1
|
Yee DP, Juery C, Toullec G, Catacora-Grundy A, Lekieffre C, Wangpraseurt D, Decelle J. Physiology and metabolism of eukaryotic microalgae involved in aquatic photosymbioses. THE NEW PHYTOLOGIST 2025. [PMID: 40387630 DOI: 10.1111/nph.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/02/2025] [Indexed: 05/20/2025]
Abstract
Symbiosis between eukaryotic microalgae and heterotrophic hosts is a widespread, phylogenetically convergent, and ecologically important phenomenon in aquatic ecosystems. Partners include taxonomically diverse microalgae interacting with multicellular or unicellular hosts in marine or freshwater environments. While progress has been made recently, there are still major knowledge gaps on the microenvironmental conditions of microalgae in hospite (e.g. nutrient and CO2 availability), the algal carbon metabolism (production and storage), and the cellular mechanisms of carbohydrate export to the host. This review aims to provide current knowledge on the physiology and metabolism of symbiotic microalgae, to highlight whether there are commonalities across different photosymbioses, and to identify new approaches and technologies for disentangling photosymbiotic interactions at relevant temporal and spatial scales.
Collapse
Affiliation(s)
- Daniel P Yee
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, 38054, Grenoble, France
| | - Caroline Juery
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, 38054, Grenoble, France
| | - Gaëlle Toullec
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, 38054, Grenoble, France
| | - Andrea Catacora-Grundy
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, 38054, Grenoble, France
| | - Charlotte Lekieffre
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, 38054, Grenoble, France
| | - Daniel Wangpraseurt
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, San Diego, 92093, CA, USA
| | - Johan Decelle
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAE, IRIG, Université Grenoble Alpes, 38054, Grenoble, France
| |
Collapse
|
2
|
Lan M, Gao K, Qin Z, Li Z, Meng R, Wei L, Chen B, Yu X, Xu L, Wang Y, Yu K. Coral microbiome in estuary coral community of Pearl River Estuary: insights into variation in coral holobiont adaptability to low-salinity conditions. BMC Microbiol 2025; 25:278. [PMID: 40335917 PMCID: PMC12060303 DOI: 10.1186/s12866-025-04013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND Low salinity is a crucial environmental stressor that affects estuarine coral ecosystems considerably. However, few studies have focused on the effects of low-salinity conditions on coral-associated microorganisms and the adaptability of coral holobionts. METHODS We explored the community structure of coral symbiotic Symbiodiniaceae and associated bacteria in low-salinity conditions using samples of six coral species from the Pearl River Estuary and analyzed the adaptability of coral holobionts in estuaries. RESULTS The symbiotic Symbiodiniaceae of all six studied coral species were dominated by Cladocopium, but, the Symbiodiniaceae subclades differed among these coral species. Some coral species (e.g., Acropora solitaryensis) had a high diversity of symbiotic Symbiodiniaceae but low Symbiodiniaceae density, with different adaptability to low-salinity stress in the Pearl River Estuary. Other coral species (e.g., Plesiastrea versipora) potentially increased their resistance by associating with specific Symbiodiniaceae subclades and with high Symbiodiniaceae density under low-salinity stress. The microbiome associated with the coral species were dominated by Proteobacteria, Chloroflexi, and Bacteroidetes; however, its diversity and composition varied among coral species. Some coral species (e.g., Acropora solitaryensis) had a high diversity of associated bacteria, with different adaptability owing to low-salinity stress. Other coral species (e.g., Plesiastrea versipora) potentially increased their resistance by having minority bacterial dominance under low-salinity stress. CONCLUSIONS High Symbiodiniaceae density and high bacterial diversity may be conducive to increase the tolerance of coral holobiont to low-salinity environments. Different coral species have distinct ways of adapting to low-salinity stress, and this difference is mainly through the dynamic regulation of the coral microbiome by corals.
Collapse
Affiliation(s)
- Mengling Lan
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Kaixiang Gao
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China.
| | - Zhanhong Li
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Ru Meng
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Lifei Wei
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Kefu Yu
- Guangxi Laboratory On the Study of Coral Reefs in the South China SeaCoral Reef Research Center of ChinaSchool of Marine Sciences, Guangxi University, Nanning, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China.
| |
Collapse
|
3
|
Schwendt G, Kalinichev AV, Borisov SM, Koren K. Simultaneous Imaging of Temperature and Oxygen by Utilizing Thermally Activated Delayed Fluorescence and Phosphorescence of a Single Indicator. ACS MEASUREMENT SCIENCE AU 2024; 4:568-576. [PMID: 39430963 PMCID: PMC11487778 DOI: 10.1021/acsmeasuresciau.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Chemical gradients are essential in biological systems, affecting processes like microbial activity in soils and nutrient cycling. Traditional tools, such as microsensors, offer high-resolution data but are limited to one-dimensional measurements. Planar optodes allow for two-dimensional (2D) and three-dimensional (3D) chemical imaging but are often sensitive to temperature changes. This study presents an advanced dual-emission optical sensor that simultaneously measures temperature and oxygen using a modified platinum(II) meso-tetrakis(3,5-ditert-butylphenyl)-tetra(2-tert-butyl-1,4-naphthoquinono)porphyrin. The ratio between thermally activated delayed fluorescence and phosphorescence was optimized by modifying platinum(II) naphthoquinonoporphyrin with tert-butyl groups which simultaneously improved solubility in apolar solvents and polymer matrix (polystyrene). This dual-function sensor enables two-parameter chemical imaging with a consumer-grade RGB camera or a hyperspectral camera. We demonstrated 2D visualization of temperature and oxygen distribution in a model soil system. The RGB camera provided rapid and cost-effective imaging, while the hyperspectral camera offered more detailed spectral information despite some limitations. Our findings revealed the formation of a stable temperature gradient and oxygen depletion, driven by water content and temperature-sensitive microbial activity. This dual O2/T sensor, with further potential improvements, shows considerable promise for advanced multiparameter sensing in complex biological and environmental studies, providing deeper insights into dynamic microenvironments.
Collapse
Affiliation(s)
- Georg Schwendt
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Andrey V. Kalinichev
- Department
of Biology—Microbiology, Aarhus University
Centre for Water Technology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Sergey M. Borisov
- Institute
of Analytical Chemistry and Food Chemistry, Graz University of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Klaus Koren
- Department
of Biology—Microbiology, Aarhus University
Centre for Water Technology, Ny Munkegade 116, 8000 Aarhus C, Denmark
| |
Collapse
|
4
|
Backstrom CH, Padilla-Gamiño JL, Spalding HL, Roth MS, Smith CM, Gates RD, Rodrigues LJ. Mesophotic corals in Hawai'i maintain autotrophy to survive low-light conditions. Proc Biol Sci 2024; 291:20231534. [PMID: 38378154 PMCID: PMC10878818 DOI: 10.1098/rspb.2023.1534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
In mesophotic coral ecosystems, reef-building corals and their photosynthetic symbionts can survive with less than 1% of surface irradiance. How depth-specialist corals rely upon autotrophically and heterotrophically derived energy sources across the mesophotic zone remains unclear. We analysed the stable carbon (δ13C) and nitrogen (δ15N) isotope values of a Leptoseris community from the 'Au'au Channel, Maui, Hawai'i (65-125 m) including four coral host species living symbiotically with three algal haplotypes. We characterized the isotope values of hosts and symbionts across species and depth to compare trophic strategies. Symbiont δ13C was consistently 0.5‰ higher than host δ13C at all depths. Mean colony host and symbiont δ15N differed by up to 3.7‰ at shallow depths and converged at deeper depths. These results suggest that both heterotrophy and autotrophy remained integral to colony survival across depth. The increasing similarity between host and symbiont δ15N at deeper depths suggests that nitrogen is more efficiently shared between mesophotic coral hosts and their algal symbionts to sustain autotrophy. Isotopic trends across depth did not generally vary by host species or algal haplotype, suggesting that photosynthesis remains essential to Leptoseris survival and growth despite low light availability in the mesophotic zone.
Collapse
Affiliation(s)
- Callum H. Backstrom
- Department of Geography and the Environment, Villanova University, 800 E Lancaster Ave., Villanova, PA 19085, USA
| | | | - Heather L. Spalding
- Department of Biology, College of Charleston, 66 George Street, Charleston, SC 29424, USA
- School of Life Sciences, University of Hawai‘i, 3190 Maile Way, Honolulu, HI 96822, USA
| | - Melissa S. Roth
- Department of Plant and Microbial Biology, University of California, Berkeley, 441 Koshland Hall, Berkeley, CA 94720-3102, USA
| | - Celia M. Smith
- School of Life Sciences, University of Hawai‘i, 3190 Maile Way, Honolulu, HI 96822, USA
| | | | - Lisa J. Rodrigues
- Department of Geography and the Environment, Villanova University, 800 E Lancaster Ave., Villanova, PA 19085, USA
| |
Collapse
|
5
|
Ghosh S, Yi HG. A Review on Bioinks and their Application in Plant Bioprinting. Int J Bioprint 2022; 8:612. [PMID: 36404783 PMCID: PMC9668583 DOI: 10.18063/ijb.v8i4.612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/24/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, the characterization and fabrication methods concerning new bioinks have received much attention, largely because the absence of bioprintable materials has been identified as one of the most rudimentary challenges for rapid advancement in the field of three-dimensional (3D) printing. Bioinks for printing mammalian organs have been rapidly produced, but bioinks in the field of plant science remain sparse. Thus, 3D fabrication of plant parts is still in its infancy due to the lack of appropriate bioink materials, and aside from that, the difficulty in recreating sophisticated microarchitectures that accurately and safely mimic natural biological activities is a concern. Therefore, this review article is designed to emphasize the significance of bioinks and their applications in plant bioprinting.
Collapse
Affiliation(s)
- Susmita Ghosh
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hee-Gyeong Yi
- Department of Rural and Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Bollati E, Lyndby NH, D'Angelo C, Kühl M, Wiedenmann J, Wangpraseurt D. Green fluorescent protein-like pigments optimize the internal light environment in symbiotic reef building corals. eLife 2022; 11:73521. [PMID: 35801683 PMCID: PMC9342951 DOI: 10.7554/elife.73521] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 07/07/2022] [Indexed: 11/25/2022] Open
Abstract
Pigments homologous to the green fluorescent protein (GFP) have been proposed to fine-tune the internal light microclimate of corals, facilitating photoacclimation of photosynthetic coral symbionts (Symbiodiniaceae) to life in different reef habitats and environmental conditions. However, direct measurements of the in vivo light conditions inside the coral tissue supporting this conclusion are lacking. Here, we quantified the intra-tissue spectral light environment of corals expressing GFP-like proteins from widely different light regimes. We focus on: (1) photoconvertible red fluorescent proteins (pcRFPs), thought to enhance photosynthesis in mesophotic habitats via wavelength conversion, and (2) chromoproteins (CPs), which provide photoprotection to the symbionts in shallow water via light absorption. Optical microsensor measurements indicated that both pigment groups strongly alter the coral intra-tissue light environment. Estimates derived from light spectra measured in pcRFP-containing corals showed that fluorescence emission can contribute to >50% of orange-red light available to the photosynthetic symbionts at mesophotic depths. We further show that upregulation of pink CPs in shallow-water corals during bleaching leads to a reduction of orange light by 10–20% compared to low-CP tissue. Thus, screening by CPs has an important role in mitigating the light-enhancing effect of coral tissue scattering and skeletal reflection during bleaching. Our results provide the first experimental quantification of the importance of GFP-like proteins in fine-tuning the light microclimate of corals during photoacclimation.
Collapse
Affiliation(s)
- Elena Bollati
- Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Niclas H Lyndby
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cecilia D'Angelo
- Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
| | - Michael Kühl
- Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - Jörg Wiedenmann
- Coral Reef Laboratory, University of Southampton, Southampton, United Kingdom
| | - Daniel Wangpraseurt
- Department of NanoEngineering, University of California, San Diego, San Diego, United States
| |
Collapse
|
7
|
Siro G, Pipite A, Christi K, Srinivasan S, Subramani R. Marine Actinomycetes Associated with Stony Corals: A Potential Hotspot for Specialized Metabolites. Microorganisms 2022; 10:1349. [PMID: 35889068 PMCID: PMC9319285 DOI: 10.3390/microorganisms10071349] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Microbial secondary metabolites are an important source of antibiotics currently available for combating drug-resistant pathogens. These important secondary metabolites are produced by various microorganisms, including Actinobacteria. Actinobacteria have a colossal genome with a wide array of genes that code for several bioactive metabolites and enzymes. Numerous studies have reported the isolation and screening of millions of strains of actinomycetes from various habitats for specialized metabolites worldwide. Looking at the extent of the importance of actinomycetes in various fields, corals are highlighted as a potential hotspot for untapped secondary metabolites and new bioactive metabolites. Unfortunately, knowledge about the diversity, distribution and biochemistry of marine actinomycetes compared to hard corals is limited. In this review, we aim to summarize the recent knowledge on the isolation, diversity, distribution and discovery of natural compounds from marine actinomycetes associated with hard corals. A total of 11 new species of actinomycetes, representing nine different families of actinomycetes, were recovered from hard corals during the period from 2007 to 2022. In addition, this study examined a total of 13 new compounds produced by five genera of actinomycetes reported from 2017 to 2022 with antibacterial, antifungal and cytotoxic activities. Coral-derived actinomycetes have different mechanisms of action against their competitors.
Collapse
Affiliation(s)
- Galana Siro
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Atanas Pipite
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Ketan Christi
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women’s University, 623 Hwarangno, Nowon-gu, Seoul 01797, Korea
| | - Ramesh Subramani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| |
Collapse
|
8
|
Wangpraseurt D, You S, Sun Y, Chen S. Biomimetic 3D living materials powered by microorganisms. Trends Biotechnol 2022; 40:843-857. [DOI: 10.1016/j.tibtech.2022.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/14/2022]
|
9
|
Decreased Photosynthetic Efficiency in Response to Site Translocation and Elevated Temperature Is Mitigated with LPS Exposure in Porites astreoides Symbionts. WATER 2022. [DOI: 10.3390/w14030366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Coral reefs have been detrimentally impacted causing health issues due to elevated ocean temperatures as a result of increased greenhouse gases. Extreme temperatures have also exacerbated coral diseases in tropical reef environments. Numerous studies have outlined the impacts of thermal stress and disease on coral organisms, as well as understanding the influence of site-based characteristics on coral physiology. However, few have discussed the interaction of all three. Laboratory out-planting restoration projects have been of importance throughout impacted areas such as the Caribbean and southern Florida in order to increase coral cover in these areas. This study analyzes photosynthetic efficiency of Porites astreoides from the lower Florida Keys after a two-year reciprocal transplant study at inshore (Birthday reef) and offshore (Acer24 reef) sites to understand acclimation capacity of this species. Laboratory experiments subjected these colonies to one of three treatments: control conditions, increases in temperature, and increases in temperature plus exposure to an immune stimulant (lipopolysaccharide (LPS)) to determine their influence on photosynthetic efficiency and how stress events impact these measurements. In addition, this study is a continuation of previous studies from this group. Here, we aim to understand if these results are static or if an acclimation capacity could be found. Overall, we observed site-specific influences from the Acer24 reef site, which had significant decreases in photosynthetic efficiencies in 32 °C treatments compared to Birthday reef colonies. We suggest that high irradiance and lack of an annual recovery period from the Acer24 site exposes these colonies to significant photoinhibition. In addition, we observed significant increases in photosynthetic efficiencies from LPS exposure. We suggest host-derived antioxidants can mitigate the negative impacts of increased thermal stress. Further research is required to understand the full complexity of host immunity and symbiont photosynthetic interactions.
Collapse
|
10
|
Kramer N, Tamir R, Ben‐Zvi O, Jacques SL, Loya Y, Wangpraseurt D. Efficient light‐harvesting of mesophotic corals is facilitated by coral optical traits. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | - Raz Tamir
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Or Ben‐Zvi
- School of Zoology Tel‐Aviv University Tel Aviv Israel
- The Interuniversity Institute for Marine Sciences of Eilat Eilat Israel
| | - Steven L. Jacques
- Department of Bioengineering University of Washington Seattle WA USA
| | - Yossi Loya
- School of Zoology Tel‐Aviv University Tel Aviv Israel
| | - Daniel Wangpraseurt
- Department of Nanoengineering University of California San Diego San Diego CA USA
- Department of Chemistry University of Cambridge Cambridge UK
| |
Collapse
|
11
|
Lesser MP, Slattery M, Mobley CD. Incident light and morphology determine coral productivity along a shallow to mesophotic depth gradient. Ecol Evol 2021; 11:13445-13454. [PMID: 34646481 PMCID: PMC8495790 DOI: 10.1002/ece3.8066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/13/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
While the effects of irradiance on coral productivity are well known, corals along a shallow to mesophotic depth gradient (10-100 m) experience incident irradiances determined by the optical properties of the water column, coral morphology, and reef topography.Modeling of productivity (i.e., carbon fixation) using empirical data shows that hemispherical colonies photosynthetically fix significantly greater amounts of carbon across all depths, and throughout the day, compared with plating and branching morphologies. In addition, topography (i.e., substrate angle) further influences the rate of productivity of corals but does not change the hierarchy of coral morphologies relative to productivity.The differences in primary productivity for different coral morphologies are not, however, entirely consistent with the known ecological distributions of these coral morphotypes in the mesophotic zone as plating corals often become the dominant morphotype with increasing depth.Other colony-specific features such as skeletal scattering of light, Symbiodiniaceae species, package effect, or tissue thickness contribute to the variability in the ecological distributions of morphotypes over the depth gradient and are captured in the metric known as the minimum quantum requirements.Coral morphology is a strong proximate cause for the observed differences in productivity, with secondary effects of reef topography on incident irradiances, and subsequently the community structure of mesophotic corals.
Collapse
Affiliation(s)
- Michael P. Lesser
- Department of Molecular, Cellular and Biomedical Sciences, and School of Marine Science and Ocean EngineeringUniversity of New HampshireDurhamNHUSA
| | - Marc Slattery
- Department of BioMolecular SciencesUniversity of MississippiOxfordMSUSA
| | | |
Collapse
|
12
|
Taylor Parkins SK, Murthy S, Picioreanu C, Kühl M. Multiphysics modelling of photon, mass and heat transfer in coral microenvironments. J R Soc Interface 2021; 18:20210532. [PMID: 34465209 PMCID: PMC8437025 DOI: 10.1098/rsif.2021.0532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Coral reefs are constructed by calcifying coral animals that engage in a symbiosis with dinoflagellate microalgae harboured in their tissue. The symbiosis takes place in the presence of steep and dynamic gradients of light, temperature and chemical species that are affected by the structural and optical properties of the coral and their interaction with incident irradiance and water flow. Microenvironmental analyses have enabled quantification of such gradients and bulk coral tissue and skeleton optical properties, but the multi-layered nature of corals and its implications for the optical, thermal and chemical microenvironment remains to be studied in more detail. Here, we present a multiphysics modelling approach, where three-dimensional Monte Carlo simulations of the light field in a simple coral slab morphology with multiple tissue layers were used as input for modelling the heat dissipation and photosynthetic oxygen production driven by photon absorption. By coupling photon, heat and mass transfer, the model predicts light, temperature and O2 gradients in the coral tissue and skeleton, under environmental conditions simulating, for example, tissue contraction/expansion, symbiont loss via coral bleaching or different distributions of coral host pigments. The model reveals basic structure-function mechanisms that shape the microenvironment and ecophysiology of the coral symbiosis in response to environmental change.
Collapse
Affiliation(s)
- Shannara Kayleigh Taylor Parkins
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800 Kgs. Lyngby, Denmark
| | - Swathi Murthy
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Cristian Picioreanu
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.,Biological and Environmental Sciences and Engineering Division, Water Desalination and Reuse Center, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Michael Kühl
- Marine Biology Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.,Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| |
Collapse
|
13
|
Noisette F, Depetris A, Kühl M, Brodersen KE. Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass ( Zostera marina). J R Soc Interface 2020; 17:20200485. [PMID: 33050780 DOI: 10.1098/rsif.2020.0485] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Intensified coastal eutrophication can result in an overgrowth of seagrass leaves by epiphytes, which is a major threat to seagrass habitats worldwide, but little is known about how epiphytic biofilms affect the seagrass phyllosphere. The physico-chemical microenvironment of Zostera marina L. leaves with and without epiphytes was mapped with electrochemical, thermocouple and scalar irradiance microsensors as a function of four irradiance conditions (dark, low, saturating and high light) and two water flow velocities (approx. 0.5 and 5 cm s-1), which resemble field conditions. The presence of epiphytes led to the build up of a diffusive boundary layer and a thermal boundary layer which impeded O2 and heat transfer between the leaf surface and the surrounding water, resulting in a maximum increase of 0.8°C relative to leaves with no epiphytes. Epiphytes also reduced the quantity and quality of light reaching the leaf, decreasing plant photosynthesis. In darkness, epiphyte respiration exacerbated hypoxic conditions, which can lead to anoxia and the production of potential phytotoxic nitric oxide in the seagrass phyllosphere. Epiphytic biofilm affects the local phyllosphere physico-chemistry both because of its metabolic activity (i.e. photosynthesis/respiration) and its physical properties (i.e. thickness, roughness, density and back-scattering properties). Leaf tissue warming can lead to thermal stress in seagrasses living close to their thermal stress threshold, and thus potentially aggravate negative effects of global warming.
Collapse
Affiliation(s)
- Fanny Noisette
- Department of Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research, Hohenbergstraße 2, 24105 Kiel, Germany.,Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, 7004 TAS Hobart, Australia
| | - Anna Depetris
- École Polytechnique Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - Kasper Elgetti Brodersen
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| |
Collapse
|
14
|
Wangpraseurt D, You S, Azam F, Jacucci G, Gaidarenko O, Hildebrand M, Kühl M, Smith AG, Davey MP, Smith A, Deheyn DD, Chen S, Vignolini S. Bionic 3D printed corals. Nat Commun 2020; 11:1748. [PMID: 32273516 PMCID: PMC7145811 DOI: 10.1038/s41467-020-15486-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Corals have evolved as optimized photon augmentation systems, leading to space-efficient microalgal growth and outstanding photosynthetic quantum efficiencies. Light attenuation due to algal self-shading is a key limiting factor for the upscaling of microalgal cultivation. Coral-inspired light management systems could overcome this limitation and facilitate scalable bioenergy and bioproduct generation. Here, we develop 3D printed bionic corals capable of growing microalgae with high spatial cell densities of up to 109 cells mL−1. The hybrid photosynthetic biomaterials are produced with a 3D bioprinting platform which mimics morphological features of living coral tissue and the underlying skeleton with micron resolution, including their optical and mechanical properties. The programmable synthetic microenvironment thus allows for replicating both structural and functional traits of the coral-algal symbiosis. Our work defines a class of bionic materials that is capable of interacting with living organisms and can be exploited for applied coral reef research and photobioreactor design. Corals have evolved as finely tuned light collectors. Here, the authors report on the 3D printing of coral-inspired biomaterials, that mimic the coral-algal symbiosis; these bionic corals lead to dense microalgal growth and can find applications in algal biotechnology and applied coral science.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK. .,Scripps Institution of Oceanography, University of California San Diego, San Diego, USA. .,Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Shangting You
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA
| | - Farooq Azam
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Gianni Jacucci
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Olga Gaidarenko
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Mark Hildebrand
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Copenhagen, Denmark.,Climate Change Cluster, University of Technology Sydney, Ultimo, Australia
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Matthew P Davey
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alyssa Smith
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Dimitri D Deheyn
- Scripps Institution of Oceanography, University of California San Diego, San Diego, USA
| | - Shaochen Chen
- Department of Nanoengineering, University of California San Diego, San Diego, CA, USA.
| | - Silvia Vignolini
- Bioinspired Photonics Group, Department of Chemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
15
|
Wangpraseurt D, Jacques S, Lyndby N, Holm JB, Pages CF, Kühl M. Microscale light management and inherent optical properties of intact corals studied with optical coherence tomography. J R Soc Interface 2020; 16:20180567. [PMID: 30958182 DOI: 10.1098/rsif.2018.0567] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coral reefs are highly productive photosynthetic systems and coral optics studies suggest that such high efficiency is due to optimized light scattering by coral tissue and skeleton. Here, we characterize the inherent optical properties, i.e. the scattering coefficient, μs, and the anisotropy of scattering, g, of eight intact coral species using optical coherence tomography (OCT). Specifically, we describe light scattering by coral skeletons, coenoarc tissues, polyp tentacles and areas covered by fluorescent pigments (FP). Our results reveal that light scattering between coral species ranges from μs = 3 mm-1 ( Stylophora pistillata) to μs = 25 mm-1 ( Echinopora lamelosa) . For Platygyra pini, μs was 10-fold higher for tissue versus skeleton, while in other corals (e.g. Hydnophora pilosa) no difference was found between tissue and skeletal scattering. Tissue scattering was threefold enhanced in coenosarc tissues ( μs = 24.6 mm-1) versus polyp tentacles ( μs = 8.3 mm-1) in Turbinaria reniformis. FP scattering was almost isotropic when FP were organized in granule chromatophores ( g = 0.34) but was forward directed when FP were distributed diffusely in the tissue ( g = 0.96). Our study provides detailed measurements of coral scattering and establishes a rapid approach for characterizing optical properties of photosynthetic soft tissues via OCT in vivo.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- 1 Marine Biological Section, Department of Biology, University of Copenhagen , Strandpromenaden 5, 3000 Helsingør , Denmark.,2 Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge , UK.,3 Scripps Institution of Oceanography, University of California , San Diego, CA , USA
| | - Steven Jacques
- 4 Department of Biomedical Engineering, Tufts University , Medford, MA , USA
| | - Niclas Lyndby
- 1 Marine Biological Section, Department of Biology, University of Copenhagen , Strandpromenaden 5, 3000 Helsingør , Denmark
| | - Jacob Boiesen Holm
- 1 Marine Biological Section, Department of Biology, University of Copenhagen , Strandpromenaden 5, 3000 Helsingør , Denmark
| | | | - Michael Kühl
- 1 Marine Biological Section, Department of Biology, University of Copenhagen , Strandpromenaden 5, 3000 Helsingør , Denmark.,6 Climate Change Cluster, University of Technology Sydney , Ultimo, New South Wales 2007 , Australia
| |
Collapse
|
16
|
Mhuantong W, Nuryadi H, Trianto A, Sabdono A, Tangphatsornruang S, Eurwilaichitr L, Kanokratana P, Champreda V. Comparative analysis of bacterial communities associated with healthy and diseased corals in the Indonesian sea. PeerJ 2019; 7:e8137. [PMID: 31875145 PMCID: PMC6925950 DOI: 10.7717/peerj.8137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 11/01/2019] [Indexed: 01/22/2023] Open
Abstract
Coral reef ecosystems are impacted by climate change and human activities, such as increasing coastal development, overfishing, sewage and other pollutant discharge, and consequent eutrophication, which triggers increasing incidents of diseases and deterioration of corals worldwide. In this study, bacterial communities associated with four species of corals: Acropora aspera, Acropora formosa, Cyphastrea sp., and Isopora sp. in the healthy and disease stages with different diseases were compared using tagged 16S rRNA sequencing. In total, 59 bacterial phyla, 190 orders, and 307 genera were assigned in coral metagenomes where Proteobacteria and Firmicutes were pre-dominated followed by Bacteroidetes together with Actinobacteria, Fusobacteria, and Lentisphaerae as minor taxa. Principal Coordinates Analysis (PCoA) showed separated clustering of bacterial diversity in healthy and infected groups for individual coral species. Fusibacter was found as the major bacterial genus across all corals. The lower number of Fusibacter was found in A. aspera infected with white band disease and Isopora sp. with white plaque disease, but marked increases of Vibrio and Acrobacter, respectively, were observed. This was in contrast to A. formosa infected by a black band and Cyphastrea sp. infected by yellow blotch diseases which showed an increasing abundance of Fusibacter but a decrease in WH1-8 bacteria. Overall, infection was shown to result in disturbance in the complexity and structure of the associated bacterial microbiomes which can be relevant to the pathogenicity of the microbes associated with infected corals.
Collapse
Affiliation(s)
- Wuttichai Mhuantong
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Handung Nuryadi
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Agus Trianto
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | - Agus Sabdono
- Faculty of Fisheries and Marine Science, Diponegoro University, Semarang, Indonesia
| | | | - Lily Eurwilaichitr
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Pattanop Kanokratana
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| | - Verawat Champreda
- Biorefinery and Bioproduct Technology Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand
| |
Collapse
|
17
|
Fisher A, Wangpraseurt D, Larkum AWD, Johnson M, Kühl M, Chen M, Wong HL, Burns BP. Correlation of bio-optical properties with photosynthetic pigment and microorganism distribution in microbial mats from Hamelin Pool, Australia. FEMS Microbiol Ecol 2019; 95:5151331. [PMID: 30380056 DOI: 10.1093/femsec/fiy219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/30/2018] [Indexed: 11/14/2022] Open
Abstract
Microbial mats and stromatolites are widespread in Hamelin Pool, Shark Bay, however the phototrophic capacity of these systems is unknown. This study has determined the optical properties and light-harvesting potential of these mats with light microsensors. These characteristics were linked via a combination of 16S rDNA sequencing, pigment analyses and hyperspectral imaging. Local scalar irradiance was elevated over the incident downwelling irradiance by 1.5-fold, suggesting light trapping and strong scattering by the mats. Visible light (400-700 nm) penetrated to a depth of 2 mm, whereas near-infrared light (700-800 nm) penetrated to at least 6 mm. Chlorophyll a and bacteriochlorophyll a (Bchl a) were found to be the dominant photosynthetic pigments present, with BChl a peaking at the subsurface (2-4 mm). Detailed 16S rDNA analyses revealed the presence of putative Chl f-containing Halomicronema sp. and photosynthetic members primarily decreased from the mat surface down to a depth of 6 mm. Data indicated high abundances of some pigments and phototrophic organisms in deeper layers of the mats (6-16 mm). It is proposed that the photosynthetic bacteria present in this system undergo unique adaptations to lower light conditions below the mat surface, and that phototrophic metabolisms are major contributors to ecosystem function.
Collapse
Affiliation(s)
- Amy Fisher
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia
| | - Daniel Wangpraseurt
- Marine Biological Section, University of Copenhagen, Copenhagen 1017, Denmark.,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.,Scripps Institution of Oceanography, University of California, San Diego 92037, CA, USA
| | - Anthony W D Larkum
- Climate Change Cluster, University of Technology, Sydney 2007, Australia
| | - Michael Johnson
- Climate Change Cluster, University of Technology, Sydney 2007, Australia
| | - Michael Kühl
- Marine Biological Section, University of Copenhagen, Copenhagen 1017, Denmark.,Climate Change Cluster, University of Technology, Sydney 2007, Australia
| | - Min Chen
- School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney 2052, Australia
| |
Collapse
|
18
|
Haro S, Brodersen KE, Bohórquez J, Papaspyrou S, Corzo A, Kühl M. Radiative Energy Budgets in a Microbial Mat Under Different Irradiance and Tidal Conditions. MICROBIAL ECOLOGY 2019; 77:852-865. [PMID: 30852639 DOI: 10.1007/s00248-019-01350-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Irradiance and temperature variations during tidal cycles modulate microphytobenthic primary production potentially by changing the radiative energy balance of photosynthetic mats between immersion and emersion and thus sediment daily net metabolism. To test the effect of tidal stages on the radiative energy budget, we used microsensor measurements of oxygen, temperature, and scalar irradiance to estimate the radiative energy budget in a coastal photosynthetic microbial mat during immersion (constant water column of 2 cm) and emersion under increasing irradiance. Total absorbed light energy was higher in immersion than emersion, due to a lower reflectance of the microbial mat, while most (> 97%) of the absorbed light energy was dissipated as heat irrespective of tidal conditions. During immersion, the upward heat flux was higher than the downward one, whereas the opposite occurred during emersion. At highest photon irradiance (800 μmol photon m-2 s-1), the sediment temperature increased ~ 2.5 °C after changing the conditions from immersion to emersion. The radiative energy balance showed that less than 1% of the incident light energy (PAR, 400-700 nm) was conserved by photosynthesis under both tidal conditions. At low to moderate incident irradiances, the light use efficiency was similar during the tidal stages. In contrast, we found an ~ 30% reduction in the light use efficiency during emersion as compared to immersion under the highest irradiance likely due to the rapid warming of the sediment during emersion and increased non-photochemical quenching. These changes in the photosynthetic efficiency and radiative energy budget could affect both primary producers and temperature-dependent bacterial activity and consequently daily net metabolism rates having important ecological consequences.
Collapse
Affiliation(s)
- S Haro
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510, Puerto Real, Cádiz, Spain.
- University Institute of Marine Research (INMAR), University of Cádiz, Cadiz, Spain.
| | - K E Brodersen
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | - J Bohórquez
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510, Puerto Real, Cádiz, Spain
- University Institute of Marine Research (INMAR), University of Cádiz, Cadiz, Spain
| | - S Papaspyrou
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510, Puerto Real, Cádiz, Spain
- University Institute of Marine Research (INMAR), University of Cádiz, Cadiz, Spain
| | - A Corzo
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, 11510, Puerto Real, Cádiz, Spain
- University Institute of Marine Research (INMAR), University of Cádiz, Cadiz, Spain
| | - M Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
- Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| |
Collapse
|
19
|
Kahng SE, Akkaynak D, Shlesinger T, Hochberg EJ, Wiedenmann J, Tamir R, Tchernov D. Light, Temperature, Photosynthesis, Heterotrophy, and the Lower Depth Limits of Mesophotic Coral Ecosystems. CORAL REEFS OF THE WORLD 2019. [DOI: 10.1007/978-3-319-92735-0_42] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
DiPerna S, Hoogenboom M, Noonan S, Fabricius K. Effects of variability in daily light integrals on the photophysiology of the corals Pachyseris speciosa and Acropora millepora. PLoS One 2018; 13:e0203882. [PMID: 30240397 PMCID: PMC6150484 DOI: 10.1371/journal.pone.0203882] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/29/2018] [Indexed: 11/21/2022] Open
Abstract
Phototrophic sessile organisms, such as reef corals, adjust their photosynthetic apparatus to optimize the balance of light capture versus protection in response to variable light availability (photoacclimation). In shallow marine environments, daily light integrals (DLI) can vary several-fold in response to water clarity and clouds. This laboratory study investigated the responses of two coral species to fluctuations in DLI. Corals were exposed to four contrasting DLI treatments: 'high-light' (potentially photoinhibiting conditions, 32 mol photons m-2 d-1), 'low-light' (potentially light-limiting conditions, 6 mol photons m-2 d-1), and two 'variable light' treatments that alternated between high and low conditions every 5 days. In the variable treatments, the shade-tolerant coral Pachyseris speciosa displayed cycles of rapid declines in maximum quantum yield during high-light and subsequent recoveries during low-light, showing photoacclimation at a time scale of 3-5 days. In contrast, the shallow-water coral Acropora millepora showed slow (>20 days) photoacclimation, and minimal changes in photosynthetic yields despite contrasting light exposure. However, growth (change in buoyant weight) in A. millepora was significantly slower under variable light, and even more so under low-light conditions, compared with high-light conditions. The responses of yields in P. speciosa match their preference for low-light environments, but suggest a vulnerability to even short periods of high-light exposure. In contrast, A. millepora had better tolerance of high-light conditions, however its slow photoacclimatory responses limit its growth under low and variable conditions. The study shows contrasting photoacclimatory responses in variable light environments, which is important to identify and understand as many coastal and midshelf reefs are becoming increasingly more turbid, and may experience higher variability in light availability.
Collapse
Affiliation(s)
- Stephanie DiPerna
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Mia Hoogenboom
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
| | - Sam Noonan
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | |
Collapse
|
21
|
Frommlet JC, Wangpraseurt D, Sousa ML, Guimarães B, Medeiros da Silva M, Kühl M, Serôdio J. Symbiodinium-Induced Formation of Microbialites: Mechanistic Insights From in Vitro Experiments and the Prospect of Its Occurrence in Nature. Front Microbiol 2018; 9:998. [PMID: 29892272 PMCID: PMC5966549 DOI: 10.3389/fmicb.2018.00998] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/27/2018] [Indexed: 12/21/2022] Open
Abstract
Dinoflagellates in the genus Symbiodinium exhibit a variety of life styles, ranging from mutualistic endosymbioses with animal and protist hosts to free-living life styles. In culture, Symbiodinium spp. and naturally associated bacteria are known to form calcifying biofilms that produce so-called symbiolites, i.e., aragonitic microbialites that incorporate Symbiodinium as endolithic cells. In this study, we investigated (i) how algal growth and the combined physiological activity of these bacterial-algal associations affect the physicochemical macroenvironment in culture and the microenvironment within bacterial-algal biofilms, and (ii) how these interactions induce the formation of symbiolites. In batch culture, calcification typically commenced when Symbiodinium spp. growth approached stationary phase and when photosynthetic activity and its influence on pH and the carbonate system of the culture medium had already subsided, indicating that symbiolite formation is not simply a function of photosynthetic activity in the bulk medium. Physical disturbance of bacteria-algal biofilms, via repeated detaching and dispersing of the developing biofilm, generally impeded symbiolite formation, suggesting that the structural integrity of biofilms plays an important role in generating conditions conducive to calcification. Microsensor measurements of pH and O2 revealed a biofilm microenvironment characterized by high photosynthetic rates and by dynamic changes in photosynthesis and respiration with light intensity and culture age. Ca2+ microsensor measurements confirmed the significance of the biofilm microenvironment in inducing calcification, as photosynthesis within the biofilm induced calcification without the influence of batch culture medium and under environmentally relevant flow conditions. Furthermore, first quantitative data on calcification from 26 calcifying cultures enabled a first broad comparison of Symbiodinium-induced bacterial-algal calcification with other calcification processes. Our findings support the idea that symbiolite formation is a typical, photosynthesis-induced, bacterial-algal calcification process that is likely to occur under natural conditions.
Collapse
Affiliation(s)
- Jörg C Frommlet
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Daniel Wangpraseurt
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.,Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Maria L Sousa
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Bárbara Guimarães
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Mariana Medeiros da Silva
- Coral Reef and Global Changes Research Group (RECOR), Department of Oceanography, Institute of Geosciences, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark.,Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| | - João Serôdio
- Department of Biology and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
22
|
Smith EG, D'Angelo C, Sharon Y, Tchernov D, Wiedenmann J. Acclimatization of symbiotic corals to mesophotic light environments through wavelength transformation by fluorescent protein pigments. Proc Biol Sci 2017; 284:20170320. [PMID: 28679724 PMCID: PMC5524488 DOI: 10.1098/rspb.2017.0320] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 11/17/2022] Open
Abstract
The depth distribution of reef-building corals exposes their photosynthetic symbionts of the genus Symbiodinium to extreme gradients in the intensity and spectral quality of the ambient light environment. Characterizing the mechanisms used by the coral holobiont to respond to the low intensity and reduced spectral composition of the light environment in deeper reefs (greater than 20 m) is fundamental to our understanding of the functioning and structure of reefs across depth gradients. Here, we demonstrate that host pigments, specifically photoconvertible red fluorescent proteins (pcRFPs), can promote coral adaptation/acclimatization to deeper-water light environments by transforming the prevalent blue light into orange-red light, which can penetrate deeper within zooxanthellae-containing tissues; this facilitates a more homogeneous distribution of photons across symbiont communities. The ecological importance of pcRFPs in deeper reefs is supported by the increasing proportion of red fluorescent corals with depth (measured down to 45 m) and increased survival of colour morphs with strong expression of pcRFPs in long-term light manipulation experiments. In addition to screening by host pigments from high light intensities in shallow water, the spectral transformation observed in deeper-water corals highlights the importance of GFP-like protein expression as an ecological mechanism to support the functioning of the coral-Symbiodinium association across steep environmental gradients.
Collapse
Affiliation(s)
- Edward G Smith
- Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
- Marine Biology Laboratory/Centre for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Cecilia D'Angelo
- Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
- IfLS, Institute for Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| | - Yoni Sharon
- The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel
| | - Dan Tchernov
- The Interuniversity Institute for Marine Sciences of Eilat, Eilat, Israel
- Department of Marine Biology, University of Haifa, 31905 Mt Carmel, Israel
| | - Joerg Wiedenmann
- Coral Reef Laboratory, Ocean and Earth Science, University of Southampton, European Way, Southampton SO14 3ZH, UK
- IfLS, Institute for Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton SO17 1BJ, UK
| |
Collapse
|
23
|
Lichtenberg M, Brodersen KE, Kühl M. Radiative Energy Budgets of Phototrophic Surface-Associated Microbial Communities and their Photosynthetic Efficiency Under Diffuse and Collimated Light. Front Microbiol 2017; 8:452. [PMID: 28400749 PMCID: PMC5368174 DOI: 10.3389/fmicb.2017.00452] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/03/2017] [Indexed: 11/13/2022] Open
Abstract
We investigated the radiative energy budgets of a heterogeneous photosynthetic coral reef sediment and a compact uniform cyanobacterial biofilm on top of coastal sediment. By combining electrochemical, thermocouple and fiber-optic microsensor measurements of O2, temperature and light, we could calculate the proportion of the absorbed light energy that was either dissipated as heat or conserved by photosynthesis. We show, across a range of different incident light regimes, that such radiative energy budgets are highly dominated by heat dissipation constituting up to 99.5% of the absorbed light energy. Highest photosynthetic energy conservation efficiency was found in the coral sediment under low light conditions and amounted to 18.1% of the absorbed light energy. Additionally, the effect of light directionality, i.e., diffuse or collimated light, on energy conversion efficiency was tested on the two surface-associated systems. The effects of light directionality on the radiative energy budgets of these phototrophic communities were not unanimous but, resulted in local spatial differences in heat-transfer, gross photosynthesis, and light distribution. The light acclimation index, Ek, i.e., the irradiance at the onset of saturation of photosynthesis, was >2 times higher in the coral sediment compared to the biofilm and changed the pattern of photosynthetic energy conservation under light-limiting conditions. At moderate to high incident irradiances, the photosynthetic conservation of absorbed energy was highest in collimated light; a tendency that changed in the biofilm under sub-saturating incident irradiances, where higher photosynthetic efficiencies were observed under diffuse light. The aim was to investigate how the physical structure and light propagation affected energy budgets and light utilization efficiencies in loosely organized vs. compact phototrophic sediment under diffuse and collimated light. Our results suggest that the optical properties and the structural organization of phytoelements are important traits affecting the photosynthetic efficiency of biofilms and sediments.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Kasper E Brodersen
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Climate Change Cluster, University of Technology SydneyUltimo, NSW, Australia
| |
Collapse
|
24
|
Peixoto RS, Rosado PM, Leite DCDA, Rosado AS, Bourne DG. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front Microbiol 2017; 8:341. [PMID: 28326066 PMCID: PMC5339234 DOI: 10.3389/fmicb.2017.00341] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/17/2017] [Indexed: 12/21/2022] Open
Abstract
The symbiotic association between the coral animal and its endosymbiotic dinoflagellate partner Symbiodinium is central to the success of corals. However, an array of other microorganisms associated with coral (i.e., Bacteria, Archaea, Fungi, and viruses) have a complex and intricate role in maintaining homeostasis between corals and Symbiodinium. Corals are sensitive to shifts in the surrounding environmental conditions. One of the most widely reported responses of coral to stressful environmental conditions is bleaching. During this event, corals expel Symbiodinium cells from their gastrodermal tissues upon experiencing extended seawater temperatures above their thermal threshold. An array of other environmental stressors can also destabilize the coral microbiome, resulting in compromised health of the host, which may include disease and mortality in the worst scenario. However, the exact mechanisms by which the coral microbiome supports coral health and increases resilience are poorly understood. Earlier studies of coral microbiology proposed a coral probiotic hypothesis, wherein a dynamic relationship exists between corals and their symbiotic microorganisms, selecting for the coral holobiont that is best suited for the prevailing environmental conditions. Here, we discuss the microbial-host relationships within the coral holobiont, along with their potential roles in maintaining coral health. We propose the term BMC (Beneficial Microorganisms for Corals) to define (specific) symbionts that promote coral health. This term and concept are analogous to the term Plant Growth Promoting Rhizosphere (PGPR), which has been widely explored and manipulated in the agricultural industry for microorganisms that inhabit the rhizosphere and directly or indirectly promote plant growth and development through the production of regulatory signals, antibiotics and nutrients. Additionally, we propose and discuss the potential mechanisms of the effects of BMC on corals, suggesting strategies for the use of this knowledge to manipulate the microbiome, reversing dysbiosis to restore and protect coral reefs. This may include developing and using BMC consortia as environmental "probiotics" to improve coral resistance after bleaching events and/or the use of BMC with other strategies such as human-assisted acclimation/adaption to shifting environmental conditions.
Collapse
Affiliation(s)
- Raquel S. Peixoto
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - Phillipe M. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | | | - Alexandre S. Rosado
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil
- Instituto Museu Aquário Marinho do Rio de Janeiro-AquaRio (IMAM/AquaRio) – Rio de Janeiro Marine Aquarium Research CenterRio de Janeiro, Brazil
| | - David G. Bourne
- College of Science and Engineering, James Cook University, TownsvilleQLD, Australia
- Australian Institute of Marine Science, TownsvilleQLD, Australia
| |
Collapse
|
25
|
Wangpraseurt D, Holm JB, Larkum AWD, Pernice M, Ralph PJ, Suggett DJ, Kühl M. In vivo Microscale Measurements of Light and Photosynthesis during Coral Bleaching: Evidence for the Optical Feedback Loop? Front Microbiol 2017; 8:59. [PMID: 28174567 PMCID: PMC5258690 DOI: 10.3389/fmicb.2017.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/09/2017] [Indexed: 12/21/2022] Open
Abstract
Climate change-related coral bleaching, i.e., the visible loss of zooxanthellae from the coral host, is increasing in frequency and extent and presents a major threat to coral reefs globally. Coral bleaching has been proposed to involve accelerating light stress of their microalgal endosymbionts via a positive feedback loop of photodamage, symbiont expulsion and excess in vivo light exposure. To test this hypothesis, we used light and O2 microsensors to characterize in vivo light exposure and photosynthesis of Symbiodinium during a thermal stress experiment. We created tissue areas with different densities of Symbiodinium cells in order to understand the optical properties and light microenvironment of corals during bleaching. Our results showed that in bleached Pocillopora damicornis corals, Symbiodinium light exposure was up to fivefold enhanced relative to healthy corals, and the relationship between symbiont loss and light enhancement was well-described by a power-law function. Cell-specific rates of Symbiodinium gross photosynthesis and light respiration were enhanced in bleached P. damicornis compared to healthy corals, while areal rates of net photosynthesis decreased. Symbiodinium light exposure in Favites sp. revealed the presence of low light microniches in bleached coral tissues, suggesting that light scattering in thick coral tissues can enable photoprotection of cryptic symbionts. Our study provides evidence for the acceleration of in vivo light exposure during coral bleaching but this optical feedback mechanism differs between coral hosts. Enhanced photosynthesis in relation to accelerating light exposure shows that coral microscale optics exerts a key role on coral photophysiology and the subsequent degree of radiative stress during coral bleaching.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Climate Change Cluster, Department of Environmental Sciences, University of Sydney, SydneyNSW, Australia
| | - Jacob B Holm
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Anthony W D Larkum
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Mathieu Pernice
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Peter J Ralph
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - David J Suggett
- Climate Change Cluster, Department of Environmental Sciences, University of Sydney, Sydney NSW, Australia
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Climate Change Cluster, Department of Environmental Sciences, University of Sydney, SydneyNSW, Australia
| |
Collapse
|
26
|
“Super-quenching” state protects Symbiodinium from thermal stress — Implications for coral bleaching. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:840-7. [DOI: 10.1016/j.bbabio.2016.02.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/05/2016] [Indexed: 11/19/2022]
|
27
|
Lyndby NH, Kühl M, Wangpraseurt D. Heat generation and light scattering of green fluorescent protein-like pigments in coral tissue. Sci Rep 2016; 6:26599. [PMID: 27225857 PMCID: PMC4880895 DOI: 10.1038/srep26599] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/05/2016] [Indexed: 11/29/2022] Open
Abstract
Green fluorescent protein (GFP)-like pigments have been proposed to have beneficial effects on coral photobiology. Here, we investigated the relationships between green fluorescence, coral heating and tissue optics for the massive coral Dipsastraea sp. (previously Favia sp.). We used microsensors to measure tissue scalar irradiance and temperature along with hyperspectral imaging and combined imaging of variable chlorophyll fluorescence and green fluorescence. Green fluorescence correlated positively with coral heating and scalar irradiance enhancement at the tissue surface. Coral tissue heating saturated for maximal levels of green fluorescence. The action spectrum of coral surface heating revealed that heating was highest under red (peaking at 680 nm) irradiance. Scalar irradiance enhancement in coral tissue was highest when illuminated with blue light, but up to 62% (for the case of highest green fluorescence) of this photon enhancement was due to green fluorescence emission. We suggest that GFP-like pigments scatter the incident radiation, which enhances light absorption and heating of the coral. However, heating saturates, because intense light scattering reduces the vertical penetration depth through the tissue eventually leading to reduced light absorption at high fluorescent pigment density. We conclude that fluorescent pigments can have a central role in modulating coral light absorption and heating.
Collapse
Affiliation(s)
- Niclas H Lyndby
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Helsingør, Denmark.,Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia
| | - Daniel Wangpraseurt
- Marine Biological Section, Department of Biology, University of Copenhagen, DK-3000 Helsingør, Denmark.,Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, New South Wales 2007, Australia
| |
Collapse
|
28
|
Lichtenberg M, Larkum AWD, Kühl M. Photosynthetic Acclimation of Symbiodinium in hospite Depends on Vertical Position in the Tissue of the Scleractinian Coral Montastrea curta. Front Microbiol 2016; 7:230. [PMID: 26955372 PMCID: PMC4768073 DOI: 10.3389/fmicb.2016.00230] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/12/2016] [Indexed: 01/26/2023] Open
Abstract
Coral photophysiology has been studied intensively from the colony scale down to the scale of single fluorescent pigment granules as light is one of the key determinants for coral health. We studied the photophysiology of the oral and aboral symbiont band of scleractinian coral Montastrea curta to investigate if different acclimation to light exist in hospite on a polyp scale. By combined use of electrochemical and fiber-optic microsensors for O2, scalar irradiance and variable chlorophyll fluorescence, we could characterize the physical and chemical microenvironment experienced by the symbionts and, for the first time, estimate effective quantum yields of PSII photochemistry and rates of electron transport at the position of the zooxanthellae corrected for the in-tissue gradient of scalar irradiance. The oral- and aboral Symbiodinium layers received ∼71% and ∼33% of surface scalar irradiance, respectively, and the two symbiont layers experience considerable differences in light exposure. Rates of gross photosynthesis did not differ markedly between the oral- and aboral layer and curves of PSII electron transport rates corrected for scalar irradiance in hospite, showed that the light use efficiency under sub-saturating light conditions were similar between the two layers. However, the aboral Symbiodinium band did not experience photosynthetic saturation, even at the highest investigated irradiance where the oral layer was clearly saturated. We thus found a different light acclimation response for the oral and aboral symbiont bands in hospite, and discuss whether such response could be shaped by spectral shifts caused by tissue gradients of scalar irradiance. Based on our experimental finding, combined with previous knowledge, we present a conceptual model on the photophysiology of Symbiodinium residing inside living coral tissue under natural gradients of light and chemical parameters.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Marine Biological Section, Department of Biology, University of Copenhagen Helsingør, Denmark
| | - Anthony W D Larkum
- Plant Functional Biology and Climate Change Cluster (C3), University of Technology Sydney Sydney, NSW, Australia
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark; Plant Functional Biology and Climate Change Cluster (C3), University of Technology SydneySydney, NSW, Australia
| |
Collapse
|
29
|
Rodriguez IB, Lin S, Ho J, Ho TY. Effects of Trace Metal Concentrations on the Growth of the Coral Endosymbiont Symbiodinium kawagutii. Front Microbiol 2016; 7:82. [PMID: 26903964 PMCID: PMC4744903 DOI: 10.3389/fmicb.2016.00082] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Symbiodinium is an indispensable endosymbiont in corals and the most important primary producer in coral reef ecosystems. During the past decades, coral bleaching attributed to the disruption of the symbiosis has frequently occurred resulting in reduction of coral reef coverage globally. Growth and proliferation of corals require some specific trace metals that are essential components of pertinent biochemical processes, such as in photosynthetic systems and electron transport chains. In addition, trace metals are vital in the survival of corals against oxidative stress because these metals serve as enzymatic cofactors in antioxidative defense mechanisms. The basic knowledge about trace metal requirements of Symbiodinium is lacking. Here we show that the requirement of Symbiodinium kawagutii for antioxidant-associated trace metals exhibits the following order: Fe >> Cu/Zn/Mn >> Ni. In growth media with Cu, Zn, Mn, and varying Fe concentrations, we observed that Cu, Zn, and Mn cellular quotas were inversely related to Fe concentrations. In the absence of Cu, Zn, and Mn, growth rates increased with increasing inorganic Fe concentrations up to 1250 pM, indicating the relatively high Fe requirement for Symbiodinium growth and potential functional complementarity of these metals. These results demonstrate the relative importance of trace metals to sustain Symbiodinium growth and a potential metal inter replacement strategy in Symbiodinium to ensure survival of coral reefs in an oligotrophic and stressful environment.
Collapse
Affiliation(s)
- Irene B Rodriguez
- Research Center for Environmental Changes, Academia Sinica Taipei, Taiwan
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, Xiamen UniversityXiamen, China; Department of Marine Sciences, University of Connecticut, GrotonCT, USA
| | - Jiaxuan Ho
- Research Center for Environmental Changes, Academia SinicaTaipei, Taiwan; School of Marine Sciences and Engineering, Plymouth UniversityDevon, UK
| | - Tung-Yuan Ho
- Research Center for Environmental Changes, Academia Sinica Taipei, Taiwan
| |
Collapse
|
30
|
Wangpraseurt D, Jacques SL, Petrie T, Kühl M. Monte Carlo Modeling of Photon Propagation Reveals Highly Scattering Coral Tissue. FRONTIERS IN PLANT SCIENCE 2016; 7:1404. [PMID: 27708657 PMCID: PMC5030289 DOI: 10.3389/fpls.2016.01404] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 09/02/2016] [Indexed: 05/21/2023]
Abstract
Corals are very efficient at using solar radiation, with photosynthetic quantum efficiencies approaching theoretical limits. Here, we investigated potential mechanisms underlying such outstanding photosynthetic performance through extracting inherent optical properties of the living coral tissue and skeleton in a massive faviid coral. Using Monte Carlo simulations developed for medical tissue optics it is shown that for the investigated faviid coral, the coral tissue was a strongly light scattering matrix with a reduced scattering coefficient of μs' = 10 cm-1 (at 636 nm). In contrast, the scattering coefficient of the coral skeleton was μs' = 3.4 cm-1, which facilitated the efficient propagation of light to otherwise shaded coral tissue layers, thus supporting photosynthesis in lower tissues. Our study provides a quantification of coral tissue optical properties in a massive faviid coral and suggests a novel light harvesting strategy, where tissue and skeletal optics act in concert to optimize the illumination of the photosynthesizing algal symbionts embedded within the living coral tissue.
Collapse
Affiliation(s)
- Daniel Wangpraseurt
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, SydneyNSW, Australia
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark
- *Correspondence: Daniel Wangpraseurt,
| | - Steven L. Jacques
- Department of Biomedical Engineering, Oregon Health & Science University, PortlandOR, USA
| | - Tracy Petrie
- Department of Biomedical Engineering, Oregon Health & Science University, PortlandOR, USA
| | - Michael Kühl
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, SydneyNSW, Australia
- Marine Biological Section, Department of Biology, University of CopenhagenHelsingør, Denmark
| |
Collapse
|
31
|
Blackall LL, Wilson B, van Oppen MJH. Coral-the world's most diverse symbiotic ecosystem. Mol Ecol 2015; 24:5330-47. [DOI: 10.1111/mec.13400] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Linda L. Blackall
- Department of Chemistry and Biotechnology; Faculty of Science, Engineering & Technology; Swinburne University of Technology; Melbourne Vic. 3122 Australia
| | - Bryan Wilson
- Marine Microbiology Research Group; Department of Biology; University of Bergen; Thormøhlensgate 53B 5020 Bergen Norway
| | - Madeleine J. H. van Oppen
- Australian Institute of Marine Science; PMB No. 3 Townsville MC Qld. 4810 Australia
- School of BioSciences; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
32
|
Lichtenberg M, Kühl M. Pronounced gradients of light, photosynthesis and O2 consumption in the tissue of the brown alga Fucus serratus. THE NEW PHYTOLOGIST 2015; 207:559-69. [PMID: 25827160 DOI: 10.1111/nph.13396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
Macroalgae live in an ever-changing light environment affected by wave motion, self-shading and light-scattering effects, and on the thallus scale, gradients of light and chemical parameters influence algal photosynthesis. However, the thallus microenvironment and internal gradients remain underexplored. In this study, microsensors were used to quantify gradients of light, O2 concentration, variable chlorophyll fluorescence, photosynthesis and O2 consumption as a function of irradiance in the cortex and medulla layers of Fucus serratus. The two cortex layers showed more efficient light utilization compared to the medulla, calculated both from electron transport rates through photosystem II and from photosynthesis-irradiance curves. At moderate irradiance, the upper cortex exhibited onset of photosynthetic saturation, whereas lower thallus layers exhibited net O2 consumption. O2 consumption rates in light varied with depth and irradiance and were more than two-fold higher than dark respiration. We show that the thallus microenvironment of F. serratus exhibits a highly stratified balance of production and consumption of O2 , and when the frond was held in a fixed position, high incident irradiance levels on the upper cortex did not saturate photosynthesis in the lower thallus layers. We discuss possible photoadaptive responses and consequences for optimizing photosynthetic activity on the basis of vertical differences in light attenuation coefficients.
Collapse
Affiliation(s)
- Mads Lichtenberg
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
| | - Michael Kühl
- Marine Biological Section, Department of Biology, University of Copenhagen, Strandpromenaden 5, DK-3000, Helsingør, Denmark
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Roth MS. The engine of the reef: photobiology of the coral-algal symbiosis. Front Microbiol 2014; 5:422. [PMID: 25202301 PMCID: PMC4141621 DOI: 10.3389/fmicb.2014.00422] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 07/25/2014] [Indexed: 01/09/2023] Open
Abstract
Coral reef ecosystems thrive in tropical oligotrophic oceans because of the relationship between corals and endosymbiotic dinoflagellate algae called Symbiodinium. Symbiodinium convert sunlight and carbon dioxide into organic carbon and oxygen to fuel coral growth and calcification, creating habitat for these diverse and productive ecosystems. Light is thus a key regulating factor shaping the productivity, physiology, and ecology of the coral holobiont. Similar to all oxygenic photoautotrophs, Symbiodinium must safely harvest sunlight for photosynthesis and dissipate excess energy to prevent oxidative stress. Oxidative stress is caused by environmental stressors such as those associated with global climate change, and ultimately leads to breakdown of the coral-algal symbiosis known as coral bleaching. Recently, large-scale coral bleaching events have become pervasive and frequent threatening and endangering coral reefs. Because the coral-algal symbiosis is the biological engine producing the reef, the future of coral reef ecosystems depends on the ecophysiology of the symbiosis. This review examines the photobiology of the coral-algal symbiosis with particular focus on the photophysiological responses and timescales of corals and Symbiodinium. Additionally, this review summarizes the light environment and its dynamics, the vulnerability of the symbiosis to oxidative stress, the abiotic and biotic factors influencing photosynthesis, the diversity of the coral-algal symbiosis, and recent advances in the field. Studies integrating physiology with the developing "omics" fields will provide new insights into the coral-algal symbiosis. Greater physiological and ecological understanding of the coral-algal symbiosis is needed for protection and conservation of coral reefs.
Collapse
Affiliation(s)
- Melissa S. Roth
- Department of Plant and Microbial Biology, University of California BerkeleyBerkeley, CA, USA
| |
Collapse
|