1
|
Liu Z, Wang Y, Jiang C, He J, Rong R, Li S, Liang Z. Spatial distribution of bioaerosols and evaluation of four ventilation method on controlling their diffusion in a typical enhanced biosafety level 2 laboratory. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134942. [PMID: 38889462 DOI: 10.1016/j.jhazmat.2024.134942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/20/2024]
Abstract
Biosafety laboratories are critical in many fields. However, experimenters associated the infection risk from biological aerosols. In this study, by conducting experiments on the release and collection of bioaerosols within a typical BSL-2 + laboratory, the spatial distribution of bioaerosols was tracked. Numerical calculations were employed to obtain and visualize the airflow patterns and aerosol dispersion paths of four ventilation methods. The results indicated that equipment and tables led to uneven airflow distribution within the laboratory. The comparison results of the four evaluation indicators showed that the air age distribution of UU (Upward supply and upward return) mode and CD (Cross-supply and downward return) mode was superior, with air change efficiency values of 0.595 and 0.603, respectively. Additionally, the contaminant removal index of CD mode was 1.48, significantly higher than the other ventilation methods. The statistical results of the contaminant dispersion index also indicated that CD mode was most conducive to diluting aerosols in the spatial environment. The LD (lateral supply and downward return) mode may lead to airflow short-circuiting. The UD (upward supply and downward return) mode can provide balanced protection for laboratory. Overall, CD mode performed the best among the four ventilation methods, followed by UU mode.
Collapse
Affiliation(s)
- Zhijian Liu
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China.
| | - Yongxin Wang
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Chuan Jiang
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Junzhou He
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Rui Rong
- Department of Power Engineering, School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Shiyue Li
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Zhenyu Liang
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| |
Collapse
|
2
|
Liu Z, Li H, Chu J, Huang Z, Xiao X, Wang Y, He J. The impact of high background particle concentration on the spatiotemporal distribution of Serratia marcescens bioaerosol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131863. [PMID: 37354722 DOI: 10.1016/j.jhazmat.2023.131863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023]
Abstract
Airborne transmission is a well-established mode of dissemination for infectious diseases, particularly in closed environments. However, previous research has often overlooked the potential impact of background particle concentration on bioaerosol characteristics. We compared the spatial and temporal distributions of bioaerosols under two levels of background particle concentration: heavily polluted (150-250 μg/m3) and excellent (0-35 μg/m3) in a typical ward. Serratia marcescens bioaerosol was adopted as a bioaerosol tracer, and the bioaerosol concentrations were quantified using six-stage Andersen cascade impactors. The results showed a significant reduction (over at least 62.9%) in bioaerosol concentration under heavily polluted levels compared to excellent levels at all sampling points. The temporal analysis also revealed that the decay rate of bioaerosols was higher (at least 0.654 min-1) under heavily polluted levels compared to excellent levels. These findings suggest that background particles can facilitate bioaerosol removal, contradicting the assumption made in previous research that background particle has no effect on bioaerosol characteristics. Furthermore, we observed differences in the size distribution of bioaerosols between the two levels of background particle concentration. The average bioaerosols size under heavily polluted levels was found to be higher than that under excellent levels, and the average particle size under heavily polluted levels gradually increased with time. In conclusion, these results highlight the importance of considering background particle concentration in future research on bioaerosol characteristics.
Collapse
Affiliation(s)
- Zhijian Liu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Haochuan Li
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Jiaqi Chu
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhenzhe Huang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Xia Xiao
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Yongxin Wang
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China
| | - Junzhou He
- School of Energy and Power Engineering, North China Electric Power University, Baoding 071003, China.
| |
Collapse
|
3
|
Zhu S, Lin T, Wang L, Nardell EA, Vincent RL, Srebric J. Ceiling impact on air disinfection performance of Upper-Room Germicidal Ultraviolet (UR-GUV). BUILDING AND ENVIRONMENT 2022; 224:109530. [PMID: 36065253 PMCID: PMC9429126 DOI: 10.1016/j.buildenv.2022.109530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/12/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
This study used Computational Fluid Dynamics (CFD) to investigate air disinfection for SARS-CoV-2 by the Upper-Room Germicidal Ultraviolet (UR-GUV), with focus on ceiling impact. The study includes three indoor settings, i.e., low (airport bus), medium (classroom) and high (rehearsal room) ceilings, which were ventilated with 100% clean air (CA case), 80% air-recirculation with a low filtration (LF case), and 80% air-recirculation with a high filtration (HF case). According to the results, using UR-GUV can offset the increased infection risk caused by air recirculation, with viral concentrations in near field (NF) and far field (FF) in the LF case similar to those in the CA case. In the CA case, fraction remaining (FR) was 0.48-0.73 with 25% occupancy rate (OR) and 0.49-0.91 with 45% OR in the bus, 0.41 in NF and 0.11 in FF in the classroom, and 0.18 in NF and 0.09 in FF in the rehearsal room. Obviously, UR-GUV performance in NF can be improved in a room with a high ceiling where FR has a power relationship with UV zone height. As using UR-GUV can only extend the exposure time to get infection risk of 1% (T 1% ) to 8 min in NF in the classroom, and 47 min in NF in the rehearsal room, it is necessary to abide by social distancing in the two rooms. In addition, T 1% in FF was calculated to be 18.3 min with 25% OR and 21.4% with 45% OR in the airport bus, showing the necessity to further wear a mask.
Collapse
Affiliation(s)
- Shengwei Zhu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Tong Lin
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Lingzhe Wang
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | - Edward A Nardell
- Departments of Environmental Health and Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Jelena Srebric
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Li Z, Wang Y, Zheng W, Wang H, Li B, Liu C, Wang Y, Lei C. Effect of inlet-outlet configurations on the cross-transmission of airborne bacteria between animal production buildings. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128372. [PMID: 35236040 DOI: 10.1016/j.jhazmat.2022.128372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Cross-transmission of airborne pathogens between buildings facilitates the spread of both human and animal diseases. Rational spatial arrangement of buildings and air inlet-outlet design are well-established preventive measures, but the effectiveness of current configurations for mitigating pathogens cross-transmission is still under assessment. An intensive field study in a laying hen farm was conducted to elucidate the spatial distribution of airborne bacteria (AB) and the source of AB at the inlets under different wind regimes. We found higher concentrations of AB at the interspace and sidewall inlets of buildings with sidewall exhaust systems than at those with endwall exhaust systems. We observed significant differences in bacterial diversity and richness at the interspace and sidewall inlets between buildings with side exhaust systems and those with endwall exhaust systems. We further found that the AB emitted from buildings could translocate to the sidewall inlets of adjacent building to a greater extent between buildings with sidewall exhaust systems than between those with endwall exhaust systems. Our findings revealed that sidewall exhaust systems aggravate cross-transmission of AB between buildings, suggesting that endwall exhaust systems or other compensatory preventive measures combined with sidewall exhaust systems could be a better choice to suppress airborne cross-transmission.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China; Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China.
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Chang Liu
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Yuxin Wang
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China; Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China; Beijing Engineering Research Center on Animal Healthy Environment, Beijing, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Sichuan, China; Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| |
Collapse
|
5
|
Nunayon SS, Zhang HH, Chan V, Kong RYC, Lai ACK. Study of synergistic disinfection by UVC and positive/negative air ions for aerosolized Escherichia coli, Salmonella typhimurium, and Staphylococcus epidermidis in ventilation duct flow. INDOOR AIR 2022; 32:e12957. [PMID: 34796996 DOI: 10.1111/ina.12957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
The efficacy of the in-duct application of ultraviolet waveband C (UVC) emitting at 254 nm wavelength and air ions against aerosolized bacteria was studied in a full-scale 9-m long ventilation duct. Combined positive and negative ion polarities (bipolar ions) and combined UVC and ions were tested. The UVC was generated by a mercury-type UVC lamp and air ions were generated by positive and negative polarity ionizers. Escherichia coli (E. coli), Salmonella typhimurium (S. typhimurium), and Staphylococcus epidermidis (S. epidermidis)were tested at a concentration of 108 to 109 cells in 50 ml of sterilized distilled water. The case in which the positive ionizer was placed first, followed by the negative ionizer, demonstrated significantly higher disinfection efficiencies for E. coli (p = 0.007) and S. typhimurium (p < 0.001), but lower efficiency for S. epidermidis (p = 0.01) than the reversed sequence. The combination of UVC (3.71 J/m2 ) and air ions (1.13 × 1012 ions/m3 for positive ions and 8.00 × 1011 ions/m3 for negative ions) led to higher inactivation than individual disinfection agents operating under the same dose. A synergetic inactivation effect was observed for S. epidermidis under the combined UVC and positive ion case, while the combined UVC and negative ion case showed significant synergy effects for E. coli and S. typhimurium.
Collapse
Affiliation(s)
- Sunday S Nunayon
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| | - Hui H Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| | - Vincent Chan
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, UAE
| | - Richard Y C Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | - Alvin C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Yang Y, Zhang H, Lai AC. Lagrangian modeling of inactivation of airborne microorganisms by in-duct ultraviolet lamps. BUILDING AND ENVIRONMENT 2021; 188:107465. [PMID: 33250559 PMCID: PMC7679659 DOI: 10.1016/j.buildenv.2020.107465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 05/05/2023]
Abstract
There has been increasing interest in modeling the UV inactivation on airborne microorganisms via the Lagrangian approach as a result of its outstanding features in calculating UV dose with particle trajectory. In this study, we applied the Lagrangian method to model the disinfection performance of in-duct UV lamps on three bacteria: Pseudomonas alcaligenes, Salmonella enterica and Escherichia coli, respectively. For modeling, the airborne bacteria's inactivation was determined by critical survival fraction probability (CSFP) and maximal bearable UV dose (MBUD) methods, respectively. The results indicated that Lagrangian modeling utilizing the MBUD method needs to appropriately evaluate the maximal UV dose (D mb ), which is bearable for airborne microorganisms. The disinfection efficacy obtained by using the CSFP method agreed well with experimental measurements. Within the Lagrangian framework, the recommended empirical value for critical survival fraction (F sc ) was 0.4 for modeling the disinfection efficacy of in-duct UV lamps. Besides, the disinfection efficacies of in-duct UV lamps with full luminous length on P. alcaligenes and E. coli were 100% with Re within the range of 4.11 × 104 to 8.22 × 104. Moreover, the present numerical model was also applied for further validation with inactivation measurements of in-duct UV lamps performed by the U.S. Environmental Protection Agency (EPA). Based on the results, the UV disinfection efficacies obtained by the present modeling method had a closed agreement with EPA experimental results. It deserved to pay more investigations on the optimal value of F sc in further for accurately applying Lagrangian modeling on air UV disinfection.
Collapse
Affiliation(s)
- Yi Yang
- School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, 518120, China
| | - Huihui Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| | - Alvin Ck Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong, China
| |
Collapse
|
7
|
Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G, Cao J, Dancer S, Floto A, Franchimon F, Haworth C, Hogeling J, Isaxon C, Jimenez JL, Kurnitski J, Li Y, Loomans M, Marks G, Marr LC, Mazzarella L, Melikov AK, Miller S, Milton DK, Nazaroff W, Nielsen PV, Noakes C, Peccia J, Querol X, Sekhar C, Seppänen O, Tanabe SI, Tellier R, Tham KW, Wargocki P, Wierzbicka A, Yao M. How can airborne transmission of COVID-19 indoors be minimised? ENVIRONMENT INTERNATIONAL 2020; 142:105832. [PMID: 32521345 PMCID: PMC7250761 DOI: 10.1016/j.envint.2020.105832] [Citation(s) in RCA: 558] [Impact Index Per Article: 139.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 05/17/2023]
Abstract
During the rapid rise in COVID-19 illnesses and deaths globally, and notwithstanding recommended precautions, questions are voiced about routes of transmission for this pandemic disease. Inhaling small airborne droplets is probable as a third route of infection, in addition to more widely recognized transmission via larger respiratory droplets and direct contact with infected people or contaminated surfaces. While uncertainties remain regarding the relative contributions of the different transmission pathways, we argue that existing evidence is sufficiently strong to warrant engineering controls targeting airborne transmission as part of an overall strategy to limit infection risk indoors. Appropriate building engineering controls include sufficient and effective ventilation, possibly enhanced by particle filtration and air disinfection, avoiding air recirculation and avoiding overcrowding. Often, such measures can be easily implemented and without much cost, but if only they are recognised as significant in contributing to infection control goals. We believe that the use of engineering controls in public buildings, including hospitals, shops, offices, schools, kindergartens, libraries, restaurants, cruise ships, elevators, conference rooms or public transport, in parallel with effective application of other controls (including isolation and quarantine, social distancing and hand hygiene), would be an additional important measure globally to reduce the likelihood of transmission and thereby protect healthcare workers, patients and the general public.
Collapse
Affiliation(s)
- Lidia Morawska
- International Laboratory for Air Quality and Heath (ILAQH), WHO Collaborating Centre for Air Quality and Health, School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Julian W Tang
- Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - William Bahnfleth
- Department of Architectural Engineering, The Pennsylvania State University, USA
| | - Philomena M Bluyssen
- Faculty of Architecture and the Built Environment, Delft University of Technology, the Netherlands
| | - Atze Boerstra
- REHVA (Federation of European Heating, Ventilation and Air Conditioning Associations), BBA Binnenmilieu, the Netherlands
| | - Giorgio Buonanno
- Department if Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, Italy
| | - Junji Cao
- Key Lab of Aerosol Chemistry and Physics Chinese Academy of Sciences, Xi'an, Beijing, China
| | - Stephanie Dancer
- Edinburgh Napier University and NHS Lanarkshire, Scotland, United Kingdom
| | - Andres Floto
- Department of Medicine, University of Cambridge, United Kingdom
| | | | - Charles Haworth
- Cambridge Centre for Lung Infection, Royal Papworth Hospital and Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Jaap Hogeling
- International Standards at ISSO, ISSO International Project, the Netherlands
| | | | - Jose L Jimenez
- Department of Chemistry, and Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado, Boulder, USA
| | - Jarek Kurnitski
- REHVA Technology and Research Committee, Tallinn University of Technology, Estonia
| | - Yuguo Li
- Department of Mechancal Engineering, Hong Kong University, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Marcel Loomans
- Department of the Built Environment, Eindhoven University of Technology (TU/e), the Netherlands
| | - Guy Marks
- Centre for Air quality Research and evaluation (CAR), University of New South Wales (UNSW), Sydney, New South Wales, Australia
| | | | | | - Arsen Krikor Melikov
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Denmark
| | - Shelly Miller
- Mechanical Engineering, University of Colorado, Boulder, USA
| | - Donald K Milton
- Environmental Health, School of Public Health, University of Maryland, USA
| | - William Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, USA
| | - Peter V Nielsen
- Faculty of Engineering and Science, Department of Civil Engineering, Aalborg University, Denmark
| | - Catherine Noakes
- School of Civil Engineering, University of Leeds, United Kingdom
| | | | - Xavier Querol
- Institute of Environmental Assessment and Water Research, Department of Geosciences, Spanish National Research Council, Barcelona, Spain
| | - Chandra Sekhar
- Department of Building, National University of Singapore, Singapore
| | | | | | | | - Kwok Wai Tham
- Department of Building, National University of Singapore, Singapore
| | - Pawel Wargocki
- International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Denmark
| | | | - Maosheng Yao
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| |
Collapse
|
8
|
Li Z, Wang H, Zheng W, Li B, Wei Y, Zeng J, Lei C. A tracing method of airborne bacteria transmission across built environments. BUILDING AND ENVIRONMENT 2019; 164:106335. [PMID: 32287991 PMCID: PMC7116910 DOI: 10.1016/j.buildenv.2019.106335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/20/2019] [Accepted: 08/08/2019] [Indexed: 05/03/2023]
Abstract
Disease transmission across built environments has been found to be a serious health risk. Airborne transmission is a vital route of disease infection caused by bacteria and virus. However, tracing methods of airborne bacteria in both lab and field research failed to veritably express the transporting process of microorganism in the air. A new tracing method of airborne bacteria used for airborne transmission was put forward and demonstrated its feasibility by conducting a field evaluation on the basis of genetic modification and bioaerosol technology. A specific gene fragment (pFPV-mCherry fluorescent protein plasmid) was introduced into nonpathogenic E. coli DH5α as tracer bacteria by high-voltage electroporation. Gel electrophoresis and DNA sequencing proved the success of the synthesis. Genetic stability, effect of aerosolization on the survival rate of tracer bacteria, and the application of the tracer bacteria to the airborne bacteria transmission were examined in both lab and field. Both the introduced plasmid stability rates of tracer E. coli in pre-aerosolization and post-aerosolization were above 95% in five test days. Survival rate of tracer E. coli at 97.5% ± 1.2% through aerosolization was obtained by an air-atomizer operated at an air pressure of 30 Psi. In the field experiment, the airborne transmission of E. coli between poultry houses was proved and emitted E. coli was more easily transmitted into self-house than adjacent house due to the ventilation design and weather condition. Our results suggested that the tracing method of airborne bacteria was available for the investigation of airborne microbial transmission across built environments.
Collapse
Affiliation(s)
- Zonggang Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Hongning Wang
- College of Life Sciences, Sichuan University, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Weichao Zheng
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China
- Corresponding author. College of Water Resources and Civil Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| | - Baoming Li
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongxiang Wei
- College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Jinxin Zeng
- College of Life Sciences, Sichuan University, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| | - Changwei Lei
- College of Life Sciences, Sichuan University, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, Sichuan, China
| |
Collapse
|
9
|
Yang Y, Zhang H, Nunayon SS, Chan V, Lai AC. Disinfection efficacy of ultraviolet germicidal irradiation on airborne bacteria in ventilation ducts. INDOOR AIR 2018; 28:806-817. [PMID: 30171727 DOI: 10.1111/ina.12504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/24/2018] [Indexed: 05/05/2023]
Abstract
A full-scale ventilation duct ultraviolet germicidal irradiation (in-duct UVGI) system was designed to investigate its disinfection efficacy on five airborne pathogens: Serratia marcescens, Pseudomonas alcaligenes, Escherichia coli, Salmonella enterica, and Staphylococcus epidermidis, with airflow Reynolds numbers from 4 × 104 to 8 × 104 . By varying the UV intensity, the susceptibility constants (Z-values) of the bacteria were experimentally determined to be 1.2, 1.0, 0.60, 0.39, and 0.37 m2 /J for S. marcescens, P. alcaligenes, E. coli, S. enterica, and S. epidermidis, respectively. The disinfection efficacy was numerically investigated on the basis of the predicted irradiance, which included emissive irradiance and diffuse refection irradiance. The results suggest that it is vital to properly evaluate the UV dose (irradiance intensity) received by airborne bacteria to determine their Z-values. In-duct UVGI inactivated nearly all of the test bacteria with Reynolds numbers of 4 × 104 (inlet velocity = 3 m/s), and the disinfection efficacy decreased as Reynolds numbers increased. The in-duct UVGI system would potentially provide a supplementary solution for improving indoor air quality (IAQ) within mechanical ventilated/air-conditioned environment.
Collapse
Affiliation(s)
- Yi Yang
- School of Mechanical and Power Engineering, Guangdong Ocean University, Zhanjiang, China
- School of Energy Science and Engineering, Central South University, Changsha, China
| | - Huihui Zhang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, China
| | - Sunday Segbenu Nunayon
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, China
| | - Vincent Chan
- Department of Bioengineering, Khalifa University, Abu Dhabi, UAE
| | - Alvin Ck Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, China
| |
Collapse
|
10
|
Lai ACK, Nunayon SS, Tan TF, Li WS. A pilot study on the disinfection efficacy of localized UV on the flushing-generated spread of pathogens. JOURNAL OF HAZARDOUS MATERIALS 2018; 358:389-396. [PMID: 30005250 PMCID: PMC7116983 DOI: 10.1016/j.jhazmat.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/25/2018] [Accepted: 07/01/2018] [Indexed: 05/21/2023]
Abstract
The process of toilet-flushing can generate flushing-associated water droplets which can potentially expose humans to pathogen-laden aerosols. Very little is known about such aerosol dissemination or the means for minimizing exposure to these aerosols. This study has evaluated the efficacy of ultraviolet waveband C (UV-C) for disinfection of flushing-generated pathogen-laden aerosols through tests with localized disinfection systems for airborne and surface contaminations. Three types of bacteria were chosen for investigation: Staphylococcus epidermidis, Escherichia coli, and Salmonella typhimurium. Tests were conducted with UV-C tubes of 5 W and 10 W. High levels of disinfection efficacies were observed, ranging from 76% to 97% for bacteria-laden aerosols at sources of emission, and efficiencies of 53% to 79% for surface samples in localized systems. The results from the localized systems were further compared with those obtained with an upper-room ultraviolet germicidal irradiation (UVGI) system. As it is important to note, the UV-C doses and ozone emissions for the localized systems were found well below the limits recommended in current guidelines. This research has shown that the disinfection of flushing-generated pathogen-laden aerosols in proximity to the source of emission was more effective than at the more distant sites where aerosols may be dispersed to the environment.
Collapse
Affiliation(s)
- A C K Lai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong.
| | - S S Nunayon
- Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - T F Tan
- Shenzhen Key Laboratory for the Sustainable Use of Marine Biodiversity, Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - W S Li
- Queen Mary Hospital, Pokfulam Road, Hong Kong; School of Public Health, The University of Hong Kong, Hong Kong
| |
Collapse
|
11
|
Brouwer AF, Eisenberg MC, Remais JV, Collender PA, Meza R, Eisenberg JNS. Modeling Biphasic Environmental Decay of Pathogens and Implications for Risk Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2186-2196. [PMID: 28112914 PMCID: PMC5789392 DOI: 10.1021/acs.est.6b04030] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 01/16/2017] [Accepted: 01/23/2017] [Indexed: 05/21/2023]
Abstract
As the appreciation for the importance of the environment in infectious disease transmission has grown, so too has interest in pathogen fate and transport. Fate has been traditionally described by simple exponential decay, but there is increasing recognition that some pathogens demonstrate a biphasic pattern of decay-fast followed by slow. While many have attributed this behavior to population heterogeneity, we demonstrate that biphasic dynamics can arise through a number of plausible mechanisms. We examine the identifiability of a general model encompassing three such mechanisms: population heterogeneity, hardening off, and the existence of viable-but-not-culturable states. Although the models are not fully identifiable from longitudinal sampling studies of pathogen concentrations, we use a differential algebra approach to determine identifiable parameter combinations. Through case studies using Cryptosporidium and Escherichia coli, we show that failure to consider biphasic pathogen dynamics can lead to substantial under- or overestimation of disease risks and pathogen concentrations, depending on the context. More reliable models for environmental hazards and human health risks are possible with an improved understanding of the conditions in which biphasic die-off is expected. Understanding the mechanisms of pathogen decay will ultimately enhance our control efforts to mitigate exposure to environmental contamination.
Collapse
Affiliation(s)
- Andrew F. Brouwer
- Department
of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States
- E-mail:
| | - Marisa C. Eisenberg
- Department
of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States
| | - Justin V. Remais
- Department
of Environmental Health Sciences, University
of California Berkeley, 50 University Hall, Berekely, California 94720, United States
| | - Philip A. Collender
- Department
of Environmental Health Sciences, University
of California Berkeley, 50 University Hall, Berekely, California 94720, United States
| | - Rafael Meza
- Department
of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States
| | - Joseph N. S. Eisenberg
- Department
of Epidemiology, University of Michigan, 1415 Washington Heights, Ann Arbor, Michigan 48109, United States
| |
Collapse
|