1
|
Chen G, Khan IM, Zhang T, Campanella OH, Miao M. Alternansucrase as a key enabling tool of biotransformation from molecular features to applications: A review. Int J Biol Macromol 2024; 279:135096. [PMID: 39214198 DOI: 10.1016/j.ijbiomac.2024.135096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Alternansucrase (ASR), classified in GH70, produces unique α-glucans with alternating α-1,3 and α-1,6 glycosidic linkages in the backbone chain from renewable sucrose which is easily obtained from nature with low cost. ASR has synthesized many products with valuable functionalities that hold enormous commercial interest and promising applications. The influence of biocatalysis and fermentation parameters on the yields, and properties of products are critical for the propositions made to promote the enzyme application. Investigations on ASR have been compiled in the review to provide information on the enzyme, products and parameters. This review summarizes studies on the characteristics, conversion mechanism, products, and beneficial applications of ASR and exhibits structure-based technologies to improve enzyme activity, specificity, and thermostability for industrial applications. Finally, prospects for further development are also proposed for various ASR applications in food and other fields.
Collapse
Affiliation(s)
- Gang Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; College of Food and Health, Zhejiang Agriculture and Forest University, Hangzhou 311300, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Osvaldo H Campanella
- Department of Food Science and Technology, Ohio State University, Columbus, OH, USA
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Cao YL, Deng JQ, Li Y, Xin SY, Chen YJ, Li XY, Cao HZ, Guo XP, Wang FS, Sheng JZ. N-Difluoroacetylhexosamine as a Substrate-Engineering Precursor for Glycosylation Reactions. Org Lett 2024; 26:7739-7743. [PMID: 39230062 DOI: 10.1021/acs.orglett.4c02897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
We present the application of N-difluoroacetylglucosamine (GlcNDFA) in a chemical evolution strategy to synthesize oligosaccharides. In comparison to conventional N-trifluoroacetylglucosamine, GlcNDFA exhibits superior substrate compatibility with glycosyltransferases as well as stability in aqueous environments. Using our 16-step assembly line, GlcNDFA can be used to produce homogeneous dekaparin, a heparin-like medication, with a yield of 62.2%. This underscores the significant potential of GlcNDFA as a chemical evolution precursor in the precise synthesis of structurally defined polysaccharides.
Collapse
Affiliation(s)
- Ya-Lin Cao
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Jian-Qun Deng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yi Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Si-Yu Xin
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Yi-Jing Chen
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Xin-Yu Li
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Hong-Zhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Xue-Ping Guo
- Bloomage-GAGs BioTechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Feng-Shan Wang
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, People's Republic of China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, People's Republic of China
- National Glycoengineering Research Center, Shandong University, Jinan, Shandong 250012, People's Republic of China
| |
Collapse
|
3
|
Zheng J, Lin XJ, Xu H, Sohail M, Chen LA, Zhang X. Enzyme-mediated green synthesis of glycosaminoglycans and catalytic process intensification. Biotechnol Adv 2024; 74:108394. [PMID: 38857660 DOI: 10.1016/j.biotechadv.2024.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Glycosaminoglycans (GAGs) are a family of structurally complex heteropolysaccharides that play pivotal roles in biological functions, including the regulation of cell proliferation, enzyme inhibition, and activation of growth factor receptors. Therefore, the synthesis of GAGs is a hot research topic in drug development. The enzymatic synthesis of GAGs has received widespread attention due to their eco-friendly nature, high regioselectivity, and stereoselectivity. The enhancement of the enzymatic synthesis process is the key to its industrial applications. In this review, we overviewed the construction of more efficient in vitro biomimetic synthesis systems of glycosaminoglycans and presented the different strategies to improve enzyme catalysis, including the combination of chemical and enzymatic methods, solid-phase synthesis, and protein engineering to solve the problems of enzyme stability, separation and purification of the product, preparation of structurally defined sugar chains, etc., and discussed the challenges and opportunities in large-scale green synthesis of GAGs.
Collapse
Affiliation(s)
- Jie Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, China
| | - Xiao-Jun Lin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, China
| | - Han Xu
- Jiangbei New Area biopharmaceutical Public Service Platform, 210031 Nanjing, China
| | - Muhammad Sohail
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, China
| | - Liang-An Chen
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 210023 Nanjing, China.
| |
Collapse
|
4
|
Liu CC, Ye J, Cao H. Chemical Evolution of Enzyme-Catalyzed Glycosylation. Acc Chem Res 2024. [PMID: 38286791 DOI: 10.1021/acs.accounts.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe limited availability of structurally well-defined diverse glycans remains a major obstacle for deciphering biological functions as well as biomedical applications of carbohydrates. Despite tremendous progress that has been made in past decades, the synthesis of structurally well-defined complex glycans still represents one of the most challenging topics in synthetic chemistry. Chemical synthesis of glycans is a time-consuming and labor-intensive process that requires elaborate planning and skilled personnel. In contrast, glycosyltransferase-catalyzed enzymatic synthesis provides a more efficient, convenient, low-cost, and sustainable alternative to affording diverse and complex glycans. However, the existing methods are still insufficient to fulfill the increasing demand for specific synthetic glycan libraries necessary for functional glycomics research. This is mainly attributed to the inherent character of the glycan biosynthetic pathway. In nature, there are too many glycosyltransferases involved in the in vivo glycan synthesis, but only a small number of them are available for in vitro enzymatic synthesis. For instance, humans have over 200 glycosyltransferases, but only a few of them could be produced from the conventional bacterial expression system, and most of these membrane-associated enzymes could be overexpressed only in eukaryotic cells. Moreover, the glycan biosynthetic pathway is a nontemplate-driven process, which eventually ends up with heterogeneous glycan product mixtures. Therefore, it is not a practical solution for the in vitro enzymatic synthesis of complex glycans by simply copying the glycan biosynthetic pathway.In the past decade, we have tried to develop a simplified and transformable approach to the enzymatic modular assembly of a human glycan library. Despite the structural complexity of human glycans, the glycoinformatic analysis based on the known glycan structure database and the human glycosyltransferase database indicates that there are approximately 56 disaccharide patterns present in the human glycome and only 16 disaccharide linkages are required to account for over 80% of the total disaccharide fragments, while 35 disaccharide linkages are sufficient to cover over 95% of all disaccharide fragments of human glycome. Regardless of the substrate specificity, if one glycosyltransferase could be used for the synthesis of all of the same glycosidic linkages in human glycome, it will require only a few dozen glycosyltransferases for the assembly of entire human glycans. According to the glycobioinformatics analysis results, we rationally designed about two dozen enzyme modules for the synthesis of over 20 common glycosidic linkages in human glycome, in which each enzyme module contains a glycosyltransferase and a group of enzymes for the in situ generation of a nucleotide-activated sugar donor. By sequential glycosylation using orchestrated enzyme modules, we have completed the synthesis of over 200 structurally well-defined complex human glycans including blood group antigens, O-mannosyl glycans, human milk oligosaccharides, and others. To overcome the product microheterogeneity problem of enzymatic synthesis in the nontemplate-driven glycan biosynthetic pathway, we developed several substrate engineering strategies to control or manipulate the outcome of glycosyltransferase-catalyzed reactions for the precise synthesis of structurally well-defined isomeric complex glycans.
Collapse
Affiliation(s)
- Chang-Cheng Liu
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Jinfeng Ye
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao 266237, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao 266237, China
| |
Collapse
|
5
|
Harduin-Lepers A. The vertebrate sialylation machinery: structure-function and molecular evolution of GT-29 sialyltransferases. Glycoconj J 2023; 40:473-492. [PMID: 37247156 PMCID: PMC10225777 DOI: 10.1007/s10719-023-10123-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/09/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023]
Abstract
Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.
Collapse
Affiliation(s)
- Anne Harduin-Lepers
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000, Lille, France.
| |
Collapse
|
6
|
Dolan JP, Cosgrove SC, Miller GJ. Biocatalytic Approaches to Building Blocks for Enzymatic and Chemical Glycan Synthesis. JACS AU 2023; 3:47-61. [PMID: 36711082 PMCID: PMC9875253 DOI: 10.1021/jacsau.2c00529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
While the field of biocatalysis has bloomed over the past 20-30 years, advances in the understanding and improvement of carbohydrate-active enzymes, in particular, the sugar nucleotides involved in glycan building block biosynthesis, have progressed relatively more slowly. This perspective highlights the need for further insight into substrate promiscuity and the use of biocatalysis fundamentals (rational design, directed evolution, immobilization) to expand substrate scopes toward such carbohydrate building block syntheses and/or to improve enzyme stability, kinetics, or turnover. Further, it explores the growing premise of using biocatalysis to provide simple, cost-effective access to stereochemically defined carbohydrate materials, which can undergo late-stage chemical functionalization or automated glycan synthesis/polymerization.
Collapse
Affiliation(s)
- Jonathan P. Dolan
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Sebastian C. Cosgrove
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Gavin J. Miller
- School of Chemical and Physical
Sciences & Centre for Glycosciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
7
|
Zheng J, Xu H, Fang J, Zhang X. Enzymatic and chemoenzymatic synthesis of human milk oligosaccharides and derivatives. Carbohydr Polym 2022; 291:119564. [DOI: 10.1016/j.carbpol.2022.119564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/28/2023]
|
8
|
O'Sullivan J, Muñoz-Muñoz J, Turnbull G, Sim N, Penny S, Moschos S. Beyond GalNAc! Drug delivery systems comprising complex oligosaccharides for targeted use of nucleic acid therapeutics. RSC Adv 2022; 12:20432-20446. [PMID: 35919168 PMCID: PMC9281799 DOI: 10.1039/d2ra01999j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic Acid Therapeutics (NATs) are establishing a leading role for the management and treatment of genetic diseases following FDA approval of nusinersen, patisiran, and givosiran in the last 5 years, the breakthrough of milasen, with more approvals undoubtedly on the way. Givosiran takes advantage of the known interaction between the hepatocyte specific asialoglycoprotein receptor (ASGPR) and N-acetyl galactosamine (GalNAc) ligands to deliver a therapeutic effect, underscoring the value of targeting moieties. In this review, we explore the history of GalNAc as a ligand, and the paradigm it has set for the delivery of NATs through precise targeting to the liver, overcoming common hindrances faced with this type of therapy. We describe various complex oligosaccharides (OSs) and ask what others could be used to target receptors for NAT delivery and the opportunities awaiting exploration of this chemical space.
Collapse
Affiliation(s)
- Joseph O'Sullivan
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Jose Muñoz-Muñoz
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Graeme Turnbull
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Neil Sim
- High Force Research Ltd, Bowburn North Industrial Estate Durham UK DH6 5PF
| | - Stuart Penny
- High Force Research Ltd, Bowburn North Industrial Estate Durham UK DH6 5PF
| | - Sterghios Moschos
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| |
Collapse
|
9
|
Discovery and Biotechnological Exploitation of Glycoside-Phosphorylases. Int J Mol Sci 2022; 23:ijms23063043. [PMID: 35328479 PMCID: PMC8950772 DOI: 10.3390/ijms23063043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Among carbohydrate active enzymes, glycoside phosphorylases (GPs) are valuable catalysts for white biotechnologies, due to their exquisite capacity to efficiently re-modulate oligo- and poly-saccharides, without the need for costly activated sugars as substrates. The reversibility of the phosphorolysis reaction, indeed, makes them attractive tools for glycodiversification. However, discovery of new GP functions is hindered by the difficulty in identifying them in sequence databases, and, rather, relies on extensive and tedious biochemical characterization studies. Nevertheless, recent advances in automated tools have led to major improvements in GP mining, activity predictions, and functional screening. Implementation of GPs into innovative in vitro and in cellulo bioproduction strategies has also made substantial advances. Herein, we propose to discuss the latest developments in the strategies employed to efficiently discover GPs and make the best use of their exceptional catalytic properties for glycoside bioproduction.
Collapse
|
10
|
Collet L, Vander Wauven C, Oudjama Y, Galleni M, Dutoit R. Highlighting the factors governing transglycosylation in the GH5_5 endo-1,4-β-glucanase RBcel1. Acta Crystallogr D Struct Biol 2022; 78:278-289. [PMID: 35234142 PMCID: PMC8900817 DOI: 10.1107/s2059798321013541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/22/2021] [Indexed: 11/11/2022] Open
Abstract
Transglycosylating glycoside hydrolases (GHs) offer great potential for the enzymatic synthesis of oligosaccharides. Although knowledge is progressing, there is no unique strategy to improve the transglycosylation yield. Obtaining efficient enzymatic tools for glycan synthesis with GHs remains dependent on an improved understanding of the molecular factors governing the balance between hydrolysis and transglycosylation. This enzymatic and structural study of RBcel1, a transglycosylase from the GH5_5 subfamily isolated from an uncultured bacterium, aims to unravel such factors. The size of the acceptor and donor sugars was found to be critical since transglycosylation is efficient with oligosaccharides at least the size of cellotetraose as the donor and cellotriose as the acceptor. The reaction pH is important in driving the balance between hydrolysis and transglycosylation: hydrolysis is favored at pH values below 8, while transglycosylation becomes the major reaction at basic pH. Solving the structures of two RBcel1 variants, RBcel1_E135Q and RBcel1_Y201F, in complex with ligands has brought to light some of the molecular factors behind transglycosylation. The structure of RBcel1_E135Q in complex with cellotriose allowed a +3 subsite to be defined, in accordance with the requirement for cellotriose as a transglycosylation acceptor. The structure of RBcel1_Y201F has been obtained with several transglycosylation intermediates, providing crystallographic evidence of transglycosylation. The catalytic cleft is filled with (i) donors ranging from cellotriose to cellohexaose in the negative subsites and (ii) cellobiose and cellotriose in the positive subsites. Such a structure is particularly relevant since it is the first structure of a GH5 enzyme in complex with transglycosylation products that has been obtained with neither of the catalytic glutamate residues modified.
Collapse
Affiliation(s)
- Laetitia Collet
- LABIRIS, 1 Avenue Emile Gryzon, 1070 Brussels, Belgium
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | | | | - Moreno Galleni
- Center for Protein Engineering (CIP), Biological Macromolecules, University of Liège, 13 Allée du 6 Août, 4000 Liège, Belgium
| | | |
Collapse
|
11
|
Coines J, Cuxart I, Teze D, Rovira C. Computer Simulation to Rationalize “Rational” Engineering of Glycoside Hydrolases and Glycosyltransferases. J Phys Chem B 2022; 126:802-812. [PMID: 35073079 PMCID: PMC8819650 DOI: 10.1021/acs.jpcb.1c09536] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
![]()
Glycoside hydrolases
and glycosyltransferases are the main classes
of enzymes that synthesize and degrade carbohydrates, molecules essential
to life that are a challenge for classical chemistry. As such, considerable
efforts have been made to engineer these enzymes and make them pliable
to human needs, ranging from directed evolution to rational design,
including mechanism engineering. Such endeavors fall short and are
unreported in numerous cases, while even success is a necessary but
not sufficient proof that the chemical rationale behind the design
is correct. Here we review some of the recent work in CAZyme mechanism
engineering, showing that computational simulations are instrumental
to rationalize experimental data, providing mechanistic insight into
how native and engineered CAZymes catalyze chemical reactions. We
illustrate this with two recent studies in which (i) a glycoside hydrolase
is converted into a glycoside phosphorylase and (ii) substrate specificity
of a glycosyltransferase is engineered toward forming O-, N-, or S-glycosidic bonds.
Collapse
Affiliation(s)
- Joan Coines
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - Irene Cuxart
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
| | - David Teze
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Carme Rovira
- Departament de Química Inorgànica i Orgànica and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
12
|
Vera C, Guerrero C, Illanes A. Trends in lactose-derived bioactives: synthesis and purification. SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING 2022; 2:393-412. [PMID: 38624767 PMCID: PMC8776390 DOI: 10.1007/s43393-021-00068-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/21/2021] [Accepted: 11/22/2021] [Indexed: 12/11/2022]
Abstract
Lactose obtained from cheese whey is a low value commodity despite its great potential as raw material for the production of bioactive compounds. Among them, prebiotics stand out as valuable ingredients to be added to food matrices to build up functional foods, which currently represent the most active sector within the food industry. Functional foods market has been growing steadily in the recent decades along with the increasing awareness of the World population about healthy nutrition, and this is having a strong impact on lactose-derived bioactives. Most of them are produced by enzyme biocatalysis because of molecular precision and environmental sustainability considerations. The current status and outlook of the production of lactose-derived bioactive compounds is presented with special emphasis on downstream operations which are critical because of the rather modest lactose conversion and product yields that are attainable. Even though some of these products have already an established market, there are still several challenges referring to the need of developing better catalysts and more cost-effective downstream operations for delivering high quality products at affordable prices. This technological push is expected to broaden the spectrum of lactose-derived bioactive compounds to be produced at industrial scale in the near future. Graphical abstract
Collapse
Affiliation(s)
- Carlos Vera
- Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| | - Andrés Illanes
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso (PUCV), Valparaiso, Chile
| |
Collapse
|
13
|
Agrawal A, Bandi CK, Burgin T, Woo Y, Mayes HB, Chundawat SPS. Click-Chemistry-Based Free Azide versus Azido Sugar Detection Enables Rapid In Vivo Screening of Glycosynthase Activity. ACS Chem Biol 2021; 16:2490-2501. [PMID: 34499469 DOI: 10.1021/acschembio.1c00585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Engineering of carbohydrate-active enzymes such as glycosynthases to enable chemoenzymatic synthesis of bespoke oligosaccharides has been limited by the lack of suitable ultrahigh-throughput screening methods capable of robustly detecting either starting substrates or end-products of the glycosidic bond formation reaction. Currently, there are limited screening methods available for rapid and highly sensitive single-cell-based screening of glycosynthase enzymes employing azido sugars as activated donor glycosyl substrates. Here, we report a fluorescence-based approach employing click-chemistry for the selective detection of glycosyl azides as substrates versus free inorganic azides as reaction products that facilitated an ultrahigh-throughput in vivo single-cell-based assay of glycosynthase activity. This assay was developed based on the distinct differences observed in relative fluorescence intensity of the triazole-containing fluorophore product formed during the click-chemistry reaction of organic glycosyl azides versus inorganic azides. This discovery formed the basis for proof of concept validation of a directed evolution methodology for screening and sorting glycosynthase mutants capable of synthesis of targeted fucosylated oligosaccharides. Our screening approach facilitated fluorescence-activated cell sorting of an error-prone polymerase chain reaction-based mutant library of fucosynthases expressed in Escherichia coli to identify several novel mutants that showed increased activity for β-fucosyl azide-activated donor sugars toward desired acceptor sugars (e.g., pNP-xylose and lactose). Finally, we discuss avenues for improving this proof of concept in vivo assay method to identify better glycosynthase mutants and further demonstrate the broader applicability of this screening methodology for synthesis of bespoke glycans.
Collapse
Affiliation(s)
- Ayushi Agrawal
- Department of Chemical & Biochemical Engineering, Rutgers The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Chandra Kanth Bandi
- Department of Chemical & Biochemical Engineering, Rutgers The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| | - Tucker Burgin
- Department of Chemical Engineering, University of Michigan Ann Arbor, 2800 Plymouth Avenue, Ann Arbor, Michigan 48105, United States
| | - Youngwoo Woo
- Department of Chemical Engineering, University of Michigan Ann Arbor, 2800 Plymouth Avenue, Ann Arbor, Michigan 48105, United States
| | - Heather B. Mayes
- Department of Chemical Engineering, University of Michigan Ann Arbor, 2800 Plymouth Avenue, Ann Arbor, Michigan 48105, United States
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Shishir P. S. Chundawat
- Department of Chemical & Biochemical Engineering, Rutgers The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, United States
| |
Collapse
|
14
|
Hu Z, Benkoulouche M, Barel LA, Le Heiget G, Ben Imeddourene A, Le Guen Y, Monties N, Guerreiro C, Remaud-Siméon M, Moulis C, André I, Mulard LA. Convergent Chemoenzymatic Strategy to Deliver a Diversity of Shigella flexneri Serotype-Specific O-Antigen Segments from a Unique Lightly Protected Tetrasaccharide Core. J Org Chem 2021; 86:2058-2075. [PMID: 32700907 DOI: 10.1021/acs.joc.0c00777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Progress in glycoscience is strongly dependent on the availability of broadly diverse tailor-made, well-defined, and often complex oligosaccharides. Herein, going beyond natural resources and aiming to circumvent chemical boundaries in glycochemistry, we tackle the development of an in vitro chemoenzymatic strategy holding great potential to answer the need for molecular diversity characterizing microbial cell-surface carbohydrates. The concept is exemplified in the context of Shigella flexneri, a major cause of diarrhoeal disease. Aiming at a broad serotype coverage S. flexneri glycoconjugate vaccine, a non-natural lightly protected tetrasaccharide was designed for compatibility with (i) serotype-specific glucosylations and O-acetylations defining S. flexneri O-antigens, (ii) recognition by suitable α-transglucosylases, and (iii) programmed oligomerization following enzymatic α-d-glucosylation. The tetrasaccharide core was chemically synthesized from two crystalline monosaccharide precursors. Six α-transglucosylases found in the glycoside hydrolase family 70 were shown to transfer glucosyl residues on the non-natural acceptor. The successful proof of concept is achieved for a pentasaccharide featuring the glucosylation pattern from the S. flexneri type IV O-antigen. It demonstrates the potential of appropriately planned chemoenzymatic pathways involving non-natural acceptors and low-cost donor/transglucosylase systems to achieve the demanding regioselective α-d-glucosylation of large substrates, paving the way to microbial oligosaccharides of vaccinal interest.
Collapse
Affiliation(s)
- Zhaoyu Hu
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Mounir Benkoulouche
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Louis-Antoine Barel
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Guillaume Le Heiget
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris 13, Sorbonne Paris Cité, 93430 Paris, France
| | - Akli Ben Imeddourene
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Yann Le Guen
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
| | - Nelly Monties
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Catherine Guerreiro
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Claire Moulis
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France. 135, Avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Laurence A Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28 Rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
15
|
Cunningham M, Vinderola G, Charalampopoulos D, Lebeer S, Sanders ME, Grimaldi R. Applying probiotics and prebiotics in new delivery formats – is the clinical evidence transferable? Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Jung J, Schmölzer K, Schachtschabel D, Speitling M, Nidetzky B. Selective β-Mono-Glycosylation of a C15-Hydroxylated Metabolite of the Agricultural Herbicide Cinmethylin Using Leloir Glycosyltransferases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5491-5499. [PMID: 33973475 PMCID: PMC8278484 DOI: 10.1021/acs.jafc.1c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Cinmethylin is a well-known benzyl-ether derivative of the natural terpene 1,4-cineole that is used industrially as a pre-emergence herbicide in grass weed control for crop protection. Cinmethylin detoxification in plants has not been reported, but in animals, it prominently involves hydroxylation at the benzylic C15 methyl group. Here, we show enzymatic β-glycosylation of synthetic 15-hydroxy-cinmethylin to prepare a putative phase II detoxification metabolite of the cinmethylin in plants. We examined eight Leloir glycosyltransferases for reactivity with 15-hydroxy cinmethylin and revealed the selective formation of 15-hydroxy cinmethylin β-d-glucoside from uridine 5'-diphosphate (UDP)-glucose by the UGT71E5 from safflower (Carthamus tinctorius). The UGT71E5 showed a specific activity of 431 mU/mg, about 300-fold higher than that of apple (Malus domestica) UGT71A15 that also performed the desired 15-hydroxy cinmethylin mono-glycosylation. Bacterial glycosyltransferases (OleD from Streptomyces antibioticus, 2.9 mU/mg; GT1 from Bacillus cereus, 60 mU/mg) produced mixtures of 15-hydroxy cinmethylin mono- and disaccharide glycosides. Using UDP-glucose recycling with sucrose synthase, 15-hydroxy cinmethylin conversion with UGT71E5 efficiently provided the β-mono-glucoside (≥95% yield; ∼9 mM) suitable for biological studies.
Collapse
Affiliation(s)
- Jihye Jung
- Austrian
Centre of Industrial Biotechnology, Graz A-8010, Austria
| | | | | | | | - Bernd Nidetzky
- Austrian
Centre of Industrial Biotechnology, Graz A-8010, Austria
- Institute
of Biotechnology and Biochemical Engineering, NAWI Graz, TU Graz, Graz A-8010, Austria
| |
Collapse
|
17
|
Arnold JW, Whittington HD, Dagher SF, Roach J, Azcarate-Peril MA, Bruno-Barcena JM. Safety and Modulatory Effects of Humanized Galacto-Oligosaccharides on the Gut Microbiome. Front Nutr 2021; 8:640100. [PMID: 33898497 PMCID: PMC8058378 DOI: 10.3389/fnut.2021.640100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 01/14/2023] Open
Abstract
Complex dietary carbohydrate structures including β(1-4) galacto-oligosaccharides (GOS) are resistant to digestion in the upper gastrointestinal (GI) tract and arrive intact to the colon where they benefit the host by selectively stimulating microbial growth. Studies have reported the beneficial impact of GOS (alone or in combination with other prebiotics) by serving as metabolic substrates for modulating the assembly of the infant gut microbiome while reducing GI infections. N-Acetyl-D-lactosamine (LacNAc, Galβ1,4GlcNAc) is found in breast milk as a free disaccharide. This compound is also found as a component of human milk oligosaccharides (HMOs), which have repeating and variably branched lactose and/or LacNAc units, often attached to sialic acid and fucose monosaccharides. Human glycosyl-hydrolases do not degrade most HMOs, indicating that these structures have evolved as natural prebiotics to drive the proper assembly of the infant healthy gut microbiota. Here, we sought to develop a novel enzymatic method for generating LacNAc-enriched GOS, which we refer to as humanized GOS (hGOS). We showed that the membrane-bound β-hexosyl transferase (rBHT) from Hamamotoa (Sporobolomyces) singularis was able to generate GOS and hGOS from lactose and N-Acetyl-glucosamine (GlcNAc). The enzyme catalyzed the regio-selective, repeated addition of galactose from lactose to GlcNAc forming the β-galactosyl linkage at the 4-position of the GlcNAc and at the 1-position of D-galactose generating, in addition to GOS, LacNAc, and Galactosyl-LacNAc trisaccharides which were produced by two sequential transgalactosylations. Humanized GOS is chemically distinct from HMOs, and its effects in vivo have yet to be determined. Thus, we evaluated its safety and demonstrated the prebiotic's ability to modulate the gut microbiome in 6-week-old C57BL/6J mice. Longitudinal analysis of gut microbiome composition of stool samples collected from mice fed a diet containing hGOS for 5 weeks showed a transient reduction in alpha diversity. Differences in microbiome community composition mostly within the Firmicutes phylum were observed between hGOS and GOS, compared to control-fed animals. In sum, our study demonstrated the biological synthesis of hGOS, and signaled its safety and ability to modulate the gut microbiome in vivo, promoting the growth of beneficial microorganisms, including Bifidobacterium and Akkermansia.
Collapse
Affiliation(s)
- Jason W. Arnold
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Hunter D. Whittington
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Suzanne F. Dagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Jeffery Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Jose M. Bruno-Barcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
18
|
Na L, Li R, Chen X. Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr Opin Chem Biol 2021. [PMID: 33310623 DOI: 10.1186/10.1016/j.cbpa.2020.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.
Collapse
Affiliation(s)
- Lan Na
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Riyao Li
- Department of Chemistry, University of California Davis, Davis, CA, USA
| | - Xi Chen
- Department of Chemistry, University of California Davis, Davis, CA, USA.
| |
Collapse
|
19
|
Liu H, Tegl G, Nidetzky B. Glycosyltransferase Co‐Immobilization for Natural Product Glycosylation: Cascade Biosynthesis of the
C
‐Glucoside Nothofagin with Efficient Reuse of Enzymes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001549] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hui Liu
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Gregor Tegl
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering Graz University of Technology, NAWI Graz Petersgasse 12 8010 Graz Austria
- Austrian Centre of Industrial Biotechnology (acib) Petersgasse 14 8010 Graz Austria
| |
Collapse
|
20
|
Liu Y, Ma J, Shi R, Li T, Yan Q, Jiang Z, Yang S. Biochemical characterization of a β-N-acetylhexosaminidase from Catenibacterium mitsuokai suitable for the synthesis of lacto-N-triose II. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
|
22
|
Zhao J, Tandrup T, Bissaro B, Barbe S, Poulsen JCN, André I, Dumon C, Lo Leggio L, O'Donohue MJ, Fauré R. Probing the determinants of the transglycosylation/hydrolysis partition in a retaining α-l-arabinofuranosidase. N Biotechnol 2021; 62:68-78. [PMID: 33524585 DOI: 10.1016/j.nbt.2021.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 12/15/2022]
Abstract
The use of retaining glycoside hydrolases as synthetic tools for glycochemistry is highly topical and the focus of considerable research. However, due to the incomplete identification of the molecular determinants of the transglycosylation/hydrolysis partition (t/h), rational engineering of retaining glycoside hydrolases to create transglycosylases remains challenging. Therefore, to understand better the factors that underpin transglycosylation in a GH51 retaining α-l-arabinofuranosidase from Thermobacillus xylanilyticus, the investigation of this enzyme's active site was pursued. Specifically, the properties of two mutants, F26L and L352M, located in the vicinity of the active site are described, using kinetic and 3D structural analyses and molecular dynamics simulations. The results reveal that the presence of L352M in the context of a triple mutant (also containing R69H and N216W) generates changes both in the donor and acceptor subsites, the latter being the result of a domino-like effect. Overall, the mutant R69H-N216W-L352M displays excellent transglycosylation activity (70 % yield, 78 % transfer rate and reduced secondary hydrolysis of the product). In the course of this study, the central role played by the conserved R69 residue was also reaffirmed. The mutation R69H affects both the catalytic nucleophile and the acid/base, including their flexibility, and has a determinant effect on the t/h partition. Finally, the results reveal that increased loop flexibility in the acceptor subsites creates new interactions with the acceptor, in particular with a hydrophobic binding platform composed of N216W, W248 and W302.
Collapse
Affiliation(s)
- Jiao Zhao
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Tobias Tandrup
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Bastien Bissaro
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Sophie Barbe
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Isabelle André
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Claire Dumon
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Régis Fauré
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.
| |
Collapse
|
23
|
Benkoulouche M, Ben Imeddourene A, Barel LA, Le Heiget G, Pizzut S, Kulyk H, Bellvert F, Bozonnet S, Mulard LA, Remaud-Siméon M, Moulis C, André I. Redirecting substrate regioselectivity using engineered ΔN 123-GBD-CD2 branching sucrases for the production of pentasaccharide repeating units of S. flexneri 3a, 4a and 4b haptens. Sci Rep 2021; 11:2474. [PMID: 33510212 PMCID: PMC7844235 DOI: 10.1038/s41598-021-81719-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/28/2020] [Indexed: 01/10/2023] Open
Abstract
The (chemo-)enzymatic synthesis of oligosaccharides has been hampered by the lack of appropriate enzymatic tools with requisite regio- and stereo-specificities. Engineering of carbohydrate-active enzymes, in particular targeting the enzyme active site, has notably led to catalysts with altered regioselectivity of the glycosylation reaction thereby enabling to extend the repertoire of enzymes for carbohydrate synthesis. Using a collection of 22 mutants of ΔN123-GBD-CD2 branching sucrase, an enzyme from the Glycoside Hydrolase family 70, containing between one and three mutations in the active site, and a lightly protected chemically synthesized tetrasaccharide as an acceptor substrate, we showed that altered glycosylation product specificities could be achieved compared to the parental enzyme. Six mutants were selected for further characterization as they produce higher amounts of two favored pentasaccharides compared to the parental enzyme and/or new products. The produced pentasaccharides were shown to be of high interest as they are precursors of representative haptens of Shigella flexneri serotypes 3a, 4a and 4b. Furthermore, their synthesis was shown to be controlled by the mutations introduced in the active site, driving the glucosylation toward one extremity or the other of the tetrasaccharide acceptor. To identify the molecular determinants involved in the change of ΔN123-GBD-CD2 regioselectivity, extensive molecular dynamics simulations were carried out in combination with in-depth analyses of amino acid residue networks. Our findings help to understand the inter-relationships between the enzyme structure, conformational flexibility and activity. They also provide new insight to further engineer this class of enzymes for the synthesis of carbohydrate components of bacterial haptens.
Collapse
Affiliation(s)
- Mounir Benkoulouche
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Akli Ben Imeddourene
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Louis-Antoine Barel
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28, rue du Dr Roux, 75724, Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Guillaume Le Heiget
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28, rue du Dr Roux, 75724, Paris Cedex 15, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Paris 13, Bobigny, France
| | - Sandra Pizzut
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Hanna Kulyk
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France.,MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Floriant Bellvert
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France.,MetaboHUB-MetaToul, National Infrastructure for Metabolomics and Fluxomics, Toulouse, France
| | - Sophie Bozonnet
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Laurence A Mulard
- Unité de Chimie des Biomolécules, Institut Pasteur, UMR3523 CNRS, 28, rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France
| | - Claire Moulis
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France.
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, 135, avenue de Rangueil, 31077, Toulouse Cedex 04, France.
| |
Collapse
|
24
|
Moulis C, Guieysse D, Morel S, Séverac E, Remaud-Siméon M. Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts. Curr Opin Chem Biol 2020; 61:96-106. [PMID: 33360622 DOI: 10.1016/j.cbpa.2020.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/22/2023]
Abstract
An increasing number of transglycosylase-based processes provide access to oligosaccharides or glycoconjugates, some of them reaching performance levels compatible with industrial developments. Nevertheless, the full potential of transglycosylases has not been explored because of the challenges in transforming a glycoside hydrolase into an efficient transglycosylase. Advances in studying enzyme structure/function relationships, screening enzyme activity, and generating synthetic libraries guided by computational protein design or machine learning methods should considerably accelerate the development of these catalysts. The time has now come for researchers to uncover their possibilities and learn how to design and precisely refine their activity to respond more rapidly to the growing demand for well-defined glycosidic structures.
Collapse
Affiliation(s)
- Claire Moulis
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France.
| | - David Guieysse
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Sandrine Morel
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Etienne Séverac
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France
| | - Magali Remaud-Siméon
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, 135, Avenue de Rangueil, Toulouse, Cedex 04, F-31077, France.
| |
Collapse
|
25
|
Recent progress in synthesis of carbohydrates with sugar nucleotide-dependent glycosyltransferases. Curr Opin Chem Biol 2020; 61:81-95. [PMID: 33310623 DOI: 10.1016/j.cbpa.2020.10.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
Sugar nucleotide-dependent glycosyltransferases (GTs) are key enzymes that catalyze the formation of glycosidic bonds in nature. They have been increasingly applied in the synthesis of complex carbohydrates and glycoconjugates with or without in situ generation of sugar nucleotides. Human GTs are becoming more accessible and new bacterial GTs have been identified and characterized. An increasing number of crystal structures elucidated for GTs from mammalian and bacterial sources facilitate structure-based design of mutants as improved catalysts for synthesis. Automated platforms have also been developed for chemoenzymatic synthesis of carbohydrates. Recent progress in applying sugar nucleotide-dependent GTs in enzymatic and chemoenzymatic synthesis of mammalian glycans and glycoconjugates, bacterial surface glycans, and glycosylated natural products from bacteria and plants are reviewed.
Collapse
|
26
|
Mikkola S. Nucleotide Sugars in Chemistry and Biology. Molecules 2020; 25:E5755. [PMID: 33291296 PMCID: PMC7729866 DOI: 10.3390/molecules25235755] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022] Open
Abstract
Nucleotide sugars have essential roles in every living creature. They are the building blocks of the biosynthesis of carbohydrates and their conjugates. They are involved in processes that are targets for drug development, and their analogs are potential inhibitors of these processes. Drug development requires efficient methods for the synthesis of oligosaccharides and nucleotide sugar building blocks as well as of modified structures as potential inhibitors. It requires also understanding the details of biological and chemical processes as well as the reactivity and reactions under different conditions. This article addresses all these issues by giving a broad overview on nucleotide sugars in biological and chemical reactions. As the background for the topic, glycosylation reactions in mammalian and bacterial cells are briefly discussed. In the following sections, structures and biosynthetic routes for nucleotide sugars, as well as the mechanisms of action of nucleotide sugar-utilizing enzymes, are discussed. Chemical topics include the reactivity and chemical synthesis methods. Finally, the enzymatic in vitro synthesis of nucleotide sugars and the utilization of enzyme cascades in the synthesis of nucleotide sugars and oligosaccharides are briefly discussed.
Collapse
Affiliation(s)
- Satu Mikkola
- Department of Chemistry, University of Turku, 20014 Turku, Finland
| |
Collapse
|
27
|
Liu YH, Wang L, Huang P, Jiang ZQ, Yan QJ, Yang SQ. Efficient sequential synthesis of lacto-N-triose II and lacto-N-neotetraose by a novel β-N-acetylhexosaminidase from Tyzzerella nexilis. Food Chem 2020; 332:127438. [DOI: 10.1016/j.foodchem.2020.127438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023]
|
28
|
Schematic overview of oligosaccharides, with survey on their major physiological effects and a focus on milk ones. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2020. [DOI: 10.1016/j.carpta.2020.100013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
29
|
Improved Transglycosylation by a Xyloglucan-Active α-l-Fucosidase from Fusarium graminearum. J Fungi (Basel) 2020; 6:jof6040295. [PMID: 33217923 PMCID: PMC7711723 DOI: 10.3390/jof6040295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Fusarium graminearum produces an α-l-fucosidase, FgFCO1, which so far appears to be the only known fungal GH29 α-l-fucosidase that catalyzes the release of fucose from fucosylated xyloglucan. In our quest to synthesize bioactive glycans by enzymatic catalysis, we observed that FgFCO1 is able to catalyze a transglycosylation reaction involving transfer of fucose from citrus peel xyloglucan to lactose to produce 2′-fucosyllactose, an important human milk oligosaccharide. In addition to achieving maximal yields, control of the regioselectivity is an important issue in exploiting such a transglycosylation ability successfully for glycan synthesis. In the present study, we aimed to improve the transglycosylation efficiency of FgFCO1 through protein engineering by transferring successful mutations from other GH29 α-l-fucosidases. We investigated several such mutation transfers by structural alignment, and report that transfer of the mutation F34I from BiAfcB originating from Bifidobacterium longum subsp. infantis to Y32I in FgFCO1 and mutation of D286, near the catalytic acid/base residue in FgFCO1, especially a D286M mutation, have a positive effect on FgFCO1 transfucosylation regioselectivity. We also found that enzymatic depolymerization of the xyloglucan substrate increases substrate accessibility and in turn transglycosylation (i.e., transfucosylation) efficiency. The data include analysis of the active site amino acids and the active site topology of FgFCO1 and show that transfer of point mutations across GH29 subfamilies is a rational strategy for targeted protein engineering of a xyloglucan-active fungal α-l-fucosidase.
Collapse
|
30
|
Enzymatic Synthesis of Glycans and Glycoconjugates. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 175:231-280. [PMID: 33052414 DOI: 10.1007/10_2020_148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Glycoconjugates have great potential to improve human health in a multitude of different ways and fields. Prominent examples are human milk oligosaccharides and glycosaminoglycans. The typical choice for the production of homogeneous glycoconjugates is enzymatic synthesis. Through the availability of expression and purification protocols, recombinant Leloir glycosyltransferases are widely applied as catalysts for the synthesis of a wide range of glycoconjugates. Extensive utilization of these enzymes also depends on the availability of activated sugars as building blocks. Multi-enzyme cascades have proven a versatile technique to synthesize and in situ regenerate nucleotide sugar.In this chapter, the functions and mechanisms of Leloir glycosyltransferases are revisited, and the advantage of prokaryotic sources and production systems is discussed. Moreover, in vivo and in vitro pathways for the synthesis of nucleotide sugar are reviewed. In the second part, recent and prominent examples of the application of Leloir glycosyltransferase are given, i.e., the synthesis of glycosaminoglycans, glycoconjugate vaccines, and human milk oligosaccharides as well as the re-glycosylation of biopharmaceuticals, and the status of automated glycan assembly is revisited.
Collapse
|
31
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
32
|
Nie Q, Chen H, Hu J, Tan H, Nie S, Xie M. Effects of Nondigestible Oligosaccharides on Obesity. Annu Rev Food Sci Technol 2020; 11:205-233. [DOI: 10.1146/annurev-food-032519-051743] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Obesity is a major public health concern that has almost reached the level of pandemic and is rapidly progressing. The gut microbiota has emerged as a crucial regulator involved in the etiology of obesity, and the manipulation of it by dietary intervention has been widely used for reducing the risk of obesity. Nondigestible oligosaccharides (NDOs) are attracting increasing interests as prebiotics, as the indigestible ingredients can induce compositional or metabolic improvement to the gut microbiota, thereby improving gut health and giving rise to the production of short-chain fatty acids (SCFAs) to elicit metabolic effects on obesity. In this review, the role NDOs play in obesity intervention via modification of the gut microecology, as well as the physicochemical and physiological properties and industrial manufacture of NDOs, is discussed. Our goal is to provide a critical assessment of and stimulate comprehensive research into NDO use in obesity.
Collapse
Affiliation(s)
- Qixing Nie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Haihong Chen
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China–Canada Joint Lab of Food Science and Technology, Nanchang University, Nanchang 330047, China;,
| |
Collapse
|
33
|
Abstract
Re-engineering carbohydrates and carbohydrate-binding proteins for novel applications was the topic of a Royal Society Theo Murphy meeting at the Kavli Royal Society Centre, Chichelely Hall in Buckinghamshire, UK, 8–9 October 2018.
Collapse
Affiliation(s)
- W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Anne Imberty
- University Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
| | - Ola Blixt
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|