1
|
He S, Fu X, Wang L, Xue Y, Zhou L, Qiao S, An J, Xia T. Self-Assemble Silk Fibroin Microcapsules for Cartilage Regeneration through Gene Delivery and Immune Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302799. [PMID: 37264755 DOI: 10.1002/smll.202302799] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Effective treatments for cartilage defects are currently lacking. Gene delivery using proper delivery systems has shown great potential in cartilage regeneration. However, the inflammatory microenvironment generated by the defected cartilage severely affects the system's delivery efficiency. Therefore, this study reports a silk fibroin microcapsule (SFM) structure based on layer-by-layer self-assembly, in which interleukin-4 (IL-4) is modified on silk by click chemistry and loaded with lysyl oxidase plasmid DNA (LOX pDNA). The silk microcapsules display good biocompatibility and the release rate of genes can be adjusted by controlling the number of self-assembled layers. Moreover, the functionalized SFMs mixed with methacrylated gelatin (GelMA) exhibit good injectability. The IL-4 on the outer layer of the SFM can regulate macrophages to polarize toward the M2 type, thereby promoting cartilage matrix repair and inhibiting inflammation. The LOX pDNA loaded inside can be effectively delivered into cells to promote extracellular matrix generation, significantly promoting cartilage regeneration. The results of this study provide a promising biomaterial for cartilage repair, and this novel silk-based microcapsule delivery system can also provide strategies for the treatment of other diseases.
Collapse
Affiliation(s)
- Shuangjian He
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Xuejie Fu
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Liang Wang
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Yangyang Xue
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Long Zhou
- Department of orthopedics, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Shigang Qiao
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Jianzhong An
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| | - Tingting Xia
- Institute of Clinical Medicine Research, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, 215000, China
| |
Collapse
|
2
|
Almarza AJ, Mercuri LG, Arzi B, Gallo LM, Granquist E, Kapila S, Detamore MS. Temporomandibular Joint Bioengineering Conference: Working Together Toward Improving Clinical Outcomes. J Biomech Eng 2020; 142:020801. [PMID: 31233104 DOI: 10.1115/1.4044090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/21/2022]
Abstract
The sixth temporomandibular joint (TMJ) Bioengineering Conference (TMJBC) was held on June 14-15 2018, in Redondo Beach, California, 12 years after the first TMJBC. Speakers gave 30 presentations and came from the United States, Europe, Asia, and Australia. The goal of the conference has remained to foster a continuing forum for bioengineers, scientists, and surgeons and veterinarians to advance technology related to TMJ disorders. These collective multidisciplinary interactions over the past decade have made large strides in moving the field of TMJ research forward. Over the past 12 years, in vivo approaches for tissue engineering have emerged, along with a wide variety of degeneration models, as well as with models occurring in nature. Furthermore, biomechanical tools have become more sensitive and new biologic interventions for disease are being developed. Clinical directives have evolved for specific diagnoses, along with patient-specific biological and immunological responses to TMJ replacement devices alloplastic and/or bioengineered devices. The sixth TMJBC heralded many opportunities for funding agencies to advance the field: (1) initiatives on TMJ that go beyond pain research, (2) more training grants focused on graduate students and fellows, (3) partnership funding with government agencies to translate TMJ solutions, and (4) the recruitment of a critical mass of TMJ experts to participate on grant review panels. The TMJ research community continues to grow and has become a pillar of dental and craniofacial research, and together we share the unified vision to ultimately improve diagnoses and treatment outcomes in patients affected by TMJ disorders.
Collapse
Affiliation(s)
- Alejandro J Almarza
- Departments of Oral Biology and Bioengineering, Center for Craniofacial Regeneration, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213
| | - Louis G Mercuri
- Visiting Professor Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612; TMJ Concepts, Ventura, CA 93003
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Luigi M Gallo
- Clinic of Masticatory Disorders, Center of Dental Medicine, University of Zurich, Zurich CH-8031, Switzerland
| | - Eric Granquist
- Department of Oral and Maxillofacial Surgery, University of Pennsylvania, Philadelphia, PA 19104
| | - Sunil Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143
| | - Michael S Detamore
- Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, OK 73019
| |
Collapse
|
3
|
Catechol-modified poly(oxazoline)s with tunable degradability facilitate cell invasion and lateral cartilage integration. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.06.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
4
|
Vapniarsky N, Huwe LW, Arzi B, Houghton MK, Wong ME, Wilson JW, Hatcher DC, Hu JC, Athanasiou KA. Tissue engineering toward temporomandibular joint disc regeneration. Sci Transl Med 2019; 10:10/446/eaaq1802. [PMID: 29925634 DOI: 10.1126/scitranslmed.aaq1802] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/25/2018] [Indexed: 12/11/2022]
Abstract
Treatments for temporomandibular joint (TMJ) disc thinning and perforation, conditions prevalent in TMJ pathologies, are palliative but not reparative. To address this, scaffold-free tissue-engineered implants were created using allogeneic, passaged costal chondrocytes. A combination of compressive and bioactive stimulation regimens produced implants with mechanical properties akin to those of the native disc. Efficacy in repairing disc thinning was examined in minipigs. Compared to empty controls, treatment with tissue-engineered implants restored disc integrity by inducing 4.4 times more complete defect closure, formed 3.4-fold stiffer repair tissue, and promoted 3.2-fold stiffer intralaminar fusion. The osteoarthritis score (indicative of degenerative changes) of the untreated group was 3.0-fold of the implant-treated group. This tissue engineering strategy paves the way for developing tissue-engineered implants as clinical treatments for TMJ disc thinning.
Collapse
Affiliation(s)
- Natalia Vapniarsky
- Department of Pathology, Microbiology, and Immunology, University of California, Davis, Davis, CA 95616, USA
| | - Le W Huwe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA 95616, USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA 95616, USA
| | - Meghan K Houghton
- Directorate for Computer and Information Science and Engineering, National Science Foundation, Alexandria, VA 22314, USA
| | - Mark E Wong
- Department of Oral and Maxillofacial Surgery, University of Texas School of Dentistry, Houston, TX 77054, USA
| | - James W Wilson
- Department of Oral and Maxillofacial Surgery, University of Texas School of Dentistry, Houston, TX 77054, USA
| | - David C Hatcher
- Diagnostic Digital Imaging Center, Sacramento, CA 95825, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
Microporous acellular extracellular matrix combined with adipose-derived stem cell sheets as a promising tissue patch promoting articular cartilage regeneration and interface integration. Cytotherapy 2019; 21:856-869. [DOI: 10.1016/j.jcyt.2019.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/04/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
|
6
|
Donahue RP, Gonzalez-Leon EA, Hu JC, Athanasiou KA. Considerations for translation of tissue engineered fibrocartilage from bench to bedside. J Biomech Eng 2018; 141:2718210. [PMID: 30516244 PMCID: PMC6611470 DOI: 10.1115/1.4042201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 11/27/2018] [Indexed: 12/25/2022]
Abstract
Fibrocartilage is found in the knee meniscus, the temporomandibular joint (TMJ) disc, the pubic symphysis, the annulus fibrosus of intervertebral disc, tendons, and ligaments. These tissues are notoriously difficult to repair due to their avascularity, and limited clinical repair and replacement options exist. Tissue engineering has been proposed as a route to repair and replace fibrocartilages. Using the knee meniscus and TMJ disc as examples, this review describes how fibrocartilages can be engineered toward translation to clinical use. Presented are fibrocartilage anatomy, function, epidemiology, pathology, and current clinical treatments because they inform design criteria for tissue engineered fibrocartilages. Methods for how native tissues are characterized histomorphologically, biochemically, and mechanically to set gold standards are described. Then, provided is a review of fibrocartilage-specific tissue engineering strategies, including the selection of cell sources, scaffold or scaffold-free methods, and biochemical and mechanical stimuli. In closing, the Food and Drug Administration paradigm is discussed to inform researchers of both the guidance that exists and the questions that remain to be answered with regard to bringing a tissue engineered fibrocartilage product to the clinic.
Collapse
Affiliation(s)
- Ryan P. Donahue
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Erik A. Gonzalez-Leon
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Jerry C. Hu
- Department of Biomedical Engineering,
University of California, Irvine,
Irvine, CA 92697
e-mail:
| | - Kyriacos A. Athanasiou
- Fellow ASME
Department of Biomedical Engineering,
University of California, Irvine
Irvine, CA 92697
e-mail:
| |
Collapse
|
7
|
Huwe LW, Brown WE, Hu JC, Athanasiou KA. Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 2018; 12:1163-1176. [PMID: 29286211 DOI: 10.1002/term.2630] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 11/23/2017] [Accepted: 12/11/2017] [Indexed: 12/16/2022]
Abstract
Costal cartilage is a promising donor source of chondrocytes to alleviate cell scarcity in articular cartilage tissue engineering. Limited knowledge exists, however, on costal cartilage characteristics. This study describes the characterization of costal cartilage and articular cartilage properties and compares neocartilage engineered with costal chondrocytes to native articular cartilage, all within a sheep model. Specifically, we (a) quantitatively characterized the properties of costal cartilage in comparison to patellofemoral articular cartilage, and (b) evaluated the quality of neocartilage derived from costal chondrocytes for potential use in articular cartilage regeneration. Ovine costal and articular cartilages from various topographical locations were characterized mechanically, biochemically, and histologically. Costal cartilage was stiffer in compression but softer and weaker in tension than articular cartilage. These differences were attributed to high amounts of glycosaminoglycans and mineralization and a low amount of collagen in costal cartilage. Compared to articular cartilage, costal cartilage was more densely populated with chondrocytes, rendering it an excellent chondrocyte source. In terms of tissue engineering, using the self-assembling process, costal chondrocytes formed articular cartilage-like neocartilage. Quantitatively compared via a functionality index, neocartilage achieved 55% of the medial condyle cartilage mechanical and biochemical properties. This characterization study highlighted the differences between costal and articular cartilages in native forms and demonstrated that costal cartilage is a valuable source of chondrocytes suitable for articular cartilage regeneration strategies.
Collapse
Affiliation(s)
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
8
|
Huwe LW, Brown WE, Hu JC, Athanasiou KA. Characterization of costal cartilage and its suitability as a cell source for articular cartilage tissue engineering. J Tissue Eng Regen Med 2017. [PMID: 29286211 DOI: 10.1002/term.2630.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Costal cartilage is a promising donor source of chondrocytes to alleviate cell scarcity in articular cartilage tissue engineering. Limited knowledge exists, however, on costal cartilage characteristics. This study describes the characterization of costal cartilage and articular cartilage properties and compares neocartilage engineered with costal chondrocytes to native articular cartilage, all within a sheep model. Specifically, we (a) quantitatively characterized the properties of costal cartilage in comparison to patellofemoral articular cartilage, and (b) evaluated the quality of neocartilage derived from costal chondrocytes for potential use in articular cartilage regeneration. Ovine costal and articular cartilages from various topographical locations were characterized mechanically, biochemically, and histologically. Costal cartilage was stiffer in compression but softer and weaker in tension than articular cartilage. These differences were attributed to high amounts of glycosaminoglycans and mineralization and a low amount of collagen in costal cartilage. Compared to articular cartilage, costal cartilage was more densely populated with chondrocytes, rendering it an excellent chondrocyte source. In terms of tissue engineering, using the self-assembling process, costal chondrocytes formed articular cartilage-like neocartilage. Quantitatively compared via a functionality index, neocartilage achieved 55% of the medial condyle cartilage mechanical and biochemical properties. This characterization study highlighted the differences between costal and articular cartilages in native forms and demonstrated that costal cartilage is a valuable source of chondrocytes suitable for articular cartilage regeneration strategies.
Collapse
Affiliation(s)
| | - Wendy E Brown
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
9
|
Huwe LW, Sullan GK, Hu JC, Athanasiou KA. Using Costal Chondrocytes to Engineer Articular Cartilage with Applications of Passive Axial Compression and Bioactive Stimuli. Tissue Eng Part A 2017; 24:516-526. [PMID: 28683690 DOI: 10.1089/ten.tea.2017.0136] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Generating neocartilage with suitable mechanical integrity from a cell source that can circumvent chondrocyte scarcity is indispensable for articular cartilage regeneration strategies. Costal chondrocytes of the rib eliminate donor site morbidity in the articular joint, but it remains unclear how neocartilage formed from these cells responds to mechanical loading, especially if the intent is to use it in a load-bearing joint. In a series of three experiments, this study sought to determine efficacious parameters of passive axial compressive stimulation that would enable costal chondrocytes to synthesize mechanically robust cartilage. Experiment 1 determined a suitable time window for stimulation by its application during either the matrix synthesis phase, the maturation phase, or during both phases of the self-assembling process. The results showed that compressive stimulation at either time was effective in increasing instantaneous moduli by 92% and 87% in the synthesis and maturation phases, respectively. Compressive stimulation during both phases did not further improve properties beyond a one-time stimulation. The magnitude of passive axial compression was examined in Experiment 2 by applying 0, 3.3, 5.0, or 6.7 kPa stresses to the neocartilage. Unlike 6.7 kPa, both 3.3 and 5.0 kPa significantly increased neocartilage compressive properties by 42% and 48% over untreated controls, respectively. Experiment 3 examined how the passive axial compression regimen developed from the previous phases interacted with a bioactive regimen (transforming growth factor [TGF]-β1, chondroitinase ABC, and lysyl oxidase-like 2). Passive axial compression significantly improved the relaxation modulus compared with bioactive treatment alone. Furthermore, a combined treatment of compressive and bioactive stimulation improved the tensile properties of neocartilage 2.6-fold compared with untreated control. The ability to create robust articular cartilage from passaged costal chondrocytes through appropriate mechanical and bioactive stimuli will greatly extend the clinical applicability of tissue-engineered products to a wider patient population.
Collapse
Affiliation(s)
- Le W Huwe
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Gurdeep K Sullan
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Jerry C Hu
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California
| | - Kyriacos A Athanasiou
- 1 Department of Biomedical Engineering, University of California , Davis, One Shields Avenue, Davis, California.,2 Department of Orthopaedic Surgery, University of California , Davis, One Shields Avenue, Davis, California
| |
Collapse
|
10
|
Lowe J, Almarza AJ. A review of in-vitro fibrocartilage tissue engineered therapies with a focus on the temporomandibular joint. Arch Oral Biol 2017; 83:193-201. [PMID: 28787640 DOI: 10.1016/j.archoralbio.2017.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/19/2017] [Accepted: 07/20/2017] [Indexed: 12/11/2022]
Abstract
The inability of fibrocartilage, specifically the temporomandibular joint (TMJ) disc, to regenerate and remodel following injury presents a unique problem for clinicians. Tissue engineering then offers a potential regenerative therapy. In vitro testing provides a valuable screening tool for potential tissue engineered solutions. The conclusions drawn for TMJ in vitro research were compared against state of the art fibrocartilage studies in the knee meniscus, and annulus fibrosus of the intervertebral disc (IVD). For TMJ disc regeneration, in vitro tissue engineered approaches, focused on cellular therapies with fibrochondrocytes, have displayed an inability to produce enough collagen, as well as an inability to recapitulate native mechanical properties. Biomaterial approaches have recapitulated the native properties of the TMJ disc, but their in vivo efficacy has yet to be determined. By comparison, the knee meniscus field is the most progressive in the use of stem cells as a cell source. The knee meniscus field has moved away from measuring mechanical properties, and are instead more focused on biochemistry and gene expression. IVD studies mainly use electrospun scaffolds, and have produced the best success in mechanical properties. The TMJ field, in comparison to knee meniscus and IVD, needs to employ stem cell therapies, new biomaterials and manufacturing techniques, and cutting edge molecular assays, in future in vitro approaches to screen for viable technologies to move to in vivo studies.
Collapse
Affiliation(s)
- Jesse Lowe
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| | - Alejandro J Almarza
- Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA 15260, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, United States; Center for Craniofacial Regeneration, University of Pittsburgh, Pittsburgh, PA 15260, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15260, United States.
| |
Collapse
|
11
|
Vapniarsky N, Aryaei A, Arzi B, Hatcher DC, Hu JC, Athanasiou KA. The Yucatan Minipig Temporomandibular Joint Disc Structure-Function Relationships Support Its Suitability for Human Comparative Studies. Tissue Eng Part C Methods 2017; 23:700-709. [PMID: 28548559 DOI: 10.1089/ten.tec.2017.0149] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Frequent involvement of the disc in temporomandibular joint (TMJ) disorders warrants attempts to tissue engineer TMJ disc replacements. Physiologically, a great degree of similarity is seen between humans and farm pigs (FPs), but the pig's rapid growth confers a significant challenge for in vivo experiments. Minipigs have a slower growth rate and are smaller than FPs, but minipig TMJ discs have yet to be fully characterized. The objective of this study was to determine the suitability of the minipig for TMJ studies by extensive structural and functional characterization. The properties of minipig TMJ discs closely reproduced previously reported morphological, biochemical, and biomechanical values of human and FP discs. The width/length dimension ratio of the minipig TMJ disc was 1.95 (1.69 for human and 1.94 for FP). The biochemical evaluation revealed, on average per wet weight, 24.3% collagen (22.8% for human and 24.9% for FP); 0.8% glycosaminoglycan (GAG; 0.5% for human and 0.4% for FP); and 0.03% DNA (0.008% for human and 0.02% for FP). Biomechanical testing revealed, on average, compressive relaxation modulus of 50 kPa (37 kPa for human and 32 kPa for FP), compressive instantaneous modulus of 1121 kPa (1315 kPa for human and 1134 kPa for FP), and coefficient of viscosity of 13 MPa·s (9 MPa·s for human and 3 MPa·s for FP) at 20% strain. These properties also varied topographically in accordance to those of human and FP TMJ discs. Anisotropy, quantified by bidirectional tensile testing and histology, again was analogous among minipig, human, and FP TMJ discs. The minipig TMJ's ginglymoarthrodial nature was verified through cone beam computer tomography. Collectively, the similarities between minipig and human TMJ discs support the use of minipig as a relevant model for TMJ research; considering the practical advantages conferred by its growth rate and size, the minipig may be a preferred model over FP.
Collapse
Affiliation(s)
- Natalia Vapniarsky
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Ashkan Aryaei
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Boaz Arzi
- 2 Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California , Davis, Davis, California
| | - David C Hatcher
- 2 Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California , Davis, Davis, California.,3 Diagnostic Digital Imaging Center , Sacramento, California
| | - Jerry C Hu
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Kyriacos A Athanasiou
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California.,4 Department of Orthopedic Surgery, School of Medicine, University of California, Davis , Davis, California
| |
Collapse
|
12
|
Aryaei A, Vapniarsky N, Hu JC, Athanasiou KA. Recent Tissue Engineering Advances for the Treatment of Temporomandibular Joint Disorders. Curr Osteoporos Rep 2016; 14:269-279. [PMID: 27704395 PMCID: PMC5106310 DOI: 10.1007/s11914-016-0327-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Temporomandibular disorders (TMDs) are among the most common maxillofacial complaints and a major cause of orofacial pain. Although current treatments provide short- and long-term relief, alternative tissue engineering solutions are in great demand. Particularly, the development of strategies, providing long-term resolution of TMD to help patients regain normal function, is a high priority. An absolute prerequisite of tissue engineering is to understand normal structure and function. The current knowledge of anatomical, mechanical, and biochemical characteristics of the temporomandibular joint (TMJ) and associated tissues will be discussed, followed by a brief description of current TMD treatments. The main focus is on recent tissue engineering developments for regenerating TMJ tissue components, with or without a scaffold. The expectation for effectively managing TMD is that tissue engineering will produce biomimetic TMJ tissues that recapitulate the normal structure and function of the TMJ.
Collapse
Affiliation(s)
- Ashkan Aryaei
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Natalia Vapniarsky
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jerry C Hu
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Kyriacos A Athanasiou
- Department of Biomedical Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
- Department of Orthopedic Surgery, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA
| |
Collapse
|
13
|
Salash JR, Hossameldin RH, Almarza AJ, Chou JC, McCain JP, Mercuri LG, Wolford LM, Detamore MS. Potential Indications for Tissue Engineering in Temporomandibular Joint Surgery. J Oral Maxillofac Surg 2015; 74:705-11. [PMID: 26687154 DOI: 10.1016/j.joms.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/29/2022]
Abstract
PURPOSE Musculoskeletal tissue engineering has advanced to the stage where it has the capability to engineer temporomandibular joint (TMJ) anatomic components. Unfortunately, there is a paucity of literature identifying specific indications for the use of TMJ tissue engineering solutions. The objective of this study was to establish an initial set of indications and contraindications for the use of engineered tissues for replacement of TMJ anatomic components. FINDINGS There was consensus among the authors that the management of patients requiring TMJ reconstruction as the result of 1) irreparable condylar trauma, 2) developmental or acquired TMJ pathology in skeletally immature patients, 3) hyperplasia, and 4) documented metal hypersensitivities could be indications for bioengineered condyle and ramus TMJ components. There was consensus that Wilkes stage III internal derangement might be an indication for use of a bioengineered TMJ disc or possibly even a disc-like bioengineered "fossa liner." However, there was some controversy as to whether TMJ arthritic disease (e.g., osteoarthritis) and reconstruction after failed alloplastic devices should be indications. Further research is required to determine whether tissue-engineered TMJ components could be a viable option for such cases. Contraindications for the use of bioengineered TMJ components could include patients with TMJ disorders and multiple failed surgeries, parafunctional oral habits, persistent TMJ infection, TMJ rheumatoid arthritis, and ankylosis unless the underlying pathology can be resolved. CONCLUSIONS Biomedical engineers must appreciate the specific indications that might warrant TMJ bioengineered structures, so that they avoid developing technologies in search of problems that might not exist for patients and clinicians. Instead, they should focus on identifying and understanding the problems that need resolution and then tailor technologies to address those specific situations. The aforementioned indications and contraindications are designed to serve as a guide to the next generation of tissue engineers in their strategic development of technologies to address specific clinical issues.
Collapse
Affiliation(s)
- Jean R Salash
- Graduate Student, Bioengineering Graduate Program, University of Kansas, Lawrence, KS
| | - Reem H Hossameldin
- Oral Surgeon, Department of Oral and Maxillofacial Surgery, Faculty of Oral Medicine, Cairo University, Cairo, Egypt
| | - Alejandro J Almarza
- Associate Professor, Departments of Oral Biology and Bioengineering, McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Joli C Chou
- Clinical Associate Professor, The Craniofacial Center of Western New York, Buffalo, NY
| | - Joseph P McCain
- Clinical Associate Professor and Chief, Department of Oral and Maxillofacial Surgery, Herbert Wertheim College of Medicine, Florida International University, Miami; Department of Oral and Maxillofacial Surgery, Baptist Health Systems, Miami, FL
| | - Louis G Mercuri
- Visiting Professor, Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL; TMJ Concepts, Ventura, CA
| | - Larry M Wolford
- Clinical Professor, Departments of Oral and Maxillofacial Surgery and Orthodontics, Texas A&M University Health Science Center, Baylor College of Dentistry, Baylor University Medical Center, Dallas, TX
| | - Michael S Detamore
- Professor, Department of Chemical and Petroleum Engineering and Bioengineering Graduate Program, University of Kansas, Lawrence, KS.
| |
Collapse
|