1
|
Lyyra I, Isomäki M, Huhtala H, Kellomäki M, Miettinen S, Massera J, Sartoneva R. Ionic Dissolution Products of Lithium-, Strontium-, and Boron-Substituted Silicate Glasses Influence the Viability and Proliferation of Adipose Stromal Cells, Fibroblasts, Urothelial and Endothelial Cells. ACS OMEGA 2024; 9:49348-49367. [PMID: 39713681 PMCID: PMC11656255 DOI: 10.1021/acsomega.4c06587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/11/2024] [Accepted: 11/20/2024] [Indexed: 12/24/2024]
Abstract
While bioactive glasses (BaGs) have been studied mainly for bone applications, studies have also shown their potential for soft tissue engineering. Incorporating therapeutic ions, such as lithium (Li+), strontium (Sr2+), and boron (B3+) into the BaGs, has been found to promote angiogenesis and wound healing. However, a systematic study on the impact of Li+, Sr2+, B3+, and the other ions in the BaGs, has not been conducted on a wide range of cells. Although the interactions between the BaGs and cells have been studied, it is difficult to compare the results between studies and conclude the impact of BaGs between cell types due to the variability of culture conditions, cells, and materials. We aim to evaluate the dissolution behavior of Li-, Sr-, and B-substituted BaGs and the effects of their ionic dissolution products on the viability, proliferation, and morphology of multiple cell types: human adipose stromal cells (hASCs), human lung fibroblasts (cell line WI-38), human urothelial cells (hUCs), and human umbilical vein endothelial cells (HUVECs). In the dissolution study, the B-substituted glasses induced a higher increase in pH and released more ions than the silicate glasses. The undiluted BaG extracts supported the viability and proliferation of all the other cell types except the hUCs. Diluting the BaG extracts to 1:10 restored the viability of hUCs but induced distinctive morphological changes. Diluting the extracts more (1:100) almost fully restored the hUC morphology. To conclude, the ionic dissolution products of Li-, Sr-, and B-substituted BaGs seem beneficial for hASCs, WI-38, hUCs, and HUVECs, but attention must be paid to the ion concentrations.
Collapse
Affiliation(s)
- Inari Lyyra
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Mari Isomäki
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Heini Huhtala
- Faculty of
Social Sciences, Tampere University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
| | - Minna Kellomäki
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Susanna Miettinen
- Faculty of
Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
- Research
and Development and Innovation, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Arvo Ylpön katu 6, Tampere FI-33521, Finland
| | - Jonathan Massera
- Faculty of
Medicine and Health Technology, Tampere
University, Korkeakoulunkatu 3, Tampere FI-33720, Finland
| | - Reetta Sartoneva
- Faculty of
Medicine and Health Technology, Tampere
University, Arvo Ylpön katu 34, Tampere FI-33520, Finland
- Research
and Development and Innovation, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Arvo Ylpön katu 6, Tampere FI-33521, Finland
- Department
of Obstetrics and Gynaecology, Seinäjoki Central Hospital, South Ostrobothnia Wellbeing Services County, Hanneksenrinne 7, Seinäjoki FI-60220, Finland
| |
Collapse
|
2
|
Kurki A, Paakinaho K, Hannula M, Karjalainen S, Kuismanen K, Hyttinen J, Miettinen S, Sartoneva R. Promoting cell proliferation and collagen production with ascorbic acid 2-phosphate-releasing poly(l-lactide-co-ε-caprolactone) membranes for treating pelvic organ prolapse. Regen Biomater 2024; 11:rbae060. [PMID: 38903561 PMCID: PMC11187500 DOI: 10.1093/rb/rbae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 06/22/2024] Open
Abstract
Pelvic organ prolapse (POP) afflicts millions of women globally. In POP, the weakened support of the pelvic floor results in the descent of pelvic organs into the vagina, causing a feeling of bulging, problems in urination, defaecation and/or sexual function. However, the existing surgical repair methods for relapsed POP remain insufficient, highlighting the urgent need for more effective alternatives. Collagen is an essential component in pelvic floor tissues, providing structural support, and its production is controlled by ascorbic acid. Therefore, we investigated novel ascorbic acid 2-phosphate (A2P)-releasing poly(l-lactide-co-ε-caprolactone) (PLCLA2P) membranes in vitro to promote cell proliferation and extracellular matrix protein production to strengthen the natural support of the pelvic fascia for POP applications. We analysed the mechanical properties and the impact of PLCLA2P on cellular responses through cell culture analysis using human vaginal fibroblasts (hVFs) and human adipose-derived stem/stromal cells (hASCs) compared to PLCL. In addition, the A2P release from PLCLA2P membranes was assessed in vitro. The PLCLA2P demonstrated slightly lower tensile strength (2.2 ± 0.4 MPa) compared to PLCL (3.7 ± 0.6 MPa) for the first 4 weeks in vitro. The A2P was most rapidly released during the first 48 h of in vitro incubation. Our findings demonstrated significantly increased proliferation and collagen production of both hVFs and hASCs on A2P-releasing PLCLA2P compared to PLCL. In addition, extracellular collagen Type I fibres were detected in hVFs, suggesting enhanced collagen maturation on PLCLA2P. Moreover, increased extracellular matrix protein expression was detected on PLCLA2P in both hVFs and hASCs compared to plain PLCL. In conclusion, these findings highlight the potential of PLCLA2P as a promising candidate for promoting tissue regeneration in applications aimed for POP tissue engineering applications.
Collapse
Affiliation(s)
- Alma Kurki
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
- Tays Research Services, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
| | - Kaarlo Paakinaho
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
- Tays Research Services, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
| | - Markus Hannula
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
| | - Sanna Karjalainen
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
| | - Kirsi Kuismanen
- Department of Obstetrics and Gynaecology, Tampere University Hospital, 33520 Tampere, Finland
| | - Jari Hyttinen
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
| | - Susanna Miettinen
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
- Tays Research Services, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
| | - Reetta Sartoneva
- Biomedical Technology (TECH) Research Unit, Faculty of Medicine and Health Technology (MET), Tampere University, 33520 Tampere, Finland
- Tays Research Services, Tampere University Hospital, Wellbeing Services County of Pirkanmaa, 33520 Tampere, Finland
- Department of Obstetrics and Gynaecology, Wellbeing Services County of South Ostrobothnia, 60220 Seinäjoki, Finland
| |
Collapse
|
3
|
Sartoneva R, Paakinaho K, Hannula M, Kuismanen K, Huhtala H, Hyttinen J, Miettinen S. Ascorbic Acid 2-Phosphate Releasing Supercritically Foamed Porous Poly-L-Lactide-Co-ε-Caprolactone Scaffold Enhances the Collagen Production of Human Vaginal Stromal Cells: A New Approach for Vaginal Tissue Engineering. Tissue Eng Regen Med 2024; 21:81-96. [PMID: 37907765 PMCID: PMC10764701 DOI: 10.1007/s13770-023-00603-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/17/2023] [Accepted: 09/24/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND The reconstructive surgery of vaginal defects is highly demanding and susceptible to complications, especially in larger defects requiring nonvaginal tissue grafts. Thus, tissue engineering-based solutions could provide a potential approach to the reconstruction of vaginal defects. METHODS Here, we evaluated a novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide foamed poly-L-lactide-co-ε-caprolactone (scPLCLA2P) scaffold for vaginal reconstruction with vaginal epithelial (EC) and stromal (SC) cells. The viability, proliferation, and phenotype of ECs and SCs were evaluated in monocultures and in cocultures on d 1, d 7 and d 14. Furthermore, the collagen production of SCs on scPLCLA2P was compared to that on scPLCL without A2P on d 14. RESULTS Both ECs and SCs maintained their viability on the scPLCLA2P scaffold in mono- and coculture conditions, and the cells maintained their typical morphology during the 14-d culture period. Most importantly, the scPLCLA2P scaffolds supported the collagen production of SCs superior to plain scPLCL based on total collagen amount, collagen I and III gene expression results and collagen immunostaining results. CONCLUSION This is the first study evaluating the effect of A2P on vaginal tissue engineering, and the results are highly encouraging, indicating that scPLCLA2P has potential as a scaffold for vaginal tissue engineering.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland.
- Department of Obstetrics and Gynaecology, Seinäjoki Central Hospital, Seinäjoki, Finland.
| | - Kaarlo Paakinaho
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Markus Hannula
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Kirsi Kuismanen
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Arvo Ylpön Katu 34, 33520, Tampere, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Arvo Ylpön Katu 34, 33520, Tampere, Finland
| |
Collapse
|
4
|
Kurki A, Paakinaho K, Hannula M, Hyttinen J, Miettinen S, Sartoneva R. Ascorbic Acid 2-Phosphate-Releasing Supercritical Carbon Dioxide-Foamed Poly(L-Lactide-Co-epsilon-Caprolactone) Scaffolds Support Urothelial Cell Growth and Enhance Human Adipose-Derived Stromal Cell Proliferation and Collagen Production. J Tissue Eng Regen Med 2023; 2023:6404468. [PMID: 40226413 PMCID: PMC11919108 DOI: 10.1155/2023/6404468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/15/2023] [Accepted: 02/18/2023] [Indexed: 04/15/2025]
Abstract
Tissue engineering can provide a novel approach for the reconstruction of large urethral defects, which currently lacks optimal repair methods. Cell-seeded scaffolds aim to prevent urethral stricture and scarring, as effective urothelium and stromal tissue regeneration is important in urethral repair. In this study, the aim was to evaluate the effect of the novel porous ascorbic acid 2-phosphate (A2P)-releasing supercritical carbon dioxide-foamed poly(L-lactide-co-ε-caprolactone) (PLCL) scaffolds (scPLCLA2P) on the viability, proliferation, phenotype maintenance, and collagen production of human urothelial cell (hUC) and human adipose-derived stromal cell (hASC) mono- and cocultures. The scPLCLA2P scaffold supported hUC growth and phenotype both in monoculture and in coculture. In monocultures, the proliferation and collagen production of hASCs were significantly increased on the scPLCLA2P compared to scPLCL scaffolds without A2P, on which the hASCs formed nonproliferating cell clusters. Our findings suggest the A2P-releasing scPLCLA2P to be a promising material for urethral tissue engineering.
Collapse
Affiliation(s)
- Alma Kurki
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Kaarlo Paakinaho
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
| | - Markus Hannula
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
| | - Jari Hyttinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
| | - Susanna Miettinen
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
| | - Reetta Sartoneva
- Faculty of Medicine and Health Technology (MET), Tampere University, Tampere, Finland
- Research, Development and Innovation Centre, Tampere University Hospital, Tampere, Finland
- Department of Obstetrics and Gynaecology, The Hospital District of South Ostrobothnia, Seinäjoki, Finland
| |
Collapse
|
5
|
Tissue Engineering and Regenerative Medicine in Pediatric Urology: Urethral and Urinary Bladder Reconstruction. Int J Mol Sci 2022; 23:ijms23126360. [PMID: 35742803 PMCID: PMC9224288 DOI: 10.3390/ijms23126360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 11/22/2022] Open
Abstract
In the case of pediatric urology there are several congenital conditions, such as hypospadias and neurogenic bladder, which affect, respectively, the urethra and the urinary bladder. In fact, the gold standard consists of a urethroplasty procedure in the case of urethral malformations and enterocystoplasty in the case of urinary bladder disorders. However, both surgical procedures are associated with severe complications, such as fistulas, urethral strictures, and dehiscence of the repair or recurrence of chordee in the case of urethroplasty, and metabolic disturbances, stone formation, urine leakage, and chronic infections in the case of enterocystoplasty. With the aim of overcoming the issue related to the lack of sufficient and appropriate autologous tissue, increasing attention has been focused on tissue engineering. In this review, both the urethral and the urinary bladder reconstruction strategies were summarized, focusing on pediatric applications and evaluating all the biomaterials tested in both animal models and patients. Particular attention was paid to the capability for tissue regeneration in dependence on the eventual presence of seeded cell and growth factor combinations in several types of scaffolds. Moreover, the main critical features needed for urinary tissue engineering have been highlighted and specifically focused on for pediatric application.
Collapse
|
6
|
Manti N, Guvercin Y, Mercantepe T, Tumkaya L, Balik MS. Clinical and Histologic Evaluation of Partial Achilles Tendon Injury Repair with Amniotic Membrane in Rats. J Am Podiatr Med Assoc 2022; 112:20-055. [PMID: 35324463 DOI: 10.7547/20-055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Adhesions after tendinopathy in individuals who perform physical work and those physically active in middle age are a challenging problem for orthopedic surgeons. We evaluated the effects of human-derivated amniotic membrane on tendon healing, adhesions, angiogenesis, and the inflammatory process. METHODS Thirty-five rats were divided evenly into five groups, and the left lower extremity was used in this study. No interventions were applied to the control group (group 5). In the other groups, Achilles tendons were partially cut to the midline. Then, primary repair (group 1), amniotic membrane treatment with no repair (group 2), primary repair and amniotic membrane treatment (group 3), or secondary healing with no repair (group 4) was performed. RESULTS Use of amniotic membrane in tendon healing resulted in decreased adhesion formation and positive effects on collagen sequencing and anti-inflammatory effects. In addition, for the vascular endothelial growth factor evaluation there was no difference among the amniotic membrane repair groups, but there was an increase in vascular endothelial growth factor positivity compared with the control group. CONCLUSIONS These data show that amniotic membrane treatment can alter biological behavior and induce surface-dependent angiogenesis and can have angiogenetic effects on ischemia and inflammation.
Collapse
Affiliation(s)
- Nurettin Manti
- *Department of Orthopedics and Traumatology, Ankara City Hospital-Neurology Orthopaedic Hospital, Ankara, Turkey
| | - Yilmaz Guvercin
- †Department of Orthopedics and Traumatology, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Tolga Mercantepe
- ‡Department of Histology and Embryology Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Levent Tumkaya
- ‡Department of Histology and Embryology Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| | - Mehmet Sabri Balik
- †Department of Orthopedics and Traumatology, Recep Tayyip Erdoğan University Medical School, Rize, Turkey
| |
Collapse
|
7
|
Wang X, Shi C, Hou X, Song S, Li C, Cao W, Chen W, Li L. Application of biomaterials and tissue engineering in bladder regeneration. J Biomater Appl 2022; 36:1484-1502. [DOI: 10.1177/08853282211048574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The primary functions of the bladder are storing urine under low and stable pressure and micturition. Various forms of trauma, tumors, and iatrogenic injuries can cause the loss of or reduce bladder function or capacity. If such damage is not treated in time, it will eventually lead to kidney damage and can even be life-threatening in severe cases. The emergence of tissue engineering technology has led to the development of more possibilities for bladder repair and reconstruction, in which the selection of scaffolds is crucial. In recent years, a growing number of tissue-engineered bladder scaffolds have been constructed. Therefore, this paper will discuss the development of tissue-engineered bladder scaffolds and will further analyze the limitations of and challenges encountered in bladder reconstruction.
Collapse
Affiliation(s)
- Xiaoya Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Xianglin Hou
- Institute of genetics and developmental biology, Chinese Academy of Sciences, Beijing, China
| | - Siqi Song
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Chenglin Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenxuan Cao
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wei Chen
- Department of Urology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Ling Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
8
|
Jerman UD, Veranič P, Cirman T, Kreft ME. Human Amniotic Membrane Enriched with Urinary Bladder Fibroblasts Promote the Re-Epithelization of Urothelial Injury. Cell Transplant 2021; 29:963689720946668. [PMID: 32841052 PMCID: PMC7563929 DOI: 10.1177/0963689720946668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Culturing cells in three-dimensional systems that include extracellular matrix
components and different cell types mimic the native tissue and as such provide
much more representative results than conventional two-dimensional cell
cultures. In order to develop biomimetic bladder tissue in vitro, we used human
amniotic membrane (AM) extracellular matrix as a scaffold for bladder
fibroblasts (BFs) and urothelial cells. Our aims were to evaluate the
integration of BFs into the AM stroma, to assess the differentiation of the
urothelium on BFs-enriched AM scaffolds, and to evaluate the AM as a urothelial
wound dressing. First, to achieve the optimal integration of BFs into AM stroma,
different intact and de- epithelialized AM (dAM) scaffolds were tested. BFs
secreted matrix metalloproteinase (MMP)-1 and MMP-2 and integrated into the
stroma of all types of AM scaffolds. Second, to establish urothelial tissue
equivalent, urothelial cells were seeded on dAM scaffolds enriched with BFs. The
BFs in the stroma of the AM scaffolds promoted (1) the proliferation of
urothelial cells, (2) the attachment of urothelial cells on AM basal lamina with
hemidesmosomes, and (3) development of multilayered urothelium with expressed
uroplakins and well-developed cell junctions. Third, we established an ex vivo
model of the injured bladder to evaluate the dAM as a wound dressing for
urothelial full-thickness injury. dAM acted as a promising wound dressing since
it enabled rapid re-epithelization of urothelial injury and integrated into the
bladder tissue. Herein, the developed urothelial tissue equivalents enable
further mechanistic studies of bladder epithelial–mesenchymal interactions, and
they could be applied as biomimetic models for preclinical testing of newly
developed drugs. Moreover, we could hypothesize that AM may be suitable as a
dressing of the wound that occurs during transurethral resection of bladder
tumor, since it could diminish the possibility of tumor recurrence, by promoting
the rapid re-epithelization of the urothelium.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tina Cirman
- 86684Blood Transfusion Centre of Slovenia, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, 37664Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Applications of Human Amniotic Membrane for Tissue Engineering. MEMBRANES 2021; 11:membranes11060387. [PMID: 34070582 PMCID: PMC8227127 DOI: 10.3390/membranes11060387] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Human amniotic membrane (hAM) is considered as a surgical waste without ethical issue, so it is a highly abundant, cost-effective, and readily available biomaterial. It has biocompatibility, low immunogenicity, adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability), and good cell adhesion. It exerts anti-inflammatory, antifibrotic, and antimutagenic properties and pain-relieving effects. It is also a source of growth factors, cytokines, and hAM cells with stem cell properties. This important source for scaffolding material has been widely studied and used in various areas of tissue repair: corneal repair, chronic wound treatment, genital reconstruction, tendon repair, microvascular reconstruction, nerve repair, and intraoral reconstruction. Depending on the targeted application, hAM has been used as a simple scaffold or seeded with various types of cells that are able to grow and differentiate. Thus, this natural biomaterial offers a wide range of applications in TE applications. Here, we review hAM properties as a biocompatible and degradable scaffold. Its use strategies (i.e., alone or combined with cells, cell seeding) and its degradation rate are also presented.
Collapse
|
10
|
Zamani M, Shakhssalim N, Ramakrishna S, Naji M. Electrospinning: Application and Prospects for Urologic Tissue Engineering. Front Bioeng Biotechnol 2020; 8:579925. [PMID: 33117785 PMCID: PMC7576678 DOI: 10.3389/fbioe.2020.579925] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Functional disorders and injuries of urinary bladder, urethra, and ureter may necessitate the application of urologic reconstructive surgeries to recover normal urine passage, prevent progressive damages of these organs and upstream structures, and improve the quality of life of patients. Reconstructive surgeries are generally very invasive procedures that utilize autologous tissues. In addition to imperfect functional outcomes, these procedures are associated with significant complications owing to long-term contact of urine with unspecific tissues, donor site morbidity, and lack of sufficient tissue for vast reconstructions. Thanks to the extensive advancements in tissue engineering strategies, reconstruction of the diseased urologic organs through tissue engineering have provided promising vistas during the last two decades. Several biomaterials and fabrication methods have been utilized for reconstruction of the urinary tract in animal models and human subjects; however, limited success has been reported, which inspires the application of new methods and biomaterials. Electrospinning is the primary method for the production of nanofibers from a broad array of natural and synthetic biomaterials. The biomimetic structure of electrospun scaffolds provides an ECM-like matrix that can modulate cells' function. In addition, electrospinning is a versatile technique for the incorporation of drugs, biomolecules, and living cells into the constructed scaffolds. This method can also be integrated with other fabrication procedures to achieve hybrid smart constructs with improved performance. Herein, we reviewed the application and outcomes of electrospun scaffolds in tissue engineering of bladder, urethra, and ureter. First, we presented the current status of tissue engineering in each organ, then reviewed electrospun scaffolds from the simplest to the most intricate designs, and summarized the outcomes of preclinical (animal) studies in this area.
Collapse
Affiliation(s)
- Masoud Zamani
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY, United States
| | - Nasser Shakhssalim
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Mohammad Naji
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Keshel SH, Rahimi A, Hancox Z, Ebrahimi M, Khojasteh A, Sefat F. The promise of regenerative medicine in the treatment of urogenital disorders. J Biomed Mater Res A 2020; 108:1747-1759. [PMID: 32270582 DOI: 10.1002/jbm.a.36942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Polymers and scaffolds are the most significant tools in regenerative medicine. Urogenital disorders are an important group of diseases that greatly affect the patient's life expectancy and quality. Reconstruction of urogenital defects is one of the current challenges in regenerative medicine. Regenerative medicine, as well as tissue engineering, may offer suitable approaches, while the tools needed are appropriate materials and cells. Autologous urothelial cells obtained from biopsy, bone marrow-derived stem cells, adipose stem cells and urine-derived stem cells that expressed mesenchymal cell markers are the cells that mainly used. In addition, two main types of biomaterials mainly exist; synthetic polymers and composite scaffolds that are biodegradable polymers with controllable properties and naturally derived biomaterials such as extracellular matrix components and acellular tissue matrices. In this review, we present and evaluate the most appropriate and suitable scaffolds (naturally derived and synthetic polymers) and cells applied in urogenital reconstruction.
Collapse
Affiliation(s)
- Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zoe Hancox
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Maryam Ebrahimi
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farshid Sefat
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.,Interdisciplinary Research Centre in Polymer Science & Technology (Polymer IRC), University of Bradford, Bradford, UK
| |
Collapse
|
12
|
The current state of tissue engineering in the management of hypospadias. Nat Rev Urol 2020; 17:162-175. [DOI: 10.1038/s41585-020-0281-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2020] [Indexed: 12/20/2022]
|
13
|
Haim Zada M, Kumar A, Elmalak O, Mechrez G, Domb AJ. Effect of Ethylene Oxide and Gamma (γ-) Sterilization on the Properties of a PLCL Polymer Material in Balloon Implants. ACS OMEGA 2019; 4:21319-21326. [PMID: 31867526 PMCID: PMC6921626 DOI: 10.1021/acsomega.9b02889] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/19/2019] [Indexed: 06/10/2023]
Abstract
Poly-l-lactide-co-ε-caprolactone (PLCL) is a unique polymer containing both polylactic acid and poly-ε-caprolactone (PCL) chain units, and thus it has better flexible and biodegradable properties. Based on these unique properties of PLCL, we have developed balloons that are now widely used in treating major medical problems [Biomaterials 2016, 105, 109-116]. One of the most important considerations needed for balloons is to ensure that the material properties remain similar after undergoing ethylene oxide (EtO) or gamma (γ-) sterilization treatments. From the biotechnological point of view, we focused on analyzing the vital molecular properties of the PLCL material after sterilization, such as changes in crystallinity, molecular weight distributions (M w, M n, and polydispersity index), and inherent viscosity (η). Analysis of the data reveals that EtO sterilization does not engender any change in crystallinity, melting temperature (T m), molecular weights, and η of the polymer. On the contrary, γ-radiations induce chain scission and consequential decrease of ∼33 and ∼15% in molecular weights and η values, respectively. Based on our observations, we recommend EtO sterilization instead of γ-radiation for PLCL. This ensures prolonged stability of the polymer against degradation in a biological environment, long-shelf life, and absolute assurance that balloon failures do not occur after implantation.
Collapse
Affiliation(s)
- Moran Haim Zada
- Institute
of Drug Research, Alex Grass Center for Drug Design and Novel Therapeutics,
School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Awanish Kumar
- Institute
of Drug Research, Alex Grass Center for Drug Design and Novel Therapeutics,
School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Omar Elmalak
- Institute
of Drug Research, Alex Grass Center for Drug Design and Novel Therapeutics,
School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Guy Mechrez
- Department
of Food Quality and Safety, Institute for Postharvest and Food Sciences,
Volcani Center, ARO, 68 HaMaccabim Road, Rishon
LeZion 7505101, Israel
| | - Abraham J. Domb
- Institute
of Drug Research, Alex Grass Center for Drug Design and Novel Therapeutics,
School of Pharmacy-Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
14
|
Yudintceva NM, Nashchekina YA, Mikhailova NA, Vinogradova TI, Yablonsky PK, Gorelova AA, Muraviov AN, Gorelov AV, Samusenko IA, Nikolaev BP, Yakovleva LY, Shevtsov MA. Urethroplasty with a bilayered poly-D,L-lactide-co-ε-caprolactone scaffold seeded with allogenic mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 2019; 108:1010-1021. [PMID: 31369698 DOI: 10.1002/jbm.b.34453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 01/11/2023]
Abstract
Reconstructive surgery for urethral defects employing tissue-engineered scaffolds represents an alternative treatment for urethroplasty. The aim of this study was to compare the therapeutic efficacy of the bilayer poly-D,L-lactide/poly-ε-caprolactone (PL-PC) scaffold seeded with allogenic mesenchymal stem cells (MSCs) for urethra reconstruction in a rabbit model with conventional urethroplasty employing an autologous buccal mucosa graft (BG). The inner layer of the scaffold based on poly-D,L-lactic acid (PL) was seeded with MSCs, while the outer layer, prepared from poly-ε-caprolactone, protected the surrounding tissues from urine. To track the MSCs in vivo, the latter were labeled with superparamagnetic iron oxide nanoparticles. In rabbits, a dorsal penile defect was reconstructed employing a BG or a PL-PC graft seeded with nanoparticle-labeled MSCs. In the 12-week follow-up period, no complications were detected. Subsequent histological analysis demonstrated biointegration of the PL-PC graft with surrounding urethral tissues. Less fibrosis and inflammatory cell infiltration were observed in the experimental group as compared with the BG group. Nanoparticle-labeled MSCs were detected in the urothelium and muscular layer, co-localizing with the urothelium cytokeratin marker AE1/AE3, indicating the possibility of MSC differentiation into neo-urothelium. Our results suggest that a bilayer MSCs-seeded scaffold could be efficiently employed for urethroplasty.
Collapse
Affiliation(s)
- Natalia M Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Yulia A Nashchekina
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Nataliya A Mikhailova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia
| | - Tatiana I Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia
| | - Petr K Yablonsky
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia.,Federal State Budgetary Institute, St. Petersburg, Russia
| | - Anna A Gorelova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia.,St. Luca's City Hospital, St. Petersburg, Russia
| | - Alexandr N Muraviov
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation, St. Petersburg, Russia.,Private University, Saint-Petersburg Medico-Social Institute, St. Petersburg, Russia
| | - Andrey V Gorelov
- Federal State Budgetary Institute, St. Petersburg, Russia.,Pokrovskaya Municipal Hospital, St. Petersburg, Russia
| | - Igor A Samusenko
- Federal State Budgetary Institute, The Nikiforov Russian Center of Emergency and Radiation Medicine, Ministry of Russian Federation for Civil Defense, Emergencies and Elimination of Consequences of Natural Disasters, St. Petersburg, Russia
| | - Boris P Nikolaev
- Research Institute of Highly Pure Biopreparations, St. Petersburg, Russia
| | | | - Maxim A Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg, Russia.,First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia.,Almazov National Medical Research Centre, Russian Polenov Neurosurgical Institute, St. Petersburg, Russia.,Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
15
|
Rashidbenam Z, Jasman MH, Hafez P, Tan GH, Goh EH, Fam XI, Ho CCK, Zainuddin ZM, Rajan R, Nor FM, Shuhaili MA, Kosai NR, Imran FH, Ng MH. Overview of Urethral Reconstruction by Tissue Engineering: Current Strategies, Clinical Status and Future Direction. Tissue Eng Regen Med 2019; 16:365-384. [PMID: 31413941 DOI: 10.1007/s13770-019-00193-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/03/2019] [Accepted: 01/18/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Urinary tract is subjected to a variety of disorders such as urethral stricture, which often develops as a result of scarring process. Urethral stricture can be treated by urethral dilation and urethrotomy; but in cases of long urethral strictures, substitution urethroplasty with genital skin and buccal mucosa grafts is the only option. However a number of complications such as infection as a result of hair growth in neo-urethra, and stone formation restrict the application of those grafts. Therefore, tissue engineering techniques recently emerged as an alternative approach, aiming to overcome those restrictions. The aim of this review is to provide a comprehensive coverage on the strategies employed and the translational status of urethral tissue engineering over the past years and to propose a combinatory strategy for the future of urethral tissue engineering. METHODs Data collection was based on the key articles published in English language in years between 2006 and 2018 using the searching terms of urethral stricture and tissue engineering on PubMed database. RESULTS Differentiation of mesenchymal stem cells into urothelial and smooth muscle cells to be used for urologic application does not offer any advantage over autologous urothelial and smooth muscle cells. Among studied scaffolds, synthetic scaffolds with proper porosity and mechanical strength is the best option to be used for urethral tissue engineering. CONCLUSION Hypoxia-preconditioned mesenchymal stem cells in combination with autologous cells seeded on a pre-vascularized synthetic and biodegradable scaffold can be said to be the best combinatory strategy in engineering of human urethra.
Collapse
Affiliation(s)
- Zahra Rashidbenam
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mohd Hafidzul Jasman
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Pezhman Hafez
- 3Faculty of Medicine and Health Science, UCSI University, No. 1 Jalan Puncak Menara Gading, Taman Connaught, 56000 Kuala Lumpur, Malaysia
| | - Guan Hee Tan
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Eng Hong Goh
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Xeng Inn Fam
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Christopher Chee Kong Ho
- 4School of Medicine, Taylor's University, No. 1 Jalan Taylor's, 47500 Subang Jaya, Selangor Darul Ehsan Malaysia
| | - Zulkifli Md Zainuddin
- 2Urology Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Reynu Rajan
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Fatimah Mohd Nor
- 6Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Mohamad Aznan Shuhaili
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nik Ritza Kosai
- 5Minimally Invasive, Upper Gastrointestinal and Bariatric Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, 8th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Farrah Hani Imran
- 6Plastic and Reconstructive Surgery Unit, Department of Surgery, Universiti Kebangsaan Malaysia Medical Centre, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Min Hwei Ng
- 1Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Adamowicz J, Van Breda S, Tyloch D, Pokrywczynska M, Drewa T. Application of amniotic membrane in reconstructive urology; the promising biomaterial worth further investigation. Expert Opin Biol Ther 2018; 19:9-24. [PMID: 30521409 DOI: 10.1080/14712598.2019.1556255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Introduction: In reconstructive urology, autologous tissues such as intestinal segments, skin, and oral mucosa are used. Due to their limitations, reconstructive urologists are waiting for a novel material, which would be suitable for urinary tract wall replacement. Human amniotic membrane (AM) is a naturally derived biomaterial with a capacity to support reepithelization and inhibit scar formation. AM has a potential to become a considerable asset for reconstructive urology, i.e., reconstruction of ureters, urinary bladder, and urethrae. Areas covered: This review aims to discuss the potential application of human AM in reconstructive urology. The environment for urinary tract healing is particularly unfavorable due to the presence of urine. Due to its fetal origin, the bioactivity of AM is orientated to induce intrinsic regeneration mechanisms and inhibit scarring. This review introduces the concept of applying human AM in reconstructive urology procedures to improve their outcomes and future tissue engineering based strategies. Expert opinion: Many fields of medicine that have accomplished translational research have proven the usefulness of AM in clinical practice. There is an urgent need for studies to be conducted on large animal models that might convincingly demonstrate the underestimated potential of AM to urologists around the world.
Collapse
Affiliation(s)
- Jan Adamowicz
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Shane Van Breda
- b Department of Biomedicine , University Hospital Basel , Basel , Switzerland
| | - Dominik Tyloch
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Marta Pokrywczynska
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| | - Tomasz Drewa
- a Chair of Urology, Department of Regenerative Medicine, Collegium Medicum , Nicolaus Copernicus University , Bydgoszcz , Poland
| |
Collapse
|
17
|
Sartoneva R, Kuismanen K, Juntunen M, Karjalainen S, Hannula M, Kyllönen L, Hyttinen J, Huhtala H, Paakinaho K, Miettinen S. Porous poly-l-lactide-co-ɛ-caprolactone scaffold: a novel biomaterial for vaginal tissue engineering. ROYAL SOCIETY OPEN SCIENCE 2018. [PMID: 30225072 DOI: 10.5061/dryad.2bg877b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The surgical reconstruction of functional neovagina is challenging and susceptible to complications. Therefore, developing tissue engineering-based treatment methods for vaginal defects is important. Our aim was to develop and test a novel supercritical carbon dioxide foamed poly-l-lactide-co-ɛ-caprolactone (scPLCL) scaffold for vaginal reconstruction. The scaffolds were manufactured and characterized for porosity (65 ± 4%), pore size (350 ± 150 µm) and elastic modulus (2.8 ± 0.4 MPa). Vaginal epithelial (EC) and stromal cells (SC) were isolated, expanded and characterized with flow cytometry. Finally, cells were cultured with scPLCL scaffolds in separate and/or co-cultures. Their attachment, viability, proliferation and phenotype were analysed. Both cell types strongly expressed cell surface markers CD44, CD73 and CD166. Strong expression of CD326 was detected with ECs and CD90 and CD105 with SCs. Both ECs and SCs attached and maintained viability on scPLCL. Further, scPLCL supported the proliferation of especially ECs, which also maintained epithelial phenotype (cytokeratin expression) during 14-day assessment period. Interestingly, ECs expressed uroplakin (UP) Ia, UPIb and UPIII markers; further, UPIa and UPIII expression was significantly higher on ECs cultured on scPLCL than on cell culture plastic. In conclusion, the scPLCL is potential scaffold for vaginal tissue engineering and the results of this study further illustrate the excellent biocompatibility of PLCL.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Kirsi Kuismanen
- Science Centre, Tampere University Hospital, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Miia Juntunen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Sanna Karjalainen
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Markus Hannula
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Laura Kyllönen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Kaarlo Paakinaho
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
18
|
Sartoneva R, Kuismanen K, Juntunen M, Karjalainen S, Hannula M, Kyllönen L, Hyttinen J, Huhtala H, Paakinaho K, Miettinen S. Porous poly-l-lactide-co-ɛ-caprolactone scaffold: a novel biomaterial for vaginal tissue engineering. ROYAL SOCIETY OPEN SCIENCE 2018; 5:180811. [PMID: 30225072 PMCID: PMC6124079 DOI: 10.1098/rsos.180811] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/09/2018] [Indexed: 05/12/2023]
Abstract
The surgical reconstruction of functional neovagina is challenging and susceptible to complications. Therefore, developing tissue engineering-based treatment methods for vaginal defects is important. Our aim was to develop and test a novel supercritical carbon dioxide foamed poly-l-lactide-co-ɛ-caprolactone (scPLCL) scaffold for vaginal reconstruction. The scaffolds were manufactured and characterized for porosity (65 ± 4%), pore size (350 ± 150 µm) and elastic modulus (2.8 ± 0.4 MPa). Vaginal epithelial (EC) and stromal cells (SC) were isolated, expanded and characterized with flow cytometry. Finally, cells were cultured with scPLCL scaffolds in separate and/or co-cultures. Their attachment, viability, proliferation and phenotype were analysed. Both cell types strongly expressed cell surface markers CD44, CD73 and CD166. Strong expression of CD326 was detected with ECs and CD90 and CD105 with SCs. Both ECs and SCs attached and maintained viability on scPLCL. Further, scPLCL supported the proliferation of especially ECs, which also maintained epithelial phenotype (cytokeratin expression) during 14-day assessment period. Interestingly, ECs expressed uroplakin (UP) Ia, UPIb and UPIII markers; further, UPIa and UPIII expression was significantly higher on ECs cultured on scPLCL than on cell culture plastic. In conclusion, the scPLCL is potential scaffold for vaginal tissue engineering and the results of this study further illustrate the excellent biocompatibility of PLCL.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
- Author for correspondence: Reetta Sartoneva e-mail:
| | - Kirsi Kuismanen
- Science Centre, Tampere University Hospital, Tampere, Finland
- Department of Obstetrics and Gynaecology, Tampere University Hospital, Tampere, Finland
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Miia Juntunen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Sanna Karjalainen
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Markus Hannula
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Laura Kyllönen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Heini Huhtala
- Faculty of Social Sciences, University of Tampere, Tampere, Finland
| | - Kaarlo Paakinaho
- Biomaterials and Tissue Engineering Group, BioMediTech, Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Susanna Miettinen
- Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere, Arvo Ylpönkatu 34, 4th Floor, 33520 Tampere, Finland
- Science Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
19
|
Abbas TO, Mahdi E, Hasan A, AlAnsari A, Pennisi CP. Current Status of Tissue Engineering in the Management of Severe Hypospadias. Front Pediatr 2018; 5:283. [PMID: 29404308 PMCID: PMC5786532 DOI: 10.3389/fped.2017.00283] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/13/2017] [Indexed: 01/29/2023] Open
Abstract
Hypospadias, characterized by misplacement of the urinary meatus in the lower side of the penis, is a frequent birth defect in male children. Because of the huge variation in the anatomic presentation of hypospadias, no single urethroplasty procedure is suitable for all situations. Hence, many surgical techniques have emerged to address the shortage of tissues required to bridge the gap in the urethra particularly in the severe forms of hypospadias. However, the rate of postoperative complications of currently available surgical procedures reaches up to one-fourth of the patients having severe hypospadias. Moreover, these urethroplasty techniques are technically demanding and require considerable surgical experience. These limitations have fueled the development of novel tissue engineering techniques that aim to simplify the surgical procedures and to reduce the rate of complications. Several types of biomaterials have been considered for urethral repair, including synthetic and natural polymers, which in some cases have been seeded with cells prior to implantation. These methods have been tested in preclinical and clinical studies, with variable degrees of success. This review describes the different urethral tissue engineering methodologies, with focus on the approaches used for the treatment of hypospadias. At present, despite many significant advances, the search for a suitable tissue engineering approach for use in routine clinical applications continues.
Collapse
Affiliation(s)
- Tariq O. Abbas
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Pediatric Surgery and Urology, Hamad General Hospital, Doha, Qatar
- College of Medicine, Qatar University, Doha, Qatar
| | - Elsadig Mahdi
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha, Qatar
| | | | - Cristian Pablo Pennisi
- Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
20
|
Sartoneva R, Nordback PH, Haimi S, Grijpma DW, Lehto K, Rooney N, Seppänen-Kaijansinkko R, Miettinen S, Lahdes-Vasama T. Comparison of Poly(l-lactide-co-ɛ-caprolactone) and Poly(trimethylene carbonate) Membranes for Urethral Regeneration: An In Vitro and In Vivo Study. Tissue Eng Part A 2017; 24:117-127. [PMID: 28463605 DOI: 10.1089/ten.tea.2016.0245] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Urethral defects are normally reconstructed using a patient's own genital tissue; however, in severe cases, additional grafts are needed. We studied the suitability of poly(l-lactide-co-ɛ-caprolactone) (PLCL) and poly(trimethylene carbonate) (PTMC) membranes for urethral reconstruction in vivo. Further, the compatibility of the materials was evaluated in vitro with human urothelial cells (hUCs). The attachment and viability of hUCs and the expression of different urothelial cell markers (cytokeratin 7, 8, 19, and uroplakin Ia, Ib, and III) were studied after in vitro cell culture on PLCL and PTMC. For the in vivo study, 32 rabbits were divided into the PLCL (n = 15), PTMC (n = 15), and control or sham surgery (n = 2) groups. An oval urethral defect 1 × 2 cm in size was surgically excised and replaced with a PLCL or a PTMC membrane or urethral mucosa in sham surgery group. The rabbits were followed for 2, 4, and 16 weeks. After the follow-up, urethrography was performed to check the patency of the urethra. The defect area was excised for histological examination, where the epithelial integrity and structure, inflammation, and fibrosis were observed. There was no notable difference on hUCs attachment on PLCL and PTMC membranes after 1 day of cell seeding, further, the majority of hUCs were viable and maintained their urothelial phenotype on both biomaterials. Postoperatively, animals recovered well, and no severe strictures were discovered by urethrography. In histological examination, the urothelial integrity and structure developed toward a normal urothelium with only mild signs of fibrosis or inflammation. According to these results, PLCL and PTMC are both suitable for reconstructing urethral defects. There were no explicit differences between the PLCL and PTMC membranes. However, PTMC membranes were more flexible, easier to suture and shape, and developed significant epithelial integrity.
Collapse
Affiliation(s)
- Reetta Sartoneva
- 1 Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere , Tampere, Finland .,2 Science Centre, Tampere University Hospital , Tampere, Finland
| | - Panu H Nordback
- 1 Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere , Tampere, Finland .,2 Science Centre, Tampere University Hospital , Tampere, Finland
| | - Suvi Haimi
- 3 Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital , Helsinki, Finland
| | - Dirk W Grijpma
- 4 Department of Biomaterials Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands .,5 Department of Biomedical Engineering, W.J. Kolff Institute, University Medical Centre Groningen, University of Groningen , Groningen, The Netherlands
| | - Kalle Lehto
- 1 Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere , Tampere, Finland
| | | | - Riitta Seppänen-Kaijansinkko
- 3 Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital , Helsinki, Finland
| | - Susanna Miettinen
- 1 Adult Stem Cell Research Group, BioMediTech, Faculty of Medicine and Life Sciences, University of Tampere , Tampere, Finland .,2 Science Centre, Tampere University Hospital , Tampere, Finland
| | - Tuija Lahdes-Vasama
- 2 Science Centre, Tampere University Hospital , Tampere, Finland .,7 Pediatric and Adolescent Surgery Unit, Pediatric Research Centre and Tampere University Hospital , Tampere, Finland
| |
Collapse
|
21
|
Landis WJ, Chubinskaya S, Tokui T, Wada Y, Isogai N, Jacquet R. Tissue engineering a human phalanx. J Tissue Eng Regen Med 2016; 11:2373-2387. [PMID: 26999523 DOI: 10.1002/term.2137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 11/11/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
Abstract
A principal purpose of tissue engineering is the augmentation, repair or replacement of diseased or injured human tissue. This study was undertaken to determine whether human biopsies as a cell source could be utilized for successful engineering of human phalanges consisting of both bone and cartilage. This paper reports the use of cadaveric human chondrocytes and periosteum as a model for the development of phalanx constructs. Two factors, osteogenic protein-1 [OP-1/bone morphogenetic protein-7 (BMP7)], alone or combined with insulin-like growth factor (IGF-1), were examined for their potential enhancement of chondrocytes and their secreted extracellular matrices. Design of the study included culture of chondrocytes and periosteum on biodegradable polyglycolic acid (PGA) and poly-l-lactic acid (PLLA)-poly-ε-caprolactone (PCL) scaffolds and subsequent implantation in athymic nu/nu (nude) mice for 5, 20, 40 and 60 weeks. Engineered constructs retrieved from mice were characterized with regard to genotype and phenotype as a function of developmental (implantation) time. Assessments included gross observation, X-ray radiography or microcomputed tomography, histology and gene expression. The resulting data showed that human cell-scaffold constructs could be successfully developed over 60 weeks, despite variability in donor age. Cartilage formation of the distal phalanx models enhanced with both OP-1 and IGF-1 yielded more cells and extracellular matrix (collagen and proteoglycans) than control chondrocytes without added factors. Summary data demonstrated that human distal phalanx models utilizing cadaveric chondrocytes and periosteum were successfully fabricated and OP-1 and OP-1/IGF-1 accelerated construct development and mineralization. The results suggest that similar engineering and transplantation of human autologous tissues in patients are clinically feasible. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- W J Landis
- Goodyear Polymer Center, Department of Polymer Science, University of Akron, Akron, OH, USA
| | - S Chubinskaya
- Departments of Biochemistry, Orthopaedic Surgery and Medicine, Rush University Medical Center, Chicago, IL, USA
| | - T Tokui
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-Sayama, Japan
| | - Y Wada
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-Sayama, Japan
| | - N Isogai
- Department of Plastic and Reconstructive Surgery, Kinki University Medical School, Osaka-Sayama, Japan
| | - R Jacquet
- Goodyear Polymer Center, Department of Polymer Science, University of Akron, Akron, OH, USA
| |
Collapse
|
22
|
Adamowicz J, Pokrywczyńska M, Tworkiewicz J, Kowalczyk T, van Breda SV, Tyloch D, Kloskowski T, Bodnar M, Skopinska-Wisniewska J, Marszałek A, Frontczak-Baniewicz M, Kowalewski TA, Drewa T. New Amniotic Membrane Based Biocomposite for Future Application in Reconstructive Urology. PLoS One 2016; 11:e0146012. [PMID: 26766636 PMCID: PMC4713072 DOI: 10.1371/journal.pone.0146012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023] Open
Abstract
Objective Due to the capacity of the amniotic membrane (Am) to support re-epithelisation and inhibit scar formation, Am has a potential to become a considerable asset for reconstructive urology i.e., reconstruction of ureters and urethrae. The application of Am in reconstructive urology is limited due to a poor mechanical characteristic. Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance, without affecting its unique bioactivity profile. This study evaluated biocomposite material composed of Am and nanofibers as a graft for urinary bladder augmentation in a rat model. Material and Methods Sandwich-structured biocomposite material was constructed from frozen Am and covered on both sides with two-layered membranes prepared from electrospun poly-(L-lactide-co-E-caprolactone) (PLCL). Wistar rats underwent hemicystectomy and bladder augmentation with the biocomposite material. Results Immunohistohemical analysis (hematoxylin and eosin [H&E], anti-smoothelin and Masson’s trichrome staining [TRI]) revealed effective regeneration of the urothelial and smooth muscle layers. Anti-smoothelin staining confirmed the presence of contractile smooth muscle within a new bladder wall. Sandwich-structured biocomposite graft material was designed to regenerate the urinary bladder wall, fulfilling the requirements for normal bladder tension, contraction, elasticity and compliance. Mechanical evaluation of regenerated bladder wall conducted based on Young’s elastic modulus reflected changes in the histological remodeling of the augmented part of the bladder. The structure of the biocomposite material made it possible to deliver an intact Am to the area for regeneration. An unmodified Am surface supported regeneration of the urinary bladder wall and the PLCL membranes did not disturb the regeneration process. Conclusions Am reinforcement with electrospun nanofibers offers a new strategy to improve Am mechanical resistance without affecting its unique bioactivity profile.
Collapse
Affiliation(s)
- Jan Adamowicz
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of General, Oncologic and Pediatric Urology, Nicolaus Copernicus University, Bydgoszcz, Poland
- * E-mail:
| | - Marta Pokrywczyńska
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Jakub Tworkiewicz
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of Urology, Nicolaus Copernicus Hospital Batory, Torun, Poland
| | - Tomasz Kowalczyk
- Laboratory of Modeling in Biology and Medicine, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Shane V. van Breda
- Department of Internal Medicine, Division of Infectious Diseases, University of Pretoria, Pretoria, South Africa
| | - Dominik Tyloch
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of General, Oncologic and Pediatric Urology, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Magda Bodnar
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Joanna Skopinska-Wisniewska
- Department of Chemistry of Biomaterials and Cosmetics, Faculty of Chemistry, Nicolaus Copernicus University, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Andrzej Marszałek
- Department of Clinical Pathomorphology, Faculty of Medicine, Nicolaus Copernicus University, Bydgoszcz, Poland
| | | | - Tomasz A. Kowalewski
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland, Poland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of General, Oncologic and Pediatric Urology, Nicolaus Copernicus University, Bydgoszcz, Poland
- Department of Urology, Nicolaus Copernicus Hospital Batory, Torun, Poland
| |
Collapse
|
23
|
Lin HK, Madihally SV, Palmer B, Frimberger D, Fung KM, Kropp BP. Biomatrices for bladder reconstruction. Adv Drug Deliv Rev 2015; 82-83:47-63. [PMID: 25477305 DOI: 10.1016/j.addr.2014.11.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/17/2014] [Accepted: 11/24/2014] [Indexed: 12/22/2022]
Abstract
There is a demand for tissue engineering of the bladder needed by patients who experience a neurogenic bladder or idiopathic detrusor overactivity. To avoid complications from augmentation cystoplasty, the field of tissue engineering seeks optimal scaffolds for bladder reconstruction. Naturally derived biomaterials as well as synthetic and natural polymers have been explored as bladder substitutes. To improve regenerative properties, these biomaterials have been conjugated with functional molecules, combined with nanotechology, or seeded with exogenous cells. Although most studies reported complete and functional bladder regeneration in small-animal models, results from large-animal models and human clinical trials varied. For functional bladder regeneration, procedures for biomaterial fabrication, incorporation of biologically active agents, introduction of nanotechnology, and application of stem-cell technology need to be standardized. Advanced molecular and medical technologies such as next generation sequencing and magnetic resonance imaging can be introduced for mechanistic understanding and non-invasive monitoring of regeneration processes, respectively.
Collapse
Affiliation(s)
- Hsueh-Kung Lin
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Sundar V Madihally
- Department of Chemical Engineering, 423 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Blake Palmer
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Dominic Frimberger
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Kar-Ming Fung
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Bradley P Kropp
- Department of Urology, The Children's Hospital of Oklahoma, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
24
|
de Kemp V, de Graaf P, Fledderus JO, Ruud Bosch JLH, de Kort LMO. Tissue engineering for human urethral reconstruction: systematic review of recent literature. PLoS One 2015; 10:e0118653. [PMID: 25689740 PMCID: PMC4331084 DOI: 10.1371/journal.pone.0118653] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 01/11/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. PURPOSE To review recent literature on tissue engineering for human urethral reconstruction. METHODS A search was made in the PubMed and Embase databases restricted to the last 25 years and the English language. RESULTS A total of 45 articles were selected describing the use of tissue engineering in urethral reconstruction. The results are discussed in four groups: autologous cell cultures, matrices/scaffolds, cell-seeded scaffolds, and clinical results of urethral reconstructions using these materials. Different progenitor cells were used, isolated from either urine or adipose tissue, but slightly better results were obtained with in vitro expansion of urothelial cells from bladder washings, tissue biopsies from the bladder (urothelium) or the oral cavity (buccal mucosa). Compared with a synthetic scaffold, a biological scaffold has the advantage of bioactive extracellular matrix proteins on its surface. When applied clinically, a non-seeded matrix only seems suited for use as an onlay graft. When a tubularized substitution is the aim, a cell-seeded construct seems more beneficial. CONCLUSIONS Considerable experience is available with tissue engineering of urethral tissue in vitro, produced with cells of different origin. Clinical and in vivo experiments show promising results.
Collapse
Affiliation(s)
- Vincent de Kemp
- Department of Urology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Petra de Graaf
- Department of Urology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Joost O. Fledderus
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J. L. H. Ruud Bosch
- Department of Urology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
25
|
Wang F, Liu T, Yang L, Zhang G, Liu H, Yi X, Yang X, Lin TY, Qin W, Yuan J. Urethral reconstruction with tissue-engineered human amniotic scaffold in rabbit urethral injury models. Med Sci Monit 2014; 20:2430-8. [PMID: 25424000 PMCID: PMC4257484 DOI: 10.12659/msm.891042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Mitigating urethral injury remains a great challenge for urologists due to lack of ideal biomaterials for urethroplasty. The application of amniotic membranes (AM) over other synthetic materials make it a better potential source for urethral reconstruction. We separated the basement layer of AM to obtain denuded human amniotic scaffold (dHAS) and then inoculated primary rabbit urethral epithelial cells on the surface of dHAS to define whether this strategy minimize potential rejection and maximize the biocompatibility of human AM. MATERIAL/METHODS After the successful acquisition of dHAS from AM, cell-seeded dHAS were prepared and characterized. Both cell-seeded dHAS and acellular dHAS were subcutaneously implanted. Immune responses were compared by histological evaluation and CD4 cell and CD8 cell infiltrations. Then they were applied as urethroplastic materials in the rabbit models of urethral injury to fully explore the feasibility and efficacy of tissue-engineered dHAS xenografts in urethral substitution application. RESULTS Mild inflammatory infiltration was observed in cell-seeded dHAS grafts, as revealed by fewer accumulations of CD4 cells and CD8 cells (or neutrophils or other immune cells). Urethral defects of rabbits in the urethroplastic group with dHAS implantation (n=6) were completely resolved in one month, while there were one infection and one fistula in the control group with acellular dHAS patches (n=6). Histopathological analysis revealed mild immune response in cell-seeded dHAS group (P<0.05). CONCLUSIONS Tissue-engineered dHAS minimize potential rejection and maximize the biocompatibility of AM, which makes it a potential ideal xenograft for urethral reconstruction.
Collapse
Affiliation(s)
- Fuli Wang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (mainland)
| | - Tao Liu
- Department of Biomedical Engineering, Fourth Military Medical University, Xi'an, China (mainland)
| | - Lijun Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (mainland)
| | - Geng Zhang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (mainland)
| | - Heliang Liu
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (mainland)
| | - Xiaomin Yi
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (mainland)
| | - Xiaojian Yang
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (mainland)
| | - Tzu-yin Lin
- Department of Internal Medicine, University of California - Davis, Sacramento, USA
| | - Weijun Qin
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (mainland)
| | - Jianlin Yuan
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi'an, China (mainland)
| |
Collapse
|
26
|
Pokrywczynska M, Jundzill A, Adamowicz J, Kowalczyk T, Warda K, Rasmus M, Buchholz L, Krzyzanowska S, Nakielski P, Chmielewski T, Bodnar M, Marszalek A, Debski R, Frontczak-Baniewicz M, Mikułowski G, Nowacki M, Kowalewski TA, Drewa T. Is the poly (L- lactide- co- caprolactone) nanofibrous membrane suitable for urinary bladder regeneration? PLoS One 2014; 9:e105295. [PMID: 25162451 PMCID: PMC4146509 DOI: 10.1371/journal.pone.0105295] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/22/2014] [Indexed: 12/28/2022] Open
Abstract
The purpose of this study was to compare: a new five-layered poly (L-lactide-co-caprolactone) (PLC) membrane and small intestinal submucosa (SIS) as a control in rat urinary bladder wall regeneration. The five-layered poly (L-lactide-co-caprolactone) membrane was prepared by an electrospinning process. Adipose tissue was harvested from five 8-week old male Wistar rats. Adipose derived stem cells (ADSCs) were seeded in a density of 3×10(6) cells/cm2 onto PLC membrane and SIS scaffolds, and cultured for 5-7 days in the stem cell culture medium. Twenty male Wistar rats were randomly divided into five equal groups. Augmentation cystoplasty was performed in a previously created dome defect. Groups: (I) PLC+ 3×10(6)ADSCs; (II) SIS+ 3×10(6)ADSCs; (III) PLC; (IV) SIS; (V) control. Cystography was performed after three months. The reconstructed urinary bladders were evaluated in H&E and Masson's trichrome staining. Regeneration of all components of the normal urinary bladder wall was observed in bladders augmented with cell-seeded SIS matrices. The urinary bladders augmented with SIS matrices without cells showed fibrosis and graft contraction. Bladder augmentation with the PLC membrane led to numerous undesirable events including: bladder wall perforation, fistula or diverticula formation, and incorporation of the reconstructed wall into the bladder lumen. The new five-layered poly (L-lactide-co-caprolactone) membrane possesses poorer potential for regenerating the urinary bladder wall compared with SIS scaffold.
Collapse
Affiliation(s)
- Marta Pokrywczynska
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Arkadiusz Jundzill
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Jan Adamowicz
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Tomasz Kowalczyk
- Department of Theory of Continuous Media, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Warda
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Marta Rasmus
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Lukasz Buchholz
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Sandra Krzyzanowska
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Pawel Nakielski
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Chmielewski
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Magdalena Bodnar
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Andrzej Marszalek
- Department of Clinical Pathomorphology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of Tumor Pathology, Center of Oncology, Poznan University of Medical Sciences, Poznan, Poland
| | - Robert Debski
- Department of Pediatrics, Hematology and Oncology, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | | | - Grzegorz Mikułowski
- Department of Intelligent Technologies, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Maciej Nowacki
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
| | - Tomasz A. Kowalewski
- Department of Mechanics and Physics of Fluids, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Drewa
- Chair of Regenerative Medicine, Department of Tissue Engineering, Nicolaus Copernicus University in Torun, Ludwik Rydygier Medical College in Bydgoszcz, Bydgoszcz, Poland
- Department of Urology, Nicolaus Copernicus Hospital, Torun, Poland
| |
Collapse
|
27
|
Larrañaga A, Guay-Bégin AA, Chevallier P, Sabbatier G, Fernández J, Laroche G, Sarasua JR. Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications. BIOMATTER 2014; 4:e27979. [PMID: 24509417 PMCID: PMC4014455 DOI: 10.4161/biom.27979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thermoplastic biodegradable polymers displaying elastomeric behavior and mechanical consistency are greatly appreciated for the regeneration of soft tissues and for various medical devices. However, while the selection of a suitable base material is determined by mechanical and biodegradation considerations, it is the surface properties of the biomaterial that are responsible for the biological response. In order to improve the interaction with cells and modulate their behavior, biologically active molecules can be incorporated onto the surface of the material. With this aim, the surface of a lactide and caprolactone based biodegradable elastomeric terpolymer was modified in two stages. First, the biodegradable polymer surface was aminated by atmospheric pressure plasma treatment and second a crosslinker was grafted in order to covalently bind the biomolecule. In this study, albumin was used as a model protein. According to X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM), albumin was efficiently immobilized on the surface of the terpolymer, the degree of albumin surface coverage (ΓBSA) reached ~35%. Moreover, gel permeation chromatography (GPC) studies showed that the hydrolytic degradation kinetic of the synthesized polymer was slightly delayed when albumin was grafted. However, the degradation process in the bulk of the material was unaffected, as demonstrated by Fourier transform infrared (FTIR) analyses. Furthermore, XPS analyses showed that the protein was still present on the surface after 28 days of degradation, meaning that the surface modification was stable, and that there had been enough time for the biological environment to interact with the modified material.
Collapse
Affiliation(s)
- Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science; POLYMAT; University of the Basque Country (UPV/EHU); School of Engineering; Bilbao, Spain; Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada
| | - Andrée-Anne Guay-Bégin
- Department of Mining-Metallurgy Engineering and Materials Science; POLYMAT; University of the Basque Country (UPV/EHU); School of Engineering; Bilbao, Spain; Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada
| | - Pascale Chevallier
- Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada; Département de génie des mines, de la métallurgie et des matériaux; Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec, QC Canada
| | - Gad Sabbatier
- Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada; Département de génie des mines, de la métallurgie et des matériaux; Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec, QC Canada
| | - Jorge Fernández
- Department of Mining-Metallurgy Engineering and Materials Science; POLYMAT; University of the Basque Country (UPV/EHU); School of Engineering; Bilbao, Spain
| | - Gaétan Laroche
- Laboratoire d'Ingénierie de Surface (LIS); Centre de recherche du CHU de Québec; Hôpital Saint-François d'Assise; Québec, QC Canada; Département de génie des mines, de la métallurgie et des matériaux; Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec, QC Canada
| | - Jose-Ramon Sarasua
- Department of Mining-Metallurgy Engineering and Materials Science; POLYMAT; University of the Basque Country (UPV/EHU); School of Engineering; Bilbao, Spain
| |
Collapse
|
28
|
Fernández J, Larrañaga A, Etxeberria A, Wang W, Sarasua JR. A new generation of poly(lactide/ε-caprolactone) polymeric biomaterials for application in the medical field. J Biomed Mater Res A 2013; 102:3573-84. [PMID: 24243562 DOI: 10.1002/jbm.a.35036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 11/08/2022]
Abstract
Thermoplastic biodegradable polymers displaying an elastomeric behavior are greatly valued for the regeneration of soft tissues and for various medical devices. In this work, terpolymers composed of ε-caprolactone (CL), D-lactide (D-LA), and L-lactide (L-LA) were synthesized. These poly(lactide-ε-caprolactone) (PLCLs) presented an elevated randomness character (R∼1), glass transition temperatures (Tg ) higher than 20°C and adjusted L-LA content. In this way, the L-LA average sequence length (/L-LA ) was reduced to below 3.62 and showed little or no crystallization capability during in vitro degradation. As a result, the obtained materials underwent homogenous degradation exhibiting KMw ranging from 0.030 to 0.066 d(-1) and without generation of crystalline remnants in advanced stages of degradation. Mechanical performance was maintained over a period of 21 days for a rac-lactide-ε-caprolactone copolymer composed of ∼85% D,L-LA and ∼15% CL and also for a terpolymer composed of ∼72% L-LA, ∼12% D-LA and ∼16% CL. Terpolymers having L-LA content from ∼60 to 70% and CL content from ∼10 to 27% were also studied. In view of the results, those materials having CL and D-LA units disrupting the microstructural arrangement of the L-LA crystallizable chains, an L-LA content <72% and a random distribution of sequences, may display proper and tunable mechanical behavior and degradation performance for a large number of medical applications. Those with a CL content from 15 to 30% will fulfill the demand of elastomeric materials of Tg higher than 20°C whereas those with a CL content from 5 to 15% might be applied as ductile stiff materials.
Collapse
Affiliation(s)
- J Fernández
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, University of the Basque Country (UPV/EHU), School of Engineering, Alameda de Urquijo s/n., 48013, Bilbao, Spain
| | | | | | | | | |
Collapse
|
29
|
Jerman UD, Veranič P, Kreft ME. Amniotic membrane scaffolds enable the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of native urothelium. Tissue Eng Part C Methods 2013; 20:317-27. [PMID: 23947657 DOI: 10.1089/ten.tec.2013.0298] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The amniotic membrane (AM) is a naturally derived biomaterial that possesses biological and mechanical properties of great importance for tissue engineering. The aim of our study was to determine whether the AM enables the formation of a normal urinary bladder epithelium-urothelium--and to reveal any differences in the urothelial cell (UC) growth and differentiation when using different AM scaffolds. Cryopreserved human AM was used as a scaffold in three different ways. Normal porcine UCs were seeded on the AM epithelium (eAM), denuded AM (dAM), and stromal AM (sAM) and were cultured for 3 weeks. UC growth on AM scaffolds was monitored daily. By using electron microscopy, histochemical and immunofluorescence techniques, we here provide evidence that all three AM scaffolds enable the development of the urothelium. The fastest growth and the highest differentiation of UCs were demonstrated on the sAM scaffold, which enables the development of tissue-engineered urothelium with molecular and ultrastructural properties comparable to that of the native urothelium. Most importantly, the highly differentiated urothelia on the sAM scaffolds provide important experimental models for future drug delivery studies and developing tissue engineering strategies considering that subtle differences are identified before translation to the clinical settings.
Collapse
Affiliation(s)
- Urška Dragin Jerman
- 1 Institute of Cell Biology, Faculty of Medicine, University of Ljubljana , Ljubljana, Slovenia
| | | | | |
Collapse
|
30
|
Sartoneva R, Haaparanta AM, Lahdes-Vasama T, Mannerström B, Kellomäki M, Salomäki M, Sándor G, Seppänen R, Miettinen S, Haimi S. Characterizing and optimizing poly-L-lactide-co-ε-caprolactone membranes for urothelial tissue engineering. J R Soc Interface 2012; 9:3444-54. [PMID: 22896571 DOI: 10.1098/rsif.2012.0458] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Different synthetic biomaterials such as polylactide (PLA), polycaprolactone and poly-l-lactide-co-ε-caprolactone (PLCL) have been studied for urothelial tissue engineering, with favourable results. The aim of this research was to further optimize the growth surface for human urothelial cells (hUCs) by comparing different PLCL-based membranes: smooth (s) and textured (t) PLCL and knitted PLA mesh with compression-moulded PLCL (cPLCL). The effects of topographical texturing on urothelial cell response and mechanical properties under hydrolysis were studied. The main finding was that both sPLCL and tPLCL supported hUC growth significantly better than cPLCL. Interestingly, tPLCL gave no significant advantage to hUC attachment or proliferation compared with sPLCL. However, during the 14 day assessment period, the majority of cells were viable and maintained phenotype on all the membranes studied. The material characterization exhibited potential mechanical characteristics of sPLCL and tPLCL for urothelial applications. Furthermore, the highest elongation of tPLCL supports the use of this kind of texturing. In conclusion, in light of our cell culture results and mechanical characterization, both sPLCL and tPLCL should be further studied for urothelial tissue engineering.
Collapse
Affiliation(s)
- Reetta Sartoneva
- Institute of Biomedical Technology, University of Tampere, Tampere, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|