1
|
Welch H, Savoca MS, Brodie S, Jacox MG, Muhling BA, Clay TA, Cimino MA, Benson SR, Block BA, Conners MG, Costa DP, Jordan FD, Leising AW, Mikles CS, Palacios DM, Shaffer SA, Thorne LH, Watson JT, Holser RR, Dewitt L, Bograd SJ, Hazen EL. Impacts of marine heatwaves on top predator distributions are variable but predictable. Nat Commun 2023; 14:5188. [PMID: 37669922 PMCID: PMC10480173 DOI: 10.1038/s41467-023-40849-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/11/2023] [Indexed: 09/07/2023] Open
Abstract
Marine heatwaves cause widespread environmental, biological, and socio-economic impacts, placing them at the forefront of 21st-century management challenges. However, heatwaves vary in intensity and evolution, and a paucity of information on how this variability impacts marine species limits our ability to proactively manage for these extreme events. Here, we model the effects of four recent heatwaves (2014, 2015, 2019, 2020) in the Northeastern Pacific on the distributions of 14 top predator species of ecological, cultural, and commercial importance. Predicted responses were highly variable across species and heatwaves, ranging from near total loss of habitat to a two-fold increase. Heatwaves rapidly altered political bio-geographies, with up to 10% of predicted habitat across all species shifting jurisdictions during individual heatwaves. The variability in predicted responses across species and heatwaves portends the need for novel management solutions that can rapidly respond to extreme climate events. As proof-of-concept, we developed an operational dynamic ocean management tool that predicts predator distributions and responses to extreme conditions in near real-time.
Collapse
Affiliation(s)
- Heather Welch
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA.
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA.
| | - Matthew S Savoca
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Stephanie Brodie
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Michael G Jacox
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- NOAA, Physical Sciences Laboratory, Boulder, CO, USA
| | - Barbara A Muhling
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- NOAA Southwest Fisheries Science Center, Fisheries Resources Division, San Diego, CA, USA
| | - Thomas A Clay
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- People and Nature, Environmental Defense Fund, Monterey, CA, USA
| | - Megan A Cimino
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Scott R Benson
- NOAA, Southwest Fisheries Science Center, Marine Mammal and Turtle Division, Moss Landing, CA, USA
- Moss Landing Marine Laboratories, San Jose State University, Moss Landing, CA, USA
| | - Barbara A Block
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Melinda G Conners
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Daniel P Costa
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- Department of Ecology and Evolutionary Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - Fredrick D Jordan
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Andrew W Leising
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
| | - Chloe S Mikles
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| | - Daniel M Palacios
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
- Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, USA
| | - Scott A Shaffer
- Department of Biological Sciences, San Jose State University, San Jose, CA, USA
| | - Lesley H Thorne
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA
| | - Jordan T Watson
- NOAA, Alaska Fisheries Science Center, Auke Bay Laboratory, Juneau, AK, USA
- Pacific Islands Ocean Observing System, University of Hawai'i Mānoa, Honolulu, HI, USA
| | - Rachel R Holser
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Lynn Dewitt
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
| | - Steven J Bograd
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
| | - Elliott L Hazen
- NOAA, Southwest Fisheries Science Center, Environmental Research Division, Monterey, CA, USA
- Institute of Marine Science, UC Santa Cruz, Santa Cruz, CA, USA
- Hopkins Marine Station, Stanford University, Pacific Grove, CA, USA
| |
Collapse
|
2
|
Adjustment of foraging trips and flight behaviour to own and partner mass and wind conditions by a far-ranging seabird. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
3
|
Jordan FD, Shaffer SA, Conners MG, Stepanuk JEF, Gilmour ME, Clatterbuck CA, Hazen EL, Palacios DM, Tremblay Y, Antolos M, Foley DG, Bograd SJ, Costa DP, Thorne LH. Divergent post-breeding spatial habitat use of Laysan and black-footed albatross. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1028317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Understanding the at-sea movements of wide-ranging seabird species throughout their annual cycle is essential for their conservation and management. Habitat use and resource partitioning of Laysan (Phoebastria immutabilis) and black-footed (Phoebastria nigripes) albatross are well-described during the breeding period but are less understood during the post-breeding period, which represents ~40% of their annual cycle. Resource partitioning may be reduced during post-breeding, when birds are not constrained to return to the nest site regularly and can disperse to reduce competitive pressure. We assessed the degree of spatial segregation in the post-breeding distributions of Laysan (n = 82) and black-footed albatrosses (n = 61) using geolocator tags between 2008 and 2012 from two large breeding colonies in the Northwestern Hawaiian Islands, Midway Atoll, and Tern Island. We characterized the species-and colony-specific foraging and focal distributions (represented by the 95 and 50th density contours, respectively) and quantified segregation in at-sea habitat use between species and colonies. Laysan and black-footed albatross showed consistent and significant at-sea segregation in focal areas across colonies, indicating that resource partitioning persists during post-breeding. Within breeding colonies, segregation of foraging areas between the two species was more evident for birds breeding at Tern Island. Spatial segregation decreased as the post-breeding season progressed, when spatial distributions of both species became more dispersed. In contrast to studies conducted on breeding Laysan and black-footed albatross, we found that sea surface temperature distinguished post-breeding habitats of black-footed albatrosses between colonies, with black-footed albatrosses from Midway Atoll occurring in cooler waters (3.6°C cooler on average). Our results reveal marked at-sea segregation between Laysan and black-footed albatross breeding at two colonies during a critical but understudied phase in their annual cycle. The observed variation in species-environment relationships underscores the importance of sampling multiple colonies and temporal periods to more thoroughly understand the spatial distributions of pelagic seabirds.
Collapse
|
4
|
Henry RW, Shaffer SA, Antolos M, Félix-Lizárraga M, Foley DG, Hazen EL, Tremblay Y, Costa DP, Tershy BR, Croll DA. Successful Long-Distance Breeding Range Expansion of a Top Marine Predator. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.620103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Little is known about the effects of large-scale breeding range expansions on the ecology of top marine predators. We examined the effects of a recent range expansion on the breeding and foraging ecology of Laysan albatrosses (Phoebastria immutabilis). Laysan albatrosses expanded from historical breeding colonies in the Central Pacific Ocean to the Eastern Pacific Ocean around central Baja California, Mexico, leading to a 4,000-km shift from colonies located adjacent to the productive transition zone in the Central Pacific to colonies embedded within the eastern boundary current upwelling system of the Eastern Pacific California Current. We use electronic tagging and remote sensing data to examine the consequences of this range expansion on at-sea distribution, habitat use, foraging habitat characteristics, and foraging behavior at sea by comparing birds from historic and nascent colonies. We found the expansion resulted in distinct at-sea segregation and differential access to novel oceanographic habitats. Birds from the new Eastern Pacific colony on Guadalupe Island, Mexico have reduced ranges, foraging trip lengths and durations, and spend more time on the water compared to birds breeding in the Central Pacific on Tern Island, United States. Impacts of the range expansion to the post-breeding season were less pronounced where birds maintained some at-sea segregation but utilized similar habitat and environmental variables. These differences have likely benefited the Eastern Pacific colony which has significantly greater reproductive output and population growth rates. Laysan albatrosses have the plasticity to adapt to distinctly different oceanographic habitats and also provide insight on the potential consequences of range shifts to marine organisms.
Collapse
|
5
|
Gangoso L, Viana DS, Dokter AM, Shamoun‐Baranes J, Figuerola J, Barbosa SA, Bouten W. Cascading effects of climate variability on the breeding success of an edge population of an apex predator. J Anim Ecol 2020; 89:2631-2643. [PMID: 33439490 PMCID: PMC7692887 DOI: 10.1111/1365-2656.13304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/16/2020] [Indexed: 01/13/2023]
Abstract
Large-scale environmental forces can influence biodiversity at different levels of biological organization. Climate, in particular, is often associated with species distributions and diversity gradients. However, its mechanistic link to population dynamics is still poorly understood. Here, we unravelled the full mechanistic path by which a climatic driver, the Atlantic trade winds, determines the viability of a bird population. We monitored the breeding population of Eleonora's falcons in the Canary Islands for over a decade (2007-2017) and integrated different methods and data to reconstruct how the availability of their prey (migratory birds) is regulated by trade winds. We tracked foraging movements of breeding adults using GPS, monitored departure of migratory birds using weather radar and simulated their migration trajectories using an individual-based, spatially explicit model. We demonstrate that regional easterly winds regulate the flux of migratory birds that is available to hunting falcons, determining food availability for their chicks and consequent breeding success. By reconstructing how migratory birds are pushed towards the Canary Islands by trade winds, we explain most of the variation (up to 86%) in annual productivity for over a decade. This study unequivocally illustrates how a climatic driver can influence local-scale demographic processes while providing novel evidence of wind as a major determinant of population fitness in a top predator.
Collapse
Affiliation(s)
- Laura Gangoso
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Estación Biológica de DoñanaCSICSevillaSpain
| | - Duarte S. Viana
- German Center for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigLeipzigGermany
| | | | - Judy Shamoun‐Baranes
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | | | - Willem Bouten
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
6
|
Clay TA, Joo R, Weimerskirch H, Phillips RA, den Ouden O, Basille M, Clusella-Trullas S, Assink JD, Patrick SC. Sex-specific effects of wind on the flight decisions of a sexually dimorphic soaring bird. J Anim Ecol 2020; 89:1811-1823. [PMID: 32557603 DOI: 10.1111/1365-2656.13267] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 04/07/2020] [Indexed: 11/30/2022]
Abstract
In a highly dynamic airspace, flying animals are predicted to adjust foraging behaviour to variable wind conditions to minimize movement costs. Sexual size dimorphism is widespread in wild animal populations, and for large soaring birds which rely on favourable winds for energy-efficient flight, differences in morphology, wing loading and associated flight capabilities may lead males and females to respond differently to wind. However, the interaction between wind and sex has not been comprehensively tested. We investigated, in a large sexually dimorphic seabird which predominantly uses dynamic soaring flight, whether flight decisions are modulated to variation in winds over extended foraging trips, and whether males and females differ. Using GPS loggers we tracked 385 incubation foraging trips of wandering albatrosses Diomedea exulans, for which males are c. 20% larger than females, from two major populations (Crozet and South Georgia). Hidden Markov models were used to characterize behavioural states-directed flight, area-restricted search (ARS) and resting-and model the probability of transitioning between states in response to wind speed and relative direction, and sex. Wind speed and relative direction were important predictors of state transitioning. Birds were much more likely to take off (i.e. switch from rest to flight) in stronger headwinds, and as wind speeds increased, to be in directed flight rather than ARS. Males from Crozet but not South Georgia experienced stronger winds than females, and males from both populations were more likely to take-off in windier conditions. Albatrosses appear to deploy an energy-saving strategy by modulating taking-off, their most energetically expensive behaviour, to favourable wind conditions. The behaviour of males, which have higher wing loading requiring faster speeds for gliding flight, was influenced to a greater degree by wind than females. As such, our results indicate that variation in flight performance drives sex differences in time-activity budgets and may lead the sexes to exploit regions with different wind regimes.
Collapse
Affiliation(s)
- Thomas A Clay
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Rocío Joo
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, USA
| | - Henri Weimerskirch
- Centre d'Étude Biologique de Chizé, CNRS UMR 7273, Villiers-en-Bois, France
| | - Richard A Phillips
- British Antarctic Survey, Natural Environment Research Council, Cambridge, UK
| | - Olivier den Ouden
- R&D Seismology and Acoustics, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands.,Faculty of Civil Engineering and Geosciences, Department of Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands
| | - Mathieu Basille
- Department of Wildlife Ecology and Conservation, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL, USA
| | - Susana Clusella-Trullas
- Department of Botany and Zoology and Centre for Invasion Biology, Stellenbosch University, Stellenbosch, South Africa
| | - Jelle D Assink
- R&D Seismology and Acoustics, Royal Netherlands Meteorological Institute, De Bilt, The Netherlands
| | - Samantha C Patrick
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
7
|
Ventura F, Granadeiro JP, Padget O, Catry P. Gadfly petrels use knowledge of the windscape, not memorized foraging patches, to optimize foraging trips on ocean-wide scales. Proc Biol Sci 2020; 287:20191775. [PMID: 31937218 DOI: 10.1098/rspb.2019.1775] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Seabirds must often travel vast distances to exploit heterogeneously distributed oceanic resources, but how routes and destinations of foraging trips are optimized remains poorly understood. Among the seabirds, gadfly petrels (Pterodroma spp.) are supremely adapted for making efficient use of wind energy in dynamic soaring flight. We used GPS tracking data to investigate the role of wind in the flight behaviour and foraging strategy of the Desertas petrel, Pterodroma deserta. We found that rather than visiting foraging hotspots, Desertas petrels maximize prey encounter by covering some of the longest distances known in any animal in a single foraging trip (up to 12 000 km) over deep, pelagic waters. Petrels flew with consistent crosswind (relative wind angle 60°), close to that which maximizes their groundspeed. By combining state-space modelling with a series of comparisons to simulated foraging trips (reshuffled-random, rotated, time-shifted, reversed), we show that this resulted in trajectories that were close to the fastest possible, given the location and time. This wind use is thus consistent both with birds using current winds to fine-tune their routes and, impressively, with an a priori knowledge of predictable regional-scale wind regimes, facilitating efficient flight over great distances before returning to the home colony.
Collapse
Affiliation(s)
- Francesco Ventura
- CESAM, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - José Pedro Granadeiro
- CESAM, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Oliver Padget
- Oxford Navigation Group, Department of Zoology, University of Oxford, Oxford OX1 3PS, Oxfordshire, UK
| | - Paulo Catry
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Rua Jardim do Tabaco 34, 1149-041 Lisboa, Portugal
| |
Collapse
|
8
|
Wilkinson BP, Satgé YG, Lamb JS, Jodice PGR. Tropical cyclones alter short-term activity patterns of a coastal seabird. MOVEMENT ECOLOGY 2019; 7:30. [PMID: 31673358 PMCID: PMC6816181 DOI: 10.1186/s40462-019-0178-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/09/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Mobile organisms in marine environments are expected to modify their behavior in response to external stressors. Among environmental drivers of animal movement are long-term climatic indices influencing organism distribution and short-term meteorological events anticipated to alter acute movement behavior. However, few studies exist documenting the response of vagile species to meteorological anomalies in coastal and marine systems. METHODS Here we examined the movements of Eastern brown pelicans (Pelecanus occidentalis carolinensis) in the South Atlantic Bight in response to the passage of three separate hurricane events in 2 years. Pelicans (n = 32) were tracked with GPS satellite transmitters from four colonies in coastal South Carolina, USA, for the entirety of at least one storm event. An Expectation Maximization binary Clustering algorithm was used to discretize pelican behavioral states, which were pooled into 'active' versus 'inactive' states. Multinomial logistic regression was used to assess behavioral state probabilities in relation to changes in barometric pressure and wind velocity. RESULTS Individual pelicans were more likely to remain inactive during tropical cyclone passage compared to baseline conditions generally, although responses varied by hurricane. When inactive, pelicans tended to seek shelter using local geomorphological features along the coastline such as barrier islands and estuarine systems. CONCLUSIONS Our telemetry data showed that large subtropical seabirds such as pelicans may mitigate risk associated with spatially-extensive meteorological events by decreasing daily movements. Sheltering may be related to changes in barometric pressure and wind velocity, and represents a strategy common to several other classes of marine vertebrate predators for increasing survival probabilities.
Collapse
Affiliation(s)
- Bradley P. Wilkinson
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634 USA
- South Carolina Cooperative Fish and Wildlife Research Unit, Clemson, SC 29634 USA
| | - Yvan G. Satgé
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634 USA
- South Carolina Cooperative Fish and Wildlife Research Unit, Clemson, SC 29634 USA
| | - Juliet S. Lamb
- Department of Natural Resource Science, University of Rhode Island, Kingston, RI 02881 USA
| | - Patrick G. R. Jodice
- Department of Forestry and Environmental Conservation, Clemson University, Clemson, SC 29634 USA
- U.S. Geological Survey South Carolina Cooperative Fish and Wildlife Research Unit, Clemson, Clemson, SC 29634 USA
| |
Collapse
|
9
|
Beale CS, Stewart JD, Setyawan E, Sianipar AB, Erdmann MV. Population dynamics of oceanic manta rays (
Mobula birostris
) in the Raja Ampat Archipelago, West Papua, Indonesia, and the impacts of the El Niño–Southern Oscillation on their movement ecology. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12962] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Calvin S. Beale
- Misool Manta Project Sorong Indonesia
- The Manta Trust Dorchester UK
| | - Joshua D. Stewart
- The Manta Trust Dorchester UK
- Scripps Institution of Oceanography UC San Diego La Jolla California
| | - Edy Setyawan
- The Manta Trust Dorchester UK
- Sea Sanctuaries Trust London UK
| | | | - Mark V. Erdmann
- Conservation International Indonesia Marine Program Bali Indonesia
| |
Collapse
|
10
|
Richardson PL, Wakefield ED, Phillips RA. Flight speed and performance of the wandering albatross with respect to wind. MOVEMENT ECOLOGY 2018; 6:3. [PMID: 29556395 PMCID: PMC5840797 DOI: 10.1186/s40462-018-0121-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Albatrosses and other large seabirds use dynamic soaring to gain sufficient energy from the wind to travel large distances rapidly and with little apparent effort. The recent development of miniature bird-borne tracking devices now makes it possible to explore the physical and biological implications of this means of locomotion in detail. Here we use GPS tracking and concurrent reanalyzed wind speed data to model the flight performance of wandering albatrosses Diomedea exulans soaring over the Southern Ocean. We investigate the extent to which flight speed and performance of albatrosses is facilitated or constrained by wind conditions encountered during foraging trips. RESULTS We derived simple equations to model observed albatross ground speed as a function of wind speed and relative wind direction. Ground speeds of the tracked birds in the along-wind direction varied primarily by wind-induced leeway, which averaged 0.51 (± 0.02) times the wind speed at a reference height of 5 m. By subtracting leeway velocity from ground velocity, we were able to estimate airspeed (the magnitude of the bird's velocity through the air). As wind speeds increased from 3 to 18 m/s, the airspeed of wandering albatrosses flying in an across-wind direction increased by 0.42 (± 0.04) times the wind speed (i.e. ~ 6 m/s). At low wind speeds, tracked birds increased their airspeed in upwind flight relative to that in downwind flight. At higher wind speeds they apparently limited their airspeeds to a maximum of around 20 m/s, probably to keep the forces on their wings in dynamic soaring well within tolerable limits. Upwind airspeeds were nearly constant and downwind leeway increased with wind speed. Birds therefore achieved their fastest upwind ground speeds (~ 9 m/s) at low wind speeds (~ 3 m/s). CONCLUSIONS This study provides insights into which flight strategies are optimal for dynamic soaring. Our results are consistent with the prediction that the optimal range speed of albatrosses is higher in headwind than tailwind flight but only in wind speeds of up to ~ 7 m/s. Our models predict that wandering albatrosses have oval-shaped airspeed polars, with the fastest airspeeds ~ 20 m/s centered in the across-wind direction. This suggests that in upwind flight in high winds, albatrosses can increase their ground speed by tacking like sailboats.
Collapse
Affiliation(s)
- Philip L. Richardson
- Department of Physical Oceanography, MS#21, Woods Hole Oceanographic Institution, 360 Woods Hole Road, Woods Hole, MA 02543 USA
| | - Ewan D. Wakefield
- Animal Health and Comparative Medicine, University of Glasgow, Institute of Biodiversity, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Richard A. Phillips
- British Antarctic Survey, Natural Environment Research Council, High Cross, Madingley Road, Cambridge, CB3 0ET UK
| |
Collapse
|
11
|
Poli CL, Harrison AL, Vallarino A, Gerard PD, Jodice PGR. Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico. PLoS One 2017; 12:e0178318. [PMID: 28575078 PMCID: PMC5456039 DOI: 10.1371/journal.pone.0178318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/11/2017] [Indexed: 11/19/2022] Open
Abstract
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.
Collapse
Affiliation(s)
- Caroline L. Poli
- Department of Forestry and Environmental Conservation, and South Carolina Cooperative Fish and Wildlife Research Unit, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| | - Autumn-Lynn Harrison
- Institute for Parks, Clemson University, Clemson, South Carolina, United States of America
| | - Adriana Vallarino
- Centro de Investigación y de Estudios Avanzados Unidad Mérida, Mérida, México
| | - Patrick D. Gerard
- Department of Mathematical Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Patrick G. R. Jodice
- U.S. Geological Survey, South Carolina Cooperative Fish and Wildlife Research Unit, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|