1
|
Ternacle J, Hecht S, Eltchaninoff H, Salaun E, Clavel MA, Côté N, Pibarot P. Durability of transcatheter aortic valve implantation. EUROINTERVENTION 2024; 20:e845-e864. [PMID: 39007831 PMCID: PMC11228542 DOI: 10.4244/eij-d-23-01050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/22/2024] [Indexed: 07/16/2024]
Abstract
Transcatheter aortic valve implantation (TAVI) is now utilised as a less invasive alternative to surgical aortic valve replacement (SAVR) across the whole spectrum of surgical risk. Long-term durability of the bioprosthetic valves has become a key goal of TAVI as this procedure is now considered for younger and lower-risk populations. The purpose of this article is to present a state-of-the-art overview on the definition, aetiology, risk factors, mechanisms, diagnosis, clinical impact, and management of bioprosthetic valve dysfunction (BVD) and failure (BVF) following TAVI with a comparative perspective versus SAVR. Structural valve deterioration (SVD) is the main factor limiting the durability of the bioprosthetic valves used for TAVI or SAVR, but non-structural BVD, such as prosthesis-patient mismatch and paravalvular regurgitation, as well as valve thrombosis or endocarditis may also lead to BVF. The incidence of BVF related to SVD or other causes is low (<5%) at midterm (5- to 8-year) follow-up and compares favourably with that of SAVR. The long-term follow-up data of randomised trials conducted with the first generations of transcatheter heart valves also suggest similar valve durability in TAVI versus SAVR at 10 years, but these trials suffer from major survivorship bias, and the long-term durability of TAVI will need to be confirmed by the analysis of the low-risk TAVI versus SAVR trials at 10 years.
Collapse
Affiliation(s)
- Julien Ternacle
- Unité Médico-Chirurgicale des Valvulopathies, Hôpital Haut-Leveque, CHU Bordeaux, Pessac, France
| | - Sébastien Hecht
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Hélène Eltchaninoff
- Department of Cardiology, University of Rouen Normandie, Inserm U1096, CHU Rouen, Rouen, France
| | - Erwan Salaun
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Marie-Annick Clavel
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Nancy Côté
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| | - Philippe Pibarot
- Department of Cardiology, Québec Heart & Lung Institute - Laval University, Québec, Canada
| |
Collapse
|
2
|
Fukui M, Cavalcante JL, Bapat VN. Deformation in transcatheter heart valves: Clinical implications and considerations. J Cardiol 2024; 83:351-358. [PMID: 38432474 DOI: 10.1016/j.jjcc.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Transcatheter aortic valve replacement (TAVR) has emerged as a preferred treatment modality for aortic stenosis, marking a significant advancement in cardiac interventions. Transcatheter heart valves (THVs) have also received approval for treating failed bioprosthetic valves and rings across aortic, mitral, tricuspid, and pulmonic positions. Unlike surgically implanted valves, which are sewn into the annulus, THVs are anchored through relative oversizing. Although THVs are designed to function optimally in a fully expanded state, they exhibit a certain degree of tolerance to underexpansion. However, significant deformation beyond this tolerance can adversely affect the valve's hemodynamics and durability, ultimately impacting patient outcomes. Such post-implantation deviations from the valve's intended three-dimensional design are influenced by a variety of physiological and anatomical factors unique to each patient and procedure, leading to underexpansion, eccentric expansion, and vertical deformation. These deformation patterns increase leaflet stress and strain, potentially causing fatigue and damage. This review article delves into the extent of THV deformation, its impact on leaflet function, hypoattenuating leaflet thickening, and structural valve degeneration. It provides an in-depth analysis of deformation specifics in different procedural contexts, including TAVR in native aortic stenosis, aortic and mitral valve-in-valve procedures, and redo-TAVR. Additionally, the review discusses strategies to mitigate THV deformation during the procedure, offering insights into potential solutions to these challenges.
Collapse
Affiliation(s)
- Miho Fukui
- Minneapolis Heart Institute Foundation, Minneapolis, MN, USA.
| | - João L Cavalcante
- Minneapolis Heart Institute Foundation, Minneapolis, MN, USA; Minneapolis Heart Institute at Abbott Northwestern Hospital, Minneapolis, MN, USA
| | - Vinayak N Bapat
- Minneapolis Heart Institute Foundation, Minneapolis, MN, USA; Minneapolis Heart Institute at Abbott Northwestern Hospital, Minneapolis, MN, USA
| |
Collapse
|
3
|
Lin MT, Chen CA, Chen SJ, Huang JH, Chang YH, Chiu SN, Lu CW, Wu MH, Wang JK. Self-Expanding Pulmonary Valves in 53 Patients With Native Repaired Right Ventricular Outflow Tracts. Can J Cardiol 2023; 39:997-1006. [PMID: 36933796 DOI: 10.1016/j.cjca.2023.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 02/18/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Self-expanding pulmonary valve grafts have been designed for percutaneous pulmonary valve implantation (PPVI) in patients with native repaired right ventricular (RV) outflow tracts (RVOTs). However, their efficacy, in terms of RV function and graft remodelling remain unclear. METHODS Patients with native RVOTs who received Venus P-valve (N = 15) or Pulsta valve (N = 38) implants between 2017 and 2022 were enrolled. We collected data on patient characteristics and cardiac catheterization parameters as well as imaging and laboratory data before, immediately after, and 6 to 12 months after PPVI and identified risk factors for RV dysfunction. RESULTS Valve implantation was successful in 98.1% of patients. The median duration of follow-up was 27.5 months. In the first 6 months after PPVI, all patients exhibited resolution of paradoxical septal motion and a significant reduction (P < 0.05) in RV volume, N-terminal pro-B-type natriuretic peptide levels, and valve eccentricity indices (-3.9%). Normalization of the RV ejection fraction (≥ 50%) was detected in only 9 patients (17.3%) and was independently associated with the RV end-diastolic volume index before PPVI (P = 0.03). Nine patients had residual or recurrent pulmonary regurgitation or paravalvular leak (graded as ≥ mild), which was associated with a larger eccentricity index (> 8%) and subsided by 12 months postimplantation. CONCLUSIONS We identified the risk factors likely to be associated with RV dysfunction and pulmonary regurgitation following PPVI in patients with native repaired RVOTs. RV volume-based patient selection is recommended for PPVI of a self-expanding pulmonary valve, along with monitoring of graft geometry.
Collapse
Affiliation(s)
- Ming-Tai Lin
- Department of Pediatrics, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | - Chun-An Chen
- Department of Pediatrics, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | - Shyh-Jye Chen
- Department of Medical Imaging, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | - Jou-Hsuan Huang
- Department of Medical Imaging, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | - Yu-Hsuan Chang
- Department of Medical Imaging, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | - Shuenn-Nan Chiu
- Department of Pediatrics, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | - Chun-Wei Lu
- Department of Pediatrics, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | - Mei-Hwan Wu
- Department of Pediatrics, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan
| | - Jou-Kou Wang
- Department of Pediatrics, National Taiwan University Hospital and Medical College, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
4
|
Zhu Z, Xiong T, Chen M. Comparison of patients with bicuspid and tricuspid aortic valve in transcatheter aortic valve implantation. Expert Rev Med Devices 2023; 20:209-220. [PMID: 36815427 DOI: 10.1080/17434440.2023.2184686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
BACKGROUND Transcatheter aortic valve implantation (TAVI) has emerged as a safe and effective alternative to surgery for aortic stenosis (AS). However, there are still differences in the procedural process and outcome of bicuspid aortic valve (BAV) treated with TAVI compared with tricuspid aortic valve. AREAS COVERED This review paper aims to summarize the main characteristics and clinical evidence of TAVI in patients with bicuspid and tricuspid aortic valves and compare the outcomes of TAVI procedure. EXPERT OPINION The use of TAVI in patients with BAV has shown similar clinical outcomes compared with tricuspid aortic valve. The efficacy of TAVI for challenging BAV anatomies remains a concern due to the lack of randomized trials. Detailed preprocedural planning is of great importance in low-surgical-risk BAV patients. A better understanding of which subtypes of BAV anatomy are at greater risk for adverse outcomes can potentially benefit the selection of TAVI or open-heart surgery in low surgical risk AS patients.
Collapse
Affiliation(s)
- Zhongkai Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Tianyuan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Kovarovic BJ, Rotman OM, Parikh PB, Slepian MJ, Bluestein D. Mild Paravalvular Leak May Pose an Increased Thrombogenic Risk in Transcatheter Aortic Valve Replacement (TAVR) Patients-Insights from Patient Specific In Vitro and In Silico Studies. Bioengineering (Basel) 2023; 10:188. [PMID: 36829682 PMCID: PMC9952825 DOI: 10.3390/bioengineering10020188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In recent years, the treatment of aortic stenosis with TAVR has rapidly expanded to younger and lower-risk patients. However, persistent thrombotic events such as stroke and valve thrombosis expose recipients to severe clinical complications that hamper TAVR's rapid advance. We presented a novel methodology for establishing a link between commonly acceptable mild paravalvular leak (PVL) levels through the device and increased thrombogenic risk. It utilizes in vitro patient-specific TAVR 3D-printed replicas evaluated for hydrodynamic performance. High-resolution µCT scans are used to reconstruct in silico FSI models of these replicas, in which multiple platelet trajectories are studied through the PVL channels to quantify thrombogenicity, showing that those are highly dependent on patient-specific flow conditions within the PVL channels. It demonstrates that platelets have the potential to enter the PVL channels multiple times over successive cardiac cycles, increasing the thrombogenic risk. This cannot be reliably approximated by standard hemodynamic parameters. It highlights the shortcomings of subjectively ranked PVL commonly used in clinical practice by indicating an increased thrombogenic risk in patient cases otherwise classified as mild PVL. It reiterates the need for more rigorous clinical evaluation for properly diagnosing thrombogenic risk in TAVR patients.
Collapse
Affiliation(s)
- Brandon J. Kovarovic
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Oren M. Rotman
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Puja B. Parikh
- Division of Cardiovascular Medicine, Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Marvin J. Slepian
- Department of Medicine, Sarver Heart Center, University of Arizona, Tucson, AZ 85724, USA
- Department of Biomedical Engineering, College of Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Danny Bluestein
- Biofluids Research Group, Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
6
|
Xiong TY, Ali WB, Feng Y, Hayashida K, Jilaihawi H, Latib A, Lee MKY, Leon MB, Makkar RR, Modine T, Naber C, Peng Y, Piazza N, Reardon MJ, Redwood S, Seth A, Sondergaard L, Tay E, Tchetche D, Yin WH, Chen M, Prendergast B, Mylotte D. Transcatheter aortic valve implantation in patients with bicuspid valve morphology: a roadmap towards standardization. Nat Rev Cardiol 2023; 20:52-67. [PMID: 35726019 DOI: 10.1038/s41569-022-00734-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/26/2022] [Indexed: 02/08/2023]
Abstract
Indications for transcatheter aortic valve implantation (TAVI) have expanded in many countries to include patients with aortic stenosis who are at low surgical risk, and a similar expansion to this cohort is anticipated elsewhere in the world, together with an increase in the proportion of patients with bicuspid aortic valve (BAV) morphology as the age of the patients being treated decreases. To date, patients with BAV have been excluded from major randomized trials of TAVI owing to anatomical considerations. As a consequence, BAV has been a relative contraindication to the use of TAVI in international guidelines. Although clinical experience and observational data are accumulating, BAV presents numerous anatomical challenges for successful TAVI, despite advances in device design. Furthermore, in those with BAV, substantial geographical variation exists in patient characteristics, clinical approach and procedural strategy. Therefore, in this Roadmap article, we summarize the existing evidence and provide consensus recommendations from an international group of experts on the application of TAVI in patients with BAV in advance of the anticipated growth in the use of this procedure in this challenging cohort of patients.
Collapse
Affiliation(s)
- Tian-Yuan Xiong
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | | | - Yuan Feng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Kentaro Hayashida
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Azeem Latib
- Division of Cardiology, Montefiore Medical Center, New York, NY, USA
| | | | - Martin B Leon
- Columbia University Medical Center, New York, NY, USA
| | - Raj R Makkar
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Thomas Modine
- Department of Heart Valve Therapy, CHU Bordeaux, Bordeaux, France.,IHU Lyric, Bordeaux-, Pessac, France.,Shanghai Jiaotong University, Shanghai, China
| | - Christoph Naber
- Department of Cardiology, Klinikum Wilhelmshaven, Wilhelmshaven, Germany
| | - Yong Peng
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Nicolo Piazza
- Division of Cardiology, Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada
| | - Michael J Reardon
- Houston Methodist DeBakey Heart and Vascular Center, The Methodist Hospital, Houston, TX, USA
| | - Simon Redwood
- Department of Cardiology, St Thomas' Hospital, London, UK
| | - Ashok Seth
- Fortis Escorts Heart Institute, New Delhi, India
| | - Lars Sondergaard
- The Heart Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Edgar Tay
- National University Heart Center, National University of Singapore, Singapore, Singapore
| | - Didier Tchetche
- Department of Cardiology, Clinique Pasteur, Toulouse, France
| | - Wei-Hsian Yin
- Heart Center, ChengHsin General Hospital, Taipei, China
| | - Mao Chen
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China.
| | - Bernard Prendergast
- Department of Cardiology, St Thomas' Hospital, London, UK. .,Cleveland Clinic London, London, UK.
| | - Darren Mylotte
- Department of Cardiology, University Hospital Galway, National University of Ireland, Galway, Ireland.
| |
Collapse
|
7
|
Oks D, Samaniego C, Houzeaux G, Butakoff C, Vázquez M. Fluid-structure interaction analysis of eccentricity and leaflet rigidity on thrombosis biomarkers in bioprosthetic aortic valve replacements. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2022; 38:e3649. [PMID: 36106918 DOI: 10.1002/cnm.3649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 08/11/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
This work intends to study the effect of aortic annulus eccentricity and leaflet rigidity on the performance, thrombogenic risk and calcification risk in bioprosthetic aortic valve replacements (BAVRs). To address these questions, a two-way immersed fluid-structure interaction (FSI) computational model was implemented in a high-performance computing (HPC) multi-physics simulation software, and validated against a well-known FSI benchmark. The aortic valve bioprosthesis model is qualitatively contrasted against experimental data, showing good agreement in closed and open states. Regarding the performance of BAVRs, the model predicts that increasing eccentricities yield lower geometric orifice areas (GOAs) and higher normalized transvalvular pressure gradients (TPGs) for healthy cardiac outputs during systole, agreeing with in vitro experiments. Regions with peak values of residence time are observed to grow with eccentricity in the sinus of Valsalva, indicating an elevated risk of thrombus formation for eccentric configurations. In addition, the computational model is used to analyze the effect of varying leaflet rigidity on both performance, thrombogenic and calcification risks with applications to tissue-engineered prostheses. For more rigid leaflets it predicts an increase in systolic and diastolic TPGs, and decrease in systolic GOA, which translates to decreased valve performance. The peak shear rate and residence time regions increase with leaflet rigidity, but their volume-averaged values were not significantly affected. Peak solid stresses are also analyzed, and observed to increase with rigidity, elevating risk of valve calcification and structural failure. To the authors' knowledge this is the first computational FSI model to study the effect of eccentricity or leaflet rigidity on thrombogenic biomarkers, providing a novel tool to aid device manufacturers and clinical practitioners.
Collapse
Affiliation(s)
- David Oks
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Cristóbal Samaniego
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - Guillaume Houzeaux
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Mariano Vázquez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Center (BSC), Barcelona, Spain
- ELEM Biotech SL, Barcelona, Spain
| |
Collapse
|
8
|
Bak M, Park SJ, Choi K, Kim J, Park TK, Kim EK, Kim SM, Choi SH. Risk factors and clinical effects of subclinical leaflet thrombosis after transcatheter aortic valve replacement. Front Cardiovasc Med 2022; 9:1001753. [DOI: 10.3389/fcvm.2022.1001753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
AimsThe number of trans-catheter aortic valve replacement (TAVR) procedure is increasing; However, the incidence of leaflet thrombosis is higher in TAVR than in surgical aortic valve replacement (SAVR). In this study, the risk factors for leaflet thrombosis after TAVR and its effects on hemodynamics and clinical course were investigated.Methods and resultsMultidetector computed tomography (MDCT) was performed at 1year after TAVR in 94 patients from January 2015 to October 2020 at Samsung Medical Center in South Korea. Among the 94 patients, subclinical leaflet thrombosis occurred in 20 patients, and risk factors were analyzed. In addition, the difference in aortic valve (AV) hemodynamics between the two groups was examined and clinical outcomes compared. Indexed mean sinus of Valsalva (SOV) diameter, AV calcium volume, and post-procedure effective orifice area (EOA) were predictive of subclinical leaflet thrombosis with the area under the curve (AUC) value of 0.670 (P-value = 0.020), 0.695 (P-value = 0.013), and 0.665 (P-value = 0.031), respectively. In echocardiography performed at the time of follow-up CT, the value of AV max velocity and AV mean pressure gradient were higher in the thrombosis group and the EOA and Doppler velocity index values were lower in the thrombosis group than in the no thrombosis group. Clinical outcome was not significantly different between the two groups (log-rank P-value = 0.26).ConclusionLarger indexed SOV diameter, higher AV calcium volume, and smaller post-procedure AV EOA were risk factors for subclinical leaflet thrombosis after TAVR. Subclinical leaflet thrombosis has a benign course when properly managed.
Collapse
|
9
|
Ueyama H, Block PC. Left ventricular outflow tract calcification: Does the geometry matter? Catheter Cardiovasc Interv 2022; 100:413-414. [PMID: 36084186 DOI: 10.1002/ccd.30373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Hiroki Ueyama
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Peter C Block
- Division of Cardiology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Fukui M, Bapat VN, Garcia S, Dworak MW, Hashimoto G, Sato H, Gössl M, Enriquez-Sarano M, Lesser JR, Cavalcante JL, Sorajja P. Deformation of Transcatheter Aortic Valve Prostheses: Implications for Hypoattenuating Leaflet Thickening and Clinical Outcomes. Circulation 2022; 146:480-493. [PMID: 35862182 DOI: 10.1161/circulationaha.121.058339] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although transcatheter aortic valve replacement (TAVR) therapy continues to grow, there have been concerns about the occurrence of hypoattenuating leaflet thickening (HALT), which may affect prosthesis function or durability. This study aimed to examine prosthesis frame factors and correlate their extent to the frequency of HALT and clinical outcomes. METHODS We prospectively examined 565 patients with cardiac computed tomography screening for HALT at 30 days after balloon-expandable SAPIEN3 and self-expanding EVOLUT TAVR. Deformation of the TAVR prostheses, asymmetric prosthesis leaflet expansion, prosthesis sinus volumes, and commissural alignment were analyzed on the postprocedural computed tomography. For descriptive purposes, an index of prosthesis deformation was calculated, with values >1.00 representing relative midsegment underexpansion. A time-to-event model was performed to evaluate the association of HALT with the clinical outcome. RESULTS Overall, HALT was present in 21% of SAPIEN3 patients and in 16% of EVOLUT patients at 30 days after TAVR. The occurrence of HALT was directly associated with greater prosthesis frame deformation (P<0.001), worse asymmetry of the leaflets (P<0.001), and smaller TAVR neosinus volumes (P<0.001). These relations were present in both prosthetic types and in all of their size ranges (all P<0.05). In multivariable analyses that include clinical variables previously associated with HALT (eg, anticoagulant therapy), variables of TAVR prosthesis deformation remained predictive of HALT. Although HALT was not associated with changes in prosthetic hemodynamics, its presence was associated with the risk of mortality at 1 year, with respect to greater incidences of all-cause mortality (hazard ratio, 2.98 [95% CI, 1.57-5.63]; P=0.001), cardiac death (hazard ratio, 4.58 [95% CI, 1.81-11.6]; P=0.001), and a composite outcome of all-cause mortality and heart failure hospitalization (hazard ratio, 1.94 [95% CI, 1.14-3.30]; P=0.02) with adjustment for age, sex, and comorbidities. CONCLUSIONS Nonuniform expansion of TAVR prostheses resulting in frame deformation, asymmetric leaflet, and smaller neosinus volume is related to occurrence of HALT in patients who undergo TAVR. These data may have implications for both prosthesis valve design and deployment techniques to improve clinical outcomes for these patients.
Collapse
Affiliation(s)
- Miho Fukui
- Cardiovascular Imaging Research Center and Core Laboratory (M.F., G.H., J.L.C.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - Vinayak N Bapat
- Valve Science Center (V.N.B., S.G., M.W.D., H.S., M.G., M.E.-S., J.R.L., P.S.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - Santiago Garcia
- Valve Science Center (V.N.B., S.G., M.W.D., H.S., M.G., M.E.-S., J.R.L., P.S.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - Marshall W Dworak
- Valve Science Center (V.N.B., S.G., M.W.D., H.S., M.G., M.E.-S., J.R.L., P.S.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - Go Hashimoto
- Cardiovascular Imaging Research Center and Core Laboratory (M.F., G.H., J.L.C.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - Hirotomo Sato
- Valve Science Center (V.N.B., S.G., M.W.D., H.S., M.G., M.E.-S., J.R.L., P.S.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - Mario Gössl
- Valve Science Center (V.N.B., S.G., M.W.D., H.S., M.G., M.E.-S., J.R.L., P.S.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - Maurice Enriquez-Sarano
- Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - John R Lesser
- Valve Science Center (V.N.B., S.G., M.W.D., H.S., M.G., M.E.-S., J.R.L., P.S.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - João L Cavalcante
- Cardiovascular Imaging Research Center and Core Laboratory (M.F., G.H., J.L.C.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| | - Paul Sorajja
- Valve Science Center (V.N.B., S.G., M.W.D., H.S., M.G., M.E.-S., J.R.L., P.S.), Minneapolis Heart Institute Foundation, MN.,Minneapolis Heart Institute at Abbott Northwestern Hospital, MN (M.F., V.N.B., S.G., M.W.D., G.H., H.S., M.G., M.E.-S., J.R.L., J.L.C., P.S.)
| |
Collapse
|
11
|
Computed tomography predictors of structural valve degeneration in patients undergoing transcatheter aortic valve implantation with balloon-expandable prostheses. Eur Radiol 2022; 32:6017-6027. [PMID: 35364711 DOI: 10.1007/s00330-022-08747-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/09/2022] [Accepted: 03/14/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Computed tomography (CT) provides excellent anatomy assessment of the aortic annulus (AoA) and is utilized for pre-procedural planning of transcatheter aortic valve implantation (TAVI). We sought to investigate if geometrical characteristics of the AoA determined by CT may represent predictors of structural valve degeneration (SVD) in patients undergoing TAVI with balloon-expandable valves. METHODS This is a retrospective study on 124 consecutive patients (mean age: 79 ± 7 years; female: 61%) undergoing balloon-expandable TAVI prospectively enrolled in a registry. AoA maximum diameter (Dmax), minimum diameter (Dmin), and area were assessed using pre-procedural CT. SVD was identified during follow-up with transthoracic echocardiography documenting structural prosthetic valve abnormalities with or without hemodynamic changes. RESULTS The mean follow-up was 5.9 ± 1.7 years. SVD was found in 48 out of 124 patients (38%). AoA Dmax, Dmin, and area were significantly smaller in patients with SVD compared to patients without SVD (25.6 ± 2.2 mm vs. 27.1 ± 2.8 mm, p = 0.012; 20.5 ± 2.1 mm vs. 21.8 ± 2.1 mm, p = 0.001 and 419 ± 77 mm2 vs. 467 ± 88 mm2, p = 0.002, respectively). At univariable analysis, female sex, BSA, 23-mm prosthetic valve size, Dmax < 27.1 mm, and a Dmin < 19.9 mm were associated with SVD, whereas at multivariable analysis, only Dmin < 19.9 mm (OR = 2.873, 95% CI: 1.191-6.929, p = 0.019) and female sex (OR = 2.659, 95% CI: 1.095-6.458, p = 0.031) were independent predictors of SVD. CONCLUSIONS Female sex and AoA Dmin < 19.9 mm are associated with SVD in patients undergoing TAVI with balloon-expandable valves. When implanting large prostheses in order to avoid paraprosthetic regurgitation, caution should be observed due to the risk of excessive stretching of the AoA Dmin, which may play a role in SVD. KEY POINTS • Long-term durability is a concern for transcatheter aortic valve bioprosthesis. • CT provides an excellent assessment of the aortic annulus's geometrical characteristics for prosthesis sizing before transcatheter aortic valve implantation (TAVI). • Female sex and a small minimum aortic annulus diameter measured with CT are independent predictors of structural valve degeneration in patients undergoing TAVI with balloon-expandable valves.
Collapse
|
12
|
Wilde N, Rogmann M, Mauri V, Piayda K, Schmitz MT, Al-Kassou B, Shamekhi J, Maier O, Sugiura A, Weber M, Zimmer S, Zeus T, Kelm M, Adam M, Baldus S, Nickenig G, Veulemans V, Sedaghat A. Haemodynamic differences between two generations of a balloon-expandable transcatheter heart valve. Heart 2022; 108:1479-1485. [PMID: 35039329 DOI: 10.1136/heartjnl-2021-320084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/07/2021] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES This study aimed to investigate early haemodynamic and clinical performance of the SAPIEN 3 Ultra (S3 Ultra) transcatheter heart valve (THV) system in comparison to its precursor, the SAPIEN 3 (S3). Previous studies have indicated potential haemodynamic differences between the S3 Ultra and S3. Such differences may impact clinical outcome after transcatheter aortic valve implantation (TAVI). METHODS Postprocedural haemodynamic performance and 30-day clinical outcome were compared in patients who underwent TAVI receiving either the S3 or the new S3 Ultra prostheses. Multivariable analysis and propensity score matching (PSM) were used to identify factors associated with higher mean transvalvular gradients. RESULTS We included 697 patients (S3 Ultra: n=314, S3: n=383) from the multicentre RhineHeart TAVI Registry. Patients receiving the S3 Ultra prosthesis showed significantly higher postprocedural mean transvalvular gradients (14.2±4.8 vs 10.2±4.4 mm Hg; p<0.01). Multivariable logistic regression analyses and additional PSM revealed the use of the S3 Ultra to be associated with higher postprocedural mean transvalvular gradients (p<0.01). 30-day clinical outcomes, such as mortality, myocardial infarction, permanent pacemaker implantation and vascular complications were comparable between the groups. CONCLUSIONS The new S3 Ultra THV was associated with a higher postprocedural mean transvalvular gradient compared with the S3 system, while there was no difference in mortality or adverse clinical outcomes at 30 days. These echocardiographic differences will require long-term studies to assess the clinical relevance of this finding.
Collapse
Affiliation(s)
- Nihal Wilde
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Marc Rogmann
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Victor Mauri
- Heart Centre Cologne, Department of Cardiology, University Hospital Cologne, Cologne, Germany
| | - Kerstin Piayda
- Department of Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marie-Therese Schmitz
- Department of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | - Baravan Al-Kassou
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Jasmin Shamekhi
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Oliver Maier
- Department of Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Atsushi Sugiura
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Marcel Weber
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Sebastian Zimmer
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Tobias Zeus
- Department of Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matti Adam
- Heart Centre Cologne, Department of Cardiology, University Hospital Cologne, Cologne, Germany
| | - Stephan Baldus
- Heart Centre Cologne, Department of Cardiology, University Hospital Cologne, Cologne, Germany
| | - Georg Nickenig
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| | - Verena Veulemans
- Department of Cardiology, Pulmonology, and Angiology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Alexander Sedaghat
- Heart Centre Bonn, Department of Medicine II, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
13
|
Serruys P, Kawashima H, Chang C, Modolo R, Wang R, de Winter R, Van Hauwermeiren H, El-Kurdi M, van den Bergh W, Cox M, Onuma Y, Flameng W, Soliman O. Chronic haemodynamic performance of a biorestorative transcatheter heart valve in an ovine model. EUROINTERVENTION 2021; 17:e1009-e1018. [PMID: 34278989 PMCID: PMC9725010 DOI: 10.4244/eij-d-21-00386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The Xeltis biorestorative transcatheter heart valve (BTHV) leaflets are made from an electrospun bioabsorbable supramolecular polycarbonate-urethane and are mounted on a self-expanding nitinol frame. The acute haemodynamic performance of this BTHV was favourable. AIMS We sought to demonstrate the preclinical feasibility of a novel BTHV by evaluating the haemodynamic performances of five pilot valve designs up to 12 months in a chronic ovine model. METHODS Five design iterations (A, B, B', C, and D) of the BTHV were transapically implanted in 46 sheep; chronic data were available in 39 animals. Assessments were performed at implantation, 3, 6, and 12 months including quantitative aortography, echocardiography, and histology. RESULTS At 12 months, greater than or equal to moderate AR on echocardiography was seen in 0%, 100%, 33.3%, 100%, and 0% in the iterations A, B, B', C, and D, respectively. Furthermore, transprosthetic mean gradients on echocardiography were 10.0±2.8 mmHg, 19.0±1.0 mmHg, 8.0±1.7 mmHg, 26.8±2.4 mmHg, and 11.2±4.1 mmHg, and effective orifice area was 0.7±0.3 cm2, 1.1±0.3 cm2, 1.5±1.0 cm2, 1.5±0.6 cm2, and 1.0±0.4 cm2 in the iterations A, B, B', C, and D, respectively. On pathological evaluation, the iteration D demonstrated generally intact leaflets and advanced tissue coverage, while different degrees of structural deterioration were observed in the other design iterations. CONCLUSIONS Several leaflet material iterations were compared for the potential to demonstrate endogenous tissue restoration in an aortic valve in vivo. The most promising iteration showed intact leaflets and acceptable haemodynamic performance at 12 months, illustrating the potential of the BTHV.
Collapse
Affiliation(s)
- Patrick Serruys
- Department of Cardiology, National University of Ireland Galway (NUIG) and CORRIB Corelab and Centre for Research and Imaging, University Road, Galway, H91 TK33, Ireland. E-mail:
| | - Hideyuki Kawashima
- Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Chun Chang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, National Yang Ming University, Taipei, Taiwan
| | - Rodrigo Modolo
- Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands,Department of Internal Medicine, Cardiology Division, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rutao Wang
- Department of Cardiology, National University of Ireland, Galway (NUIG) and CORRIB Corelab and Center for Research and Imaging, Galway, Ireland,Department of Cardiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Robbert de Winter
- Department of Cardiology, Academic Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | - Yoshinobu Onuma
- Department of Cardiology, National University of Ireland, Galway (NUIG) and CORRIB Corelab and Center for Research and Imaging, Galway, Ireland
| | - William Flameng
- Department of Cardiac Surgery, Katholieke Universiteit (K.U) Leuven, Leuven, Belgium
| | - Osama Soliman
- Department of Cardiology, National University of Ireland, Galway (NUIG) and CORRIB Corelab and Center for Research and Imaging, Galway, Ireland,CÚRAM, the SFI Research Centre for Medical Devices, Galway, Ireland
| |
Collapse
|
14
|
Poschner T, Werner P, Kocher A, Laufer G, Musumeci F, Andreas M, Russo M. The JenaValve pericardial transcatheter aortic valve replacement system to treat aortic valve disease. Future Cardiol 2021; 18:101-113. [PMID: 34647465 DOI: 10.2217/fca-2021-0065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Transcatheter aortic valve replacement is a valuable alternative technique to surgery and the spectrum of therapy continues to evolve. The JenaValve Pericaridal transcatheter aortic valve replacement System allows prosthesis fixation in a native, noncalcified aortic annulus with a unique paper clip-like anchorage mechanism. The low rate of paravalvular leakage and permanent pacemaker implantation emphasizes the further widespread use of the JenaValve - despite the limited data available. In May 2021, a CE mark for the transfemoral implantation in both aortic regurgitation and aortic stenosis was granted. However, no data have been published so far. The ongoing ALIGN trials are expected to provide the pending long-term data.
Collapse
Affiliation(s)
- Thomas Poschner
- Department of Cardiac Surgery, Medical University Vienna, Vienna, Austria
| | - Paul Werner
- Department of Cardiac Surgery, Medical University Vienna, Vienna, Austria
| | - Alfred Kocher
- Department of Cardiac Surgery, Medical University Vienna, Vienna, Austria
| | - Guenther Laufer
- Department of Cardiac Surgery, Medical University Vienna, Vienna, Austria
| | - Francesco Musumeci
- Department of Cardiac Surgery & Heart Transplantation, San Camillo Forlanini Hospital of Rome, Rome, Italy
| | - Martin Andreas
- Department of Cardiac Surgery, Medical University Vienna, Vienna, Austria
| | - Marco Russo
- Department of Cardiac Surgery, Medical University Vienna, Vienna, Austria.,Department of Cardiac Surgery & Heart Transplantation, San Camillo Forlanini Hospital of Rome, Rome, Italy
| |
Collapse
|
15
|
Rahman F, Resar JR. TAVI Beyond 3 Years: Durability and Predictors for Survival. INNOVATIONS-TECHNOLOGY AND TECHNIQUES IN CARDIOTHORACIC AND VASCULAR SURGERY 2021; 16:417-425. [PMID: 34182824 DOI: 10.1177/15569845211017558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of transcatheter aortic valve implantation (TAVI) has greatly increased over the past 2 decades and now has overtaken surgical aortic valve replacement. We have limited data regarding the long-term durability of TAVI and the predictors of survival. Calcification, inflammation, fibrous tissue deposition, and mechanical stress are important in the structural deterioration of surgical bioprosthetic valves and likely contribute to TAVI durability. However, TAVI has several differences to surgical valve replacement such as valve preparation, valve to native anatomy interaction, and valve sizing which all likely contribute to durability and long-term survival. Most procedures have been performed on older patients and therefore long-term follow-up studies have noted mortality of approximately 50% at 5 years and 75% by 7 years. Current data are limited by the high mortality of patients who have received TAVI often as a result of age, frailty, and other competing comorbidities. TAVI as compared with surgical valve replacement is associated with several differences including higher conduction abnormalities (i.e., need for pacemakers) and paravalvular leak, both of which may affect long-term morbidity and mortality. In this review, we discuss the current status of our knowledge and identify areas that require further investigation.
Collapse
Affiliation(s)
- Faisal Rahman
- 1501 Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jon R Resar
- 1501 Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Clinical predictors and sequelae of computed tomography defined leaflet thrombosis following transcatheter aortic valve replacement at medium-term follow-up. Heart Vessels 2021; 36:1374-1383. [PMID: 33660057 DOI: 10.1007/s00380-021-01803-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 02/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The clinical predictors and sequelae of leaflet thrombosis (LT) following transcatheter aortic valve replacement (TAVR) is still unclear. Therefore, our aim was to determine the clinical predictors and sequelae at mid-term follow-up of computed tomography (CT)-defined LT following TAVR. METHODS AND RESULTS We performed a prospective evaluation with a 320-multislice CT following TAVR for the presence of LT, defined as hypo-attenuated leaflet thickening (HALT). Four-dimensional CT image-rendering was performed to determine the presence of reduced leaflet motion (RELM). 172 patients [89 (51.7%) male, mean age 82.8 ± 5.7 years] treated with commercially available TAVR device (Lotus 54%, CoreValve 32% and Sapien 3 14%) were included, with median CT-scan at 6.0 weeks post-TAVR. Prevalence of HALT was 14.0% (24 cases) and RELM was 9.8% (17 cases). On multivariate analysis, patients with HALT were less prescribed oral anticoagulation (OAC) (OR 9.9), received larger TAVR prostheses (OR 5.7) and higher rates of moderate-severe para-valvular regurgitation (PVR) (OR 16.3). There was no difference in clinical outcomes at a median follow-up of 2.3 years. Patients with RELM had significantly higher transvalvular gradients after discharge when compared to those without RELM. CONCLUSIONS Absence of OAC, large TAVR prostheses and moderate-severe PVR were predictors for LT. Transvalvular gradients were higher in patients that developed RELM but not HALT. Further studies are warranted to determine the long-term impact of LT on TAVR durability. Prevalence of different sub-types of CT-defined LT (HALT and RELM) and the clinical predictors of developing LT following TAVR. CT computed tomography, HALT hypo-attenuated leaflet thickening, LT leaflet thrombosis, RELM reduced leaflet motion, TAVR transcatheter aortic valve replacement.
Collapse
|
17
|
Ferreira-Neto AN, Rodriguez-Gabella T, Guimaraes L, Freitas-Ferraz A, Bernier M, Figueiredo Guimaraes C, Pasian S, Paradis JM, Delarochellière R, Dumont E, Mohammadi S, Kalavrouziotis D, Côté M, Pibarot P, Rodés-Cabau J. Multimodality evaluation of transcatheter structural valve degeneration at long-term follow-up. ACTA ACUST UNITED AC 2021; 74:247-256. [DOI: 10.1016/j.rec.2020.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/20/2020] [Indexed: 11/24/2022]
|
18
|
Ferreira-Neto AN, Rodriguez-Gabella T, Guimaraes L, Freitas-Ferraz A, Bernier M, Figueiredo Guimaraes C, Pasian S, Paradis JM, Delarochellière R, Dumont E, Mohammadi S, Kalavrouziotis D, Côté M, Pibarot P, Rodés-Cabau J. Evaluación multimodal de la degeneración estructural de válvulas percutáneas en el seguimiento a largo plazo. Rev Esp Cardiol 2021. [DOI: 10.1016/j.recesp.2020.01.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
The Impact of Aortic Valvular Calcium on Transcatheter Heart Valve Distortion. J Interv Cardiol 2021; 2021:8829906. [PMID: 33500684 PMCID: PMC7803404 DOI: 10.1155/2021/8829906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 12/01/2022] Open
Abstract
Objectives To investigate the relationship between the eccentric calcification of aortic valve and transcatheter heart valve (THV) distortion and the impact of THV distortion on echo parameters and clinical outcomes. Background The effects of eccentric calcification of the aortic valve on the THV distortion and the relationship between THV distortion and clinical impact were not fully understood. Methods Patients with symptomatic severe aortic stenosis who were undergoing THV implantation were enrolled. Patients underwent preprocedural, postprocedural multislice computed tomography (MSCT), and follow-up transthoracic echocardiogram (TTE). Delta calcium score (ΔCS) is defined as the difference between the maximum and minimal calcium scores of the three cusps, while valve distortion score (VDS) is defined as the difference between the longest and shortest stent frame, as obtained using MSCT. Patients were divided into two groups according to ΔCS: “noneccentric calcification group” and “eccentric calcification group.” Results A total of 118 patients were enrolled (59 patients in noneccentric and 59 in eccentric calcification groups). VDS was significantly lower in the noneccentric calcification group than in the eccentric calcification group (1.31 ± 0.82 mm vs. 1.73 ± 0.76 mm, p=0.004). VDS was not associated with the degree of paravalvular leak (PVL) and aortic valvular mean pressure gradient (AVPG) at 30-day and 1-year follow-up TTE and the cumulative rates of all-cause death and rehospitalization at 2-year clinical follow-up. Conclusions Eccentric valvular calcification was associated with longitudinal THV distortion. However, THV distortion was not associated with PVL, AVPG, and adverse clinical events during midterm follow-up.
Collapse
|
20
|
Whelan A, Williams E, Nolan DR, Murphy B, Gunning PS, O'Reilly D, Lally C. Bovine Pericardium of High Fibre Dispersion Has High Fatigue Life and Increased Collagen Content; Potentially an Untapped Source of Heart Valve Leaflet Tissue. Ann Biomed Eng 2020; 49:1022-1032. [PMID: 33063231 DOI: 10.1007/s10439-020-02644-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Bioprosthetic heart valves (BHVs) are implanted in aortic valve stenosis patients to replace the native, dysfunctional valve. Yet, the long-term performance of the glutaraldehyde-fixed bovine pericardium (GLBP) leaflets is known to reduce device durability. The aim of this study was to investigate a type of commercial-grade GLBP which has been over-looked in the literature to date; that of high collagen fibre dispersion (HD). Under uniaxial cyclic loading conditions, it was observed that the fatigue behaviour of HD GLBP was substantially equivalent to GLBP in which the fibres are highly aligned along the loading direction. It was also found that HD GLBP had a statistically significant 9.5% higher collagen content when compared to GLBP with highly aligned collagen fibres. The variability in diseased BHV delivery sites results in unpredictable and complex loading patterns across leaflets in vivo. This study presents the possibility of a shift from the traditional choice of circumferentially aligned GLBP leaflets, to that of high fibre dispersion arrangements. Characterised by its high fatigue life and increased collagen content, in addition to multiple fibre orientations, GLBP of high fibre dispersion may provide better patient outcomes under the multi-directional loading to which BHV leaflets are subjected in vivo.
Collapse
Affiliation(s)
- Alix Whelan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Structural Heart Division, Boston Scientific Corporation, Galway, Ireland
| | - Elizabeth Williams
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - David R Nolan
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Bruce Murphy
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland.,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland
| | - Paul S Gunning
- Structural Heart Division, Boston Scientific Corporation, Los Gatos, CA, 95032, USA
| | - David O'Reilly
- Structural Heart Division, Boston Scientific Corporation, Galway, Ireland
| | - Caitríona Lally
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland. .,Department of Mechanical, Manufacturing & Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland. .,Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
21
|
Hatoum H, Gooden S, Heitkemper M, Blum KM, Zakko J, Bocks M, Yi T, Wu YL, Wang Y, Breuer CK, Dasi LP. Fetal Transcatheter Trileaflet Heart Valve Hemodynamics: Implications of Scaling on Valve Mechanics and Turbulence. Ann Biomed Eng 2020; 48:1683-1693. [PMID: 32052320 PMCID: PMC7286783 DOI: 10.1007/s10439-020-02475-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 02/05/2020] [Indexed: 01/09/2023]
Abstract
The scarcity of data available on the best approach for pulmonary fetal valve replacement or implantation necessitate an investigation on whether practices using adult transcatheter valves could be translated to fetal applications. The objective of this study is to evaluate the hemodynamic characteristics and the turbulent properties of a fetal sized trileaflet transcatheter pulmonary valve in comparison with an adult balloon-expandable valve in order to assess the possibility of designing valves for fetal applications using dynamic similarity. A 6 mm fetal trileaflet valve and a 26 mm SAPIEN 3 valve were assessed in a pulse duplicator. Particle image velocimetry was performed. Pressure gradient (ΔP), effective orifice area (EOA), regurgitant fractions (RF), pinwheeling indices (PI) and turbulent stresses were evaluated. ΔP was 8.56 ± 0.139 and 7.76 ± 0.083 mmHg with fetal valve and SAPIEN respectively (p < 0.0001); EOA was 0.10 ± 0.0007 and 2.1 ± 0.025 cm2 with fetal valve and SAPIEN respectively (p < 0.0001); RF with the fetal valve was 2.35 ± 1.99% and with SAPIEN 10.92 ± 0.11% (p < 0.0001); PI with fetal valve was 0.404 ± 0.01 and with SAPIEN 0.37 ± 0.07; The flow regime with the fetal valve was turbulent and Reynolds numbers reached about 7000 while those with the SAPIEN reached about 20,000 at peak velocity. Turbulent stresses were significantly higher with fetal valve compared with SAPIEN. Instantaneous viscous shear stresses with fetal valve were 5.8 times higher than those obtained with SAPIEN and Reynolds shear stresses were 2.5 times higher during peak systole. The fetal valve implantation leads to a turbulent flow (specific to this particular type and design of valve) regime unlike what is expected of a small valve with different flow properties compared to adult valves.
Collapse
Affiliation(s)
- Hoda Hatoum
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle NW, Atlanta, GA, 30313, USA
| | - Shelley Gooden
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle NW, Atlanta, GA, 30313, USA
| | - Megan Heitkemper
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kevin M Blum
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Jason Zakko
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Martin Bocks
- Case Western Reserve University School of Medicine, UH Rainbow Babies & Children's Hospital, Cleveland, OH, USA
| | - Tai Yi
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Yen-Lin Wu
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Yadong Wang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Christopher K Breuer
- Center for Regenerative Medicine, Tissue Engineering Program, The Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Lakshmi Prasad Dasi
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 387 Technology Circle NW, Atlanta, GA, 30313, USA.
| |
Collapse
|
22
|
Nappi F, Nenna A, Sing SSA, Timofeeva I, Mihos C, Gentile F, Chello M. Are the dynamic changes of the aortic root determinant for thrombosis or leaflet degeneration after transcatheter aortic valve replacement? J Thorac Dis 2020; 12:2919-2925. [PMID: 32642204 PMCID: PMC7330384 DOI: 10.21037/jtd.2020.02.01] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of the aortic root is to convert the accumulated elastic energy during systole into kinetic flow energy during diastole, in order to improve blood distribution in the coronary tree. Therefore, the sinuses of Valsalva of the aortic root are not predisposed to accept any bulky material, especially in case of uncrushed solid calcific agglomerates. This concept underlines the differences between surgical aortic valve replacement, in which decalcification is a main part of the procedure, and transcatheter aortic valve replacement (TAVR). Cyclic changes in shape and size of the aortic root influence blood flow in the Valsalva sinuses. Recent papers have been investigating the dynamic changes of the aortic root and whether those differences might be correlated with clinical effects, and this paper aims to summarize part of this flourishing literature. Post-TAVR aortic root remodeling, dynamic flow and TAVR complications might have a fluidodynamic background, and clinically observed side effects such as thrombosis or leaflet degeneration should be further investigated in basic researches. Also, aortic root changes could impact valve type and size selection, affecting the decision of over-sizing or under-sizing in order to prevent valve embolization or coronary ostia obstruction.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Sanjeet Singh Avvtar Sing
- Department of Cardiac Surgery, Golden Jubilee National Hospital, Glasgow, UK.,Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Irina Timofeeva
- Department of Imaging, Centre Cardiologique du Nord de Saint-Denis, Paris, France
| | - Christos Mihos
- Echocardiography Lab, Columbia University Division of Cardiology, Mount Sinai Heart Institute, Miami, USA
| | | | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
23
|
Hatoum H, Girault E, Heim F, Dasi LP. In-vitro characterization of self-expandable textile transcatheter aortic valves. J Mech Behav Biomed Mater 2020; 103:103559. [PMID: 31786509 PMCID: PMC11107174 DOI: 10.1016/j.jmbbm.2019.103559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/10/2019] [Accepted: 11/25/2019] [Indexed: 12/29/2022]
Abstract
OBJECTIVE This study aims at assessing the global dynamic behavior, closing energy and turbulence characteristics of self-expandable textile (inclined and straight yarn) transcatheter aortic valves (TAV) versus bioprosthetic TAVs. METHODS Two self-expandable textile TAVs one with inclined yarn textile and another with straight yarn textile leaflets were assessed in a pulse duplicator and compared with a self-expandable commercial bioprosthetic TAV under physiological pressure and flow. Particle Image Velocimetry and high-speed imaging were performed. Effective orifice areas (EOA), leakage fractions (LF), Pinwheeling indices (PI), closing energy (E), viscous shear stresses (VSS) and Reynolds shear stresses (RSS) were calculated. RESULTS (a) EOAs and LFs were 2.27 ± 0.03 cm2, 31.7 ± 0.6%; 2.25 ± 0.08 cm2, 26.6 ± 0.7%; and 1.63 ± 0.01 cm2, 29.1 ± 1.25% for inclined textile, bioprosthetic and straight textile TAV respectively (p < 0.0001). (b) Following same order, PIs were significantly different going from 1.16 ± 0.21%, 8.48 ± 0.8% and 8.865 ± 0.58% with the exception of CoreValve and straight yarn valve (p = 0.37); (c) E is lowest for straight textile TAV (0.0024 ± 0.0017 J), followed by bioprosthetic valve (0.00259 ± 0.0011 J) and then 45° Oriented Yarn Valve (0.00334 ± 0.03 J) (d) At peak systole, the highest RSS distribution was with the Straight textile TAV reaching up to 330Pa. The bioprosthetic TAV shows the smallest range with RSS reaching around 230Pa and the inclined textile TAV up to 280Pa. VSS limits were comparable among the 3 valves ranging between 5.2Pa and 5.7Pa. CONCLUSION Hemodynamic similarities were found between the textile self-expandable valves and the bioprosthetic valve. This study constitutes another step towards showing the potential that textile valves have to become an alternative for the biological ones.
Collapse
Affiliation(s)
- Hoda Hatoum
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States
| | - Elise Girault
- Laboratoire de Physique et Mécanique Textiles, Université de Haute Alsace, Mulhouse, France
| | - Frederic Heim
- Laboratoire de Physique et Mécanique Textiles, Université de Haute Alsace, Mulhouse, France
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
24
|
Jafar R, Labrosse MR, Weaver JD, Retta SM, Wu C, Duraiswamy N. A Computational Study on Deformed Bioprosthetic Valve Geometries: Clinically Relevant Valve Performance Metrics. J Biomech Eng 2020; 142:011003. [PMID: 31314893 PMCID: PMC10464846 DOI: 10.1115/1.4044235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Indexed: 11/08/2022]
Abstract
Transcatheter aortic valves (TAV) are symmetrically designed, but they are often not deployed inside cylindrical conduits with circular cross-sectional areas. Many TAV patients have heavily calcified aortic valves, which often result in deformed prosthesis geometries after deployment. We investigated the effects of deformed valve annulus configurations on a surgical bioprosthetic valve as a model for TAV. We studied valve leaflet motions, stresses and strains, and analog hydrodynamic measures (using geometric methods), via finite element (FE) modeling. Two categories of annular deformations were created to approximate clinical observations: (1) noncircular annulus with valve area conserved, and (2) under-expansion (reduced area) compared to circular annulus. We found that under-expansion had more impact on increasing stenosis (with geometric orifice area metrics) than noncircularity, and that noncircularity had more impact on increasing regurgitation (with regurgitation orifice area metrics) than under-expansion. We found durability predictors (stress/strain) to be the highest in the commissure regions of noncircular configurations such as EllipMajor (noncircular and under-expansion areas). Other clinically relevant performance aspects such as leaflet kinematics and coaptation were also investigated with the noncircular configurations. This study provides a framework for choosing the most challenging TAV deformations for acute and long-term valve performance in the design and testing phase of device development.
Collapse
Affiliation(s)
- Reza Jafar
- Cardiovascular Mechanics Laboratory, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Michel R Labrosse
- Cardiovascular Mechanics Laboratory, Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Jason D Weaver
- Division of Applied Mechanics (DAM), Office of Science and Engineering Laboratories (OSEL), Center for Devices and Radiological Health (CDRH), Food and Drug Administration (FDA), Silver Spring, MD 20993
| | - Stephen M Retta
- Office of Product Evaluation and Quality (OPEQ), Center for Devices and Radiological Health (CDRH), Food and Drug Administration (FDA), Silver Spring, MD 20993
| | - Changfu Wu
- Office of Product Evaluation and Quality (OPEQ), Center for Devices and Radiological Health (CDRH), Food and Drug Administration (FDA), Silver Spring, MD 20993
| | - Nandini Duraiswamy
- Division of Applied Mechanics (DAM), Office of Science and Engineering Laboratories (OSEL), Center for Devices and Radiological Health (CDRH), Food and Drug Administration (FDA), 10903 New Hampshire Avenue, WO62, #2206, Silver Spring, MD 20993
| |
Collapse
|
25
|
Sathananthan J, Sellers S, Barlow AM, Stanová V, Fraser R, Toggweiler S, Allen KB, Chhatriwalla A, Murdoch DJ, Hensey M, Lau K, Alkhodair A, Dvir D, Asgar AW, Cheung A, Blanke P, Ye J, Rieu R, Pibarot P, Wood D, Leipsic J, Webb JG. Valve-in-Valve Transcatheter Aortic Valve Replacement and Bioprosthetic Valve Fracture Comparing Different Transcatheter Heart Valve Designs: An Ex Vivo Bench Study. JACC Cardiovasc Interv 2019; 12:65-75. [PMID: 30621980 DOI: 10.1016/j.jcin.2018.10.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/04/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The authors assessed the effect of valve-in-valve (VIV) transcatheter aortic valve replacement (TAVR) followed by bioprosthetic valve fracture (BVF), testing different transcatheter heart valve (THV) designs in an ex vivo bench study. BACKGROUND Bioprosthetic valve fracture can be performed to improve residual transvalvular gradients following VIV TAVR. METHODS The authors evaluated VIV TAVR and BVF with the SAPIEN 3 (S3) (Edwards Lifesciences, Irvine, California) and ACURATE neo (Boston Scientific Corporation, Natick, Massachusetts) THVs. A 20-mm and 23-mm S3 were deployed in a 19-mm and 21-mm Mitroflow (Sorin Group USA, Arvada, Colorado), respectively. A small ACURATE neo was deployed in both sizes of Mitroflow tested. VIV TAVR samples underwent multimodality imaging, and hydrodynamic evaluation before and after BVF. RESULTS A high implantation was required to enable full expansion of the upper crown of the ACURATE neo and allow optimal leaflet function. Marked underexpansion of the lower crown of the THV within the surgical valve was also observed. Before BVF, VIV TAVR in the 19-mm Mitroflow had high transvalvular gradients using either THV design (22.0 mm Hg S3, and 19.1 mm Hg ACURATE neo). After BVF, gradients improved and were similar for both THVs (14.2 mm Hg S3, and 13.8 mm Hg ACURATE neo). The effective orifice area increased with BVF from 1.2 to 1.6 cm2 with the S3 and from 1.4 to 1.6 cm2 with the ACURATE neo. Before BVF, VIV TAVR with the ACURATE neo in the 21-mm Mitroflow had lower gradients compared with S3 (11.3 mm Hg vs. 16 mm Hg). However, after BVF valve gradients were similar for both THVs (8.4 mm Hg ACURATE neo vs. 7.8 mm Hg S3). The effective orifice area increased from 1.5 to 2.1 cm2 with the S3 and from 1.8 to 2.2 cm2 with the ACURATE neo. CONCLUSIONS BVF performed after VIV TAVR results in improved residual gradients. Following BVF, residual gradients were similar irrespective of THV design. Use of a small ACURATE neo for VIV TAVR in small (≤21 mm) surgical valves may be associated with challenges in achieving optimum THV position and expansion. BVF could be considered in selected clinical cases.
Collapse
Affiliation(s)
- Janarthanan Sathananthan
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Sellers
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada; Department of Radiology, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Aaron M Barlow
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
| | | | - Rob Fraser
- ViVitro Labs Inc., Victoria, British Columbia, Canada
| | | | - Keith B Allen
- Saint Luke's Hospital, St. Luke's Mid America Heart Institute, Kansas City, Missouri
| | - Adnan Chhatriwalla
- Saint Luke's Hospital, St. Luke's Mid America Heart Institute, Kansas City, Missouri
| | - Dale J Murdoch
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; University of Queensland, Brisbane, Australia
| | - Mark Hensey
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karen Lau
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada; Department of Radiology, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Abdullah Alkhodair
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Danny Dvir
- University of Washington, Seattle, Washington
| | | | - Anson Cheung
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philipp Blanke
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiology, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Jian Ye
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Régis Rieu
- Aix-Marseille Univ, IFSTTAR, LBA UMR_T24, Marseille, France
| | | | - David Wood
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jonathan Leipsic
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Department of Radiology, St. Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - John G Webb
- Centre for Heart Valve Innovation, St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
26
|
Liang L, Sun B. A Proof of Concept Study of Using Machine-Learning in Artificial Aortic Valve Design: From Leaflet Design to Stress Analysis. Bioengineering (Basel) 2019; 6:bioengineering6040104. [PMID: 31717333 PMCID: PMC6955850 DOI: 10.3390/bioengineering6040104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/02/2022] Open
Abstract
Artificial heart valves, used to replace diseased human heart valves, are life-saving medical devices. Currently, at the device development stage, new artificial valves are primarily assessed through time-consuming and expensive benchtop tests or animal implantation studies. Computational stress analysis using the finite element (FE) method presents an attractive alternative to physical testing. However, FE computational analysis requires a complex process of numeric modeling and simulation, as well as in-depth engineering expertise. In this proof of concept study, our objective was to develop machine learning (ML) techniques that can estimate the stress and deformation of a transcatheter aortic valve (TAV) from a given set of TAV leaflet design parameters. Two deep neural networks were developed and compared: the autoencoder-based ML-models and the direct ML-models. The ML-models were evaluated through Monte Carlo cross validation. From the results, both proposed deep neural networks could accurately estimate the deformed geometry of the TAV leaflets and the associated stress distributions within a second, with the direct ML-models (ML-model-d) having slightly larger errors. In conclusion, although this is a proof-of-concept study, the proposed ML approaches have demonstrated great potential to serve as a fast and reliable tool for future TAV design.
Collapse
Affiliation(s)
- Liang Liang
- Department of Computer Science, University of Miami, Coral Gables, FL 33146, USA
- Correspondence:
| | - Bill Sun
- Walton High School, Marietta, GA 30062, USA;
| |
Collapse
|
27
|
The hemodynamics of transcatheter aortic valves in transcatheter aortic valves. J Thorac Cardiovasc Surg 2019; 161:565-576.e2. [PMID: 31767355 DOI: 10.1016/j.jtcvs.2019.09.174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 09/06/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND The durability of transcatheter aortic valves (TAVs) remains their greatest disadvantage, given that fixed tissue leaflets are not immune to structural degeneration from calcification and thrombosis. Therefore, a second intervention is necessary, especially given that TAV in low-risk patients has shown noninferior outcomes compared with surgery. This study aimed to assess the hemodynamic and turbulent properties of the flow downstream with different TAV-in-TAV configurations, to offer basic hemodynamic guidance for future interventions when currently implanted valves structurally degrade. METHODS Six TAV-in-TAV configurations were chosen: 23 mm Evolut-in-26 mm Evolut, 23 mm Evolut-in-23 mm SAPIEN 3, 26 mm Evolut-in-26 mm Evolut, 26 mm Evolut-in-23 mm SAPIEN 3, 23 mm SAPIEN3-in-26 mm Evolut, and 23 mm SAPIEN3-in-23 mm SAPIEN 3. Their hemodynamic performance was assessed in a pulse duplicator for 100 cycles. High-speed imaging and particle image velocimetry were performed to assess turbulence. Effective orifice area (EOA), pinwheeling index (PI), and Reynolds shear stress (RSS) were evaluated. RESULTS The largest mean EOA was obtained with 23 mm SAPIEN-in-26 mm Evolut (2.07 ± 0.06 cm2), and the smallest was obtained with 23 mm Evolut-in-23 mm SAPIEN (1.50 ± 0.04 cm2) (P < .001). The highest mean PI was obtained with SAPIEN-in-SAPIEN (26.5 ± 2.00%), and the lowest was obtained with 26 mm Evolut-in-26 mm Evolut (7.5 ± 1.6%) (P < .01). At peak systole, the least detrimental RSS range was obtained with 23 mm Evolut-in-26 mm Evolut (up to ∼340 Pa), and the most detrimental RSS range was obtained with 23 mm Evolut-in-SAPIEN (∼900 Pa) (P < .01). CONCLUSIONS This study shows that best hemodynamic parameters are TAV-specific (implanted and to be implanted). In addition, it shows that RSS levels, which are indicative of turbulence levels and associated with blood damage, are 2- to 3-fold higher after TAV-in-TAV.
Collapse
|
28
|
Does clinical data quality affect fluid-structure interaction simulations of patient-specific stenotic aortic valve models? J Biomech 2019; 94:202-210. [DOI: 10.1016/j.jbiomech.2019.07.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 11/17/2022]
|
29
|
Luraghi G, Migliavacca F, García-González A, Chiastra C, Rossi A, Cao D, Stefanini G, Rodriguez Matas JF. On the Modeling of Patient-Specific Transcatheter Aortic Valve Replacement: A Fluid-Structure Interaction Approach. Cardiovasc Eng Technol 2019; 10:437-455. [PMID: 31309527 DOI: 10.1007/s13239-019-00427-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Transcatheter aortic valve replacement (TAVR) is a minimally invasive treatment for high-risk patients with aortic diseases. Despite its increasing use, many influential factors are still to be understood and require continuous investigation. The best numerical approach capable of reproducing both the valves mechanics and the hemodynamics is the fluid-structure interaction (FSI) modeling. The aim of this work is the development of a patient-specific FSI methodology able to model the implantation phase as well as the valve working conditions during cardiac cycles. METHODS The patient-specific domain, which included the aortic root, native valve and calcifications, was reconstructed from CT images, while the CAD model of the device, metallic frame and pericardium, was drawn from literature data. Ventricular and aortic pressure waveforms, derived from the patient's data, were used as boundary conditions. The proposed method was applied to two real clinical cases, which presented different outcomes in terms of paravalvular leakage (PVL), the main complication after TAVR. RESULTS The results confirmed the clinical prognosis of mild and moderate PVL with coherent values of regurgitant volume and effective regurgitant orifice area. Moreover, the final release configuration of the device and the velocity field were compared with postoperative CT scans and Doppler traces showing a good qualitative and quantitative matching. CONCLUSION In conclusion, the development of realistic and accurate FSI patient-specific models can be used as a support for clinical decisions before the implantation.
Collapse
Affiliation(s)
- Giulia Luraghi
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy.
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy
| | - Alberto García-González
- Laboratori de Càlcul Numèric (LaCàN), E.T.S. de Ingenieros de Caminos, Canales y Puertos, Universitat Politècnica de Catalunya (UPC), Jordi Girona 1-3, 08034, Barcelona, Spain
| | - Claudio Chiastra
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy.,PoliToBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Davide Cao
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Giulio Stefanini
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, 20090, Pieve Emanuele, MI, Italy
| | - Jose Felix Rodriguez Matas
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Piazza L. da Vinci 32, 20133, Milan, Italy
| |
Collapse
|
30
|
Heitkemper M, Hatoum H, Dasi LP. In vitro hemodynamic assessment of a novel polymeric transcatheter aortic valve. J Mech Behav Biomed Mater 2019; 98:163-171. [PMID: 31238208 DOI: 10.1016/j.jmbbm.2019.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 06/06/2019] [Accepted: 06/17/2019] [Indexed: 01/12/2023]
Abstract
Transcatheter aortic valve replacement (TAVR) is a life-saving alternative to surgical intervention. However, the identification of features associated with poor outcomes, including residual paravalvular leakage (PVL), leaflet calcification, and subclinical leaflet thrombosis, are cause to be concerned about valve durablilty (Mylotte and Piazza, 2015a, 2015b; Dasi et al., 2017; Makkar et al., 2015; Kheradvar et al., 2015a). The aim of this study is to optimize the potential of a hyaluronan (HA) enhanced polymeric transcatheter aortic valve (HA-TAV) that has promised to reduce blood damage causing-turbulent flow while maintaining durability. HA-enhanced linear low-density polyethylene (LLDPE) leaflets were sutured to novel cobalt chromium stents, size 26 mm balloon expandable stents. Hemodynamic performance was assessed in a left heart simulator under physiological pressure and flow conditions and compared to a 26 mm Medtronic Evolut and 26 mm Edwards SAPIEN 3. High-speed imaging and particle image velocimetry (PIV) were performed. The HA-TAV demonstrated an effective orifice area (EOA) within one standard deviation of the leading valve, SAPIEN 3.The regurgitant fraction (RF) of the HA-TAV (11.23 ± 0.55%) is decreased in comparison the Evolut (15.74 ± 0.73%) and slightly higher than the SAPIEN 3 (10.92 ± 0.11%), which is considered trace regurgitation according to valve standards. A decreased number of higher principal Reynolds shear stresses were shown for the HA-TAV at each cardiac phase. The HA-TAV is directly comparable and in some cases superior to the leading commercially available prosthetic heart valves in in-vitro hemodynamic testing.
Collapse
Affiliation(s)
- Megan Heitkemper
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA
| | - Hoda Hatoum
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA; Department of Mechanical Engineering, The Ohio State University, Columbus, OH, USA
| | - Lakshmi Prasad Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
31
|
Sathananthan J, Sellers SL, Fraser R, Dvir D, Hensey M, Murdoch DJ, Blanke P, Pibarot P, Toggweiler S, Wood D, Leipsic J, Webb JG. Impact of implant depth on hydrodynamic function with the ACURATE neo transcatheter heart valve following valve-in-valve transcatheter aortic valve replacement in Mitroflow bioprosthetic valves: an ex vivo bench study. EUROINTERVENTION 2019; 15:78-87. [DOI: 10.4244/eij-d-18-00947] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Rotman OM, Bianchi M, Ghosh RP, Kovarovic B, Bluestein D. Principles of TAVR valve design, modelling, and testing. Expert Rev Med Devices 2018; 15:771-791. [PMID: 30318937 PMCID: PMC6417919 DOI: 10.1080/17434440.2018.1536427] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Transcatheter aortic valve replacement (TAVR) has emerged as an effective minimally-invasive alternative to surgical valve replacement in medium- to high-risk, elderly patients with calcific aortic valve disease and severe aortic stenosis. The rapid growth of the TAVR devices market has led to a high variety of designs, each aiming to address persistent complications associated with TAVR valves that may hamper the anticipated expansion of TAVR utility. AREAS COVERED Here we outline the challenges and the technical demands that TAVR devices need to address for achieving the desired expansion, and review design aspects of selected, latest generation, TAVR valves of both clinically-used and investigational devices. We further review in detail some of the up-to-date modeling and testing approaches for TAVR, both computationally and experimentally, and additionally discuss those as complementary approaches to the ISO 5840-3 standard. A comprehensive survey of the prior and up-to-date literature was conducted to cover the most pertaining issues and challenges that TAVR technology faces. EXPERT COMMENTARY The expansion of TAVR over SAVR and to new indications seems more promising than ever. With new challenges to come, new TAV design approaches, and materials used, are expected to emerge, and novel testing/modeling methods to be developed.
Collapse
Affiliation(s)
- Oren M. Rotman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Matteo Bianchi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Ram P. Ghosh
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
33
|
|
34
|
The impact of implantation depth of the Lotus™ valve on mechanical stress in close proximity to the bundle of His. Biomech Model Mechanobiol 2018; 18:79-88. [DOI: 10.1007/s10237-018-1069-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
|
35
|
Rashid HN, Cameron JD, Brown AJ. Activation of the coagulation cascade and the role of paravalvular leak in the development of leaflet thrombosis following transcatheter aortic valve replacement. EUROINTERVENTION 2018; 14:718-719. [PMID: 30122663 DOI: 10.4244/eij-d-18-00348r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hashrul N Rashid
- MonashHeart, Monash Health and Monash Cardiovascular Research Centre, Monash University, Melbourne, Australia
| | | | | |
Collapse
|
36
|
Stented valve dynamic behavior induced by polyester fiber leaflet material in transcatheter aortic valve devices. J Mech Behav Biomed Mater 2018; 86:232-239. [PMID: 29986298 DOI: 10.1016/j.jmbbm.2018.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/21/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE This study aims at assessing the global dynamic behavior, elastic deformability, closing energy and turbulence of rigid versus deformable stented (RS vs DS) valve systems with deformable and rigid textile materials (DT vs RT) through studying the stent-valve interaction compared to a bioprosthetic material in transcatheter aortic valves (TAV). METHODS Three 19 mm stented textile TAV designs (RS-DT, RS-RT and DS-RT) with different stent and leaflet properties were tested and compared with a control bioprosthetic TAV (RS-DB) in a left heart simulator flow loop under physiological pressure and flow. Particle Image Velocimetry and high speed imaging were performed. Pressure gradients (PG), leakage fractions (LF), Pinwheeling indices (PI), closing energy (E) and Reynolds shear stresses (RSS) were calculated. RESULTS (a) PGs and LFs were 11.86 ± 0.51 mmHg, 11.70 ± 0.34%; 8.84 ± 0.40 mmHg, 29.80 ± 0.76%; 11.59 ± 0.12 mmHg, 14.23 ± 1.64%; and 7.05 ± 0.09 mmHg, 12.08 ± 0.45% % for RS-DB, RS-DT, RS-RT and DS-RT respectively. (b) PIs were 15.79 ± 2.34%, 4.36 ± 0.84%, 2.47 ± 0.51% and 2.03 ± 0.33% for RS-DB, RS-DT, RS-RT and DS-RT respectively. (c) E is lowest for DS-RT (0.0010 ± 0.0002 J) followed by RS-RT (0.0017 ± 0.0002 J), RS-DB (0.0023 ± 0.0004 J) and highest with RS-DT (0.0036 ± 0.0007 J). (d) At peak systole lowest RSS was obtained with RS-DT (87.82 ± 0.58 Pa) and highest with DS-RT (122.98 ± 1.87 Pa). CONCLUSION PGs, LFs, PIs and E were improved with DS-RT compared to other textile TAVs and RS-DB. Despite achieving more RSS than the rest of TAVs, DS-RT still falls within the same range of RSS produced by the other 2 valves and control exceeding the threshold for platelet activation.
Collapse
|
37
|
Fuchs A, De Backer O, Brooks M, de Knegt MC, Bieliauskas G, Yamamoto M, Yanagisawa R, Hayashida K, Søndergaard L, Kofoed KF. Subclinical leaflet thickening and stent frame geometry in self-expanding transcatheter heart valves. EUROINTERVENTION 2018; 13:e1067-e1075. [PMID: 28741579 DOI: 10.4244/eij-d-17-00373] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS This study aimed to assess the potential relationship between subclinical leaflet thickening and stent frame geometry in patients who underwent aortic valve replacement with a self-expanding transcatheter heart valve (THV). METHODS AND RESULTS Seventy-five patients with a self-expanding THV were studied with 4D-computed tomography and analysed for leaflet thickening. There was no difference in THV size, overall THV expansion, eccentricity or implantation depth between patients with and those without leaflet thickening. Moderate-to-severe regional THV underexpansion (≤90°) more frequently occurred at the non-coronary and right coronary cusps with a significantly higher incidence of leaflet thickening than in cases of full regional THV expansion (24% vs. 3%, p<0.01). Regional THV underexpansion at the inflow level more often translated into the same issue at the valvular level in THV with intra-annular as compared to supra-annular valve position (54% vs. 17%; p=0.04). In case of post-dilatation, regional THV underexpansion occurred less frequently as compared to THV that were not post-dilated (18% vs. 43%, p=0.028). A similar but non-significant trend was found for leaflet thickening. CONCLUSIONS Regional THV stent frame underexpansion is associated with an increased risk of leaflet thickening. Post-dilatation of self-expanding THV as well as a supra-annular valve position seem to reduce the occurrence of this phenomenon.
Collapse
Affiliation(s)
- Andreas Fuchs
- Department of Cardiology, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hatoum H, Yousefi A, Lilly S, Maureira P, Crestanello J, Dasi LP. An in vitro evaluation of turbulence after transcatheter aortic valve implantation. J Thorac Cardiovasc Surg 2018; 156:1837-1848. [PMID: 29961588 DOI: 10.1016/j.jtcvs.2018.05.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 04/17/2018] [Accepted: 05/13/2018] [Indexed: 01/20/2023]
Abstract
BACKGROUND This study aimed at assessment of post-transcatheter aortic valve (TAV) replacement hemodynamics and turbulence when a same-size SAPIEN 3 (Edwards Lifesciences Corp, Irvine, Calif) and Medtronic Evolut (Minneapolis, Minn) were implanted in a rigid aortic root with physiological dimensions and in a representative root with calcific leaflets obtained from patient computed tomography scans. METHODS TAV hemodynamics were studied by placing a SAPIEN 3 26-mm and an Evolut 26-mm in rigid aortic roots and representative root with calcific leaflets under physiological conditions. Hemodynamics were assessed using high-fidelity particle image velocimetry and high-speed imaging. Transvalvular pressure gradients (PGs), pinwheeling indices, and Reynolds shear stress (RSS) were calculated. RESULTS (1) PGs obtained with the Evolut and the SAPIEN 3 were comparable among the different models (10.5 ± 0.15 mm Hg vs 7.76 ± 0.083 mm Hg in the rigid model along with 13.9 ± 0.19 mm Hg vs 5.0 ± 0.09 mm Hg in representative root with calcific leaflets obtained from patient computed tomography scans respectively); (2) more pinwheeling was found in the SAPIEN 3 than the Evolut (0.231 ± 0.057 vs 0.201 ± 0.05 in the representative root with calcific leaflets and 0.366 ± 0.067 vs 0.122 ± 0.045 in the rigid model); (3) higher rates of RSS were found in the Evolut (161.27 ± 3.45 vs 122.84 ± 1.76 Pa in representative root with calcific leaflets and 337.22 ± 7.05 vs 157.91 ± 1.80 Pa in rigid models). More lateral fluctuations were found in representative root with calcific leaflets. CONCLUSIONS (1) Comparable PGs were found among the TAVs in different models; (2) pinwheeling indices were found to be different between both TAVs; (3) turbulence patterns among both TAVs translated according to RSS were different. Rigid aortic models yield more conservative estimates of turbulence; (4) both TAVs exhibit peak maximal RSS that exceeds platelet activation 100 Pa threshold limit.
Collapse
Affiliation(s)
- Hoda Hatoum
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Atieh Yousefi
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Scott Lilly
- Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Pablo Maureira
- Department of Cardiovascular Surgery, CHU de Nancy, Nancy, France
| | - Juan Crestanello
- Department of Surgery, The Ohio State University, Columbus, Ohio
| | - Lakshmi P Dasi
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio; Department of Surgery, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
39
|
Salaun E, Clavel MA, Rodés-Cabau J, Pibarot P. Bioprosthetic aortic valve durability in the era of transcatheter aortic valve implantation. Heart 2018; 104:1323-1332. [DOI: 10.1136/heartjnl-2017-311582] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 02/02/2023] Open
Abstract
The main limitation of bioprosthetic valves is their limited durability, which exposes the patient to the risk of aortic valve reintervention. Transcatheter aortic valve implantation (TAVI) is considered a reasonable alternative to surgical aortic valve replacement (SAVR) in patients with intermediate or high surgical risk. TAVI is now rapidly expanding towards the lower risk populations. Although the results of midterm durability of the transcatheter bioprostheses are encouraging, their long-term durability remains largely unknown. The objective of this review article is to present the definition, mechanisms, incidence, outcome and management of structural valve deterioration of aortic bioprostheses with specific emphasis on TAVI. The structural valve deterioration can be categorised into three stages: stage 1: morphological abnormalities (fibrocalcific remodelling and tear) of bioprosthesis valve leaflets without hemodynamic valve deterioration; stage 2: morphological abnormalities and moderate hemodynamic deterioration (increase in gradient and/or new onset of transvalvular regurgitation); and stage 3: morphological abnormalities and severe hemodynamic deterioration. Several specifics inherent to the TAVI including valve oversizing, manipulation, delivery, positioning and deployment may cause injuries to the valve leaflets and increase leaflet mechanical stress, which may limit the long-term durability of transcatheter bioprostheses. The selection of the type of aortic valve replacement and bioprosthesis should thus take into account the ratio between the demonstrated durability of the bioprostheses versus the life expectancy of the patient. Pending the publication of robust data on long-term durability of transcatheter bioprostheses, it appears reasonable to select SAVR with a bioprosthesis model that has well-established long-term durability in patients with low surgical risk and long life expectancy.
Collapse
|
40
|
Rotman OM, Kovarovic B, Sadasivan C, Gruberg L, Lieber BB, Bluestein D. Realistic Vascular Replicator for TAVR Procedures. Cardiovasc Eng Technol 2018; 9:339-350. [PMID: 29654509 DOI: 10.1007/s13239-018-0356-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/07/2018] [Indexed: 10/17/2022]
Abstract
Transcatheter aortic valve replacement (TAVR) is an over-the-wire procedure for treatment of severe aortic stenosis (AS). TAVR valves are conventionally tested using simplified left heart simulators (LHS). While those provide baseline performance reliably, their aortic root geometries are far from the anatomical in situ configuration, often overestimating the valves' performance. We report on a novel benchtop patient-specific arterial replicator designed for testing TAVR and training interventional cardiologists in the procedure. The Replicator is an accurate model of the human upper body vasculature for training physicians in percutaneous interventions. It comprises of fully-automated Windkessel mechanism to recreate physiological flow conditions. Calcified aortic valve models were fabricated and incorporated into the Replicator, then tested for performing TAVR procedure by an experienced cardiologist using the Inovare valve. EOA, pressures, and angiograms were monitored pre- and post-TAVR. A St. Jude mechanical valve was tested as a reference that is less affected by the AS anatomy. Results in the Replicator of both valves were compared to the performance in a commercial ISO-compliant LHS. The AS anatomy in the Replicator resulted in a significant decrease of the TAVR valve performance relative to the simplified LHS, with EOA and transvalvular pressures comparable to clinical data. Minor change was seen in the mechanical valve performance. The Replicator showed to be an effective platform for TAVR testing. Unlike a simplified geometric anatomy LHS, it conservatively provides clinically-relevant outcomes and complement it. The Replicator can be most valuable for testing new valves under challenging patient anatomies, physicians training, and procedural planning.
Collapse
Affiliation(s)
- Oren M Rotman
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8151, USA
| | - Brandon Kovarovic
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8151, USA
| | - Chander Sadasivan
- Department of Neurological Surgery, Stony Brook University, Stony Brook, NY, 11794, USA.,Vascular Simulations LLC, Stony Brook, NY, 11790, USA
| | | | - Baruch B Lieber
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8151, USA.,Department of Neurological Surgery, Stony Brook University, Stony Brook, NY, 11794, USA.,Vascular Simulations LLC, Stony Brook, NY, 11790, USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794-8151, USA.
| |
Collapse
|
41
|
Feng W, Yang X, Liu Y, Fan Y. An In Vitro Feasibility Study of the Influence of Configurations and Leaflet Thickness on the Hydrodynamics of Deformed Transcatheter Aortic Valve. Artif Organs 2017; 41:735-743. [PMID: 28233370 DOI: 10.1111/aor.12833] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Clinically, the percutaneous transcatheter aortic valve (TAV) has been reported to be deformed in a noncircular configuration after its implant. The deformation is universal and various, and it leads to serious leakage and durability problems. Even in the same deformation, the leaflets made in different tissue thicknesses may cause different hydrodynamic performances. Simulating the left heart cardiac conditions by a pulse duplicator system, the present study investigated the effects of the aortic annulus deformation and the leaflet tissue thickness on the hydrodynamics of the TAV. Three 22 mm self-expanding TAV samples were fabricated with three different leaflet thicknesses (0.25, 0.4, 0.55 mm). Every sample was successively deformed to be elliptical, triangular, and undersized circular shapes. The hydrodynamics of the TAV were assessed through a quasi-physiological artery pulsatile flow duplicator system. The transvalvular pressure difference, effective orifice area, and regurgitation flow were determined. High-speed video recordings were taken to investigate the leaflet kinematics. The results showed that the triangular deformation produced the poorest valve function while the elliptical deformation led to the slightest difference from the nominal. With increasing leaflet thickness, the effect of configuration deformation on the regurgitation increased. The thinner leaflets were better than the thicker ones in adapting to the deformation but had a higher risk of deterioration.
Collapse
Affiliation(s)
- Wentao Feng
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, International Research Center for Implantable and Interventional Medical Devices, Beihang University.,Beijing Key Laboratory for Optimal Design and Evaluation Technology of Implantable & Interventional Medical Devices, Beijing, 100191, China
| | - Xianda Yang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, International Research Center for Implantable and Interventional Medical Devices, Beihang University.,Beijing Key Laboratory for Optimal Design and Evaluation Technology of Implantable & Interventional Medical Devices, Beijing, 100191, China
| | - Yang Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, International Research Center for Implantable and Interventional Medical Devices, Beihang University.,Beijing Key Laboratory for Optimal Design and Evaluation Technology of Implantable & Interventional Medical Devices, Beijing, 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, International Research Center for Implantable and Interventional Medical Devices, Beihang University.,Beijing Key Laboratory for Optimal Design and Evaluation Technology of Implantable & Interventional Medical Devices, Beijing, 100191, China.,National Research Center for Rehabilitation Technical Aids, Beijing, China
| |
Collapse
|
42
|
Martin C, Sun W. Transcatheter Valve Underexpansion Limits Leaflet Durability: Implications for Valve-in-Valve Procedures. Ann Biomed Eng 2016; 45:394-404. [PMID: 27734178 DOI: 10.1007/s10439-016-1738-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/16/2016] [Indexed: 11/25/2022]
Abstract
Transcatheter aortic valve (TAV) implantation within a failed bioprosthetic valve is a growing trend for high-risk patients. The non-compliant stent of the previous prosthesis may prevent full expansion of the TAV, which has been shown to distort the leaflet configuration, and has been hypothesized to adversely affect durability. In this study, TAV leaflet fatigue damage under cyclic pressurization in the setting of stent underexpansion by 0 (fully expanded), 1, 2 and 3 mm was simulated using finite element analysis to test this hypothesis. In the 2 and 3 mm underexpanded devices, the TAV leaflets exhibited severe pin-wheeling during valve closure, which increased leaflet stresses dramatically, and resulted in accelerated fatigue damage of the leaflets. The leaflet fatigue damage in the 1 mm underexpanded case was similar to that in the fully expanded case. Clinically a range of 10-15% underexpansion is generally considered acceptable; however, it was observed in this study that ≥2 mm (≥9.1%) underexpansion, will significantly impact device durability. Further study is necessary to determine the impact of various deployment conditions, i.e. non-uniform and non-circular deployments and different implantation heights, on differing TAV devices, but it is clear that the normal TAV leaflet configuration must be preserved in order to preserve durability.
Collapse
Affiliation(s)
- Caitlin Martin
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA, 30313-2412, USA
| | - Wei Sun
- Tissue Mechanics Laboratory, The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Technology Enterprise Park, Room 206, 387 Technology Circle, Atlanta, GA, 30313-2412, USA.
| |
Collapse
|
43
|
Guyton RA, Padala M. Transcatheter Aortic Valve Replacement in Bicuspid Aortic Stenosis: Early Success But Concerning Red Flags. JACC Cardiovasc Interv 2016; 9:825-827. [PMID: 27101907 DOI: 10.1016/j.jcin.2016.02.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/29/2016] [Indexed: 11/17/2022]
Affiliation(s)
- Robert A Guyton
- Carlyle Fraser Heart Center, Division of Cardiothoracic Surgery, Department of Surgery, Emory University School of Medicine, Atlanta, Georgia.
| | - Muralidhar Padala
- Structural Heart Research & Innovation Laboratory, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|