1
|
Watson N, Brandel JP, Green A, Hermann P, Ladogana A, Lindsay T, Mackenzie J, Pocchiari M, Smith C, Zerr I, Pal S. The importance of ongoing international surveillance for Creutzfeldt-Jakob disease. Nat Rev Neurol 2021; 17:362-379. [PMID: 33972773 PMCID: PMC8109225 DOI: 10.1038/s41582-021-00488-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/04/2023]
Abstract
Creutzfeldt-Jakob disease (CJD) is a rapidly progressive, fatal and transmissible neurodegenerative disease associated with the accumulation of misfolded prion protein in the CNS. International CJD surveillance programmes have been active since the emergence, in the mid-1990s, of variant CJD (vCJD), a disease linked to bovine spongiform encephalopathy. Control measures have now successfully contained bovine spongiform encephalopathy and the incidence of vCJD has declined, leading to questions about the requirement for ongoing surveillance. However, several lines of evidence have raised concerns that further cases of vCJD could emerge as a result of prolonged incubation and/or secondary transmission. Emerging evidence from peripheral tissue distribution studies employing high-sensitivity assays suggests that all forms of human prion disease carry a theoretical risk of iatrogenic transmission. Finally, emerging diseases, such as chronic wasting disease and camel prion disease, pose further risks to public health. In this Review, we provide an up-to-date overview of the transmission of prion diseases in human populations and argue that CJD surveillance remains vital both from a public health perspective and to support essential research into disease pathophysiology, enhanced diagnostic tests and much-needed treatments.
Collapse
Affiliation(s)
- Neil Watson
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jean-Philippe Brandel
- grid.411439.a0000 0001 2150 9058Cellule Nationale de référence des MCJ, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Alison Green
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Peter Hermann
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Anna Ladogana
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Terri Lindsay
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Janet Mackenzie
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Maurizio Pocchiari
- grid.416651.10000 0000 9120 6856Registry of Creutzfeldt-Jakob Disease, Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | - Colin Smith
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Inga Zerr
- grid.411984.10000 0001 0482 5331National Reference Centre for TSE, Department of Neurology, University Medical Centre Göttingen, Göttingen, Germany
| | - Suvankar Pal
- grid.4305.20000 0004 1936 7988National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
2
|
Giaccone G, Moda F. PMCA Applications for Prion Detection in Peripheral Tissues of Patients with Variant Creutzfeldt-Jakob Disease. Biomolecules 2020; 10:biom10030405. [PMID: 32151109 PMCID: PMC7175161 DOI: 10.3390/biom10030405] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/19/2022] Open
Abstract
Prion diseases are neurodegenerative and invariably fatal conditions that affect humans and animals. In particular, Creutzfeldt-Jakob disease (CJD) and bovine spongiform encephalopathy (BSE) are paradigmatic forms of human and animal prion diseases, respectively. Human exposure to BSE through contaminated food caused the appearance of the new variant form of CJD (vCJD). These diseases are caused by an abnormal prion protein named PrPSc (or prion), which accumulates in the brain and leads to the onset of the disease. Their definite diagnosis can be formulated only at post-mortem after biochemical and neuropathological identification of PrPSc. Thanks to the advent of an innovative technique named protein misfolding cyclic amplification (PMCA), traces of PrPSc, undetectable with the standard diagnostic techniques, were found in peripheral tissues of patients with vCJD, even at preclinical stages. The technology is currently being used in specialized laboratories and can be exploited for helping physicians in formulating an early and definite diagnosis of vCJD using peripheral tissues. However, this assay is currently unable to detect prions associated with the sporadic CJD (sCJD) forms, which are more frequent than vCJD. This review will focus on the most recent advances and applications of PMCA in the field of vCJD and other human prion disease diagnosis.
Collapse
|
3
|
Najafi S, Vasheghani Farahani A, Keshavarz-Bahaghighat H. Initial Results of a Prospective Study and Identification of New Strategies to Increase Traceability of Plasma-derived Medicines. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:145-150. [PMID: 29796039 PMCID: PMC5958334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Plasma medicine is an innovative and emerging field used in a broad range of medical conditions. The present study focused on consumption and documentation pattern of plasma-derived medicines in a teaching hospital. A two-step study was conducted from October to December 2015. During the first phase, the patient records receiving plasma-derived medicines including Coagulation Factor VIII, IX, Prothrombin Complex Concentrate, Factor VIII/Von Wilberand Complex, Anti-Hepatitis B Immunoglobulin, Intravenous Immunoglobulin, Anti-Tetanus Immunoglobulin, and Albumin were checked to assess recording details of these medications at the time of administration. Adverse events reported with the mentioned products were examined from traceability viewpoint. The second step concentrated on practical strategies to improve documentation status of plasma-derived medicines in the hospital. We proposed national guideline as the first strategy and a new barcoding system to track and identify drug information of plasma medicines. Of the expected drug information, only generic name, dosage from, and strength were recorded after administration. Post-marketing safety surveillance of the plasma products was poor similarly. Unavailability of suitable instructions was the main reason for documentation deficiency. A guideline was designed and implemented to inform healthcare professionals about essentials of appropriate documentation for plasma-derived medicines. Updated results of the ongoing phase will be submitted soon. Our survey highlights the importance of documentation as a key component of plasma-derived medicines surveillance within the hospitals.
Collapse
Affiliation(s)
- Sheyda Najafi
- Tehran University of Medical Sciences, Faculty of Pharmacy.
| | - Ali Vasheghani Farahani
- Tehran University of Medical Sciences, Faculty of Pharmacy. ,Shahid Beheshti University of Medical Sciences, Faculty of Pharmacy, Department of Pharmacoeconomics and Pharmaceutical Management.
| | | |
Collapse
|
4
|
Cicchetti A, Berrino A, Casini M, Codella P, Facco G, Fiore A, Marano G, Marchetti M, Midolo E, Minacori R, Refolo P, Romano F, Ruggeri M, Sacchini D, Spagnolo AG, Urbina I, Vaglio S, Grazzini G, Liumbruno GM. Health Technology Assessment of pathogen reduction technologies applied to plasma for clinical use. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:287-386. [PMID: 27403740 PMCID: PMC4942318 DOI: 10.2450/2016.0065-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although existing clinical evidence shows that the transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens, new pathogens or re-emerging pathogens still persists. Pathogen reduction technologies may offer a new approach to increase blood safety. The study is the output of collaboration between the Italian National Blood Centre and the Post-Graduate School of Health Economics and Management, Catholic University of the Sacred Heart, Rome, Italy. A large, multidisciplinary team was created and divided into six groups, each of which addressed one or more HTA domains.Plasma treated with amotosalen + UV light, riboflavin + UV light, methylene blue or a solvent/detergent process was compared to fresh-frozen plasma with regards to current use, technical features, effectiveness, safety, economic and organisational impact, and ethical, social and legal implications. The available evidence is not sufficient to state which of the techniques compared is superior in terms of efficacy, safety and cost-effectiveness. Evidence on efficacy is only available for the solvent/detergent method, which proved to be non-inferior to untreated fresh-frozen plasma in the treatment of a wide range of congenital and acquired bleeding disorders. With regards to safety, the solvent/detergent technique apparently has the most favourable risk-benefit profile. Further research is needed to provide a comprehensive overview of the cost-effectiveness profile of the different pathogen-reduction techniques. The wide heterogeneity of results and the lack of comparative evidence are reasons why more comparative studies need to be performed.
Collapse
Affiliation(s)
- Americo Cicchetti
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Alexandra Berrino
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Marina Casini
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Paola Codella
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppina Facco
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Alessandra Fiore
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Marco Marchetti
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuela Midolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberta Minacori
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Pietro Refolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Federica Romano
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Ruggeri
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Dario Sacchini
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio G. Spagnolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Irene Urbina
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Giuliano Grazzini
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | | |
Collapse
|
5
|
Yang H, Gregori L, Asher DM, Epstein JS, Anderson SA. Risk assessment for transmission of variant Creutzfeldt-Jakob disease by transfusion of red blood cells in the United States. Transfusion 2014; 54:2194-201. [DOI: 10.1111/trf.12637] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/28/2014] [Accepted: 01/28/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Hong Yang
- US Food and Drug Administration; Rockville Maryland
| | | | | | | | | |
Collapse
|
6
|
Bishop MT, Diack AB, Ritchie DL, Ironside JW, Will RG, Manson JC. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease. ACTA ACUST UNITED AC 2013; 136:1139-45. [PMID: 23449776 PMCID: PMC3613713 DOI: 10.1093/brain/awt032] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Blood transfusion has been identified as a source of human-to-human transmission of variant Creutzfeldt–Jakob disease. Three cases of variant Creutzfeldt–Jakob disease have been identified following red cell transfusions from donors who subsequently developed variant Creutzfeldt–Jakob disease and an asymptomatic red cell transfusion recipient, who did not die of variant Creutzfeldt–Jakob disease, has been identified with prion protein deposition in the spleen and a lymph node, but not the brain. This individual was heterozygous (MV) at codon 129 of the prion protein gene (PRNP), whereas all previous definite and probable cases of variant Creutzfeldt–Jakob disease have been methionine homozygotes (MM). A critical question for public health is whether the prion protein deposition reported in peripheral tissues from this MV individual correlates with infectivity. Additionally it is important to establish whether the PRNP codon 129 genotype has influenced the transmission characteristics of the infectious agent. Brain and spleen from the MV blood recipient were inoculated into murine strains that have consistently demonstrated transmission of the variant Creutzfeldt–Jakob disease agent. Mice were assessed for clinical and pathological signs of disease and transmission data were compared with other transmission studies in variant Creutzfeldt–Jakob disease, including those on the spleen and brain of the donor to the index case. Transmission of variant Creutzfeldt–Jakob disease was observed from the MV blood recipient spleen, but not from the brain, whereas there was transmission from both spleen and brain tissues from the red blood cell donor. Longer incubation times were observed for the blood donor spleen inoculum compared with the blood donor brain inoculum, suggesting lower titres of infectivity in the spleen. The distribution of vacuolar pathology and abnormal prion protein in infected mice were similar following inoculation with both donor and recipient spleen homogenates, providing initial evidence of similar transmission properties after propagation in PRNP codon 129 MV and MM individuals. These studies demonstrate that spleen tissue from a PRNP MV genotype individual can propagate the variant Creutzfeldt–Jakob disease agent and that the infectious agent can be present in the spleen without CNS involvement.
Collapse
Affiliation(s)
- Matthew T Bishop
- National Creutzfeldt–Jakob Disease Research and Surveillance Unit, University of Edinburgh, Bryan Matthews Building, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- William G. Murphy
- Clinical Programmes and Strategy; Health Service Executive; King's Inns House; School of Medicine & Medical Science; University College; Dublin; Ireland
| |
Collapse
|
8
|
Wisniewski T, Goñi F. Could immunomodulation be used to prevent prion diseases? Expert Rev Anti Infect Ther 2012; 10:307-17. [PMID: 22397565 DOI: 10.1586/eri.11.177] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
All prion diseases are currently without effective treatment and are universally fatal. The underlying pathogenesis of prion diseases (prionoses) is related to an autocatalytic conformational conversion of PrP(C) (C for cellular) to a pathological and infectious conformer known as PrP(Sc) (Sc for scrapie) or PrP(Res) (Res for proteinase K resistant). The past experience with variant Creutzfeldt-Jakob disease, which originated from bovine spongiform encephalopathy, as well as the ongoing epidemic of chronic wasting disease has highlighted the necessity for effective prophylactic and/or therapeutic approaches. Human prionoses are most commonly sporadic, and hence therapy is primarily directed to stop progression; however, in animals the majority of prionoses are infectious and, as a result, the emphasis is on prevention of transmission. These infectious prionoses are most commonly acquired via the alimentary tract as a major portal of infectious agent entry, making mucosal immunization a potentially attractive method to produce a local immune response that can partially or completely prevent prion entry across the gut barrier, while at the same time producing a modulated systemic immunity that is unlikely to be associated with toxicity. A critical factor in any immunomodulatory methodology that targets a self-antigen is the need to delicately balance an effective humoral immune response with potential autoimmune inflammatory toxicity. The ongoing epidemic of chronic wasting disease affecting the USA and Korea, with the potential to spread to human populations, highlights the need for such immunomodulatory approaches.
Collapse
Affiliation(s)
- Thomas Wisniewski
- New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
9
|
Wisniewski T, Goñi F. Immunomodulation for prion and prion-related diseases. Expert Rev Vaccines 2011; 9:1441-52. [PMID: 21105779 DOI: 10.1586/erv.10.131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Prion diseases are a unique category of illness, affecting both animals and humans, where the underlying pathogenesis is related to a conformational change of a normal self protein called cellular prion protein to a pathological and infectious conformer known as scrapie prion protein (PrP(Sc)). Currently, all prion diseases lack effective treatment and are universally fatal. Past experiences with bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease mainly in Europe, as well as the current epidemic of chronic wasting disease in North America, have highlighted the need to develop prophylactic and/or therapeutic approaches. In Alzheimer's disease that, like prion disease, is a conformational neurodegenerative disorder, both passive and active immunization has been shown to be highly effective in model animals at preventing disease and cognitive deficits, with emerging data from human trials suggesting that this approach is able to reduce amyloid-related pathology. However, any immunomodulatory approach aimed at a self-antigen has to finely balance an effective humoral immune response with potential autoimmune toxicity. The prion diseases most commonly acquired by infection typically have the alimentary tract as a portal of infectious agent entry. This makes mucosal immunization a potentially attractive method to produce a local immune response that partially or completely prevents prion entry across the gut barrier, while at the same time producing modulated systemic immunity that is unlikely to be associated with toxicity. Our results using an attenuated Salmonella vaccine strain expressing the prion protein showed that mucosal vaccination can protect against prion infection from a peripheral source, suggesting the feasibility of this approach. It is also possible to develop active and/or passive immunomodulatory approaches that more specifically target PrP(Sc) or target the shared pathological conformer found in numerous conformational disorders. Such approaches could have a significant impact on many of the common age-associated dementias.
Collapse
Affiliation(s)
- Thomas Wisniewski
- Department of Psychiatry, Millhauser Laboratories, Room HN419, New York University School of Medicine, 560 First Avenue, New York, NY 10016, USA.
| | | |
Collapse
|
10
|
Vamvakas EC. Universal white blood cell reduction in Europe: has transmission of variant Creutzfeldt-Jakob disease been prevented? Transfus Med Rev 2011; 25:133-44. [PMID: 21345641 DOI: 10.1016/j.tmrv.2010.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Universal white blood cell (WBC) reduction was introduced in Europe to prevent transmission of variant Creutzfeldt-Jakob disease (vCJD) by transfusion. Findings from rodent models indicate that WBC reduction should not prevent vCJD transmission because the residual plasma infectivity suffices to infect transfusion recipients even under optimistic infectivity assumptions. Although infectivity in human blood may not partition in the manner in which it is distributed in rodents, prion-reduction filters remove the residual plasma infectivity in rodent models. Precautionary introduction of prion filtration in the UK--for patients without dietary exposure to bovine spongiform encephalopathy and in the absence of a reported case of vCJD transmission attributable to infectivity residing in plasma--is consistent with the (already in place for such subjects) precautionary importation to the UK of fresh frozen plasma from low-risk countries. Thus, implementation of prion filtration in the UK does not imply that universal WBC reduction--as currently practiced in Europe--does not abrogate transmission of vCJD. Because neither a human case of vCJD transmission through transfusion of WBC-reduced red blood cells nor a case of experimental bovine spongiform encephalopathy transmission by WBC-reduced transfusion to sheep has been reported, it cannot be concluded that ordinary WBC reduction is ineffective in preventing transfusion transmission in humans. Accordingly, universal WBC reduction for the prevention of vCJD in Europe should continue.
Collapse
Affiliation(s)
- Eleftherios C Vamvakas
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Room 3733, Los Angeles, CA 90048, USA.
| |
Collapse
|
11
|
Garske T, Ghani AC. Uncertainty in the tail of the variant Creutzfeldt-Jakob disease epidemic in the UK. PLoS One 2010; 5:e15626. [PMID: 21203419 PMCID: PMC3009744 DOI: 10.1371/journal.pone.0015626] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/18/2010] [Indexed: 11/18/2022] Open
Abstract
Despite low case numbers the variant Creutzfeldt-Jakob disease epidemic poses many challenges for public health planning due to remaining uncertainties in disease biology and transmission routes. We develop a stochastic model for variant CJD transmission, taking into account the known transmission routes (food and red-cell transfusion) to assess the remaining uncertainty in the epidemic. We use Bayesian methods to obtain scenarios consistent with current data. Our results show a potentially long but uncertain tail in the epidemic, with a peak annual incidence of around 11 cases, but the 95% credibility interval between 1 and 65 cases. These cases are predicted to be due to past food-borne transmissions occurring in previously mostly unaffected genotypes and to transmissions via blood transfusion in all genotypes. However, we also show that the latter are unlikely to be identifiable as transfusion-associated cases by case-linking. Regardless of the numbers of future cases, even in the absence of any further control measures, we do not find any self-sustaining epidemics.
Collapse
Affiliation(s)
- Tini Garske
- Department of Infectious Disease Epidemiology, Medical Research Council Centre of Outbreak Analysis and Modelling, Imperial College London, London, United Kingdom.
| | | |
Collapse
|
12
|
[Variant Creutzfeld-Jakob disease (vCJD) : Epidemiology and prevention from human to human secondary transmission]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2010; 53:597-605. [PMID: 20449549 DOI: 10.1007/s00103-010-1070-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the wake of the bovine spongiform encephalopathy (BSE) epidemic, variant Creutzfeldt-Jakob disease (vCJD) has emerged as a previously unknown prion disease of humans. The initial occurrence of vCJD was observed in 1995/1996, and, so far, a total of 219 vCJD cases have been reported worldwide from seven European and four non-European countries. Of these, 172 cases were observed in the United Kingdom. The exact prevalence of sub- or pre-clinical vCJD infections is unclear. Despite effective measures that have been implemented against both BSE in ruminants and its transmission to humans, there is now a theoretical risk of secondary vCJD transmissions from human to human, for example via blood and blood products, organs and tissues, or contaminated surgical instruments and medical devices. Four cases of probable vCJD transmissions via blood have been described, as well as one case of secondary infection via a plasma product. This article provides an overview of the surveillance and epidemiology of vCJD and outlines public health strategies for the risk assessment and risk management of this novel BSE-associated prion disease in humans.
Collapse
|
13
|
Chadeau-Hyam M, Clarke PS, Guihenneuc-Jouyaux C, Cousens SN, Will RG, Ghani AC. An application of hidden Markov models to the French variant Creutzfeldt-Jakob disease epidemic. J R Stat Soc Ser C Appl Stat 2010. [DOI: 10.1111/j.1467-9876.2010.00714.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
|
15
|
Pathological investigation of the first blood donor and recipient pair linked by transfusion-associated variant Creutzfeldt-Jakob disease transmission. Neuropathol Appl Neurobiol 2009; 35:433-436. [DOI: 10.1111/j.1365-2990.2009.01025.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Report of the Working Group 'Overall Blood Supply Strategy with Regard to Variant Creutzfeldt-Jakob Disease (vCJD)': Statement on the Development and Implementation of Test Systems Suitable for the Screening of Blood Donors for vCJD - Dated September 17, 2008. Transfus Med Hemother 2009; 36:79-93. [PMID: 21048823 DOI: 10.1159/000188082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
17
|
Turner ML, Ludlam CA. An update on the assessment and management of the risk of transmission of variant Creutzfeldt-Jakob disease by blood and plasma products. Br J Haematol 2009; 144:14-23. [DOI: 10.1111/j.1365-2141.2008.07376.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Houston F, McCutcheon S, Goldmann W, Chong A, Foster J, Sisó S, González L, Jeffrey M, Hunter N. Prion diseases are efficiently transmitted by blood transfusion in sheep. Blood 2008; 112:4739-45. [PMID: 18647958 DOI: 10.1182/blood-2008-04-152520] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of variant Creutzfeld-Jakob disease, following on from the bovine spongiform encephalopathy (BSE) epidemic, led to concerns about the potential risk of iatrogenic transmission of disease by blood transfusion and the introduction of costly control measures to protect blood supplies. We previously reported preliminary data demonstrating the transmission of BSE and natural scrapie by blood transfusion in sheep. The final results of this experiment, reported here, give unexpectedly high transmission rates by transfusion of 36% for BSE and 43% for scrapie. A proportion of BSE-infected transfusion recipients (3 of 8) survived for up to 7 years without showing clinical signs of disease. The majority of transmissions resulted from blood collected from donors at more than 50% of the estimated incubation period. The high transmission rates and relatively short and consistent incubation periods in clinically positive recipients suggest that infectivity titers in blood were substantial and/or that blood transfusion is an efficient method of transmission. This experiment has established the value of using sheep as a model for studying transmission of variant Creutzfeld-Jakob disease by blood products in humans.
Collapse
Affiliation(s)
- Fiona Houston
- Neuropathogenesis Division, Roslin Institute, Compton, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Garske T, Ward HJT, Clarke P, Will RG, Ghani AC. Factors determining the potential for onward transmission of variant Creutzfeldt-Jakob disease via surgical instruments. J R Soc Interface 2007; 3:757-66. [PMID: 17015298 PMCID: PMC1885367 DOI: 10.1098/rsif.2006.0142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While the number of variant Creutzfeldt-Jakob disease (vCJD) cases continues to decline, concern has been raised that transmission could occur directly from one person to another through routes including the transfer of blood and shared use of surgical instruments. Here we firstly present data on the surgical procedures undertaken on vCJD patients prior to onset of clinical symptoms, which supports the hypothesis that cases via this route are possible. We then apply a mathematical framework to assess the potential for self-sustaining epidemics via surgical procedures. Data from hospital episode statistics on the rates of high- and medium-risk procedures in the UK were used to estimate model parameters, and sensitivity to other unknown parameters about surgically transmitted vCJD was assessed. Our results demonstrate that a key uncertainty determining the scale of an epidemic and whether it is self-sustaining is the number of times a single instrument is re-used, alongside the infectivity of contaminated instruments and the effectiveness of cleaning. A survey into the frequency of re-use of surgical instruments would help reduce these uncertainties.
Collapse
Affiliation(s)
- Tini Garske
- Department of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | | | | | | | |
Collapse
|