.85ml·min(-1) at BT) were found for SonoVue and MicroMarker. Moreover we found that the mean volume-based diameter and concentration of both SonoVue and Definity reduced significantly when changing from typical in vitro to in vivo experimental set-ups, while those for MicroMarker did not significantly change. From our limited measurements of Definity, we found no significant change in attenuation, CTR and NSI with needle gauge. For SonoVue, all the measured acoustic properties (attenuation, CTR and NSI) reduced significantly when changing from typical in vitro to in vivo experimental conditions, while for MicroMarker, only the NSI reduced, with attenuation and CTR increasing significantly. These differences suggest that changes in physical compression and temperature are likely to alter the shell structure of the UCAs resulting in measureable and significant changes in the physical and high frequency acoustical properties of the contrast agents under typical in vitro and preclinical in vivo experimental conditions.
Collapse
Affiliation(s)
- Chao Sun
- Medical Physics, Centre for Cardiovascular Research, University of Edinburgh, Edinburgh, UK; Ultrasound Department, Xijing Hospital, Xi'an, China
| | - Ioanna Panagakou
- Medical Physics, Centre for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Vassilis Sboros
- Medical Physics, Centre for Cardiovascular Research, University of Edinburgh, Edinburgh, UK; Institute of Biochemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, UK
| | - Mairead B Butler
- Medical Physics, Centre for Cardiovascular Research, University of Edinburgh, Edinburgh, UK; Institute of Biochemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, UK
| | - David Kenwright
- Medical Physics, Centre for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Adrian J W Thomson
- Medical Physics, Centre for Cardiovascular Research, University of Edinburgh, Edinburgh, UK
| | - Carmel M Moran
- Medical Physics, Centre for Cardiovascular Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
46
|
Seitz BM, Krieger-Burke T, Fink GD, Watts SW. Serial Measurements of Splanchnic Vein Diameters in Rats Using High-Frequency Ultrasound. Front Pharmacol 2016; 7:116. [PMID: 27199758 PMCID: PMC4853411 DOI: 10.3389/fphar.2016.00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/18/2016] [Indexed: 01/09/2023] Open
Abstract
The purpose of this study was to investigate serial ultrasound imaging in rats as a fully non-invasive method to (1) quantify the diameters of splanchnic veins in real time as an indirect surrogate for the capacitance function of those veins, and (2) assess the effects of drugs on venous dimensions. A 21 MHz probe was used on anesthetized male Sprague–Dawley rats to collect images containing the portal vein (PV), superior mesenteric vein (SMV), abdominal inferior vena cava (IVC), and splenic vein (SpV; used as a landmark in timed studies) and the abdominal aorta (AA). Stable landmarks were established that allowed reproducible quantification of cross-sectional diameters within an animal. The average diameters of vessels measured every 5 min over 45 min remained within 0.75 ± 0.15% (PV), 0.2 ± 0.09% (SMV), 0.5 ± 0.12% (IVC), and 0.38 ± 0.06% (AA) of baseline (PV: 2.0 ± 0.12 mm; SMV: 1.7 ± 0.04 mm; IVC: 3.2 ± 0.1 mm; AA: 2.3 ± 0.14 mm). The maximal effects of the vasodilator sodium nitroprusside (SNP; 2 mg/kg, i.v. bolus) on venous diameters were determined 5 min post SNP bolus; the diameters of all noted veins were significantly increased by SNP, while mean arterial pressure (MAP) decreased 29 ± 4 mmHg. By contrast, administration of the venoconstrictor sarafotoxin (S6c; 5 ng/kg, i.v. bolus) significantly decreased PV and SpV, but not IVC, SMV, or AA, diameters 5 min post S6c bolus; MAP increased by 6 ± 2 mmHg. In order to determine if resting splanchnic vein diameters were stable over much longer periods of time, vessel diameters were measured every 2 weeks for 8 weeks. Measurements were found to be highly reproducible within animals over this time period. Finally, to evaluate the utility of vein imaging in a chronic condition, images were acquired from 4-week deoxycorticosterone acetate salt (DOCA-salt) hypertensive and normotensive (SHAM) control rats. All vessel diameters increased from baseline while MAP increased (67 ± 4 mmHg) in DOCA-salt rats compared to SHAM at 4 weeks after pellet implantation. Vessel diameters remained unchanged in SHAM animals. Together, these results support serial ultrasound imaging as a non-invasive, reliable technique able to measure acute and chronic changes in the diameter of splanchnic veins in intact rats.
Collapse
Affiliation(s)
- Bridget M Seitz
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing MI, USA
| | | | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing MI, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing MI, USA
| |
Collapse
|
47
|
Avigo C, Flori A, Armanetti P, Di Lascio N, Kusmic C, Jose J, Losi P, Soldani G, Faita F, Menichetti L. Strategies for non-invasive imaging of polymeric biomaterial in vascular tissue engineering and regenerative medicine using ultrasound and photoacoustic techniques. POLYM INT 2016. [DOI: 10.1002/pi.5113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Cinzia Avigo
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Alessandra Flori
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Paolo Armanetti
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Nicole Di Lascio
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Jithin Jose
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Paola Losi
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Giorgio Soldani
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Francesco Faita
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| | - Luca Menichetti
- Institute of Clinical Physiology; National Research Council; via G. Moruzzi 1 56124 Pisa Italy
| |
Collapse
|
48
|
Raes F, Sobilo J, Le Mée M, Rétif S, Natkunarajah S, Lerondel S, Le Pape A. High Resolution Ultrasound and Photoacoustic Imaging of Orthotopic Lung Cancer in Mice: New Perspectives for Onco-Pharmacology. PLoS One 2016; 11:e0153532. [PMID: 27070548 PMCID: PMC4829195 DOI: 10.1371/journal.pone.0153532] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/30/2016] [Indexed: 11/18/2022] Open
Abstract
Objectives We have developed a relevant preclinical model associated with a specific imaging protocol dedicated to onco-pharmacology studies in mice. Materials and Methods We optimized both the animal model and an ultrasound imaging procedure to follow up longitudinally the lung tumor growth in mice. Moreover we proposed to measure by photoacoustic imaging the intratumoral hypoxia, which is a crucial parameter responsible for resistance to therapies. Finally, we compared ultrasound data to x-ray micro computed tomography and volumetric measurements to validate the relevance of this approach on the NCI-H460 human orthotopic lung tumor. Results This study demonstrates the ability of ultrasound imaging to detect and monitor the in vivo orthotopic lung tumor growth by high resolution ultrasound imaging. This approach enabled us to characterize key biological parameters such as oxygenation, perfusion status and vascularization of tumors. Conclusion Such an experimental approach has never been reported previously and it would provide a nonradiative tool for assessment of anticancer therapeutic efficacy in mice. Considering the absence of ultrasound propagation through the lung parenchyma, this strategy requires the implantation of tumors strictly located in the superficial posterior part of the lung.
Collapse
Affiliation(s)
- Florian Raes
- PHENOMIN-TAAM-UPS44, CIPA (Centre d’Imagerie du Petit Animal), CNRS Orléans, France
- * E-mail:
| | - Julien Sobilo
- PHENOMIN-TAAM-UPS44, CIPA (Centre d’Imagerie du Petit Animal), CNRS Orléans, France
| | - Marilyne Le Mée
- PHENOMIN-TAAM-UPS44, CIPA (Centre d’Imagerie du Petit Animal), CNRS Orléans, France
| | - Stéphanie Rétif
- PHENOMIN-TAAM-UPS44, CIPA (Centre d’Imagerie du Petit Animal), CNRS Orléans, France
| | - Sharuja Natkunarajah
- PHENOMIN-TAAM-UPS44, CIPA (Centre d’Imagerie du Petit Animal), CNRS Orléans, France
| | - Stéphanie Lerondel
- PHENOMIN-TAAM-UPS44, CIPA (Centre d’Imagerie du Petit Animal), CNRS Orléans, France
| | - Alain Le Pape
- PHENOMIN-TAAM-UPS44, CIPA (Centre d’Imagerie du Petit Animal), CNRS Orléans, France
- INSERM U1100, CEPR, University of Tours, France
| |
Collapse
|
49
|
Kim M, Lee JH, Kim SE, Kang SS, Tae G. Nanosized Ultrasound Enhanced-Contrast Agent for in Vivo Tumor Imaging via Intravenous Injection. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8409-8418. [PMID: 27010717 DOI: 10.1021/acsami.6b02115] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
To enhance the detection limit of ultrasound (US) imaging, ultrasound enhanced-contrast agents (UECAs) that can go preferentially to the target tissue such as a tumor and amplify the US signal have been developed. However, nanosized UECAs among various UECAs developed are very limited to clearly demonstrate proper ability for selective tumor detection by US imaging upon their intravenous injection. In this study, we prepared CaCO3 nanoparticles that were formed inside a flexible and biocompatible pluronic-based nanocarrier. This nanosized UECA was stable in serum-containing media and generated CO2, more preferentially at low pH; thus, it could be detected by US imaging. After intravenous injection into tumor-bearing mice, this nanosized UECA showed a significant US contrast enhancement at the tumor site in 1 h, in contrast to no change in the liver, followed by a rapid clearance from the body in 24 h. Therefore, the present nanosized UECA could be applied as an effective diagnostic modality for in vivo tumor imaging by ultrasonography.
Collapse
Affiliation(s)
- Manse Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 61005, Republic of Korea
| | - Jong Hyun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 61005, Republic of Korea
| | - Se Eun Kim
- College of Veterinary Medicine, Chonnam National University , Gwangju 61186, Republic of Korea
| | - Seong Soo Kang
- College of Veterinary Medicine, Chonnam National University , Gwangju 61186, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 61005, Republic of Korea
- Center for Theragnosis, Biomedical Research Institute, KIST , Seoul 02792, Republic of Korea
| |
Collapse
|
50
|
Abstract
The mouse is the mammalian model of choice for investigating cardiovascular biology, given our ability to manipulate it by genetic, pharmacologic, mechanical, and environmental means. Imaging is an important approach to phenotyping both function and structure of cardiac and vascular components. This review details commonly used imaging approaches, with a focus on echocardiography and magnetic resonance imaging and brief overviews of other imaging modalities. We also briefly outline emerging imaging approaches but caution that reliability and validity data may be lacking.
Collapse
Affiliation(s)
- Colin K L Phoon
- Division of Pediatric Cardiology, Department of Pediatrics, New York University School of Medicine, New York, New York
| | - Daniel H Turnbull
- Departments of Radiology and Pathology, New York University School of Medicine, New York, New York.,Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York
| |
Collapse
|