1
|
Nagy M, Davidson JD, Vásárhelyi G, Ábel D, Kubinyi E, El Hady A, Vicsek T. Long-term tracking of social structure in groups of rats. Sci Rep 2024; 14:22857. [PMID: 39353967 PMCID: PMC11445254 DOI: 10.1038/s41598-024-72437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 10/03/2024] Open
Abstract
Rodents serve as an important model for examining both individual and collective behavior. Dominance within rodent social structures can determine access to critical resources, such as food and mating opportunities. Yet, many aspects of the intricate interplay between individual behaviors and the resulting group social hierarchy, especially its evolution over time, remain unexplored. In this study, we utilized an automated tracking system that continuously monitored groups of male rats for over 250 days to enable an in-depth analysis of individual behavior and the overarching group dynamic. We describe the evolution of social structures within a group and additionally investigate how past behaviors influence the emergence of new social hierarchies when group composition and experimental area changes. Notably, we find that conventional individual and pairwise tests exhibit a weak correlation with group behavior, highlighting their limited accuracy in predicting behavioral outcomes in a collective context. These results emphasize the context-dependence of social behavior as an emergent property of interactions within a group and highlight the need to measure and quantify social behavior in more naturalistic environments.
Collapse
Affiliation(s)
- Máté Nagy
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary.
- MTA-ELTE 'Lendület' Collective Behaviour Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
- MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Constance, Germany.
- Department of Biology, University of Konstanz, Constance, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Constance, Germany.
| | - Jacob D Davidson
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Constance, Germany.
- Department of Biology, University of Konstanz, Constance, Germany.
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Constance, Germany.
| | - Gábor Vásárhelyi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| | - Dániel Ábel
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
- MTA-ELTE Lendület 'Momentum' Companion Animal Research Group, Budapest, Hungary
| | - Ahmed El Hady
- Department of Collective Behaviour, Max Planck Institute of Animal Behavior, Constance, Germany
- Department of Biology, University of Konstanz, Constance, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Constance, Germany
| | - Tamás Vicsek
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Statistical and Biological Physics Research Group, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
2
|
Mascaro O, Goupil N, Pantecouteau H, Depierreux A, Van der Henst JB, Claidière N. Human and animal dominance hierarchies show a pyramidal structure guiding adult and infant social inferences. Nat Hum Behav 2023; 7:1294-1306. [PMID: 37386104 DOI: 10.1038/s41562-023-01634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
This study investigates the structure of social hierarchies. We hypothesized that if social dominance relations serve to regulate conflicts over resources, then hierarchies should converge towards pyramidal shapes. Structural analyses and simulations confirmed this hypothesis, revealing a triadic-pyramidal motif across human and non-human hierarchies (114 species). Phylogenetic analyses showed that this pyramidal motif is widespread, with little influence of group size or phylogeny. Furthermore, nine experiments conducted in France found that human adults (N = 120) and infants (N = 120) draw inferences about dominance relations that are consistent with hierarchies' pyramidal motif. By contrast, human participants do not draw equivalent inferences based on a tree-shaped pattern with a similar complexity to pyramids. In short, social hierarchies exhibit a pyramidal motif across a wide range of species and environments. From infancy, humans exploit this regularity to draw systematic inferences about unobserved dominance relations, using processes akin to formal reasoning.
Collapse
Affiliation(s)
- Olivier Mascaro
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France.
| | - Nicolas Goupil
- Institut des Sciences Cognitives-Marc Jeannerod, UMR5229, CNRS and Université Claude Bernard Lyon 1, Bron, France
| | | | - Adeline Depierreux
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Jean-Baptiste Van der Henst
- Université Claude Bernard Lyon 1, CNRS, INSERM, Centre de Recherche en Neurosciences de Lyon, U1028, UMR5292, Trajectoires, Bron, France
| | | |
Collapse
|
3
|
Peixoto TP. Ordered community detection in directed networks. Phys Rev E 2022; 106:024305. [PMID: 36109944 DOI: 10.1103/physreve.106.024305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
We develop a method to infer community structure in directed networks where the groups are ordered in a latent one-dimensional hierarchy that determines the preferred edge direction. Our nonparametric Bayesian approach is based on a modification of the stochastic block model (SBM), which can take advantage of rank alignment and coherence to produce parsimonious descriptions of networks that combine ordered hierarchies with arbitrary mixing patterns between groups. Since our model also includes directed degree correction, we can use it to distinguish nonlocal hierarchical structure from local in- and out-degree imbalance-thus, removing a source of conflation present in most ranking methods. We also demonstrate how we can reliably compare with the results obtained with the unordered SBM variant to determine whether a hierarchical ordering is statistically warranted in the first place. We illustrate the application of our method on a wide variety of empirical networks across several domains.
Collapse
Affiliation(s)
- Tiago P Peixoto
- Department of Network and Data Science, Central European University, 1100 Vienna, Austria
| |
Collapse
|
4
|
Strauss ED, DeCasien AR, Galindo G, Hobson EA, Shizuka D, Curley JP. DomArchive: a century of published dominance data. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200436. [PMID: 35000444 PMCID: PMC8743893 DOI: 10.1098/rstb.2020.0436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/21/2021] [Indexed: 11/18/2022] Open
Abstract
Dominance behaviours have been collected for many groups of animals since 1922 and serve as a foundation for research on social behaviour and social structure. Despite a wealth of data from the last century of research on dominance hierarchies, these data are only rarely used for comparative insight. Here, we aim to facilitate comparative studies of the structure and function of dominance hierarchies by compiling published dominance interaction datasets from the last 100 years of work. This compiled archive includes 436 datasets from 190 studies of 367 unique groups (mean group size 13.8, s.d. = 13.4) of 135 different species, totalling over 243 000 interactions. These data are presented in an R package alongside relevant metadata and a tool for subsetting the archive based on biological or methodological criteria. In this paper, we explain how to use the archive, discuss potential limitations of the data, and reflect on best practices in publishing dominance data based on our experience in assembling this dataset. This archive will serve as an important resource for future comparative studies and will promote the development of general unifying theories of dominance in behavioural ecology that can be grounded in testing with empirical data. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, 78464 Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, 78464 Konstanz, Germany
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588-0118 USA
| | - Alex R. DeCasien
- Department of Anthropology, New York University, New York, NY, USA
- New York Consortium in Evolutionary Primatology, New York, NY, USA
- Section on Developmental Neurogenomics, National Institute of Mental Health, Bethesda, MA, USA
| | - Gabriela Galindo
- Department of Anthropology, New York University, New York, NY, USA
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, 68588-0118 USA
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Shimoji H, Dobata S. The build-up of dominance hierarchies in eusocial insects. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200437. [PMID: 35000446 PMCID: PMC8743887 DOI: 10.1098/rstb.2020.0437] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
Reproductive division of labour is a hallmark of eusocial insects. However, its stability can often be hampered by the potential for reproduction by otherwise sterile nest-mates. Dominance hierarchy has a crucial role in some species in regulating which individuals reproduce. Compared with those in vertebrates, the dominance hierarchies in eusocial insects tend to involve many more individuals, and should require additional selective forces unique to them. Here, we provide an overview of a series of studies on dominance hierarchies in eusocial insects. Although reported from diverse eusocial taxa, dominance hierarchies have been extensively studied in paper wasps and ponerine ants. Starting from molecular physiological attributes of individuals, we describe how the emergence of dominance hierarchies can be understood as a kind of self-organizing process through individual memory and local behavioural interactions. The resulting global structures can be captured by using network analyses. Lastly, we argue the adaptive significance of dominance hierarchies from the standpoint of sterile subordinates. Kin selection, underpinned by relatedness between nest-mates, is key to the subordinates' acceptance of their positions in the hierarchies. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Hiroyuki Shimoji
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| | - Shigeto Dobata
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
6
|
Strauss ED, Curley JP, Shizuka D, Hobson EA. The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200432. [PMID: 35000437 PMCID: PMC8743894 DOI: 10.1098/rstb.2020.0432] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 12/26/2022] Open
Abstract
A century ago, foundational work by Thorleif Schjelderup-Ebbe described a 'pecking order' in chicken societies, where individuals could be ordered according to their ability to exert their influence over their group-mates. Now known as dominance hierarchies, these structures have been shown to influence a plethora of individual characteristics and outcomes, situating dominance research as a pillar of the study of modern social ecology and evolution. Here, we first review some of the major questions that have been answered about dominance hierarchies in the last 100 years. Next, we introduce the contributions to this theme issue and summarize how they provide ongoing insight in the epistemology, physiology and neurobiology, hierarchical structure, and dynamics of dominance. These contributions employ the full range of research approaches available to modern biologists. Cross-cutting themes emerging from these contributions include a focus on cognitive underpinnings of dominance, the application of network-analytical approaches, and the utility of experimental rank manipulations for revealing causal relationships. Reflection on the last 100 years of dominance research reveals how Schjelderup-Ebbe's early ideas and the subsequent research helped drive a shift from an essentialist view of species characteristics to the modern recognition of rich inter-individual variation in social, behavioural and physiological phenotypes. This article is part of the theme issue 'The centennial of the pecking order: current state and future prospects for the study of dominance hierarchies'.
Collapse
Affiliation(s)
- Eli D. Strauss
- Department of Collective Behavior, Max Planck Institute of Animal Behavior, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Daizaburo Shizuka
- School of Biological Sciences, University of Nebraska Lincoln, Lincoln, NE, USA
| | - Elizabeth A. Hobson
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
7
|
Fujioka H, Okada Y, Abe MS. Bipartite network analysis of ant-task associations reveals task groups and absence of colonial daily activity. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201637. [PMID: 33614094 PMCID: PMC7890512 DOI: 10.1098/rsos.201637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Social insects are one of the best examples of complex self-organized systems exhibiting task allocation. How task allocation is achieved is the most fascinating question in behavioural ecology and complex systems science. However, it is difficult to comprehensively characterize task allocation patterns due to behavioural complexity, such as the individual variation, context dependency and chronological variation. Thus, it is imperative to quantify individual behaviours and integrate them into colony levels. Here, we applied bipartite network analyses to characterize individual-behaviour relationships. We recorded the behaviours of all individuals with verified age in ant colonies and analysed the individual-behaviour relationship at the individual, module and network levels. Bipartite network analysis successfully detected the module structures, illustrating that certain individuals performed a subset of behaviours (i.e. task groups). We confirmed age polyethism by comparing age between modules. Additionally, to test the daily rhythm of the executed tasks, the data were partitioned between daytime and nighttime, and a bipartite network was re-constructed. This analysis supported that there was no daily rhythm in the tasks performed. These findings suggested that bipartite network analyses could untangle complex task allocation patterns and provide insights into understanding the division of labour.
Collapse
Affiliation(s)
- Haruna Fujioka
- Graduate School of Arts and Sciences, the University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, Japan
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Yasukazu Okada
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, Tokyo, Japan
| | - Masato S. Abe
- Center for Advanced Intelligence Project, RIKEN, Nihonbashi 1-chome Mitsui Building, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
8
|
|
9
|
Valentini G, Masuda N, Shaffer Z, Hanson JR, Sasaki T, Walker SI, Pavlic TP, Pratt SC. Division of labour promotes the spread of information in colony emigrations by the ant Temnothorax rugatulus. Proc Biol Sci 2020; 287:20192950. [PMID: 32228408 PMCID: PMC7209055 DOI: 10.1098/rspb.2019.2950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/06/2020] [Indexed: 01/23/2023] Open
Abstract
The fitness of group-living animals often depends on how well members share information needed for collective decision-making. Theoretical studies have shown that collective choices can emerge in a homogeneous group of individuals following identical rules, but real animals show much evidence for heterogeneity in the degree and nature of their contribution to group decisions. In social insects, for example, the transmission and processing of information is influenced by a well-organized division of labour. Studies that accurately quantify how this behavioural heterogeneity affects the spread of information among group members are still lacking. In this paper, we look at nest choices during colony emigrations of the ant Temnothorax rugatulus and quantify the degree of behavioural heterogeneity of workers. Using clustering methods and network analysis, we identify and characterize four behavioural castes of workers-primary, secondary, passive and wandering-covering distinct roles in the spread of information during an emigration. This detailed characterization of the contribution of each worker can improve models of collective decision-making in this species and promises a deeper understanding of behavioural variation at the colony level.
Collapse
Affiliation(s)
- Gabriele Valentini
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Naoki Masuda
- Department of Mathematics, State University of New York, Buffalo, NY 14260, USA
- Computational and Data-Enabled Science and Engineering Program, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Zachary Shaffer
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jake R. Hanson
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Sara Imari Walker
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA
- ASU–SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, AZ 85287, USA
| | - Theodore P. Pavlic
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287, USA
- ASU–SFI Center for Biosocial Complex Systems, Arizona State University, Tempe, AZ 85287, USA
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
- School of Sustainability, Arizona State University, Tempe, AZ 85287, USA
| | - Stephen C. Pratt
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
10
|
Passos FCS, Leal LC. Protein matters: ants remove herbivores more frequently from extrafloral nectary-bearing plants when habitats are protein poor. Biol J Linn Soc Lond 2019. [DOI: 10.1093/biolinnean/blz033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Felipe C S Passos
- Programa de Pós-graduação em Zoologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
| | - Laura C Leal
- Programa de Pós-graduação em Zoologia, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brasil
- Departamento de Ecologia e Biologia Evolutiva, Universidade Federal de São Paulo, Diadema, São Paulo, Brasil
| |
Collapse
|
11
|
Strauss ED, Holekamp KE. Inferring longitudinal hierarchies: Framework and methods for studying the dynamics of dominance. J Anim Ecol 2019; 88:521-536. [PMID: 30664242 DOI: 10.1111/1365-2656.12951] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 01/09/2019] [Indexed: 12/31/2022]
Abstract
Social inequality is a consistent feature of animal societies, often manifesting as dominance hierarchies, in which each individual is characterized by a dominance rank denoting its place in the network of competitive relationships among group members. Most studies treat dominance hierarchies as static entities despite their true longitudinal, and sometimes highly dynamic, nature. To guide study of the dynamics of dominance, we propose the concept of a longitudinal hierarchy: the characterization of a single, latent hierarchy and its dynamics over time. Longitudinal hierarchies describe the hierarchy position (r) and dynamics (∆) associated with each individual as a property of its interaction data, the periods into which these data are divided based on a period delineation rule (p) and the method chosen to infer the hierarchy. Hierarchy dynamics result from both active (∆a) and passive (∆p) processes. Methods that infer longitudinal hierarchies should optimize accuracy of rank dynamics as well as of the rank orders themselves, but no studies have yet evaluated the accuracy with which different methods infer hierarchy dynamics. We modify three popular ranking approaches to make them better suited for inferring longitudinal hierarchies. Our three "informed" methods assign ranks that are informed by data from the prior period rather than calculating ranks de novo in each observation period and use prior knowledge of dominance correlates to inform placement of new individuals in the hierarchy. These methods are provided in an R package. Using both a simulated dataset and a long-term empirical dataset from a species with two distinct sex-based dominance structures, we compare the performance of these methods and their unmodified counterparts. We show that choice of method has dramatic impacts on inference of hierarchy dynamics via differences in estimates of ∆a. Methods that calculate ranks de novo in each period overestimate hierarchy dynamics, but incorporation of prior information leads to more accurately inferred ∆a. Of the modified methods, Informed MatReorder infers the most conservative estimates of hierarchy dynamics and Informed Elo infers the most dynamic hierarchies. This work provides crucially needed conceptual framing and methodological validation for studying social dominance and its dynamics.
Collapse
Affiliation(s)
- Eli D Strauss
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan
| | - Kay E Holekamp
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan.,Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan
| |
Collapse
|
12
|
Neumann C, McDonald DB, Shizuka D. Dominance ranks, dominance ratings and linear hierarchies: a critique. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
13
|
Win AT, Machida Y, Miyamoto Y, Dobata S, Tsuji K. Seasonal and temporal variations in colony-level foraging activity of a queenless ant, Diacamma sp., in Japan. J ETHOL 2018. [DOI: 10.1007/s10164-018-0558-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
14
|
Shimoji H, Aonuma H, Miura T, Tsuji K, Sasaki K, Okada Y. Queen contact and among-worker interactions dually suppress worker brain dopamine as a potential regulator of reproduction in an ant. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-016-2263-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Douglas PH, Ngonga Ngomo AC, Hohmann G. A novel approach for dominance assessment in gregarious species: ADAGIO. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2016.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
|
17
|
de Silva S, Schmid V, Wittemyer G. Fission–fusion processes weaken dominance networks of female Asian elephants in a productive habitat. Behav Ecol 2016. [DOI: 10.1093/beheco/arw153] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
18
|
Sasaki T, Penick CA, Shaffer Z, Haight KL, Pratt SC, Liebig J. A Simple Behavioral Model Predicts the Emergence of Complex Animal Hierarchies. Am Nat 2016; 187:765-75. [PMID: 27172595 DOI: 10.1086/686259] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Social dominance hierarchies are widespread, but little is known about the mechanisms that produce nonlinear structures. In addition to despotic hierarchies, where a single individual dominates, shared hierarchies exist, where multiple individuals occupy a single rank. In vertebrates, these complex dominance relationships are thought to develop from interactions that require higher cognition, but similar cases of shared dominance have been found in social insects. Combining empirical observations with a modeling approach, we show that all three hierarchy structures-linear, despotic, and shared-can emerge from different combinations of simple interactions present in social insects. Our model shows that a linear hierarchy emerges when a typical winner-loser interaction (dominance biting) is present. A despotic hierarchy emerges when a policing interaction is added that results in the complete loss of dominance status for an attacked individual (physical policing). Finally, a shared hierarchy emerges with the addition of a winner-winner interaction that results in a positive outcome for both interactors (antennal dueling). Antennal dueling is an enigmatic ant behavior that has previously lacked a functional explanation. These results show how complex social traits can emerge from simple behaviors without requiring advanced cognition.
Collapse
|
19
|
Okada Y, Sasaki K, Miyazaki S, Shimoji H, Tsuji K, Miura T. Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J Exp Biol 2015; 218:1091-8. [DOI: 10.1242/jeb.118414] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/03/2015] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In social Hymenoptera with no morphological caste, a dominant female becomes an egg layer, whereas subordinates become sterile helpers. The physiological mechanism that links dominance rank and fecundity is an essential part of the emergence of sterile females, which reflects the primitive phase of eusociality. Recent studies suggest that brain biogenic amines are correlated with the ranks in dominance hierarchy. However, the actual causality between aminergic systems and phenotype (i.e. fecundity and aggressiveness) is largely unknown due to the pleiotropic functions of amines (e.g. age-dependent polyethism) and the scarcity of manipulation experiments. To clarify the causality among dominance ranks, amine levels and phenotypes, we examined the dynamics of the aminergic system during the ontogeny of dominance hierarchy in the queenless ant Diacamma sp., which undergoes rapid physiological differentiation based on dominance interactions. Brain dopamine levels differed between dominants and subordinates at day 7 after eclosion, although they did not differ at day 1, reflecting fecundity but not aggressiveness. Topical applications of dopamine to the subordinate workers induced oocyte growth but did not induce aggressiveness, suggesting the gonadotropic effect of dopamine. Additionally, dopamine receptor transcripts (dopr1 and dopr2) were elevated in the gaster fat body of dominant females, suggesting that the fat body is a potential target of neurohormonal dopamine. Based on this evidence, we suggest that brain dopamine levels are elevated in dominants as a result of hierarchy formation, and differences in dopamine levels cause the reproductive differentiation, probably via stimulation of the fat body.
Collapse
Affiliation(s)
- Yasukazu Okada
- Department of General Systems Studies, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Tokyo 3-8-1, Japan
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Ken Sasaki
- Department of Bioresource Science, Tamagawa University, Machida, Tokyo 194-8610, Japan
| | - Satoshi Miyazaki
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
- Department of Hygiene and Public Health, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Shimoji
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuki Tsuji
- Department of Subtropical Agro-Environmental Sciences, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Toru Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
20
|
Kura K, Broom M, Kandler A. Modelling Dominance Hierarchies Under Winner and Loser Effects. Bull Math Biol 2015; 77:927-52. [DOI: 10.1007/s11538-015-0070-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|