1
|
Philippot L, Chenu C, Kappler A, Rillig MC, Fierer N. The interplay between microbial communities and soil properties. Nat Rev Microbiol 2024; 22:226-239. [PMID: 37863969 DOI: 10.1038/s41579-023-00980-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/22/2023]
Abstract
In recent years, there has been considerable progress in determining the soil properties that influence the structure of the soil microbiome. By contrast, the effects of microorganisms on their soil habitat have received less attention with most previous studies focusing on microbial contributions to soil carbon and nitrogen dynamics. However, soil microorganisms are not only involved in nutrient cycling and organic matter transformations but also alter the soil habitat through various biochemical and biophysical mechanisms. Such microbially mediated modifications of soil properties can have local impacts on microbiome assembly with pronounced ecological ramifications. In this Review, we describe the processes by which microorganisms modify the soil environment, considering soil physics, hydrology and chemistry. We explore how microorganism-soil interactions can generate feedback loops and discuss how microbially mediated modifications of soil properties can serve as an alternative avenue for the management and manipulation of microbiomes to combat soil threats and global change.
Collapse
Affiliation(s)
- Laurent Philippot
- Université de Bourgogne Franche-Comté, INRAE, Institut Agro Dijon, Department of Agroecology, Dijon, France.
| | - Claire Chenu
- University of Paris-Saclay, INRAE, AgroParisTech, Palaiseau, France
| | - Andreas Kappler
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Matthias C Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Noah Fierer
- Department of Ecology and Evolutionary Biology, Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
2
|
Wang Q, Hu X, Zhao Y, Jiang N, Yu X, Feng Y, Zhang J. Microscopic deposition-property relationships in microbial-induced consolidation of coal dusts. ENVIRONMENTAL RESEARCH 2024; 244:117956. [PMID: 38128598 DOI: 10.1016/j.envres.2023.117956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
In recent years, the preparation of new microbial dust suppressants based on microbial induced carbonate precipitation (MICP) technology through enriched urease-producing microbial communities has become a new topic in the field of coal dust control. The deposition of CaCO3 was the key to suppress coal dust. However, deposition characteristics in the field is not sufficient and the relationship between deposition characteristics and erosion resistance is not clear, which hinders the development of engineering application of new microbial dust suppressant. Therefore, based on X-CT technology, this paper observed and quantified micro-deposition of bio-consolidated coal dust with different calcium sources. Furthermore, a conceptual framework for deposition was proposed and its correlation with erosion resistance was revealed. The results showed that CaCO3 induced by calcium chloride and calcium lactate was aggregate deposited. Aggregate deposited CaCO3 was small in volume, showed the distribution of aggregation in the central area and loose outside, and mosaiced pores. CaCO3 induced by calcium nitrate was surface deposition due to attached biomass. Surface deposition was mostly large volume CaCO3 expanding from the inside out, which could cover coal dust to a high degree and completely cemented pores. In addition, the threshold detachment velocity of coal dust cemented by surface deposition was increased by 17.6-19.1% compared to aggregate deposition. This depended on the abundance and strength of CaCO3 bonding between coal dust particles under different deposition. The two-factor model based on porosity and CaCO3 coverage can well express relationship between erosion resistance and depositional characteristics. Those results will help the engineering application of MICP technology in coal dust suppression.
Collapse
Affiliation(s)
- Qingshan Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Xiangming Hu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Yanyun Zhao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China.
| | - Ningjun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, China; Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, USA
| | - Xiaoniu Yu
- Jiangsu Key Laboratory of Construction Materials, Southeast University, Nanjing, 211189, China; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yue Feng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| | - Juan Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China; Key Laboratory of Mining Disaster Prevention and Control, Shandong University of Science and Technology, Qingdao, Shandong, 266590, China
| |
Collapse
|
3
|
Zhang K, Tang CS, Jiang NJ, Pan XH, Liu B, Wang YJ, Shi B. Microbial‑induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. ENVIRONMENTAL EARTH SCIENCES 2023; 82:229. [PMID: 37128499 PMCID: PMC10131530 DOI: 10.1007/s12665-023-10899-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
The microbial‑induced carbonate precipitation (MICP), as an emerging biomineralization technology mediated by specific bacteria, has been a popular research focus for scientists and engineers through the previous two decades as an interdisciplinary approach. It provides cutting-edge solutions for various engineering problems emerging in the context of frequent and intense human activities. This paper is aimed at reviewing the fundaments and engineering applications of the MICP technology through existing studies, covering realistic need in geotechnical engineering, construction materials, hydraulic engineering, geological engineering, and environmental engineering. It adds a new perspective on the feasibility and difficulty for field practice. Analysis and discussion within different parts are generally carried out based on specific considerations in each field. MICP may bring comprehensive improvement of static and dynamic characteristics of geomaterials, thus enhancing their bearing capacity and resisting liquefication. It helps produce eco-friendly and durable building materials. MICP is a promising and cost-efficient technology in preserving water resources and subsurface fluid leakage. Piping, internal erosion and surface erosion could also be addressed by this technology. MICP has been proved suitable for stabilizing soils and shows promise in dealing with problematic soils like bentonite and expansive soils. It is also envisaged that this technology may be used to mitigate against impacts of geological hazards such as liquefaction associated with earthquakes. Moreover, global environment issues including fugitive dust, contaminated soil and climate change problems are assumed to be palliated or even removed via the positive effects of this technology. Bioaugmentation, biostimulation, and enzymatic approach are three feasible paths for MICP. Decision makers should choose a compatible, efficient and economical way among them and develop an on-site solution based on engineering conditions. To further decrease the cost and energy consumption of the MICP technology, it is reasonable to make full use of industrial by-products or wastes and non-sterilized media. The prospective direction of this technology is to make construction more intelligent without human intervention, such as autogenous healing. To reach this destination, MICP could be coupled with other techniques like encapsulation and ductile fibers. MICP is undoubtfully a mainstream engineering technology for the future, while ecological balance, environmental impact and industrial applicability should still be cautiously treated in its real practice.
Collapse
Affiliation(s)
- Kuan Zhang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Chao-Sheng Tang
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Ning-Jun Jiang
- Institute of Geotechnical Engineering, Southeast University, Nanjing, 211189 China
| | - Xiao-Hua Pan
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Bo Liu
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| | - Yi-Jie Wang
- Department of Civil and Environmental Engineering, University of Hawaii, Manoa, Honolulu, HI 96822 USA
| | - Bin Shi
- School of Earth Sciences and Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023 China
| |
Collapse
|
4
|
Qiu Y, Hu H, Lu Z, Tang C, Yao H. Influence of 2‐hydroxypropyltrimethyl ammonium chloride chitosan on sedimentation and volume change behavior of cohesive soil sediments. J Appl Polym Sci 2022. [DOI: 10.1002/app.53307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yu Qiu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan Hubei China
- University of Chinese Academy of Sciences Beijing China
| | - Haixiang Hu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan Hubei China
| | - Zheng Lu
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan Hubei China
- Hubei Key Laboratory of Geo‐Environmental Engineering Wuhan Hubei China
| | - Chuxuan Tang
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan Hubei China
- University of Chinese Academy of Sciences Beijing China
| | - Hailin Yao
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan Hubei China
| |
Collapse
|
5
|
Gómez-González S, Paniw M, Blanco-Pastor JL, García-Cervigón AI, Godoy O, Herrera JM, Lara A, Miranda A, Ojeda F, Ochoa-Hueso R. Moving towards the ecological intensification of tree plantations. TRENDS IN PLANT SCIENCE 2022; 27:637-645. [PMID: 35039247 DOI: 10.1016/j.tplants.2021.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
The growing demand for timber and the boom in massive tree-planting programs could mean the spreading of mismanaged tree plantations worldwide. Here, we apply the concept of ecological intensification to forestry systems as a viable biodiversity-focused strategy that could be critical to develop productive, yet sustainable, tree plantations. Tree plantations can be highly productive if tree species are properly combined to complement their ecological functions. Simultaneously considering soil biodiversity and animal-mediated biocontrol will be critical to minimize the reliance on external inputs. Integrating genetic, functional, and demographic diversity across heterogeneous landscapes should improve resilience under climate change. Designing ecologically intensified plantations will mean breaking the timber productivity versus conservation dichotomy and assuring the maintenance of key ecosystem services at safe levels.
Collapse
Affiliation(s)
- Susana Gómez-González
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain; Center for Climate and Resilience Research (CR)2, Blanco Encalada 2002, 8370449 Santiago, Chile; Center for Fire and Socioecological Systems (FireSES), Universidad Austral de Chile, Campus Isla Teja, 5090000 Valdivia, Chile.
| | - Maria Paniw
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD-CSIC), Avenida Americo Vespucio 26, 41092 Sevilla, Spain
| | - José Luis Blanco-Pastor
- Department of Plant Biology and Ecology, University of Seville, Avenida Reina Mercedes 6, 41012 Seville, Spain
| | - Ana I García-Cervigón
- Biodiversity and Conservation Area, Rey Juan Carlos University, c/ Tulipán s/n, 28933 Móstoles, Spain
| | - Oscar Godoy
- Instituto Universitario de Investigación Marina (INMAR), Departamento de Biología, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
| | - José M Herrera
- Mediterranean Institute for Agriculture, Environment and Development and University of Évora, Casa Cordovil, 2nd Floor, R. Dom Augusto Eduardo Nunes 7, 7000 - 651 Évora, Portugal
| | - Antonio Lara
- Center for Climate and Resilience Research (CR)2, Blanco Encalada 2002, 8370449 Santiago, Chile; Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Campus Isla Teja, 5090000 Valdivia, Chile; Fundación Centro de los Bosques Nativos Forecos, Valdivia, Chile
| | - Alejandro Miranda
- Center for Climate and Resilience Research (CR)2, Blanco Encalada 2002, 8370449 Santiago, Chile; Laboratorio de Ecología del Paisaje y Conservación, Departamento de Ciencias Forestales, Universidad de La Frontera, P.O. Box 54-D, 4780000 Temuco, Chile
| | - Fernando Ojeda
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
| | - Raúl Ochoa-Hueso
- Departamento de Biología-IVAGRO, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain; Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, The Netherlands
| |
Collapse
|
6
|
Coban O, De Deyn GB, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands. Science 2022; 375:abe0725. [PMID: 35239372 DOI: 10.1126/science.abe0725] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Land degradation reduces soil functioning and, consequently, the services that soil provides. Soil hydrological functions are critical to combat soil degradation and promote soil restoration. Soil microorganisms affect soil hydrology, but the role of soil microbiota in forming and sustaining soil is not well explored. Case studies indicate the potential of soil microorganisms as game-changers in restoring soil functions. We review the state of the art of microorganism use in land restoration technology, the groups of microorganisms with the greatest potential for soil restoration, knowledge of the effect of microorganisms on soil physical properties, and proposed strategies for the long-term restoration of degraded lands. We also emphasize the need to advance the emerging research field of biophysical landscape interactions to support soil-plant ecosystem restoration practices.
Collapse
Affiliation(s)
- Oksana Coban
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Gerlinde B De Deyn
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Martine van der Ploeg
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
7
|
Maleki-Kakelar M, Azarhoosh MJ, Golmohammadi Senji S, Aghaeinejad-Meybodi A. Urease production using corn steep liquor as a low-cost nutrient source by Sporosarcina pasteurii: biocementation and process optimization via artificial intelligence approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13767-13781. [PMID: 34599437 DOI: 10.1007/s11356-021-16568-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
To commercialize the biocementation through microbial induced carbonate precipitation (MICP), the current study aimed at replacing the costly standard nutrient medium with corn steep liquor (CSL), an inexpensive bio-industrial by-product, on the production of urease enzyme by Sporosarcina pasteurii (PTC 1845). Multiple linear regression (MLR) in linear and quadratic forms, adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) were used for modeling of process based on the experimental data for improving the urease activity (UA). In these models, CSL concentration, urea concentration, nickel supplementation, and incubation time as independent variables and UA as target function were considered. The results of modeling showed that the GP model had the best performance to predict the extent of urease, compared to other ones. The GP model had higher R2 as well as lower RSME in comparison with the models derived from ANFIS and MLR. Under the optimum conditions optimized by GP method, the maximum UA value of 3.6 Mm min-1 was also obtained for 5%v/v CSL concentration, 4.5 g L-1 urea concentration, 0 μM nickel supplementation, and 60 h incubation time. A good agreement between the outputs of GP model for the optimal UA and experimental result was obtained. Finally, a series of laboratory experiments were undertaken to evaluate the influence of biological cementation on the strengthening behavior of treated soil. The maximum shear stress improvement between bio-treated and untreated samples was 292% under normal stress of 55.5 kN as a result of an increase in interparticle cohesion parameters.
Collapse
|
8
|
Lal R, Monger C, Nave L, Smith P. The role of soil in regulation of climate. Philos Trans R Soc Lond B Biol Sci 2021; 376:20210084. [PMID: 34365818 PMCID: PMC8349633 DOI: 10.1098/rstb.2021.0084] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/17/2022] Open
Abstract
The soil carbon (C) stock, comprising soil organic C (SOC) and soil inorganic C (SIC) and being the largest reservoir of the terrestrial biosphere, is a critical part of the global C cycle. Soil has been a source of greenhouse gases (GHGs) since the dawn of settled agriculture about 10 millenia ago. Soils of agricultural ecosystems are depleted of their SOC stocks and the magnitude of depletion is greater in those prone to accelerated erosion by water and wind and other degradation processes. Adoption of judicious land use and science-based management practices can lead to re-carbonization of depleted soils and make them a sink for atmospheric C. Soils in humid climates have potential to increase storage of SOC and those in arid and semiarid climates have potential to store both SOC and SIC. Payments to land managers for sequestration of C in soil, based on credible measurement of changes in soil C stocks at farm or landscape levels, are also important for promoting adoption of recommended land use and management practices. In conjunction with a rapid and aggressive reduction in GHG emissions across all sectors of the economy, sequestration of C in soil (and vegetation) can be an important negative emissions method for limiting global warming to 1.5 or 2°C This article is part of the theme issue 'The role of soils in delivering Nature's Contributions to People'.
Collapse
Affiliation(s)
- Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, The Ohio State University, Columbus, OH 43210, USA
| | - Curtis Monger
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM 88003, USA
| | - Luke Nave
- Biological Station and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48104, USA
- Northern Institute of Applied Climate Science, United States Department of Agriculture Forest Service, Houghton, MI 49931, USA
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK
| |
Collapse
|
9
|
Koner S, Chen JS, Hsu BM, Tan CW, Fan CW, Chen TH, Hussain B, Nagarajan V. Assessment of Carbon Substrate Catabolism Pattern and Functional Metabolic Pathway for Microbiota of Limestone Caves. Microorganisms 2021; 9:microorganisms9081789. [PMID: 34442868 PMCID: PMC8398112 DOI: 10.3390/microorganisms9081789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022] Open
Abstract
Carbon utilization of bacterial communities is a key factor of the biomineralization process in limestone-rich curst areas. An efficient carbon catabolism of the microbial community is associated with the availability of carbon sources in such an ecological niche. As cave environments promote oligotrophic (carbon source stress) situations, the present study investigated the variations of different carbon substrate utilization patterns of soil and rock microbial communities between outside and inside cave environments in limestone-rich crust topography by Biolog EcoPlate™ assay and categorized their taxonomical structure and predicted functional metabolic pathways based on 16S rRNA amplicon sequencing. Community level physiological profiling (CLPP) analysis by Biolog EcoPlate™ assay revealed that microbes from outside of the cave were metabolically active and had higher carbon source utilization rate than the microbial community inside the cave. 16S rRNA amplicon sequence analysis demonstrated, among eight predominant bacterial phylum Planctomycetes, Proteobacteria, Cyanobacteria, and Nitrospirae were predominantly associated with outside-cave samples, whereas Acidobacteria, Actinobacteria, Chloroflexi, and Gemmatimonadetes were associated with inside-cave samples. Functional prediction showed bacterial communities both inside and outside of the cave were functionally involved in the metabolism of carbohydrates, amino acids, lipids, xenobiotic compounds, energy metabolism, and environmental information processing. However, the amino acid and carbohydrate metabolic pathways were predominantly linked to the outside-cave samples, while xenobiotic compounds, lipids, other amino acids, and energy metabolism were associated with inside-cave samples. Overall, a positive correlation was observed between Biolog EcoPlate™ assay carbon utilization and the abundance of functional metabolic pathways in this study.
Collapse
Affiliation(s)
- Suprokash Koner
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (S.K.); (B.H.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Jung-Sheng Chen
- Department of Medical Research, E-Da Hospital, Kaohsiung 824, Taiwan;
| | - Bing-Mu Hsu
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
- Center for Innovative on Aging Society (CIRAS), National Chung Cheng University, Chiayi City 621, Taiwan
- Correspondence: ; Tel.: +886-5272-0411 (ext. 66218)
| | - Chao-Wen Tan
- Division of Cardiology, Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan;
| | - Cheng-Wei Fan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi City 600, Taiwan;
| | - Bashir Hussain
- Department of Biomedical Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (S.K.); (B.H.)
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| | - Viji Nagarajan
- Department of Earth and Environmental Sciences, National Chung Cheng University, Chiayi City 621, Taiwan; (C.-W.F.); (V.N.)
| |
Collapse
|
10
|
Isolation and Characterization of Urease-Producing Soil Bacteria. Int J Microbiol 2021; 2021:8888641. [PMID: 34335782 PMCID: PMC8286177 DOI: 10.1155/2021/8888641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/11/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
Urease is an enzyme produced by ureolytic microorganisms which hydrolyzes urea into ammonia and carbon dioxide. Microbial urease has wide applications in biotechnology, agriculture, medicine, construction, and geotechnical engineering. Urease-producing microbes can be isolated from different ecosystems such as soil, oceans, and various geological formations. The aim of this study was to isolate and characterize rapid urease-producing bacteria from Ethiopian soils. Using qualitative urease activity assay, twenty urease-producing bacterial isolates were screened and selected. Among these, three expressed urease at high rates as determined by a conductivity assay. The isolates were further characterized with respect to their biochemical, morphological, molecular, and exoenzyme profile characteristics. The active urease-producing bacterial isolates were found to be nonhalophilic to slightly halophilic neutrophiles and aerobic mesophiles with a range of tolerance towards pH (4.0-10.0), NaCl (0.25-5%), and temperature (20-40°C). According to the API ZYM assays, all three isolates were positive for alkaline phosphatase, leucine aryl amidase, acid phosphatase, and naphthol_AS_BI_phosphohydrolase. The closest described relatives of the selected three isolates (Isolate_3, Isolate_7, and Isolate_11) were Bacillus paramycoides, Citrobacter sedlakii, and Enterobacter bugandensis with 16S rRNA gene sequence identity of 99.0, 99.2, and 98.9%, respectively. From the study, it was concluded that the three strains appear to have a relatively higher potential for urease production and be able to grow under a wider range of growth conditions.
Collapse
|
11
|
Micro-mechanical performance evaluation of expansive soil biotreated with indigenous bacteria using MICP method. Sci Rep 2021; 11:10324. [PMID: 33990644 PMCID: PMC8121830 DOI: 10.1038/s41598-021-89687-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
This study explored the effect of indigenous bacteria present in the soil to stabilized swelling behavior and improving the mechanical property of expansive soil. The objective of the research is to investigate the effectiveness of the biostimulation microbial induced calcite precipitation (MICP) for controlling the swelling-shrinkage behavior and improving shear strength of expansive soil. An attempt was made to develop an effective procedure to culture the indigenous bacteria for treating clays with varying plasticity and improve their engineering behavior. The detailed procedure has been investigated to effectively apply the MICP technique in clay soil, considering its low permeable nature. The applicability of biostimulation to clayey soils in minimizing their swelling potential and improving the strength is assessed. Both macroscale and microscale studies were conducted on untreated and biostimulated soils to observe changes in plasticity, strength, swelling, mineralogical, chemical characteristics. The present method has shown an effective alternative to improve the road pavement subgrade without affecting the eco-system of natural soil. The method investigated the effective way of providing the enrichment and cementation solution in clayey soil, which is the major concern in current literature. The study confirms that the calcite content has been increased with biostimulated MICP treatment up to 205% in the treated specimens and which future increased the unconfined compressive strength and split tensile strength. A reduction in the swelling pressure and swell strain is also observed. The results show that a cost-effect and eco-friendly method can be deployed for stabilizing the road pavement subgrades. The statistical assessment using multivariate analysis and hierarchical clustering dendrogram has been carried out to investigate the effect of the MICP treatment protocol on different soil and engineering parameters.
Collapse
|
12
|
Application of Microbial Bioenzymes in Soil Stabilization. Int J Microbiol 2020; 2020:1725482. [PMID: 32831843 PMCID: PMC7424078 DOI: 10.1155/2020/1725482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 06/06/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
Soil stabilization is a mechanical or chemical alteration of one or more soil properties to create an improved soil material possessing the desired engineering properties. The aim of this article was to review bioenzyme-based soil stabilization techniques with an emphasis on bioenzymes production, mechanism of soil stabilization and future challenges, and opportunities of the sector. Soils are stabilized to increase strength and durability or to prevent erosion and dust generation. Cost-effective soil stabilization technology has been a fundamental part of any construction and is very important for economic growth in any country. In some cases, construction has been challenged due to the high cost of soil stabilization processes. Besides, methods of stabilizations using common stabilizing agents are getting costly. Currently, there is a growing interest to identify new and green technology to improve construction techniques and to expand the road network. Therefore, the search for new materials and improved techniques to process the local materials has received an increased focus. For developing countries, bioenzymes are now creating an opportunity to improve soil stability with tremendous effectiveness in the overall process of soil stabilization. In the world, bioenzymes have been used in different projects for several years and are generally proprietary products, often of patented formulation that needs intensive field tests. Currently, the use and production of bioenzymes is becoming the most promising key for the advancement of a country by saving time, energy, and finance. It also reduces environmental pollution due to carbon emission by the conventional stabilizers. Thus, a better understanding of this emerging technology is of utmost importance to exploit any improvement it can offer to soil stability. With little research and practice, it is possible to produce soil stabilizing bioenzymes using local raw materials. Due to this, production of low cost, easily and widely applicable, and environmentally friendly enzymatic formulations from locally available raw materials should be the interest of research and academic institutes of any country.
Collapse
|
13
|
Ohan JA, Saneiyan S, Lee J, Bartlow AW, Ntarlagiannis D, Burns SE, Colwell FS. Microbial and Geochemical Dynamics of an Aquifer Stimulated for Microbial Induced Calcite Precipitation (MICP). Front Microbiol 2020; 11:1327. [PMID: 32612598 PMCID: PMC7309221 DOI: 10.3389/fmicb.2020.01327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/25/2020] [Indexed: 11/28/2022] Open
Abstract
Microbially induced calcite precipitation (MICP) is an alternative to existing soil stabilization techniques for construction and erosion. As with any biologically induced process in soils or aquifers, it is important to track changes in the microbial communities that occur as a result of the treatment. Our research assessed how native microbial communities developed in response to injections of reactants (dilute molasses as a carbon source; urea as a source of nitrogen and alkalinity) that promoted MICP in a shallow aquifer. Microbial community composition (16S rRNA gene) and ureolytic potential (ureC gene copy numbers) were also measured in groundwater and artificial sediment. Aquifer geochemistry showed evidence of sulfate reduction, nitrification, denitrification, ureolysis, and iron reduction during the treatment. The observed changes in geochemistry corresponded to microbial community succession in the groundwater and this matched parallel geophysical and mineralogical evidence of calcite precipitation in the aquifer. We detected an increase in the number of ureC genes in the microbial communities at the end of the injection period, suggesting an increase in the abundance of microbes possessing this gene as needed to hydrolyze urea and stimulate MICP. We identify geochemical and biological markers that highlight the microbial community response that can be used along with geophysical and geotechnical evidence to assess progress of MICP.
Collapse
Affiliation(s)
- J A Ohan
- Department of Microbiology, Oregon State University, Corvallis, OR, United States.,Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - S Saneiyan
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - J Lee
- College of Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew W Bartlow
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - D Ntarlagiannis
- Department of Earth & Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - S E Burns
- College of Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Frederick S Colwell
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
14
|
Kashizadeh E, Mukherjee A, Tordesillas A. Experimental and numerical investigation on heap formation of granular soil sparsely cemented by bacterial calcification. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2019.09.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Mekonnen E, Kebede A, Tafesse T, Tafesse M. Investigation of carbon substrate utilization patterns of three ureolytic bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Global CO2 Emission-Related Geotechnical Engineering Hazards and the Mission for Sustainable Geotechnical Engineering. ENERGIES 2019. [DOI: 10.3390/en12132567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Global warming and climate change caused by greenhouse gas (GHG) emissions have rapidly increased the occurrence of abnormal climate events, and both the scale and frequency of geotechnical engineering hazards (GEHs) accordingly. In response, geotechnical engineers have a responsibility to provide countermeasures to mitigate GEHs through various ground improvement techniques. Thus, this study provides a comprehensive review of the possible correlation between GHG emissions and GEHs using statistical data, a review of ground improvement methods that have been studied to reduce the carbon footprint of geotechnical engineering, and a discussion of the direction in which geotechnical engineering should proceed in the future.
Collapse
|
17
|
Peng J, Liu Z. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS One 2019; 14:e0218396. [PMID: 31211807 PMCID: PMC6581288 DOI: 10.1371/journal.pone.0218396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/01/2019] [Indexed: 11/19/2022] Open
Abstract
Microbially induced calcium carbonate precipitation (MICP) is a potential method for improvement of soil. A laboratory study was conducted to investigate the influence of temperatures for soil improvement by MICP. The ureolytic activity experiments, MICP experiments in aqueous solution and sand column using Sporosarcina pasteurii were conducted at different temperatures(10, 15, 20, 25 and 30°C). The results showed there were microbially induced CaCO3 precipitation at all the temperatures from 10 to 30°C. The results of ureolytic activity experiments showed that the bacterial had higher ureolytic activity at high temperatures within the early 20 hours, however, the ureolytic activity at higher temperatures decreased more quickly than at lower temperatures. The results of MICP experiments in aqueous solution and sand column were consistent with tests of ureolytic activity. Within 20 to 50 hours of the start of the test, more CaCO3 precipitation was precipitated at higher temperature, subsequently, the precipitation rate of all experiments decreased, and the higher the temperature, the faster the precipitation rate dropped. The final precipitation amount of CaCO3 in aqueous solution and sand column tests at 10 °C was 92% and 37% higher than that at 30 °C. The maximum unconfined compressive strength of MICP treated sand column at 10 °C was 135% higher than that at 30 °C. The final treatment effect of MICP at lower temperature was better than that at high temperature within the temperature range studied. The reason for better treatment effect at lower temperatures was due to the longer retention time of ureolytic activity of bacteria at lower temperatures.
Collapse
Affiliation(s)
- Jie Peng
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu, China
- Geotechnical Research Institute, Hohai University, Nanjing, Jiangsu, China
- * E-mail:
| | - Zhiming Liu
- Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing, Jiangsu, China
- Geotechnical Research Institute, Hohai University, Nanjing, Jiangsu, China
| |
Collapse
|
18
|
Liu H, Wang Y, Jiang H, Sun D, Yang F. Insight into the correlation between biochar amendment and shifts in bacterial community 4 years after a single incorporation in soybean- and maize-planted soils in northeastern China. Can J Microbiol 2019; 65:353-364. [PMID: 30649912 DOI: 10.1139/cjm-2018-0366] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
To date, there have been few reports examining the correlation between biochar treatments, crop species, and microbiome shifts. In this study, shifts in the soil bacterial community were investigated 4 years after a single incorporation of biochar in soils planted with soybeans and maize. Clear changes in the bacterial community composition and structure were detected in the soybean-planted soil amended with low-titer biochar (7.89 t/ha), whereas such changes in the maize-planted soil were not observed at the same biochar amendment rate, suggesting a more sensitive influence on the bacterial community in the soybean-planted soil than that in the maize-planted soil. Bacterial abundance in the maize-planted soil was reduced significantly with increasing biochar addition (15.78 and 47.34 t/ha), which was probably due to the inhibitory substances originating from biochar. Both the bacterial community and biomarkers in soil under biochar amendment varied with planted crops, bacterial communities responding differently to biochar amendment. All these results suggested that biochar might influence the bacterial community in maize- and soybean-growing soils under different mechanisms. Our findings should be valuable for an in-depth understanding of the potential mechanism of soil microbiome changes following biochar incorporation and for biochar application in agriculture.
Collapse
Affiliation(s)
- Huixue Liu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Yafang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Haizhu Jiang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Dayu Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, P.R. China
| |
Collapse
|
19
|
DeJong JT, Kavazanjian E. Bio-mediated and Bio-inspired Geotechnics. GEOTECHNICAL FUNDAMENTALS FOR ADDRESSING NEW WORLD CHALLENGES 2019. [DOI: 10.1007/978-3-030-06249-1_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
20
|
Yu X, Jiang J. Mineralization and cementing properties of bio-carbonate cement, bio-phosphate cement, and bio-carbonate/phosphate cement: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21483-21497. [PMID: 29948713 DOI: 10.1007/s11356-018-2143-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Due to high pollution associated with traditional Portland cement and bio-carbonate cement, a new generation of cementitious material needs to be developed. Bio-barium phosphate, magnesium phosphate, and ferric phosphate are synthesized by bio-mineralization. Firstly, the substrate is hydrolyzed by alkaline phosphatase secreted via phosphate-mineralization microbes, obtaining phosphate ions. Micro- and nano-scale phosphate minerals are prepared by phosphate ions reacting with different types of metal cation. The setting time of bio-BaHPO4 has a greater effect on the strength of sand columns when a mixing precipitation process is innovatively adopted. The strength of the sand columns increases as bio-BaHPO4 content (10~50%) increases. The optimum content of bio-BaHPO4 is 60%. Porosity and permeability of the sand columns decrease as bio-BaHPO4 content (10~60%) increases. Ammonium and ammonia can effectively be synthesized to magnesium ammonium phosphate by adding K2HPO4·3H2O to Sporosarcina pasteurii liquid. Permeability, porosity, and compressive strength of the sand columns are close to CJ1, CJ1.5, and CJ2 cementation. However, the fixation ammonia ratio of CJ2 is bigger than CJ1 and CJ1.5 (The mixture solutions of Sporosarcina pasteurii and K2HPO4·3H2O (1, 1.5, and 2 mol/L) are named as CJ1, CJ1.5, and CJ2) cementation. The results show that the Sporosarcina pasteurii liquid containing K2HPO4·3H2O (2 mol/L) and the mixture solution of MgCl2 and urea (3 mol/L) cemented loose sand particles best. Two types of bio-cement are environmentally friendly and can partially or completely replace bio-carbonate cement.
Collapse
Affiliation(s)
- Xiaoniu Yu
- School of Environment, Tsinghua University, Beijing, 100084, China
- College of Architecture and Civil Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianguo Jiang
- School of Environment, Tsinghua University, Beijing, 100084, China.
- Key Laboratory for Solid Waste Management and Environment Safety, Ministry of Education of China, Beijing, 100084, China.
- Collaborative Innovation Center for Regional Environmental Quality, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
El Mountassir G, Minto JM, van Paassen LA, Salifu E, Lunn RJ. Applications of Microbial Processes in Geotechnical Engineering. ADVANCES IN APPLIED MICROBIOLOGY 2018; 104:39-91. [PMID: 30143252 DOI: 10.1016/bs.aambs.2018.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the last 10-15 years, a new field of "biogeotechnics" has emerged as geotechnical engineers seek to find ground improvement technologies which have the potential to be lower carbon, more ecologically friendly, and more cost-effective than existing practices. This review summarizes the developments which have occurred in this new field, outlining in particular the microbial processes which have been shown to be most promising for altering the hydraulic and mechanical responses of soils and rocks. Much of the research effort in this new field has been focused on microbially induced carbonate precipitation (MICP) via ureolysis, while a comprehensive review of MICP is presented here, the developments which have been made regarding other microbial processes, including MICP via denitrification and biogenic gas generation are also presented. Furthermore, this review outlines a new area of study: the potential deployment of fungi in geotechnical applications which has until now been unexplored.
Collapse
Affiliation(s)
- Grainne El Mountassir
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom.
| | - James M Minto
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Leon A van Paassen
- Center for Bio-mediated and Bio-inspired Geotechnics (CBBG), Arizona State University, Tempe, AZ, United States
| | - Emmanuel Salifu
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom; Dipartimento di Ingegneria Civile, Edile e Ambientale, Università di Napoli Federico II, Naples, Italy
| | - Rebecca J Lunn
- Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
22
|
Biomineralization Mediated by Ureolytic Bacteria Applied to Water Treatment: A Review. CRYSTALS 2017. [DOI: 10.3390/cryst7110345] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Amor DR, Montañez R, Duran-Nebreda S, Solé R. Spatial dynamics of synthetic microbial mutualists and their parasites. PLoS Comput Biol 2017; 13:e1005689. [PMID: 28827802 PMCID: PMC5584972 DOI: 10.1371/journal.pcbi.1005689] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 09/05/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
A major force contributing to the emergence of novelty in nature is the presence of cooperative interactions, where two or more components of a system act in synergy, sometimes leading to higher-order, emergent phenomena. Within molecular evolution, the so called hypercycle defines the simplest model of an autocatalytic cycle, providing major theoretical insights on the evolution of cooperation in the early biosphere. These closed cooperative loops have also inspired our understanding of how catalytic loops appear in ecological systems. In both cases, hypercycle and ecological cooperative loops, the role played by space seems to be crucial for their stability and resilience against parasites. However, it is difficult to test these ideas in natural ecosystems, where time and spatial scales introduce considerable limitations. Here, we use engineered bacteria as a model system to a variety of environmental scenarios identifying trends that transcend the specific model system, such an enhanced genetic diversity in environments requiring mutualistic interactions. Interestingly, we show that improved environments can slow down mutualistic range expansions as a result of genetic drift effects preceding local resource depletion. Moreover, we show that a parasitic strain is excluded from the population during range expansions (which acknowledges a classical prediction). Nevertheless, environmental deterioration can reshape population interactions, this same strain becoming part of a three-species mutualistic web in scenarios in which the two-strain mutualism becomes non functional. The evolutionary and ecological implications for the design of synthetic ecosystems are outlined.
Collapse
Affiliation(s)
- Daniel R. Amor
- Physics of Living Systems, Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Raúl Montañez
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Centre for Biomedical Network Research on Rare Diseases (ISCIII), Málaga, Spain
| | - Salva Duran-Nebreda
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Ricard Solé
- ICREA-Complex Systems Lab, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
24
|
Chandra R, Kumar V. Detection of Androgenic-Mutagenic Compounds and Potential Autochthonous Bacterial Communities during In Situ Bioremediation of Post-methanated Distillery Sludge. Front Microbiol 2017; 8:887. [PMID: 28567033 PMCID: PMC5434103 DOI: 10.3389/fmicb.2017.00887] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 05/02/2017] [Indexed: 11/23/2022] Open
Abstract
Sugarcane-molasses-based post-methanated distillery waste is well known for its toxicity, causing adverse effects on aquatic flora and fauna. Here, it has been demonstrated that there is an abundant mixture of androgenic and mutagenic compounds both in distillery sludge and leachate. Gas chromatography-mass spectrometry (GC-MS) analysis showed dodecanoic acid, octadecanoic acid, n-pentadecanoic acid, hexadecanoic acid, β-sitosterol, stigmasterol, β-sitosterol trimethyl ether, heptacosane, dotriacontane, lanosta-8, 24-dien-3-one, 1-methylene-3-methyl butanol, 1-phenyl-1-propanol, 5-methyl-2-(1-methylethyl) cyclohexanol, and 2-ethylthio-10-hydroxy-9-methoxy-1,4 anthraquinone as major organic pollutants along with heavy metals (all mg kg-1): Fe (2403), Zn (210.15), Mn (126.30, Cu (73.62), Cr (21.825), Pb (16.33) and Ni (13.425). In a simultaneous analysis of bacterial communities using the restriction fragment length polymorphism (RFLP) method the dominance of Bacillus sp. followed by Enterococcus sp. as autochthonous bacterial communities growing in this extremely toxic environment was shown, indicating a primary community for bioremediation. A toxicity evaluation showed a reduction of toxicity in degraded samples of sludge and leachate, confirming the role of autochthonous bacterial communities in the bioremediation of distillery waste in situ.
Collapse
Affiliation(s)
- Ram Chandra
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| | - Vineet Kumar
- Department of Environmental Microbiology, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar UniversityLucknow, India
| |
Collapse
|
25
|
González I, Vázquez MA, Romero-Baena AJ, Barba-Brioso C. Stabilization of fly ash using cementing bacteria. Assessment of cementation and trace element mobilization. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:316-325. [PMID: 27639208 DOI: 10.1016/j.jhazmat.2016.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 06/06/2023]
Abstract
Fly ash from municipal solid waste incineration (MSWI) was treated with microorganisms (Sporosarcina pasteurii and Myxococcus xanthus) to assess their capacity for cementing this waste material. Leaching tests on the samples treated with bacteria were also performed to assess the possibility of recovering and recycling trace elements from the fly ash. Sequential extractions combined with mineralogical studies demonstrated that Pb is mobile in water when associated with portlandite. Also, Cd, Pb, and Zn are primarily associated with carbonates and are mobile in acidic environments (up to 4.8, 13.9 and 248mg/l of Cd, Pb and Zn, respectively, extracted with acetic acid). Microbial treatment of the fly ash, especially with Sporosarcina pasteurii, led to its cementation and stabilization, preventing its dispersion into the environment. But samples treated with bacteria exhibited a higher capacity for trace element leaching than did untreated fly ash. The ability of these bacteria to mobilize metals can be applied to recover those of economic interest. The use of low cost biotechnologies can be an alternative to chemical treatments currently utilized for the recovery and reuse of these wastes.
Collapse
Affiliation(s)
- Isabel González
- Dpto. Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Prof. García González, s/n, 41012, Sevilla, Spain
| | - María Auxiliadora Vázquez
- Dpto. Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Prof. García González, s/n, 41012, Sevilla, Spain
| | - Antonio J Romero-Baena
- Dpto. Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Prof. García González, s/n, 41012, Sevilla, Spain.
| | - Cinta Barba-Brioso
- Dpto. Cristalografía, Mineralogía y Química Agrícola, Universidad de Sevilla, C/Prof. García González, s/n, 41012, Sevilla, Spain
| |
Collapse
|
26
|
Putra H, Yasuhara H, Kinoshita N, Neupane D, Lu CW. Effect of Magnesium as Substitute Material in Enzyme-Mediated Calcite Precipitation for Soil-Improvement Technique. Front Bioeng Biotechnol 2016; 4:37. [PMID: 27200343 PMCID: PMC4854898 DOI: 10.3389/fbioe.2016.00037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/18/2016] [Indexed: 11/21/2022] Open
Abstract
The optimization of enzyme-mediated calcite precipitation was evaluated as a soil-improvement technique. In our previous works, purified urease was utilized to bio-catalyze the hydrolysis of urea, which causes the supplied Ca2+ to precipitate with CO32− as calcium carbonate. In the present work, magnesium chloride was newly added to the injecting solutions to delay the reaction rate and to enhance the amount of carbonate precipitation. Soil specimens were prepared in PVC cylinders and treated with concentration-controlled solutions composed of urea, urease, calcium, and magnesium chloride. The mechanical properties of the treated soil specimens were examined through unconfined compressive strength (UCS) tests. A precipitation ratio of the carbonate up to 90% of the maximum theoretical precipitation was achieved by adding a small amount of magnesium chloride. Adding magnesium chloride as a delaying agent was indeed found to reduce the reaction rate of the precipitation, which may increase the volume of the treated soil if used in real fields because of the slower precipitation rate and the resulting higher injectivity. A mineralogical analysis revealed that magnesium chloride decreases the crystal size of the precipitated materials and that another carbonate of aragonite is newly formed. Mechanical test results indicated that carbonate precipitates within the soils and brings about a significant improvement in strength. A maximum UCS of 0.6 MPa was obtained from the treated samples.
Collapse
Affiliation(s)
- Heriansyah Putra
- Disaster Mitigation for Asian Students, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan; Engineering Faculty, Jambi University, Jambi, Indonesia
| | - Hideaki Yasuhara
- Department of Civil and Environmental Engineering, Ehime University , Matsuyama , Japan
| | - Naoki Kinoshita
- Department of Civil and Environmental Engineering, Ehime University , Matsuyama , Japan
| | | | - Chih-Wei Lu
- Department of Construction Engineering, National Kaohsiung First University of Technology , Kaohsiung , Taiwan
| |
Collapse
|
27
|
Kapusta P, Sobczyk Ł. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 536:517-526. [PMID: 26233783 DOI: 10.1016/j.scitotenv.2015.07.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/17/2015] [Accepted: 07/19/2015] [Indexed: 06/04/2023]
Abstract
We studied enchytraeid communities in several habitats polluted by heavy metals from Zn-Pb mining and smelting activities. We sampled 41 sites that differed in the type of substratum (carbonate rock, metal-rich carbonate mining waste, siliceous sand) and land management (planting Scots pine, topsoiling, leaving to natural succession), and the distance from the smelter. Our main aims were to determine which pollution variables and natural factors most influenced enchytraeid species composition, richness and density, and examine what was the effect of planting Scots pine (reclamation) on enchytraeid communities. The soils harboured on average 1 to 5 enchytraeid species and 700 to 18,300 individuals per square metre, depending on the habitat. These figures were generally lower than those reported from unpolluted regions. Redundancy and multiple regression analyses confirmed the negative impact of heavy metal pollution on both enchytraeid community structure and abundance. Among pollution variables, the distance from the smelter best explained the variation in enchytraeid communities. The concentrations of heavy metals in the soil had less (e.g. total Pb and exchangeable Zn) or negligible (water-soluble forms) explanatory power. Natural soil properties were nearly irrelevant for enchytraeids, except for soil pH, which determined the species composition. Plant species richness was an important explanatory variable, as it positively affected most parameters of enchytraeid community. The results of two-by-two factorial comparisons (planting Scots pine vs. natural succession; carbonate mining waste vs. siliceous sand) suggest that reclamation can improve soil quality for biota, since it increased the diversity and abundance of enchytraeids; this effect was not dependent on the type of substratum. In conclusion, enchytraeids responded negatively to heavy metal pollution and their response was consistent and clear. These animals can be used as indicators of metal toxicity even in the presence of high natural variability, but it is recommended to study their species composition.
Collapse
Affiliation(s)
- Paweł Kapusta
- W. Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland.
| | - Łukasz Sobczyk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
28
|
He S, Zhou P, Wang L, Xiong X, Zhang Y, Deng Y, Wei S. Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant. J R Soc Interface 2014; 11:20140169. [PMID: 24647910 PMCID: PMC4006258 DOI: 10.1098/rsif.2014.0169] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 02/27/2014] [Indexed: 01/10/2023] Open
Abstract
Implant-associated infections, which are normally induced by microbial adhesion and subsequent biofilm formation, are a major cause of morbidity and mortality. Therefore, practical approaches to prevent implant-associated infections are in great demand. Inspired by adhesive proteins in mussels, here we have developed a novel antibiotic-decorated titanium (Ti) material with enhanced antibacterial activity. In this study, Ti substrate was coated by one-step pH-induced polymerization of dopamine followed by immobilization of the antibiotic cefotaxime sodium (CS) onto the polydopamine-coated Ti through catechol chemistry. Contact angle measurement and X-ray photoelectron spectroscopy confirmed the presence of CS grafted on the Ti surface. Our results demonstrated that the antibiotic-grafted Ti substrate showed good biocompatibility and well-behaved haemocompatibility. In addition, the antibiotic-grafted Ti could effectively prevent adhesion and proliferation of Escherichia coli (Gram-negative) and Streptococcus mutans (Gram-positive). Moreover, the inhibition of biofilm formation on the antibiotic-decorated Ti indicated that the grafted CS could maintain its long-term antibacterial activity. This modified Ti substrate with enhanced antibacterial activity holds great potential as implant material for applications in dental and bone graft substitutes.
Collapse
Affiliation(s)
- Shu He
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University, Beijing 100081, People's Republic of China
| | - Ping Zhou
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Linxin Wang
- Department of Stomatology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, People's Republic of China
| | - Xiaoling Xiong
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University, Beijing 100081, People's Republic of China
| | - Yifei Zhang
- Central Laboratory, School and Hospital of Stomatology, Peking University, Beijing 100081, People's Republic of China
| | - Yi Deng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Shicheng Wei
- Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, Peking University, Beijing 100081, People's Republic of China
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
29
|
Cuthbert MO, McMillan LA, Handley-Sidhu S, Riley MS, Tobler DJ, Phoenix VR. A field and modeling study of fractured rock permeability reduction using microbially induced calcite precipitation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:13637-13643. [PMID: 24147737 DOI: 10.1021/es402601g] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microbially induced calcite precipitation (MICP) offers an attractive alternative to traditional grouting technologies for creating barriers to groundwater flow and containing subsurface contamination, but has only thus far been successfully demonstrated at the laboratory scale and predominantly in porous media. We present results of the first field experiments applying MICP to reduce fractured rock permeability in the subsurface. Initially, the ureolytic bacterium, Sporosarcina pasteurii, was fixed in the fractured rock. Subsequent injection of cementing fluid comprising calcium chloride and urea resulted in precipitation of large quantities (approximately 750 g) of calcite; significant reduction in the transmissivity of a single fracture over an area of several m(2) was achieved in around 17 h of treatment. A novel numerical model is also presented which simulates the field data well by coupling flow and bacterial and solute reactive transport processes including feedback due to aperture reduction via calcite precipitation. The results show that MICP can be successfully manipulated under field conditions to reduce the permeability of fractured rock and suggest that an MICP-based technique, informed by numerical models, may form the basis of viable solutions to aid pollution mitigation.
Collapse
Affiliation(s)
- Mark O Cuthbert
- Water Sciences (Hydrogeology), School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham, B15 2TT, U.K.
| | | | | | | | | | | |
Collapse
|
30
|
Martin D, Dodds K, Butler IB, Ngwenya BT. Carbonate precipitation under pressure for bioengineering in the anaerobic subsurface via denitrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8692-8699. [PMID: 23837893 DOI: 10.1021/es401270q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A number of bioengineering techniques are being developed using microbially catalyzed hydrolysis of urea to precipitate calcium carbonate for soil and sand strengthening in the subsurface. In this study, we evaluate denitrification as an alternative microbial metabolism to induce carbonate precipitation for bioengineering under anaerobic conditions and at high pressure. In anaerobic batch culture, the halophile Halomonas halodenitrificans is shown to be able to precipitate calcium carbonate at high salinity and at a pressure of 8 MPa, with results comparable to those observed when grown at ambient pressure. A larger scale proof-of-concept experiment shows that, as well as sand, coarse gravel can also be cemented with calcium carbonate using this technique. Possible practical applications in the subsurface are discussed, including sealing of improperly abandoned wells and remediation of hydraulic fracturing during shale gas extraction.
Collapse
Affiliation(s)
- Derek Martin
- School of Geosciences, Grant Institute, University of Edinburgh , The King's Buildings, Edinburgh EH9 3JW, UK.
| | | | | | | |
Collapse
|
31
|
Phillips AJ, Gerlach R, Lauchnor E, Mitchell AC, Cunningham AB, Spangler L. Engineered applications of ureolytic biomineralization: a review. BIOFOULING 2013; 29:715-733. [PMID: 23802871 DOI: 10.1080/08927014.2013.796550] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microbially-induced calcium carbonate (CaCO3) precipitation (MICP) is a widely explored and promising technology for use in various engineering applications. In this review, CaCO3 precipitation induced via urea hydrolysis (ureolysis) is examined for improving construction materials, cementing porous media, hydraulic control, and remediating environmental concerns. The control of MICP is explored through the manipulation of three factors: (1) the ureolytic activity (of microorganisms), (2) the reaction and transport rates of substrates, and (3) the saturation conditions of carbonate minerals. Many combinations of these factors have been researched to spatially and temporally control precipitation. This review discusses how optimization of MICP is attempted for different engineering applications in an effort to highlight the key research and development questions necessary to move MICP technologies toward commercial scale applications.
Collapse
|
32
|
Mortensen B, Haber M, DeJong J, Caslake L, Nelson D. Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microbiol 2011; 111:338-49. [DOI: 10.1111/j.1365-2672.2011.05065.x] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|